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Metalearning for Hyperparameter Optimization

Summary. This chapter describes various approaches for the hyperparameter optimiza-
tion (HPO) and combined algorithm selection and hyperparameter optimization prob-
lems (CASH). It starts by presenting some basic hyperparameter optimization methods,
including grid search, random search, racing strategies, successive halving and hyper-
band. Next, it discusses Bayesian optimization, a technique that learns from the ob-
served performance of previously tried hyperparameter settings on the current task. This
knowledge is used to build a meta-model (surrogate model) that can be used to predict
which unseen configurations may work better on that task. This part includes the descrip-
tion sequential model-based optimization (SMBO). This chapter also covers metalearning
techniques that extend the previously discussed optimization techniques with the ability
to transfer knowledge across tasks. This includes techniques such as warm-starting the
search, or transferring previously learned meta-models that were trained on prior (similar)
tasks. A key question here is how to establish how similar prior tasks are to the new task.
This can be done on the basis of past experiments, but can also exploit the information
gained from recent experiments on the target task. This chapter presents an overview of
some recent methods proposed in this area.

6.1 Introduction

Many machine learning algorithms include various hyperparameters that greatly affect
their performance (Lavesson and Davidsson, 2006). These hyperparameters can be nu-
meric, e.g., the gradient descent learning rate in a neural network, but also categorical,
e.g., the choice of kernel in an SVM, and some hyperparameters are also conditional
on the value of other hyperparameters, e.g., when choosing the Gaussian kernel for an
SVM, one also needs to choose the kernel width (i.e., gamma).

The effect of hyperparameter configurations on performance can be very complex
and greatly dependent on the properties of the dataset at hand. Hence, we want to
learn – based on prior experimentation – which configurations are likely to work better
than others on a particular dataset, or across a group of datasets. Such experience is
partly encoded in the default hyperparameter settings provided by algorithm designers,

1In the first edition, this topic was covered only briefly in Section 2.4, focusing mainly
on metalearning approaches used to determine the potentially best parameter settings.
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but these will seldom be optimal for a newly given task. Some illustrative examples of
this are shown in Chapter 17.

The task of optimizing these hyperparameter settings for a particular task is known
as hyperparameter optimization (HPO) or algorithm configuration (AC).

Algorithm selection (discussed in the previous chapter) can be seen as a special
(discrete) form of HPO, simply by encoding the choice of algorithm as an additional hy-
perparameter (Thornton et al., 2013). That also means that one can optimize the choice
of algorithms and their hyperparameters at the same time, also known as combined al-
gorithm selection and hyperparameter optimization (CASH). Even more generally, one
could define a hyperparameter search space that includes all possible design decisions
involved in building a learning model, including the architecture of neural networks or
the structure of machine learning pipelines (covered in the next chapter). Since the goal
here is to completely automate the process of designing and training machine learning
models, this is called automatic machine learning (AutoML).

In practice, turning every design decision into a new hyperparameter leads to an ex-
plosion of the search space. The larger and more complex the search space becomes, the
harder it becomes to optimize it effectively, and the longer it may take until a satisfactory
model is found.

In Chapter 8 we discuss general principles that can be followed in the design of
the search spaces. This chapter also discusses some methods that can be used in the
process of redesigning these spaces on the basis of experience. This is done on the basis
of experience with different tasks.

In this chapter, we explore how metalearning can allow us to learn from past experi-
mentation and leverage this prior experience to design algorithms and optimize hyperpa-
rameters more effectively. Much like a machine learning expert learns through trial and
error how to design and optimize models for new tasks, the aim is to learn across tasks
to make informed decisions about how to design and tune the best machine learning
models.

6.1.1 Overview of this chapter

In Section 6.2, we start by presenting some basic concepts and then cover the basic hy-
perparameter optimization methods, which do not use metalearning, but form the basis
for subsequent methods. These include grid search, random search, racing strategies,
evolutionary methods, best-first search, and search with an elimination strategy, which
is followed, for instance, in Hyperband.

Next, Section 6.3 focuses on Bayesian optimization, a technique that learns from
the observed performance of previously tried hyperparameter settings on the current
task to build a meta-model (surrogate model) that can be used to predict which unseen
configurations may work better on that task. This section includes the description of the
approach known under the name sequential model-based optimization (SMBO).

Section 6.4 covers metalearning techniques that extend the previously discussed op-
timization techniques with the ability to transfer knowledge across tasks. This includes
techniques such as warm-starting the search for the best hyperparameter with configu-
rations that worked well before, learning a probability distribution (a prior) of the best
hyperparameter configurations based on previous tasks, or transferring previously learned
meta-models that were trained on prior (similar) tasks. A key question here is to estab-
lish how similar prior tasks are to the new task, since the metaknowledge obtained from
very similar tasks is likely much more useful. This can be done on the basis of past
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experiments and the accompanying metadata, which include measurable data charac-
teristics (see Chapter 4). Alternatively, this can be based on novel knowledge gained by
new experimentation on the new task itself and by observing that the hyperparameter
configurations tried on the new task behave similarly as on some previous tasks. Finally,
Section 6.5 closes with concluding remarks.

6.2 Basic Hyperparameter Optimization Methods

6.2.1 Basic concepts

Let us first describe the task of hyperparameter optimization formally. LetM(a, θ, dtrain)
represent a trained model M generated by a particular algorithm a with hyperpa-
rameter configuration θ on the training portion of the target dataset d, dtrain. Let
A(M(a, θ, dtrain), Xval) represent the application of the trained model to the valida-
tion data Xval, which returns a set of predictions. The output of A(..) varies as θ is
varied. Then, the loss L can be determined using a given loss function L:

L = L(A(M(a, θ, dtrain), Xval), yval). (6.1)

Sometimes it is convenient to use the following short form of the loss function, which
only includes the input arguments, namely L(a, θ, dtrain, dval). Whenever the algorithm
a and the dataset d and train–test splits are fixed, we can simply use L(a). The aim of
CASH is then to determine the values of a and θ from the respective sets of all algorithms
A and all possible configurations Θ that minimize the loss.

(a∗, θ∗) = argmin
θ∈Θ, a∈A

L(a, θ, dtrain, dval). (6.2)

Since algorithm selection can be formulated as hyperparameter selection through a cat-
egorical variable representing the choice of algorithm, the pair (a∗, θ∗) in the equation
above can be substituted by a single hyperparameter (θ∗). The evaluation of various val-
ues of θ gives rise to a observation history H of losses across hyperparameter settings. It
is of the form

Hθ,L ≡ (θi, Li)
n. (6.3)

The observation history H can be part of the metadata MetaD discussed in Chapter 5. It
can be stored for both prior tasks and the current task and leveraged in different ways,
as we will discuss in this chapter.

6.2.2 Basic optimization methods

Grid search

One simple method to find θ∗ is grid search, which searches exhaustively through a
predefined set of hyperparameter values of a given algorithm. It requires that the space
of alternatives, Θ, is identified and discretized beforehand. This involves identifying the
hyperparameters that should be considered. Some have categorical values (e.g., the type
of the SVM kernel), while others are real-valued. The latter need to be discretized and
the resulting values provided to the system. Figure 6.1 (left) illustrates this. We note that
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the choice of hyperparameter values may be conditional on other choices. For instance,
if the SVM kernel is Gaussian, it makes sense to also tune the kernel width.

After the different hyperparameter configurations have been defined, the perfor-
mance of the given algorithm is evaluated for each configuration. Finally, the config-
uration with the best performance, θ∗, is returned.

Many machine learning libraries use a grid search (or other simple search method)
internally and return a configuration that is often better than the default configuration
(i.e., the one with default settings). The grid is normally predefined by the designer and
includes a relatively small number of values. This is done to limit the search and the
corresponding time spent in the search. For instance, the caret package (Kuhn, 2008,
2018) runs a predefined grid search with various machine learning algorithms. So we
can say that these systems perform a rudimentary form of hyperparameter optimization
in an autonomous manner.

Random search

Random search explores the space of configuration randomly. As in the previous case, the
space of alternatives Θ needs to be determined beforehand. However, it is not necessary
to discretize real-valued hyperparameters. All that is needed is to provide the interval
from which the values should be sampled and the type of distribution that should be
followed by the sampling process (e.g., uniform).

Fig. 6.1: Conceptual difference between random search and grid search. Image
taken from Bergstra and Bengio (2012)

Bergstra and Bengio (2012) argue that random search has several advantages over
grid search. First, grid search does not scale well with the number of hyperparame-
ters. Adding one hyperparameter can have an exponential influence on the number of
points that need to be evaluated. Second, grid search might very well miss the global
optimum, as the discretization can remove it from the search space. Finally, when some
hyperparameters happen to be irrelevant, i.e. they have little effect on performance, ran-
dom search often converges to a better configuration. In order to illustrate this, consider
Figure 6.1. In this example, we try to optimize two hyperparameters: an important hy-
perparameter on the horizontal axis, and an unimportant hyperparameter on the vertical
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axis. The important hyperparameter has an effect on the performance of the algorithm,
while the unimportant one has no such effect. In this example, random search still ex-
plores nine different values in the range of the important hyperparameter, whereas grid
search only explores three. For this reason, random search has a higher chance of finding
a better configuration.

Enhancing search with racing methods

Random search, as well as more sophisticated search methods, can be sped up by us-
ing stochastic optimization techniques such as racing (Hutter et al., 2011; López-Ibáñez
et al., 2011, 2016).

To compute the loss L, one often uses a cross-validation mechanism (see Chapter 3)
that evaluates each hyperparameter configuration on multiple train–test splits (folds) to
determine the one with the highest average performance across all folds. After evaluating
multiple configurations θi in parallel on several of these folds, some configurations may
show suboptimal performance and hence have a low probability of beating the best
configuration identified so far. Consequently, these configurations can be eliminated from
further consideration without evaluating them on all folds. In the case of large datasets,
one can also use racing of multiple configurations on a single train–test split by letting
them predict individual test instances on increasingly more training data until they are
statistically unlikely to be optimal.

Various algorithms implement such racing strategies. Originally, it was used to speed
up the search for informative feature subsets in classification (Moore and Lee, 1994;
John et al., 1994). It was later incorporated into various approaches whose aim is iden-
tify the best algorithm configurations. ROAR is an extension of random search that
uses a rather aggressive version of racing to drop candidates (Hutter et al., 2011). Irace
embodies a more conservative racing strategy; it performs a statistical test to deter-
mine whether a particular configuration can be dropped. This happens when the test
indicates that this configuration has a very low chance of beating the more promising
candidates (López-Ibáñez et al., 2011, 2016).

6.2.3 Evolutionary methods

Evolutionary algorithms and population-based methods are also often employed to op-
timize hyperparameters, because they can optimize many hyperparameters simultane-
ously, while providing more direction than basic random search. Popular approaches
include genetic algorithms (Reif et al., 2012), evolution strategies (Hansen, 2006), tabu
search (Gomes et al., 2012), and particle swarm optimization (de Miranda et al., 2012).

One of the most successful techniques is CMA-ES (Hansen, 2006), a population-
based method that evaluates a set of randomly sampled configurations, selects the best
one, and then iteratively samples new configurations around the current best one until it
converges. Loshchilov and Hutter (2016) used CMA-ES to optimize the hyperparameters
of neural networks.

6.2.4 Heuristic search methods

Heuristic search methods (Russell and Norvig, 2016), such as hill climbing and best-first
methods, involve a heuristic function that attributes a heuristic value to a given state.
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They can be used to optimize hyperparameters by viewing the hyperparameter space as
a multi-dimensional space, where each point in this space is associated with a specific
heuristic score: the performance of that configuration.

These methods traverse this space by moving to a neighboring configuration that has
the highest score. That raises the question of which configurations are the neighbors of
the current configuration. This could, for example, be all configurations that have one
hyperparameter value changed to a different value.

As hill climbing methods can get stuck on local optima, some researchers have used
so-called diversification methods, such as restarts and random steps, to avoid getting stuck
at local minima. Some examples of works that use similar techniques are iterated local
search (Lourenço et al., 2003) and ParamILS (Hutter et al., 2009).

Gradient descent methods can be used for adjusting numeric hyperparameters. It
assumes that the best hyperparameter setting can be identified by following the gradient
of the loss function. Many hyperparameters of machine learning algorithms do not satisfy
this assumption, and hence this method can also get stuck at local minima. Maclaurin
et al. (2015) compute the gradients of cross-validation performance with respect to all
hyperparameters by chaining derivatives.

6.2.5 Hypergradients

When the learning algorithm uses stochastic gradient descent to optimize its model pa-
rameters (weights), as in neural networks, it is possible to also optimize certain numeric
hyperparameters through gradient descent. Indeed, one can take the derivative of the
used loss function L with respect to certain hyperparameters (e.g., the learning rate),
which also appear in the loss function. This is also called a hypergradient. Hence, we can
use (hyper)gradient descent steps to optimize these hyperparameters bit by bit (Maclau-
rin et al., 2015; Baydin et al., 2018). Since computing the validation loss requires an
inner loop of optimizing the model parameters (weights), this method is quite expen-
sive, but it may still be useful when optimizing many hyperparameters simultaneously
with parallel computational resources.

6.2.6 Multi-fidelity techniques

To speed up the search for the best hyperparameter configuration, it is possible to not
evaluate every configuration on the entire dataset, which is expensive on larger datasets,
but rather to evaluate many configurations on small samples of the training set, and
only evaluate the best ones on more training data. Since the performance evaluated on
small samples only gives a rough indication of the performance on the full training set,
we require an optimization method that can handle noisy probabilistic rewards, such
as multi-armed bandit methods, which are are discussed in detail in Chapter 8 (Section
8.9). The aim of these methods is to solve the following problem: suppose there are
various alternatives to be explored, each with an associated cost and the probability of
a certain reward, then which alternatives should be explored to maximize the reward?
When dealing with HPO, the cost is processing time and the reward is the performance
measured (e.g., accuracy).

Successive halving (SH)

Successive halving (SH) (Jamieson and Talwalkar, 2016; Li et al., 2017) is a multi-armed
bandit (MAB) method. It conducts basically best-first search of a given initial number
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of alternative configurations. Typically, this number would be quite high. The method
differs from ordinary best first in that it includes a budget (e.g., computation time) that
limits the exploration of each alternative.

It initiates a relatively large pool of candidate configurations that are allocated a
low budget. After the budget has been exhausted, the method interrupts and all the
nodes (configurations) are ordered by their respective performance (e.g., accuracy). The
configurations in the bottom half of this list are eliminated. The search then continues
only with the remaining nodes with their budget duplicated. This process continues until
only one configuration has been obtained. By running a configuration with increasing
budget, implicitly a learning curve is created. Algorithm 6.1 shows the details. While

input : Θ space of hyperparameters of algorithm a
ninit - initial number of alternatives
binit - initial budget

output: θbest - algorithm configuration with the best performance
begin

Θ′ ← Sample.uniformly(Θ,ninit)
bc ← binit

nc ← ninit

while nc ≥ 2 do
Run all configurations in Θ′ with budget bc
bc ← bc × 2
nc ← nc ÷ 2
Θ′ ← Select.best(Θ′, nc)

end
end

Algorithm 6.1: Successive halving (based on Jamieson and Talwalkar
(2016))

many multi-armed bandit methods work by finding a trade-off between exploration and
exploitation, SH is a full exploration method.

Regarding the nature of the budget, various alternatives have been suggested (Li
et al., 2017): Apart from runtime, which was mentioned already, one can consider also
the number of steps, which obviously affects runtime. It is possible to also consider differ-
ent settings of some hyperparameter, such as the number of epochs in NNs or the number
of trees in a random forest, that are also correlated with runtime.

Hyperband and extensions to successive halving (SH)

One drawback of SH is that the outcome depends on the selection of an initial budget.
Also, if the optimal configuration only performs well after a certain budget has been
explored, e.g., a certain number of training examples are given, it can happen that it is
prematurely eliminated.

Hyperband (Li et al., 2017) is a method that aims to address these issues, by running
SH multiple times, each time with a higher initial budget but fewer initial alternatives.
The final run of successive halving is in fact an emulation of random search, where a
small number of configurations (arms) is run on a single budget, i.e., the maximum
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budget. Hyperband is accompanied with several theoretical guarantees: one will never
spend more than a log-factor of time more than random search to obtain the same result.

Both SH and Hyperband are very simple yet powerful methods. However, they do
not exploit any meta-knowledge obtained on either the current, or other datasets. Some
works have attempted to do this. Baker et al. (2017) train a learning curve model on the
initial performance data to predict whether the performance of a new alternative would
exceed the performance of the incumbent. If the model gives a negative prediction, the
alternative is eliminated, resulting in faster execution.

van Rijn and Hutter (2018) propose to sample hyperparameter values that per-
formed well on other datasets more frequently. Falkner et al. (2018) suggested a similar
method, but only using the configurations that were obtained from the current dataset.
This method is called Bayesian Optimization with HyperBand (BOHB) and combines good
properties of both paradigms.

6.3 Bayesian Optimization

The term Bayesian optimization, first proposed by Mockus et al. (1978), refers to a black-
box optimization method that places a prior over the function. The prior models capture
a certain belief about the behavior of the function (Brochu et al., 2010). The methods
described in the following subsection follow this basic strategy.

6.3.1 Sequential model-based optimization

Model-based search employs functional meta-level models in the search for the best
configuration of hyperparameters of a given algorithm. Unlike both grid and random
approaches, they take into account the results of previous evaluations. This approach
is known under the name sequential model-based optimization (SMBO). Algorithm 6.2,
which is based on the work of Hutter et al. (2011), summarizes this method.
The aim is to find the optimal configuration θbest that minimizes the loss, as defined in
Eq. 6.2. In order to model the prior with our beliefs about the behavior of the function,
SMBO employs a model ML that captures the dependence of loss on hyperparame-
ter settings. Loosely speaking, this surrogate model expresses the probability function
p(y|θ) (Bergstra et al., 2011), where y is the expected performance of configuration θ.
Therefore, the surrogate model requires both good predictive power as well as reliable
uncertainty estimates. This model is sometimes referred to as a surrogate model. The
model ML is used to determine a promising candidate configuration θnew which is used
to conduct a test to determine the loss. The value θnew together with the corresponding
loss are used to update the model ML. These two steps are carried out in an iterative
fashion.

Acquisition function

In order to generate the next hyperparameter configuration, the method employs a so-
called acquisition function, aML . Several different acquisition functions were proposed
in the past (Wistuba, 2018). These include, for instance:

• Probability improvement (PI) (Mockus et al., 1978);
• Expected improvement (EI) (Kushner, 1964; Jones et al., 1998);
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input : a - algorithm whose hyperparameters are to be optimized
Θ - space of hyperparameters
d - target dataset

output: θbest - algorithm configuration with the best performance
begin

Hθ,L ← InitialRandomTests(a,Θ, d)
Initialize model ML

(θbest, Lbest)← SelectBest(Hθ,L)
while Not converged and Time budget not exhausted do

θnew ← GenConfig(ML)
Lnew ← L(a, θ, dtrain, dval)
if Lnew < Lbest then

(θbest, Lbest)← (θnew, Lnew)
end
Hθ,L ← (θnew, Lnew) ∪Hθ,L (update history)
ML ← update(ML, Hθ,L)

end
end

Algorithm 6.2: Sequential model-based optimization

• Entropy search (MacKay, 1992);
• Lower/upper confidence bounds, UCB (Cox and John, 1997; Srinivas et al., 2010).

Here we focus on EI, which is used in various systems, e.g., SMAC (Hutter et al., 2011),
Auto-WEKA (Thornton et al., 2013), and Auto-sklearn (Feurer et al., 2015a). The aim is
to identify the hyperparameter configuration θ that will most likely have the lowest loss.
Good candidate combinations are the ones with both high predicted value (low loss) and
high uncertainty. This can be captured by the following equation:

ILmin(θ) = max{Lmin − L(θ), 0}. (6.4)

As the value of L(θ) is not known, Thornton et al. (2013) suggest to calculate the expec-
tation:

ELmin [ILmin(θ)] =

∫ Lmin

−∞
max{Lmin − L(θ), 0} · pML(L|θ) dθ. (6.5)

The form of the acquisition function depends on the underlying models of the loss func-
tion. The most common ones are based on Gaussian processes (GPs) and random forests.
More details about both types are given in the following subsections.

Gaussian processes as surrogate models of loss

Gaussian processes (GPs) (Rasmussen and Williams, 2006) have been commonly used
by various researchers as surrogate models to model the loss function (e.g., Mockus
et al. (1978); Bergstra et al. (2011); Hutter et al. (2011); Snoek et al. (2012); Wistuba
(2018)).

The model ML in Eq. 6.5 is modeled as a posterior GP, given the observation history
H. The distribution p(LLL|θθθ) is assumed to be distributed as a multivariate Gaussian

N (LLL|m(θθθ), k(θθθ,θθθ), ) (6.6)
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wherem(θ)θ)θ) represents its mean function andK = k(θθθ,θθθ) is a kernel matrix that captures
covariance. To simplify matters, the mean m(θθθ) is often set to 0.

Gaussian process assumption states that LLL and L∗L∗L∗ are jointly Gaussian. In other
words, Gaussian processes are closed under sampling (Bergstra et al., 2011). The predic-
tive posterior distribution p(L∗L∗L∗|θθθ,LLL,θ∗θ∗θ∗) can be obtained from the joint distribution.

Bayesian optimization requires that the Gaussian process is frequently updated. Up-
dating it every time from scratch is computationally expensive and dominated by the
inversion of the kernel matrix. This operation has a cubic complexity with the number
of training instances, i.e., |H|. As Wistuba (2018) has shown, the update can be reduced
to square complexity.

Random forests as surrogate models of loss

Some researchers preferred random forest (RF) models (Breiman, 2001), as they perform
well with discrete and high-dimensional data (Thornton et al., 2013). They provide quite
accurate predictions and are also fast to train. They have been employed in various
systems, including, e.g., SMAC (Thornton et al., 2013) and some predecessor systems
(Hutter et al., 2011).

These systems employ a random forest to calculate a predictive mean µθ and vari-
ance σθ on the basis of frequentist estimates for p(L|θ). So pML(L|θ) is modeled as a
Gaussian N (µθ, σθ). The authors show that the expectation can be computed using a
closed-form expression:

ELmin [ILmin(θ)] = σθ ∗ [u ∗ Φ(u) + φ(u)], (6.7)

where u = (Lmin−µθ)
σθ

, φ represents the probability density function and Φ the cumula-
tive density function of a normal distribution.

Note on previous approaches

Previous SMBO methods (see, e.g., Bartz-Beielstein et al. (2005); Hutter et al. (2009))
applied random sampling for the task of finding a new configuration. However, this is
not very efficient, particularly in high-dimensional configuration spaces. This led Hutter
et al. (2011) to adopt another approach. The method is referred to as multi-start local
search. Certain locally maximal configurations are gathered and then used in a local
search, in which the value of one parameter is varied.

6.3.2 Tree-structured Parzen estimator (TPE)

Instead of using a probabilistic regression model as a surrogate model, one can also use
kernel density estimation, leading to a tree-structured Parzen estimator (Bergstra et al.,
2011). The TPE method defines two probability distributions over the hyperparameter
space:

p(θ|y) =

{
`(θ), if y < y∗
g(θ) if y ≥ y∗

(6.8)

where `(θ) defines the density function over all points with a loss lower than the thresh-
old y∗ (the distribution of “good” configurations), and g(θ) defines the density function
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over all points with a loss higher than the given threshold (“bad” configurations). As-
suming that we want to minimize a given measure, we would intuitively want to sample
from distribution `(θ). However, there are better options.

The authors suggested to evaluate the configurations that maximize the ratio be-
tween `(θ) and g(θ). Indeed, we want to sample configurations that have a high prob-
ability of leading to a low loss and a low probability of leading to a high loss. The
configuration that satisfies this cannot be determined analytically. Therefore, this is typ-
ically done by sampling a large number of configurations and, for each, establishing the
value of `(θ)/g(θ). Additionally, Bergstra et al. (2011) show that sampling according to
this criterion is similar to using the acquisition function expected improvement.

Thornton et al. (2013) identified that the tree-structured requirement of configura-
tion spaces makes TPE a very suitable candidate for solving the CASH problem on an
extensive set of Weka algorithms. Moreover, it is easy to parallelize, while most Bayesian
optimization techniques are sequential in nature.

6.4 Metalearning for Hyperparameter Optimization

In this section, we cover metalearning techniques that extend the previously discussed
optimization techniques with the ability to leverage knowledge from previous tasks. This
often results in significantly faster anytime performance, since good configurations can
be found faster.

6.4.1 Warm-starting: exploiting metaknowledge in initialization

Many optimization techniques start the search with randomly selected points. This can
be improved by using metaknowledge to suggest the set of most suitable points to ini-
tialize the search.

Reusing best configuration

Bayesian methods suffer from a cold-start problem. That is, when relatively few test
results are available, the surrogate model may not deliver good suggestions. This is
why some researchers have proposed to reuse the meta-knowledge obtained on other
datasets. This technique represents a kind of transfer from past datasets to the current
one.

Reif et al. (2012) have done this in conjunction with the search method based on ge-
netic algorithms. These methods usually achieve good results fast, but their performance
may not reach the performance of simple grid search. The authors have shown that, by
reusing the best configurations identified on similar datasets, the process can be speeded
up substantially. The similarity of datasets was established with the help of metafeatures
(see Chapter 4). A similar approach was used by Gomes et al. (2012).

Feurer et al. (2014, 2015b) have proposed a similar idea for Bayesian optimization.
The best configurations identified on past problems were reused to initialize the search
on the target datasets. This approach has led again to marked improvements, when
compared, for instance, with random initialization. In particular, Feurer et al. (2015b)
proposed two distance functions that estimate the distance between two datasets. One
of these is based on a p-norm between meta-features of these datasets.
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The other distance function is based on a correlation of performance values of different
configurations that have been run on the dataset. The assumption is that configurations
that have performed well on datasets similar to the current dataset (i.e., with a low
distance between both datasets) will also perform well on the current dataset.1 The au-
thors have shown that initializing Bayesian optimization with such configurations yields
superior performance.

Of course, these initialization procedures are limited to configurations that have al-
ready been examined in the past and the existing metadata captures this.

Searching for a globally best configuration

The algorithm of Hutter et al. (2011) identifies several configurations, as the aim is to
identify the best configuration for several dataset variants (called instances) at the same
time. The algorithm includes an intensify step, which selects a subset which appears to
be the best one for the given set of dataset variants.

A similar approach (Wistuba et al., 2015; Wistuba, 2018) uses an initialization
method that generalizes the information found on different datasets. This way, the sys-
tem can arrive at entirely new configurations that can be used for initialization.

The method uses the concept of meta-loss, representing effectively a meta-level loss
across various datasets D. The aim is to search for a configuration θ∗ that minimizes the
difference between the global minimum and the best configuration for each dataset.

As this loss is not differentiable, the authors suggest to approximate the minimum
function by a differentiable softmin function σ. So, the differentiable meta-loss can be
expressed as

L(ΘI ,D) =
1

|D|
∑
D∈D

I∑
i=1

σD,i L̂D(θi), (6.9)

where σD,i represents the softmin function and L̂D(θi) the estimate of the loss for the
configuration θi on dataset D.

The authors then derive an analytic form for the gradient which is then used in the
gradient-descent approach. The procedure starts with the best set of configurations for
each dataset θ1, . . . , θI to initialize the process. In each cycle this solution is iteratively
improved by selecting one of the configurations at a time. An enhanced method also
uses dataset similarity, which captures the effect of configurations belonging to similar
datasets.

Wistuba (2018) has conducted experiments which showed that this initialization
method leads to a lower normalized loss than the method described earlier in Subsec-
tion 6.4.1 based on the work of Reif et al. (2012) and Feurer et al. (2014).

Ranking configurations

We note that grid search, discussed in Section 6.2.2, does not really specify the order in
which the alternatives should be tested. However, it is well known that some configura-
tions may be better than others. Search methods that exploit metaknowledge from other
datasets exploit this.

1Chapter 4 provides more details on various ways of establishing similarity between
datasets.
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All that is required is to define the configuration space beforehand, that is, all possi-
ble configurations of interest. This leads to a set of finite alternatives that can be used.
Then, it is necessary to populate this space with test results to obtain metaknowledge
MetaD. The ranking approach discussed in Chapter 2 can be used to construct a ranking
of the pre-defined alternatives which can be used in the search.

One early work in this area was presented by Soares et al. (2004). The aim of the
authors was to suggest a value of one parameter of SVM, the width of the Gaussian
kernel (σ), on the target dataset. The authors have shown that the methodology could
be used to select a good configuration accompanied by a relatively low error. Although
this approach could exploit metaknowledge acquired on prior datasets, it did not exploit
the metaknowledge acquired on the current dataset. This shortcoming was corrected
in the system AT* (Abdulrahman et al., 2018), discussed in Chapter 5 (Section 5.8).
The result of each new test carried out on the target dataset affects the selection of the
subsequent tests.

Some experiments carried out with this approach are described in Chapter 7 (Sec-
tion 7.4). In one of the experiments reported there, which was carried out by Cachada
(2017), the given portfolio included various workflows with different hyperparameter
configurations. This approach was able to identify a competitive workflow and compete
well with Auto-WEKA.

6.4.2 Exploiting metaknowledge in Bayesian optimization

Recent work tries to reuse metaknowledge from past experiments in the search for the
best algorithm configuration. This process can be seen as a kind of transfer from past
datasets to the target dataset. The aim of this section is to describe some of the ap-
proaches that have been taken.

Surrogate collaborative tuning (SCoT/MKL)

Bardenet et al. (2013) were the first to propose that a surrogate model be learned over
observations from different datasets. Hence this method undertakes multi-kernel learn-
ing. They have used a ranking model instead of a regression model. This choice was
motivated by the fact that, when a given algorithm is applied to different datasets, it
tends to incur rather different losses. The relative model avoids this problem. A ranking
of hyperparameter configurations per dataset was learned with SVMRank with an RBF
kernel. As the ranking model does not provide the needed uncertainty estimations, the
authors fit a Gaussian process to the output of the ranking model.

Gaussian process with multi-kernel learning (MKL-GP)

Yogatama and Mann (2014) also proposed an algorithm for automatic hyperparameter
tuning that can generalize across datasets. Their method is an instance of sequential
model-based optimization (SMBO) that transfers information by constructing a common
response surface for all datasets, similar to Bardenet et al. (2013). They did not use a
ranking model, as Bardenet et al. (2013), but overcame the problem of losses of rather
different magnitude by normalizing the data. After this, they could just use a regression
model. The authors use a linear combination of two kernels:

• A squared exponential kernel with automatic relevance determination (kSE−ARD)
for points belonging to the target dataset,
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• A nearest-neighbor kernel (kNN ) for modeling similarities between datasets.

The time complexity of reconstructing the response surface at every SMBO iteration
is linear in the number of trials, allowing the method to scale up to many more datasets.

Multi-task and multi-fidelity Bayesian optimization

Swersky et al. (2013) employed a multi-task Gaussian process (Bonilla et al., 2008) as
a surrogate model. This model does not only model the performance of the algorithm
across various configurations, but also the performance of the various configurations
across other auxiliary tasks. The hope is that, if there are auxiliary tasks where similar
configurations appear to have a similar performance as on task t, they can be used to
speed up the process of learning. This is useful particularly when the experiments with
the auxiliary task are faster to execute than the experiments on task t. This can happen,
for example, if the auxiliary task is simpler, that is, if it includes fewer observations or
attributes. This way it plays a similar role to landmarkers discussed in Chapter 4. The
authors used the acquisition function expected improvement per second to emphasize the
need for fast experimentation.

Klein et al. (2017) took this notion one step further and proposed a multi-task
Bayesian optimization method, based on the notion of multi-fidelity. They argue that
configurations perform similarly on subsets of the given dataset, and employ a GP to
model the performance of the algorithm across various configurations and across vari-
ous dataset sizes.

Ensemble of individual surrogate models (SGPT)

As we have pointed out earlier, the aim of recent work on SMBO is to also exploit
metadata concerning the effects of different hyperparameter configurations on differ-
ent datasets in the search for the best configuration on the target dataset. However,
Gaussian processes do not scale up well with growing metadata (Wistuba et al., 2018).
This is due to the fact that the method involves an inversion of a kernel matrix, which
represents a bottleneck.

To overcome this difficulty, Wistuba et al. (2016), Wistuba (2018), and Wistuba et al.
(2018) have proposed to learn individual surrogate models on a set of different datasets.
The target dataset is included in this set. Different surrogate models are then combined
into a joint model using an ensembling technique.

The final surrogate is represented by a weighted sum of the individual surrogate
models. In Wistuba et al. (2018) the authors call this approach the scalable GP trans-
fer surrogate framework (SGPT).2 Three different variants have been defined, both for
SGPT and the corresponding TST . The variant SGTP-R, which uses pairwise hyperpa-
rameter performance descriptors, obtained the best experimental results.

Transfer acquisition function (TAF)

The proposal discussed in the previous section suffers from some shortcomings. One
major one is that the weights of different components do not change as tests proceed.

2In Wistuba (2018) (Chapter 7), this type of solution is referred to as the two-stage
transfer surrogate model, TST.
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This is counter-intuitive, because as tests proceed on the target dataset, the metadata on
this dataset is more informative.

These observations led the authors (Wistuba et al., 2016; Wistuba, 2018; Wistuba
et al., 2018) to propose another variant of the surrogate framework that exploits transfer
acquisition function (TAF).3

The transfer acquisition function is defined as a weighted average of two compo-
nents. The first one represents the expected improvement on the new target dataset.
It tends to be rather unreliable in the early trials. The second component captures the
predicted improvement on all other datasets used in previous experiments. This second
component provided by the metadata is followed in the early trials. This favors hyperpa-
rameter configurations that have led to good performance on different datasets.

As time proceeds and as more information about the new target dataset has been
gathered, the prediction obtained by the first component becomes more reliable, and
consequently, the metadata starts to play a minor role.

Similarly, as with SGPT, the authors have defined three different variants. Here again,
the variant TAF-R, which uses pairwise descriptors, has obtained better experimental
results than the other two.

The authors have compared their system against others on two problems. One of
them involved running 19 different Weka classifiers on 59 datasets with 21,871 hyper-
parameter configurations. TAF-R obtained competitive results when compared with the
other approaches.

Focusing on high-performance regions with QRF

Eggensperger et al. (2018) did not use Gaussian processes, but rather a regression algo-
rithm as a surrogate model. The regression algorithm used was quantile regression for-
est (QRF) (Meinshausen, 2006) based on quantile regression (Koenker, 2005; Takeuchi
et al., 2006).

Certain datasets were used as training data to generate the model. This involved
results of various hyperparameter configurations obtained on the training datasets.

This method thus permits to focus on the high-performance regions of the parameter
configuration space, in a way somewhat similar to irace (López-Ibáñez et al., 2011).

6.4.3 Adaptive dataset similarity

Chapter 5 (Section 5.8) describes various variants of active testing (AT*), where the simi-
larity is determined dynamically by combining the information gathered on both the new
and past datasets. Some of the enhanced variants have led to significant improvements
in performance on a combined algorithm selection and hyperparameter optimization
(CASH) problem. It is foreseeable that this approach could compete with other existing
approaches discussed in this section.

3In another publication (Wistuba, 2018) (Chapter 8), a similar system is discussed
and referred to as adaptive transfer hyperparameter learning (AHT).
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6.5 Concluding Remarks

Relation to experiment design, exploration, and exploitation

The topics discussed in this chapter build on the work of many other areas, including,
for instance, the area of experiment design (Robbins, 1952). Another area is the area of
reinforcement learning, which has introduced the concepts of exploration and exploita-
tion. The exploration phase can be equated to the process of conducting tests involving
given algorithms and datasets, that is, the process of gathering metadata. As was shown
in Chapters 2, 5 and 6, the metadata that was gathered is then used to construct a meta-
model. So, the exploitation phase can be compared to the process of applying a given
meta-level model to the target dataset so as to identify the best possible algorithm (or
workflow).

The research in the area of multi-armed bandits (MABs) is in many ways related
to the problems addressed in this chapter. The process of gathering test results can be
compared to the process of gathering knowledge about different “arms” in multi-armed
bandit (MAB) problems. The aim is to find a good compromise between exploration
(i.e., examining different arms) and exploitation (using the best arm(s) for the target
problem).

Summary

In this chapter we have briefly reviewed various AutoML methods that successfully ad-
dress the hyperparameter optimization (HPO) problem, as well as the combined algo-
rithm selection and hyperparameter optimization (CASH) problem. We have started the
exposition with simple uninformed search methods (grid search and random search)
and then continued with more intelligent approaches, such as hill-climbing, best-first
methods, successive halving, Hyperband and Bayesian optimization.

In general, the simple methods do not make use of metadata across tasks, but utilize
knowledge that was acquired during the search process.

It has been shown that these techniques can be improved with metalearning. Sec-
tion 6.4 provides an overview of the techniques that permit to incorporate metaknowl-
edge obtained from previous tasks, often dramatically speeding up the search for the
best models for new tasks.

Discussion

One obvious question that arises is whether we have not replaced the original problem of
algorithm selection for a specific dataset with a meta-level algorithm selection problem.
This is due to the fact that various meta-level approaches exist. Several of those were
discussed in this chapter.

However, we note that most of the hyperparameter search and optimization tech-
niques enable users to automatically explore multiple algorithms and hyperparameter
configurations. Even when these configurations are configured suboptimally, they en-
able data scientists to make better informed decisions regarding which configuration to
use for their problem.

It is foreseeable that new comparative studies will provide a better insight in the
future and enable us to identify fewer methods as generally useful and others that are
useful in certain specific circumstances.
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Chapter 7 continues with the topic of this chapter. The focus there is on how to
construct solutions that include various algorithms, each with its own hyperparameters,
usually referred to as workflows or pipelines.
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