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Transfer of Knowledge Across Tasks

Ricardo Vilalta and Mikhail M. Meskhi

Summary. This area is often referred to as transfer of knowledge across tasks, or simply
transfer learning; it aims at developing learning algorithms that leverage the results of
previous learning tasks. This chapter discusses different approaches in transfer learning,
such as representational transfer, where transfer takes place after one or more source
models have been trained. There is an explicit form of knowledge transferred directly
to the target model or to the meta-model. The chapter also discusses functional trans-
fer, where two or more models are trained simultaneously. This situation is sometimes
referred to as multi-task learning. In this approach, the models share their internal struc-
ture (or possibly some parts) during learning. Other topics include instance-, feature-,
and parameter-based transfer learning, often used to initialize the search on the target
domain. A distinct topic is transfer learning in neural networks, which includes, for in-
stance, the transfer of a part of the network structure. The chapter also presents the
double loop architecture, where the base-learner iterates over the training set in an inner
loop, while the metalearner iterates over different tasks to learn metaparameters in an
outer loop. Details are given on transfer learning within kernel methods and parametric
Bayesian models.

12.1 Introduction

Learning should not be viewed as an isolated task that starts from scratch with every
new problem. Instead, a learning algorithm should exhibit the ability to adapt through
a mechanism dedicated to the transfer of knowledge gathered from previous experience
(Thrun and Mitchell, 1995; Thrun, 1998). The problem of how to transfer knowledge
across tasks is central to the field of metalearning, and is also referred to as learning to
learn or transfer learning. Here, knowledge can be understood as a collection of patterns
observed across tasks. As an example, one view of the nature of patterns across tasks is
that of invariant transformations. For example, image recognition of a target object is
simplified if the object is invariant under rotation, translation, scaling, etc. A learning
system should be able to recognize a target object in an image even if previous images
show the object at different sizes or from different angles. We view transfer learning as
the study of how to improve learning by detecting, extracting, and exploiting knowledge
across tasks.
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In this chapter, we take a look at various approaches to implement learning systems
armed with the ability to transfer knowledge across tasks. We focus our description by
responding to two questions: What can be transferred across tasks? What learning archi-
tectures have been commonly used for transfer learning? We also present developments
in the theoretical aspects of learning to learn. Our focus is on supervised learning; other
work can be found in fields such as unsupervised learning (Bengio, 2012) and reinforce-
ment learning (Taylor and Stone, 2009).

12.2 Background, Terminology, and Notation

We focus on the task of supervised learning or classification where we are given the task
of inducing a model from a sample {(x,y)}, where the vector x is an instance (feature
vector) of the input space X, and y is an instance of the output space ). The sample
contains independently and identically distributed (i.i.d.) examples that come from a
fixed but unknown joint probability distribution, P(X = x,Y = y), in the input-output
space X’ x ). The output of the learning algorithm is a hypothesis (i.e., model, function)
h(X) mapping the input space to the output space, h : X — ). The function h comes
from a space of hypotheses #. The idea is to search for the hypothesis that minimizes the
expectation of a loss function L(Y, h(X)), a.k.a. the risk: R(h) = Ep(x,v)[L(Y, h(X)].

12.2.1 When is transfer learning applicable?

In transfer learning, we assume the existence of a source domain Ds from which we can
leverage experience to generate an accurate model on the target domain Dr. Ultimately,
the main goal is to induce an accurate model hr(X) on the target domain. The need to
transfer knowledge across domains is prompted by the change of at least one of the fol-
lowing elements between domains: {X', P(X), Y, P(Y|X)} (each element will normally
be labeled with a subscript to differentiate between source and target domains, e.g., X's
and X7). Let us follow a concrete case study to understand these elements. If we assume
the learning task of inducing a model to predict disease from laboratory tests in a medi-
cal facility, the first element refers to the case where the feature space differs, Xs # Xr,
as would happen if two medical centers rely on different laboratory tests. The second
element refers to the marginal distribution P(X) = [,, P(X,Y )dy; it can be illustrated
as two medical centers having populations of patients exhibiting differences in demo-
graphics, Ps(X) # Pr(X). The third element refers to the output or class-label space;
this would correspond to the case where two medical centers aim at predicting different
diseases, Vs # Yr. The last element, the class posterior probability, refers to the scenario
where, due to environmental, genetic, or other factors, disease is manifested differently
across two medical centers, Ps(Y|X) # Pr(Y|X). Transfer learning is justified when
one or more of these elements differ across the source and target domains.

Remember that the emphasis is always placed on the target domain Dr, correspond-
ing to the task at hand. The main objective is to induce a model hr(X) for the target
domain; when building the model, one can exploit knowledge from the source domain
Ds. A cautionary note applies when the similarity between the source and target do-
mains is poor; it may occur that an attempt to leverage information from the source
domain leads to a loss of generalization performance on the target domain. This effect,
also known as negative transfer (Torrey and Shavlik, 2010), places a boundary on the
potential benefits of adapting models to new domains.



12.2 Background, Terminology, and Notation 221

Knowledge transfer

[
v v

_.--------=--1  Representational Functional

v v

Homogeneous Non-homogeneous

....................... »  Representational

v v v

Supervised Semi-supervised Unsupervised

Fig. 12.1: A taxonomy of different approaches to knowledge transfer

12.2.2 Types of transfer learning

Different approaches are available to transfer knowledge across tasks (Weiss et al.,
2016). A proposed taxonomy is shown in Figure 12.1. We use the term representational
transfer to denote the case where the target and source models are trained at different
times and the transfer takes place after the source model has already been trained; here,
there is an explicit form of knowledge transferred into the target model. In contrast, we
use the term functional transfer to denote the case where two or more models are trained
simultaneously; in this case, the models share (part of) their internal structure during
learning (e.g., multi-task learning). When the transfer of knowledge is explicit, as is
the case with representational transfer, further distinctions can be made. First, in terms
of the input or feature space, we can have source and target domains sharing the same
input space, also known as homogeneous transfer (Weiss et al., 2016), or conversely, we
can have source and target domains not sharing the same input space, also known as
non-homogeneous transfer. In terms of the availability of class labels, we denote as
unsupervised transfer the case where both source and target datasets contain no class
labels. We denote as semi-supervised transfer the case where the source dataset con-
tains labels, but the target dataset contains no class labels (or very few) (e.g., domain
adaptation). Finally, we denote as supervised transfer the case where both the source and
target datasets contain class labels. The need for transfer learning often points to target
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datasets with few or no class labels from which it is difficult to build accurate models.
But it is important to note that transfer learning is also applicable to datasets with abun-
dant class labels, where the goal is to improve over previous mistakes, further restricting
the size of the hypothesis space.

12.2.3 What can be transferred?

While many different types of knowledge can be transferred across domains, popular
techniques can be divided into three categories: instance-based transfer learning, feature-
based transfer learning, and parameter-based transfer learning. We briefly review each
technique in turn.

Instance-based transfer learning. The first type of knowledge transfer, instance-based
transfer learning, aims at identifying instances on the source domain that seem to
be closer to the distribution on the target domain. The idea in instance-based meth-
ods is to assign high weights to source examples occupying regions of high density
in the target domain. A popular approach is known as the covariate shift (Quionero-
Candela et al., 2009; Shimodaira, 2000; Kanamori et al., 2009; Sugiyama et al., 2008;
Bickel et al., 2009). The covariance-shift assumption is that one can build a model on
the newly weighted source sample and apply it directly to the target domain (Gret-
ton et al., 2009). Specifically, we adopt the assumption that the difference in the
source Ps(X,Y) and target Pr(X,Y’) distributions is due to a covariate shift, i.e.,
Ps(X) # Pr(X), whereas the conditional probabilities remain the same Ps(Y|X) =
Pr(Y|X). In this case, we can redefine the risk as R(h) = E_p,(x,v)[L(Y,h(X)],
R(h) = Evppix ) [ PR3 LY, (X)), R(h) = Exppx.v) [B(X, Y)L(Y, h(X)]. By ob-
taining the value of 3(X,Y’) on every source instance X, we can minimize the risk on
the target domain. A stringent requirement, however, is that the source and target dis-
tributions must be close to each other.

Feature-based transfer learning. The second type of knowledge transfer, feature-based
transfer learning, aims at finding a common representation where both the source and
target distributions overlap. Feature-based methods attempt to project the source and
target datasets into a latent feature space where the covariate-shift assumption holds.
A model is then built on the transformed space and used as the classifier on the tar-
get. Examples are structural corresponding learning (Blitzer et al., 2006) and subspace
alignment methods (Basura et al., 2013), among others.

Parameter-based transfer learning. The third type of knowledge transfer, parameter-
based transfer learning, aims at generating a good set of initial parameters to expedite
the model building phase on the target domain. As an illustration, we may perform an
exhaustive search for the right model parameters on a source domain, where we can gen-
erate a set of prior distributions. Upon the arrival of a new target task, transfer learning
obviates such exhaustive search; instead, we can generate a posterior distribution on the
target (using the source to obtain the priors) that would lead to finding a near-optimal
set of target model parameters.
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12.3 Learning Architectures in Transfer Learning

Many experiments in supervised learning have been reported within the neural network
community, but other architectures have also played an important role. Besides neural
networks, this section includes kernel methods and parametric Bayesian methods.

12.3.1 Transfer in neural networks

A learning paradigm amenable to testing the feasibility of knowledge transfer is that of
neural networks. A neural network is capable of expressing flexible decision boundaries
over the input space (Goodfellow et al., 2016); it is a nonlinear statistical model that
applies to both regression and classification. In particular, for a neural network with one
hidden layer, each output node computes the following function:

ge(X =x) = f(z Wi f(z wiiTs + wio) + Wro), (12.1)
1 %

where x is the input feature vector, f(-) is a nonlinear (e.g., sigmoid, ReLU) function,
and z; is a component of the vector x. The index ¢ runs along the components of the
vector x, the index [ runs along the number of intermediate functions (i.e., nonlinear
transformations of the input features), and the index k refers to the kth output node.
The output is a nonlinear transformation of the intermediate functions. The learning
process is limited to finding appropriate values for all the weights {w}. The concepts
described below are equally valid for deep neural networks (Goodfellow et al., 2016),
where there is more than just one hidden layer between the input and output nodes.

Neural networks have received much attention in the context of knowledge transfer
because one can exploit the final set of weights of the source network (i.e., of the network
obtained on a previous task) to initialize the set of weights corresponding to the target
network (i.e., to the network corresponding to the current task). We describe different
strategies to transfer knowledge between neural network models.

Functional transfer in neural networks. Most approaches to transfer learning in neu-
ral networks follow a representational approach, where some knowledge is explicitly
transferred from the source network to the target network. But a functional approach is
also popular, where several networks are combined into a single network architecture
enabling different tasks to share the same hidden representation; this field is also known
as multi-task learning (Argyriou et al., 2007). As an illustration, Figure 12.2 shows two
networks, one intended to classify stars and the other galaxies, that can be combined
into one single architecture where hidden nodes now capture patterns that are common
across both domains.

Sharing part of the neural network structure. In general, many hybrid variations have
been tried around the central idea of sharing a neural network structure, often by com-
bining different forms of knowledge transfer. Examples include dividing the neural net-
work into two parts: a common structure at the bottom of the network (i.e., a set of
adjacent layers next to the input layer) capturing a common task representation, and
a set of upper structures (i.e., a set of adjacent layers next to the output layer), each
focused on learning a specific task (Yosinski et al., 2014). Specifically, a source domain
with an abundance of labeled examples can be exploited to generate a network model
with high generalization performance. New target domains with limited training samples
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Fig. 12.2: One can combine tasks together into a single parallel multi-task prob-
lem; here, multiple luminous objects are identified in parallel using a common
hidden layer

can reuse the bottom layers of the source network, while simply adjusting the weights
on the upper part of the target network (Heskes, 2000; Yosinski et al., 2014).

Searching for invariant transformations. An interesting example of an application of
knowledge transfer in neural networks is the search for certain forms of invariant trans-
formations. We mentioned before the importance of finding such transformations in the
context of image recognition. As an illustration, suppose we have gathered images of a
set of objects under different angles, brightness, location, etc. Let us assume our goal is
to automatically learn to recognize an object in an image, using images containing the
same object (albeit captured in different conditions) as experience.

One way to proceed is to train a neural network to learn an invariant function o.
Function ¢ is trained with pairs of images generated under different conditions to iden-
tify when the images contain the same object. If the function is approximated with no
error, one could perfectly predict the type of object contained in one image by simply
applying o over the current image and previous images containing several prototype ob-
jects. In practice, however, finding o can be intractable, and information about the shape
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Fig. 12.3: The double-loop architecture

of the invariant function (e.g., function slopes) can be used to improve the accuracy of
the learner (Thrun and Mitchell, 1995; Zaheer et al., 2017).

Nested learning and k-shot learning. A general way to depict a metalearning algo-
rithm is to divide its internal architecture into two main components: a base learner
and a metalearner. The base learner works as is traditional in supervised learning, by
inducing a model from a set of labeled examples by searching for near-optimal model
parameters on a specific task (or episode). The metalearner instead takes on the role of
learning patterns (i.e., knowledge) across tasks to simplify the task of each base learner.
This can be visualized as a double-loop architecture (Vilalta and Drissi, 2002; Bertinetto
et al., 2019), where the base learner iterates over a training set to learn model param-
eters under a fixed hypothesis space, in what is described as the inner loop, while con-
currently, the metalearner iterates over different tasks to learn metaparameters under a
family of hypothesis spaces, in what is described as the outer loop (see Figure 12.3).

This double-loop architecture has seen an upsurge of different techniques and set-
tings (Finn et al., 2017), particularly in the neural network community. A typical appli-
cation is the n-way k-shot learning task, where the challenge is to train a (deep) neural
network with very few examples, specifically, to induce an accurate model with only &
examples for each of the n possible classes. This is only possible if the metalearner has
captured relevant patterns across multiple tasks. We briefly illustrate some instances of
these ideas.

* Learning similarity functions. One form of metalearning uses the source task to
learn a similarity function that can accurately predict if two objects belong to the
same class (Koch et al., 2015; Chopra et al., 2005). This is different from traditional
supervised learning, where the classifier receives two examples (i.e, two feature
vectors) as input and predicts if they belong to the same class or not. This verification
problem can be exploited by transferring such a similarity function to the target
domain. In one-shot learning, for example, the single labeled example on the target
task can replace one matching element of the similarity function, while the other
element corresponds to a target testing example. The nested learning framework
can be effected by minimizing a loss over each task or episode corresponding to a
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specific target sample (inner loop), while improving on the similarity function across
many learning tasks (outer loop) (Vinyals et al., 2016).

Learning with recurrent neural networks. One advantage of the double-loop view
of metalearning is that fixed update routines can be transformed into adaptable
modules, amenable to learning. A typical framework for learning update rules is
that of recurrent neural networks, particularly long short-term memory (LSTM),
where the ability to remember past events provides feedback to improve the update
mechanism itself (Hochreiter et al., 2001). As an illustration, a recurrent neural net-
work can be designed with a double-loop architecture, where a search for model
parameters on the base learner (optimizee) for a specific task is guided by a met-
alearner (optimizer) in charge of learning the update rule itself after seeing several
tasks (Andrychowicz et al., 2016; Ravi and Larochelle, 2017).

Bidirectional feedback between learner and metalearner. One prominent line of
research is to increase the interdependence between the base learner and the met-
alearner by adjusting the optimization process to ensure feedback is sent in both
directions (Maclaurin et al., 2015; Finn et al., 2017, 2018; Bertinetto et al., 2019).
Specifically, a base learner can update its parameters ¢’ by relying on a global meta-
parameter 6 (controlled by the metalearner) for parameter initialization. In the con-
text of stochastic gradient descent (SGD), a single update step can be defined as

0; =0 — aVoLlTt, (fo), (12.2)

where the second term on the right hand side of the equation is the gradient over
the loss function on task 7;. The update step above defines the inner loop (see the
previous discussion), but notice the dependence on the global parameter 6. The
outer loop is effected when 6 is updated after seeing several tasks:

0=0-5Y Volr(f), (12.3)
Ti

where the metaparameter 6 is based on the sum of local gradients. In effect, the
metalearner provides an initial set of parameters on each task 7;, to update 6; in
few steps (Finn et al., 2017, 2018).

Memory-augmented neural networks. Another interesting direction is to enhance
neural networks to remember past events by adding memory components (Graves
et al., 2014). In transfer learning, this leads to models that remember past events
and can generalize to new tasks by leveraging past experience (Santoro et al., 2016;
Munkhdalai and Yu, 2017), overcoming the catastrophic forgetting typical of deep
networks. Memory becomes then an additional component of the neural network,
with the capacity to store and retrieve representations relatively fast. This is critical
in a k-shot learning scenario, where generalizing with few examples is difficult,
requiring the storage of newly observed events. Here, the inner loop of metalearning
is achieved by quickly retrieving instances for which proper generalization has not
been reached, with an outer loop where the slow acquisition of patterns across tasks
or episodes leads to robust and stable models.
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12.3.2 Transfer in kernel methods

Kernel methods such as support vector machines (SVMs) have been extended to work
on multi-task learning. Kernel methods look for a solution to the classification (or re-
gression) problem using a discriminant function g(-) of the form

9(X =x) = chk(xj,x), (12.4)
J

where {c;} is a set of real parameters, the index j runs along the number of training
examples, and k is a kernel function in a reproducing kernel Hilbert space (Shawe-Taylor
and Cristianini, 2004).

Knowledge transfer can be effected using kernel methods by forcing the different
hypotheses (corresponding to the different tasks) to share a common structure. As an
illustration, consider the space of hypotheses made of hyperplanes, where every hypoth-
esis is represented as w - x (i.e., as the inner product of w and x). To employ the idea
of having multiple tasks, we assume we have several datasets T = {7},},—;. Our goal is
to produce hypotheses {h,};—; from T under the assumption that the tasks are related.
The idea of task relatedness can be incorporated by modifying the space of hypotheses
so that the weight vector is made of two components:

Wy =wo+vy, 1<p<n, (12.5)

where we assume all models share a common model wy, and the vectors v; serve to
model each particular task. In this case, we are in effect forcing all hypotheses to share
a common component while also allowing for deviations from the common model (Ev-
geniou and Pontil, 2004).

12.3.3 Transfer in parametric Bayesian models

One type of knowledge transfer uses a Bayesian model by computing the posterior prob-
ability of each class y given an input vector x, P(Y = y|X = x). For a fixed class y,
Bayes theorem results in the following formula:

g(x)=P(Y =y|X =x) = 7})("]'3325(3’) (12.6)

where P(y) is the prior probability of class y, P(x|y) is the likelihood of y with respect to
x or the class-conditional probability, and P(x) is the evidence (Duda et al., 2001). Un-
der this framework, a parameter-based transfer learning approach is to train a Bayesian
learning algorithm on source domain Dg, resulting in a predictive model with a pa-
rameter vector s that embeds the set of probabilities required to compute the posterior
probabilities. For a new target domain Dr, we require that the new probability vector 61
be similar to the previous one (i.e., s ~ 6r). To accomplish this, we assume that each
component parameter of 6s and 01 stems from a hyper-prior distribution. The degree of
similarity between parameter components can be controlled by forcing the hyper-prior
distribution to have small variance (corresponding to similar tasks) or large variance
(corresponding to dissimilar tasks) (Rosenstein et al., 2005; Cao et al., 2013).

Transfer by clustering. One approach to learning to learn consists of designing a learn-
ing algorithm that groups similar tasks into clusters. A new task is assigned to the most
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related cluster; knowledge transfer takes place when generalization exploits informa-
tion about the cluster to which each task belongs. This idea of clustering similar tasks
has also been pursued under a Bayesian approach. Essentially, each vector of hidden to
output weights can be modeled as a mixture of Gaussians, where each Gaussian is in fact
describing a cluster of tasks (Bakker and Heskes, 2003; Thrun and O’Sullivan, 1998).

12.4 A Theoretical Framework

Several studies have provided a theoretical analysis of the learning-to-learn paradigm.
The aim is to understand the conditions under which a metalearner can provide good
generalizations when embedded in an environment made of related tasks. Although the
idea of knowledge transfer is normally made implicit in the analysis, it is clear that the
metalearner extracts and exploits knowledge from every task to perform well on future
tasks. Theoretical studies fall within a Bayesian model (Baxter, 1998; Heskes, 2000) and
a probably approximately correct (PAC) model (Baxter, 2000; Maurer, 2005). The idea
is to find not only the right hypothesis & in a hypothesis space H, h € H, but also to find
the right hypothesis space H in a family of hypothesis spaces H, H € H.

Let us look at these studies more closely. We focus on the problem of bounding the
number of examples needed to produce good generalizations when the learner faces a
stream of tasks. Consider first that the goal of traditional learning is to find a hypothesis
h* € H that minimizes a functional risk, h* = argminnew Ry (h), where

Ry(h) = / L(h(x), y)d(x, ), (12.7)
(x,y)EX XY

The risk corresponds to the expected loss incurred by hypothesis h; L(h(x),y) is a par-
ticular loss function (e.g., zero—one loss), and the integral runs across the input—-output
space. We introduce a new notation, ¢, to denote the probability distribution over X’ x )
that indicates which examples are more likely to be seen for that particular task. Since we
do not have access to all possible examples in the input-output space, we may choose
to approximate the true risk with an empirical risk (R4(h)). We do this by randomly
sampling m examples according to ¢ to generate a training sample 7" = {(x;,y;)}/%1,
where

R 1 m
Ry(h,T) = — > " L(h(x;), y;). (12.8)
j=1

It has been formally shown that one can bound the true risk R4 (h) as a function of
the empirical risk Rg4(h, T) if there exists a uniform bound for all h € # on the prob-
ability of deviation between Rg4(h) and Ry (h,T) (Vapnik, 1995; Blumer et al., 1989).
Such bounds can be represented as a function of the Vapnik—Chervonenkis dimension of
the hypothesis space H, VC(H). The VC dimension captures the degree of expressive-
ness or richness in delimiting flexible decision boundaries by the set of functions in H;
it provides an objective characterization of H (Vapnik, 1995). Bounds for the deviation
between Ry (h) and Ry (h, T) take on the form

Rg(h) < Ry(h, T) + g(m, 5, VC(H)), (12.9)

where the function g(-) explicitly indicates an upper bound on the distance between the
true risk and the empirical risk; the inequality is satisfied for all h € H with probability
1-4.
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12.4.1 The learning-to-learn scenario

Let us now consider the novelty brought about by the learning-to-learn scenario (Baxter,
2000)). Here we assume the learner is embedded in a set of related tasks that share
certain commonalities. In traditional learning, we assume a probability distribution ¢
that indicates which examples are more likely to be seen in such a task. Now we assume
there is a metadistribution @ over the space of all possible distributions {¢}. In essence,
& indicates which tasks are more likely to be found within the sequence of tasks faced
by the metalearner (just as ¢ indicates which examples are more likely to be seen in
such a task). As an example, if we were interested in classifying luminous objects in
astronomical surveys, ¢ may stand for a probability distribution that peaks over tasks
that identify classes of astronomical objects. Given a family of hypothesis spaces H, the
goal of the metalearner is to find a hypothesis space H* € H that minimizes a new
functional risk, H* = arg miny.en Re(H), where

Re(H) = / inf Ry(h)d®(). (12.10)
sed hEH
An expansion of the above formula gives

Ryp(H) = / inf L(h(x),y)do(x,y)dP(p). (12.11)
ped MeM J(x,y)exxy

The new functional risk, Rs(#H), represents the expected loss of the best possible hy-

pothesis in each hypothesis space. The integral runs across all task distributions {¢},

which are themselves distributed according to a metadistribution @. In practice, since

we do not know the form of &, we need to draw samples 71,75, . .. T}, to infer how tasks

are distributed in our environment.

The advantage of working in a learning-to-learn scenario is that the learner accumu-
lates experience after each new task. Such experience, here referred to as metaknowl-
edge, is expected to result in more accurate models when the tasks share commonalities
or patterns. The expectation is that, as more tasks are observed, the number of examples
required to attain accurate models (with high probability) decreases over time.

12.4.2 Bounds on generalization error for metalearners

Finding bounds on the generalization error for metalearners follows the same logic as
the one adopted in conventional learning theory. The idea is to formally show that it
is possible to bound the new functional risk Rs(#) as a function of the empirical risk
Ra(H). Given a set of n samples T = {7} }, the empirical risk is defined as the average
of the best possible empirical error for each training sample 7},:

I~ . .~

Ro(H) = — I; Jof Ry (h, Ty). (12.12)

The bound can be found if there exists a uniform bound for all # € H on the prob-
ability of deviation between Re(H) and Rs(H). In conventional learning theory, these
bounds are governed by the expressiveness of the family of hypotheses 7{. Similarly, in
the learning-to-learn scenario, bounds on the generalization error are governed by the
size of the function classes associated with the family space H. Specifically, one can guar-
antee that with probability 1 — § (according to the choice of samples T), all H € H will
satisfy the following inequality:
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Rs(H) < Ra(H) +e. (12.13)

This holds if the number of tasks n is such that

8C(5, A
n > max 256 log M, 64 (12.14)
€2 ) €2
and the number of examples m for each task is such that
8C(=5, AR
mZmax{2561 M,%}, (12.15)
€

The theorem (Baxter, 2000) introduces two new properties characterizing the family
of hypothesis spaces H, C(e, An) and C(e, Af;). These functions measure the capacity of
H in a way similar to how the VC dimension measures the capacity of H. To provide
continuity to our chapter, we defer explanation of these properties to Appendix A. The
bounds stated above simply show that, to learn both a good hypothesis space # € H and
a good hypothesis h € H, one needs a minimum number of both the number of tasks
and the number of examples on each task. It is known that, if € and ¢ are fixed (Baxter,
2000), the number of examples m needed on each task to attain an accurate model is
such that

m=0 (% log C((e, Aﬁ)) ) (12.16)

This indicates that the required number of examples on each task decreases as the num-
ber of tasks increases, in accordance with our expectations of the benefits gained when
the learning algorithm has the capability of exploiting previous experience.

12.4.3 Other theoretical work

Bounds using algorithmic stability

The results described above can be improved if one makes certain assumptions (Mau-
rer, 2005). To understand this, we need to review the concept of algorithmic stability
(Bousquet and Elisseeff, 2002). A learning algorithm is said to be uniformly 3-stable if
taking away one example from the training set does not modify the loss of the output
hypothesis by more than 8 (for a fixed loss function). We update our definition of a
metalearning algorithm as a function .A(T) that outputs a hypothesis after looking at a
sequence of samples T = {T},},_;. That is, we no longer talk about a hypothesis space
but of a single hypothesis that does well on all previous tasks. In that case, one can also
think of a metalearning algorithm as being 3'-stable if removing one sample from the set
of samples T does not modify the loss of the output hypothesis by more than 3’. Notice
that the parameter 8’ corresponds to the concept of stability across tasks, whereas the
parameter 3 is used to refer to stability across examples drawn from one task.

Given that A(T) = h for a given set of samples T, the new results show that, for
every environment &, with probability greater than 1 — § according to the selection of
T, the following inequality holds:

1n(1/6)

Vo Ro(h) < — ZR%(h T,) + 26’ + (4nB’ +m) + 28, (12.17)

where ¢, € ¢ and f%% (h,T}) is an estimation of the empirical loss of hypothesis h when
the examples are drawn from the sample 7). The first term on the right-hand side of
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the inequality is then the average empirical loss of h on the set of tasks T. It can be
shown that the new bound is tighter than that of Section 12.4.2 (of course, under the
assumption of stability parameterized by 8 and 8’ on A(T) = h).

Bounds for domain adaptation

The context of domain adaptation leads to another set of interesting learning bounds
(Ben-David et al., 2010). Assume a source domain Dgs where class labels abound, and a
target domain Dy with few or no class labels. It is implicitly assumed that the source and
target domains must be related, with no mechanism to quantify the degree of relatedness.
This can be helpful to understand how to bound the error of a model trained on the
source domain but applied to the target domain, where we assume the distribution over
X has changed, i.e., Ps(X) # Pr(X).

We begin by defining the error of a hypothesis 4 under a zero—one loss function as
Ry(h) = E(x,y)~ol|h(x) — y|], where we assume J = {—1,1}. We refer to the source
and target distributions as ¢s and ¢, with the understanding that the only difference
is in the marginal distributions Ps(X) # Pr(X). It has been formally shown that the
generalization error on the target domain can be bound as a function of three terms:

Ry (h) < Ros (h) + %dmﬂws, 61) + A\, (12.18)

where the first term on the right hand side of the inequality simply refers to the gener-
alization error on the source domain. The second term is a measure of the relatedness of
the two distributions. Formally,

druan(9s,07) =2 0D [Py hx) # W' (x)] = Paor [0 £ K (O] (1219)
,h' €

The goal is simply to capture the difference in the probability of disagreement between
two hypotheses in the space of hypothesis #. The last term A refers to the combined
error of an ideal hypothesis:

A= Rgs(h") + Ry, (R, (12.20)

where h* = argmin, 4, Re¢g(h) + Ry, (k). The bound depends, then, on the distance
between the source and target distributions, and on the existence of a hypothesis that
can attain low generalization error on both the source and target domains.

12.4.4 Bias versus variance in metalearning

As part of our theoretical study, we conclude by looking into the nature of the bias-variance
dilemma in classification when immersed in a learning-to-learn framework. Let us first
recall what the bias—variance dilemma states in traditional learning (Hastie et al., 2009;
Geman et al., 1992). The dilemma is based on the fact that the expected prediction error,
or risk, can be decomposed into bias and variance components.! Ideally we would like to
have classifiers with both low bias and low variance but these components are inversely
related. On the one hand, simple classifiers encompass a small hypothesis space H. Their
small repertoire of functions produces high bias (since the hypothesis with lowest pre-
diction error may lie far from the true target function) but low variance (since there are

A third component, the irreducible error or Bayes error, cannot be eliminated or
traded (Hastie et al., 2009).
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few hypotheses to choose from). On the other hand, increasing the size of H reduces the
bias, but increases the variance. The large size of H normally allows for flexible decision
boundaries (low bias), but the learning algorithm inevitably becomes sensitive to small
variations in the data (high variance).

In the learning-to-learn framework, there is an equal need to find a balance in the
size of the family of hypothesis spaces H. A small H will exhibit low variance and high
bias; here, unless we can find a good hypothesis space H € H with a small risk Rs(H),
the best H may be far from the true hypothesis space. And just as in traditional learning,
a large H will exhibit low bias but high variance, since a large number of available
hypothesis spaces increases the chances of selecting one that simply accommodates to
the idiosyncrasies of the training data. One main goal is to understand if learning the
right family of hypothesis spaces H is inherently easier (or not) than learning the right
hypothesis space H.

Appendix A

Section 12.4.2 makes use of two properties characterizing the space of a family of hy-
pothesis spaces H, C(e, An) and C(¢, Af). These functions quantify the capacity of the
space of a family of hypothesis spaces H. We now explain the nature of these properties
in more detail:?

Definition 1. For each H € H, define a new function Ay (¢;) by

M(¢) = inf Rs(h), (12.21)
where A : & — [0, 1]. In other words, the function A specifies the minimum error loss
achieved after looking at every h € H under the distribution ¢.

Definition 2. For the family of hypothesis spaces H, define a new set Ay by
Ag = {)\'H cH e H} (12.22)

According to Definition 1, the set Ay contains all different functions within the space of a
family of hypotheses H. We can compute the expected difference in the minimum error
loss for any two functions A1, A2 € Ag as follows:

Definition 3. For any two functions A\, A2 € Ay and a distribution & on the space of
possible input-output distributions, define

Da(A1, 2) = /¢ 01 (6) — Aa()|d(0). (12.23)

The function D can be seen as the expected distance between two functions A1, A2. We
now define the concept of an e-cover as follows:

Definition 4. An e-cover of (A, Ds) is a set {\1, A2, -+, A\, } such that, for all A € Ay,
Da(\, Ap) < e (1 <p<n). Let N(e, Am, Dg) represent the size of the smallest e-cover.
We now define the capacity of Ay by

2We follow Baxter’s work (Baxter, 2000) in different order and notation to simplify
the explanation of the two properties characterizing H.
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C(e, Am) = sup N (¢, Am, Dg), (12.24)
@

where the supremum runs over all probability distributions over X x ).

We can similarly define the second capacity C(e, Af;). To begin, consider a sequence
of n tasks that has been modeled with n hypotheses h = (h1, h2,- - , h,). We can com-
pute the expected error loss across n tasks as follows:

a({xy}) = ZL(h (12.25)

Definition 5. For the space of a family of hypotheses H, define a new set A}, by
h={Xa:hi,ho, - he €H} (12.26)

The set A}, is a loss function class and, as before, it indicates how many different classes of
functions (capturing the average error loss for a sequence of n hypotheses) are contained
within the hypothesis space #; the difference is that now we are comparing sets of n loss
functions.

Definition 6. For the space of a family of hypotheses H, define

Al = 45, (12.27)
HeH

where h C H. The second capacity C(e, Af) is defined similarly to the first one but using
a new distance function:

Dg(hyh’):/< : Ma({xi vi}) = A (6, yi D)l dn, do, -+ dpn. (12.28)
X xY)n

This brings us to the second capacity function:

C(e, Af) = sup N (e, A, Dg), (12.29)
[

where the supremum runs over all sequences of n probability distributions over X’ x ).
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