
1

Introduction

Summary. This chapter starts by describing the organization of the book, which con-
sists of three parts. Part I discusses some basic concepts, including, for instance, what
metalearning is and how it is related to automatic machine learning (AutoML). This
continues with a presentation of the basic architecture of metalearning/AutoML systems,
discussion of systems that exploit algorithm selection using prior metadata, methodology
used in their evaluation, and different types of meta-level models, while mentioning the
respective chapters where more details can be found. This part also includes discussion
of methods used for hyperparameter optimization and workflow design. Part II includes
the discussion of more advanced techniques and methods. The first chapter discusses
the problem of setting up configuration spaces and conducting experiments. Subsequent
chapters discuss different types of ensembles, metalearning in ensemble methods, algo-
rithms used for data streams and transfer of meta-models across tasks. One chapter is
dedicated to metalearning for deep neural networks. The last two chapters discuss the
problem of automating various data science tasks and trying to design systems that are
more complex. Part III is relatively short. It discusses repositories of metadata (including
experimental results) and exemplifies what can be learned from this metadata by giving
illustrative examples. The final chapter presents concluding remarks.

1.1 Organization of the Book

This book comprises three parts. In Part I (Chaps. 2–7) we sketch the basic concepts and
architecture of metalearning systems, especially focusing on which types of “metaknowl-
edge” can be collected by observing the performance of different models on prior tasks
and how this can be used within metalearning approaches to learn new tasks more effi-
ciently. Since this type of metalearning is closely related to automated machine learning
(AutoML), we also cover this topic in some depth, but with a specific focus on how we
can improve AutoML through metalearning.

Part II (Chaps. 8–15) covers different extensions of these basic ideas to more specific
tasks. First, we discuss some methods that can be used in the design of configuration
spaces that affect the search of metalearning and AutoML systems. Then, we show how
metalearning can be used to build better ensembles and to recommend algorithms for
streaming data. Next, we discuss how to transfer information from previously learned
models to new tasks, using transfer learning and few-shot learning in neural networks.

© The Author(s) 2022
P. Brazdil et al., Metalearning, Cognitive Technologies,
https://doi.org/10.1007/978-3-030-67024-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-67024-5_1&domain=pdf

The final two chapters are dedicated to the problem of automating data science and the
design of complex systems.

Part III (Chaps. 16–18) provides practical advice on how to organize metadata in
repositories and how this can be leveraged in machine learning research. The last chapter
includes our closing remarks on and presents future challenges.

1.2 Basic Concepts and Architecture (Part I)

1.2.1 Basic Concepts

Role of machine learning

We are surrounded by data. On a daily basis, we are confronted by many forms of it.
Companies try to market their products with commercials in the form of billboards
and online advertisements. Large sensor networks and telescopes measure complex pro-
cesses, happening around us on Earth or throughout the universe. Pharmaceutical in-
stitutions record the interactions between types of molecules, in search of new medica-
ments for new diseases.

All this data is valuable, as it enables us to characterize different situations, learn
to separate them into different groups, and incorporate this into a system that can help
us make decisions. We can thus identify fraudulent transactions from financial data,
develop new medical drugs based on clinical data, or speculate about the evolution of
celestial bodies in our universe. This process involves learning.

The scientific community has elaborated many techniques for analyzing and process-
ing data. A traditional scientific task is modeling, where the aim is to describe the given
complex phenomenon in a simplified way, in order to learn something from it. Many data
modeling techniques have been developed for that purpose based on various intuitions
and assumptions. This area of research is called Machine Learning.

Role of metalearning

As was shown, we cannot assume that there is one algorithm that works for all sorts of
data, as each algorithm has its own area of expertise. Selecting the proper algorithm for
a given task and dataset is key to obtaining an adequate model. This, in itself, can be
seen as a learning task.

This process of learning across tasks has generally been called metalearning. Over
the past decades, however, various machine learning researchers have used this term
in many different ways, covering concepts such as meta-modeling, learning to learn,
continuous learning, ensemble learning, and transfer learning. This large and growing
body of work has clearly demonstrated that metalearning can make machine learning
drastically more efficient, easier, and more trustworthy.

The area of metalearning is a very active research field. Many new and interesting
research directions are emerging that address this general goal in novel ways. This book
is meant to provide a snapshot of the most established research to date. As the area has
grown a lot, the material had to be organized and structured into cohesive units. For
instance, dataset characteristics are discussed in a separate chapter (Chapter 4), even
though they play an important role in many other chapters.

4 1 Introduction

Definition of metalearning

Let us start with a definition of metalearning, as it is viewed in this book:

Metalearning is the study of principled methods that exploit metaknowledge to
obtain efficient models and solutions by adapting machine learning processes.

The metaknowledge referred to above typically includes any sort of information ob-
tained from previous tasks, such as descriptions of prior tasks, the pipelines and neural
architectures tried, or the resulting models themselves. In many cases, it also includes
knowledge that is obtained during the search for the best model on a new task, and that
can be leveraged to guide the search for better learning models. Lemke et al. (2015)
describe this from a systems point of view:

A metalearning system must include a learning subsystem, which adapts with
experience. Experience is gained by exploiting meta-knowledge extracted: a)
in a previous learning episode on a single dataset and/or b) from different do-
mains or problems.

Currently, the aim of many is to exploit the metadata gathered both on the past and the
target dataset.

Metalearning versus automated machine learning (AutoML)

One important question is: what is the difference between a metalearning system and an
AutoML system? Although this is a rather subjective matter for which different answers
may be given, here we present the definition of AutoML of Guyon et al. (2015):

AutoML refers to all aspects of automating the machine learning process, be-
yond model selection, hyperparameter optimization, and model search, . . .

Many AutoML systems make use of experience obtained from previously seen
datasets. As such, many AutoML systems are, according to the definition above, also
metalearning systems. In this book, we focus on techniques that involve metalearning,
as well as AutoML systems that often use metalearning.

On the origins of the term metalearning

The pioneering work of Rice (1976) is discussed in Chapter 1. This work was not widely
known in the machine learning community until much later. In the 1980s Larry Rendell
published various articles on bias management (this topic is discussed in Chapter 8). One
of his articles (Rendell et al., 1987) includes the following text:

The VBMS [Variable Bias Management System] can perform meta-learning.
Unlike most other learning systems, the VBMS learns at different levels. In the
process of learning a concept the system will also acquire knowledge about
induction problems, biases, and the relationship between the two. Thus the
system will not only learn concepts, but will also learn about the relationship
between problems and problem-solving techniques.

P. Brazdil encountered the term meta-interpreter in connection with the work of Kowalski
(1979) at the University of Edinburgh in the late 70’s. In 1988 he organized a workshop
on Machine Learning, Meta-Reasoning and Logics (Brazdil and Konolige, 1990). The in-
troduction of this book includes the following passage:

1.2 Basic Concepts and Architecture (Part I) 5

For some meta-knowledge represents knowledge that talks about other (object
level) knowledge. The purpose of meta-knowledge is mainly to control infer-
ence. In the second school of thought, meta-knowledge has a somewhat differ-
ent role: it is used to control the process of knowledge acquisition and knowl-
edge reformulation (learning).

Metalearning was explored in project StatLog (1990–93) (Michie et al., 1994).

1.2.2 Problem types

The scientific literature typically distinguishes the following problem types, many of
which will be referred to throughout the book. The general aim of metalearning sys-
tems is to learn from the usage of prior models (how they were constructed and how
well they performed) in order to to model a target dataset better. If the base-level task is
classification, this implies that the system can predict the value of the target variable, i.e.
the class value in this case. Ideally, it does this better (or more efficiently) by leveraging
information besides the training data itself.

Algorithm selection (AS): Given a set of algorithms and a dataset (target dataset), de-
termine which algorithm is most appropriate to model the target dataset.

Hyperparameter optimization (HPO): Given an algorithm with specific hyperparame-
ters and a target dataset, determine the best hyperparameter settings of the given
algorithm to model the target dataset.

Combined algorithm selection and hyperparameter optimization (CASH): Given a set
of algorithms, each with its own set of hyperparameters, and a target dataset, deter-
mine which algorithm to use and how to set its hyperparameters to model the target
dataset. Some CASH systems address also the more complex pipeline synthesis task
discussed next.

Workflow (pipeline) synthesis: Given a set of algorithms, each with its own set of hy-
perparameters, and a target dataset, design a workflow (pipeline) consisting of a
one or more algorithms to model the target dataset. The inclusion of a particular
algorithm and its hyperparameter settings in the workflow can be seen as a CASH
problem.

Architecture search and/or synthesis: This problem type can be seen as a generalization
of the problem type above. In this setting the individual constituents do not need to
be organized in a sequence, as it is done in workflows (pipelines). The architecture
can include, for instance, partially ordered or tree-like structures. The neural net-
work architecture design can be seen as a problem that falls into this category.

Few-shot learning: Given a target dataset with few examples and various datasets that
are very similar, but include many examples, retrieve a model that has been pre-
trained on prior datasets and fine-tune it to perform well on the target dataset.

We note that algorithm selection problems are defined on a discrete set of algorithms,
while the hyperparameter optimization problem and CASH problem are typically de-
fined on continuous configuration spaces, or heterogeneous spaces with both discrete

6 1 Introduction

Fig. 1.1: Generating a meta-level model

and continuous variables. Techniques for algorithm selection can also easily be applied
to discretized versions of the latter.

In this book, we follow the following convention that has been broadly adopted by
the machine learning community. A hyperparameter is a user-defined parameter that de-
termines the behavior of a particular machine learning algorithm; for instance, the level
of pruning in a decision tree, or the learning rate in neural networks are hyperparam-
eters. A (model) parameter is a parameter that has been learned based on the training
data. For instance, the weights of a neural network model are regarded as model param-
eters.

1.2.3 Basic architecture of metalearning and AutoML systems

The algorithm selection problem was first formulated by Rice (1976). He has observed
that it is possible to relate the performance of algorithms to dataset characteristics/fea-
tures. In other words, dataset features are often quite good predictors of performance of
algorithms. This can be exploited to identify the best performing algorithm for a given
target dataset. It has since then be applied to many application domains, also beyond
machine learning (Smith-Miles, 2008).

A general architecture for metalearning systems that address the algorithm selection
problem is shown in Figure 1.1. First, metadata is collected that encodes information
on previous learning episodes. This includes descriptions of the tasks that we solved
before. For instance, these could be classification tasks where we build classifiers for
a given dataset, or reinforcement learning tasks defined by different learning environ-
ments. Characterizations of these tasks are often very useful for reasoning how new
tasks could be related to prior tasks. The metadata also includes algorithms (e.g. ma-
chine learning pipelines or neural architectures) that were previously used for learning
these tasks, and information about performance resulting from evaluations, showing how
well that worked. In some cases, we can store the trained models as well, or measurable
properties of these models. Such metadata from many previous (or current) tasks could
be combined in a database, or a “memory” of prior experience that we want to build on.

We can leverage this metadata in many different ways. For instance, we could use
metadata directly inside metalearning algorithms, or use it to train a meta-level model.
Such a meta-model can be used inside a metalearning system, as illustrated in Figure 1.2.
Based on the characteristics of a novel “target” task, the meta-model could construct or
recommend new algorithms to try, and use the observed performance to update the

1.2 Basic Concepts and Architecture (Part I) 7

algorithms or recommendations until some stopping condition, usually a time budget
or performance constraint, has been satisfied. In some cases, no task characteristics are
included, and the metalearning system learns from prior experience and observations on
the new task alone.

Fig. 1.2: Using a meta-level model to predict the best algorithm

1.2.4 Algorithm selection using metadata from prior datasets (Chaps. 2,5)

Chapters 2 and 5 discuss methods that exploit performance metadata of algorithms on
previous tasks to recommend algorithms for a target dataset. These recommendations
can take the form of rankings of candidate algorithms (Chap. 2) or meta-models that
predict the suitability of algorithms on new tasks (Chap. 5).

In Chapter 2 we describe a relatively simple approach, the average ranking method,
which is often used as a baseline method. The average ranking algorithm uses meta-
knowledge acquired in previous tasks to identify the potentially best base-level algo-
rithms for the current task.

This approach requires that an appropriate evaluation measure, such as accuracy, is
set beforehand. In this chapter we also describe a method that builds this ranking based
on a combination of accuracy and runtime, yielding good anytime performance.

Chapter 5 discusses more advanced methods. The methods in both chapters are de-
signed to work on discrete problems.

1.2.5 Evaluation and comparisons of different systems (Chap. 3)

When working with a given metalearning system, it is important to know whether we
can trust its recommendations and how its performance compares with other competing
approaches. Chapter 3 discusses a typical approach that is commonly used to evaluate
metalearning systems and make comparisons.

In order to obtain a good estimate of the performance of a metalearning system, it
needs to be evaluated on many datasets. As the performance of algorithms may vary
substantially across these datasets, many systems normalize the performance values first
to make comparisons meaningful. Section 3.1 discusses some of the most common nor-
malization methods used in practice.

Assuming that a metalearning system outputs a sequence of algorithms to test, we
can study how similar this sequence is from the ideal sequence. This can be determined
by looking at a degree of correlation between the two sequences. Section 3.2 describes
this in more detail.

8 1 Introduction

We note that the above approach compares the predictions made by meta-level
model with the meta-target (i.e., correct ordering of algorithms). A disadvantage of this
approach is that it does not show directly the effects in terms of base-level performance.
This problem can be avoided by considering the appropriate base-level performance of
different metalearning systems and how this evolves with time. If the ideal performance
is known, it is possible to calculate the value of performance loss, which is the difference
between the actual performance and the ideal value. The loss curve shows how the loss
evolves with time. In some systems the maximum available time (i.e., time budget) is
given beforehand. Different systems and their variants can then be compared by looking
at how the loss evolves with time. More details can be found in Section 3.3.

Section 3.4 also presents some useful measures, such as loose accuracy and discounted
cumulative gain that are often used when comparing sequences. The final section (Sec-
tion 3.5) describes the methodology that is commonly used in comparisons involving
several metalearning/AutoML systems.

1.2.6 Role of dataset characteristics/metafeatures (Chap. 4)

We note that in the proposal of Rice (1976), dataset characteristics play a crucial role.
They have been used in many metalearning systems since then. Typically, they help to re-
strict the search for the potentially best algorithm. If the characteristics are not available,
or if they are difficult to define in a given domain, the search can proceed nevertheless.
The basic approaches based on rankings or pairwise comparisons discussed in Chap-
ters 2 and 5 can be used without any dataset characteristics. This is an advantage, as
indeed, in many domains, it is difficult to come up with a sufficient number of informa-
tive characteristics that enable to discriminate a large number of very similar algorithm
configurations.

One important group of characteristics is the group of performance-based character-
istics. This group includes, for instance, sampling landmarkers, representing the perfor-
mance of particular algorithms on samples of data. These can be obtained in virtually all
domains.

There is no doubt that some characteristics are, in general, important. Consider, for
instance, the basic characteristic of the target variable. If it is numeric, it suggests that
a suitable regression algorithm should be used, while if it is categorical, a classification
algorithm should be used. A similar argument can be given when we encounter bal-
anced/unbalanced data. This characteristic conditions the choice of the right approach.

Chapter 4 discusses various dataset characteristics, organized by task type, such as
classification, regression, or time series. Various chapters in this book discuss how the
datasets characteristics are effectively used in different metalearning approaches (e.g.,
Chaps. 2, 5).

1.2.7 Different types of meta-level models (Chap. 5)

Several types of meta-level models were used in the past:

• regression model,
• classification model,
• relative performance model.

Chapter 5 discusses the details of such models. These are used in various approaches
discussed throughout the book.

1.2 Basic Concepts and Architecture (Part I) 9

The regression model uses a suitable regression algorithm which is trained on the
metadata and can then be used to predict the performance of a given set of base-level
algorithms. The predictions can be used to order the base-level algorithms and hence
identify the best one.

Regression models play an important role also in the search for the best hyperpa-
rameter configuration, particularly if these are numeric and continuous. For example,
the method called sequential model-based optimization discussed in Chapter 6 uses a re-
gression algorithm on a meta-level to model the loss function, and to identify promising
hyperparameter settings.

A classification model identifies which of the base-level algorithms are applicable to
the target classification task. This implies that these algorithms are likely to obtain a
relatively good performance on the target task. We note that this metalearning task is
applied to a discrete domain.

If we were to use probabilistic classifiers at the meta-level which provide apart from
the class (e.g., applicable or non-applicable), also numeric values related to the probabil-
ity of classification, then these values can be used to identify the potentially best possible
base-level algorithm or to explore a ranking in further search.

The relative performance model is based on an assumption that it is not necessary
to have the details about the actual performance of algorithms, if the aim is to iden-
tify good-performing algorithms. All that is needed is the information regarding their
relative performance. Relative performance models can either use rankings or pairwise
comparisons. In all these settings it is possible to use search to identify the potentially
best algorithm for the target dataset.

1.2.8 Hyperparameter optimization (Chap. 6)

Chapter 6 describes various approaches for the hyperparameter optimization and com-
bined algorithm selection and hyperparameter optimization problems.

This chapter differs from the Chapters 2 and 5 in one important aspect: it discusses
methods that use performance metadata obtained mainly on the target dataset. The
metadata is used to construct relatively simple and fast-to-test models of the target al-
gorithm configuration (algorithm with appropriate hyperparameter settings) that can be
queried. The aim of these queries is to identify the best configuration to test, which is
the one with the highest estimate of performance (e.g., accuracy). This type of search is
referred to as model-based search.

The situation is not entirely clear-cut, though. As is shown, the metadata gathered
on past datasets can also be useful and improve the performance of model-based search.

1.2.9 Automatic methods for workflow design (Chap. 7)

Many tasks require a solution which does not involve a single base-level algorithm, but
rather several algorithms. The term workflow (or pipeline) is often used to represent such
sequences. In general, the set may be only partially ordered.

When designing workflows (pipelines), the number of configurations can grow dra-
matically. This is because each item in the workflow can in principle be substituted by
an appropriate base-level operation and there may be several such operations available.
The problem is exacerbated by the fact that a sequence of two or more operators can
in general be executed in any order, unless instructions are given to the contrary. This

10 1 Introduction

creates a problem, as forN operators there areN ! possible orderings. So, if a set of oper-
ators should be executed in a specific order, explicit instructions need to be given to that
effect. If the order is irrelevant, the system should also be prevented from experimenting
with alternative orderings. All alternative workflows and their configurations (including
all possible hyperparameter settings) constitute the so-called configuration space.

Chapter 7 discusses various means that have been used to restrict the design options
and thus reduce the size of the configuration space. These include, for instance, ontolo-
gies and context-free grammars. Each of these formalisms has its merits and shortcom-
ings.

Many platforms have resorted to planning systems that use a set of operators. These
can be designed to be in accordance with given ontologies or grammars. This topic is
discussed in Section 7.3.

As the search space may be rather large, it is important to leverage prior experience.
This topic is addressed in Section 7.4. which discusses rankings of plans that have proved
to be useful in the past. So, the workflows/pipelines that have proved successful in the
past, can be retrieved and used as plans for future tasks. So, it is possible to exploit both
planning and metalearning.

1.3 Advanced Techniques and Methods (Part II)

1.3.1 Setting up configuration spaces and experiments (Chap. 8)

One of the challenges that metalearning and AutoML research faces nowadays is that
the number of algorithms (workflows in general) and their configurations is so large
that it can cause problems when searching through this space for an acceptable solution.
Also, it is not possible any more to have a complete set of experimental results (complete
metadata). So, several questions arise:

1. Is the configuration space adequate for the set of tasks of interest? This question is
addressed in Section 8.3.

2. Which parts of the configuration space are relevant, and which parts are less rele-
vant? This question is addressed in Section 8.4.

3. Can we reduce the configuration space to make metalearning more effective? This
question is addressed in Section 8.5.

Considering this from the perspective of the algorithm selection framework, these ques-
tions are concerned with the algorithm space.

In order to successfully learn, also several aspects from the problem space become
important. We address the following questions:

1. Which datasets do we need to be able to transfer knowledge to new datasets? This
question is addressed in Section 8.7.

2. Do we need complete metadata, or does incomplete metadata suffice? This question
is already partly addressed in Chapter 2, and is further elaborated on in Section 8.8.

3. Which experiments need to be scheduled first to obtain adequate metadata? This
question is addressed in Section 8.9.

1.2 Basic Concepts and Architecture (Part I) 11

1.3.2 Automatic methods for ensembles and streams

Combining base-learners into ensembles (Chap. 9)

Ensembles of classification or regression models represent an important area of machine
learning. They have become popular because they tend to achieve high performance
when compared with single models. This is why we devote one chapter to this topic in
this book. We start by introducing ensemble learning and present an overview of some of
its most well-known methods, including bagging, boosting, stacking, and cascade gener-
alization, among others.

Metalearning in ensemble methods (Chap. 10)

There is a growing number of approaches integrating metalearning methods – in the
sense used in this book – in ensemble learning approaches.1 In Chapter 10 we discuss
some of those approaches. We start by providing a general perspective and then we an-
alyze them in detail, concerning the ensemble method used, the metalearning approach
employed, and finally the metadata involved.

We show that ensemble learning presents many opportunities for research on met-
alearning, with very interesting challenges, namely in terms of the size of the configura-
tion space, the definition of the competence regions of the models, and the dependency
between them. Given the complexity of ensemble learning systems, one final challenge
is to apply metalearning to understand and explain their behavior.

Algorithm recommendation for data streams (Chap. 11)

Real-time analysis of data streams is a key area of data mining research. Many real-world
collected data is in fact a stream where observations come in one by one, and algorithms
processing these are often subject to time and memory constraints. Examples of this are
stock prices, human body measurements, and other sensor measurements. The nature of
data can change over time, effectively outdating models that we have built in the past.

This has been identified by the scientific community, and hence many machine learn-
ing algorithms have been adapted or are specifically designed to work on data streams.
Some examples of this are Hoeffding trees, online boosting, and leveraging bagging. Also,
the scientific community provided the so-called drift detectors, mechanisms that iden-
tify when the created model is no longer applicable. Once again, we are faced with an
algorithm selection problem, which can be solved with metalearning.

In this chapter, we discuss three approaches on how techniques from within the scope
of this book have been used to address this problem. First, we discuss metalearning
approaches that divide the streams into various intervals, calculate metafeatures over
these parts, and use a meta-model for each part of the stream to select which classifier to
use. Second, we discuss ensemble approaches, that use the performance on recent data
to determine which ensemble members are still up to date. In some sense, these methods
are much simpler to apply in practice, as they do not rely on a basis of metalearning,
and consistently outperform the metalearning approaches. Third, we discuss approaches

1In ensemble learning literature the term metalearning is used to refer to certain en-
semble learning approaches (Chan and Stolfo, 1993), where it has a somewhat different
meaning from the one used in this book.

12 1 Introduction

that are built upon the notion of recurring concepts. Indeed, it is reasonable to assume
some sort of seasonality in data, and models that have become outdated can become
relevant again at some point later in time. This section describes systems that facilitate
this type of data. Finally, this chapter closes with open research questions and directions
for future work.

1.3.3 Transfer of meta-models across tasks (Chap. 12)

Many people hold the view that learning should not be viewed as an isolated task that
starts from scratch with every new problem. Instead, a learning algorithm should exhibit
the ability to exploit the results of previous learning processes to new tasks. This area
is often referred to as transfer of knowledge across tasks, or simply transfer learning. The
term learning to learn is also sometimes used in this context.

Chapter 12 is dedicated to transfer learning, whose aim is to improve learning by
detecting, extracting, and exploiting certain information across tasks. This chapter is
an invited chapter written by Ricardo Vilalta and Mikhail M. Meskhi, with the aim of
complementing the material of this book.

The authors discuss different approaches available to transfer knowledge across
tasks, namely representational transfer and functional transfer. The term representational
transfer is used to denote cases when the target and source models are trained at dif-
ferent times and the transfer takes place after one or more source models have already
been trained. In this case there is an explicit form of knowledge transferred directly to
the target model or to a meta-model that captures the relevant part of the knowledge
obtained in past learning episodes.

The term functional transfer is used to denote cases where two or more models are
trained simultaneously. This situation is sometimes referred to as multi-task learning. In
this case the models share (possibly a part of) their internal structure during learning.
More details on this can be found in Section 12.2.

The authors address the question regarding what exactly can be transferred across
tasks and distinguish instance-, feature-, and parameter-based transfer learning (see
Section 12.3). Parameter-based transfer learning describes a case when the parameters
found on the source domain can be used to initialize the search on the target domain.
We note that this kind of strategy is also discussed in Chapter 6 (Section 6.7).

As neural networks play an important role in AI, one whole section (Section 12.3)
is dedicated to the issue of transfer in neural networks. So, for instance, one of the
approaches involves transfer of a part of network structure. This section also describes
a double loop architecture, where the base-learner iterates over the training set in an
inner loop, while the metalearner iterates over different tasks to learn metaparameters
in an outer loop. This section also describes transfer in kernel methods and in parametric
Bayesian models. The final section (Section 12.4) describes a theoretical framework.

1.3.4 Metalearning for deep neural networks (Chap. 13)

Deep learning methods are attracting a lot of attention recently, because of their suc-
cesses in various application domains, such as image or speech recognition. As training
is generally slow and requires a lot of data, metalearning can offer a solution to this
problem. Metalearning can help to identify the best settings for hyperparameters, as
well as parameters, concerned, for instance, with weights of a neural network model.

1.3 Advanced Techniques and Methods (Part II) 13

Most metalearning techniques involve a learning process at two levels, as was al-
ready pointed out in the previous chapter. At the inner level, the system is presented with
a new task and tries to learn the concepts associated with this task. This adaptation is
facilitated by the knowledge that the agent has accumulated from other tasks, at the
outer level.

The authors categorize this field of metalearning in three groups: metric-, model-,
and optimization-based techniques, following previous work. After introducing notation
and providing background information, this chapter describes key techniques of each
category, and identifies the main challenges and open questions. An extended version of
this overview is also available outside this book (Huisman et al., 2021).

1.3.5 Automating data science and design of complex systems

Automating data science (AutoDS) (Chap. 14)

It has been observed that in data science a greater part of the effort usually goes into
various preparatory steps that precede model-building. The actual model-building step
typically requires less effort. This has motivated researchers to examine how to automate
the preparatory steps and gave rise to methodology that is known under the name CRISP-
DM model (Shearer, 2000).

The main steps of this methodology include problem understanding and definition of
the current problem/task, obtaining the data, data preprocessing and various transfor-
mations of data, model building, and its evaluation and automating report generation.
Some of these steps can be encapsulated into a workflow, and so the aim is to design a
workflow with the best potential performance.

The model-building step, including hyperparameter optimization, is discussed in
Chapter 6. More complex models in the form of workflows are discussed in Chapter
7. The aim of Chapter 14 is to focus on the other steps that are not covered in these
chapters.

The area related to the definition of the current problem (task) involves various
steps. In Section 14.1 we argue that the problem understanding of a domain expert
needs to be transformed into a description that can be processed by the system. The
subsequent steps can be carried out with the help of automated methods. These steps
include generation of task descriptors (e.g., keywords) that help to determine the task
type, the domain, and the goals. This in turn allows us to search for and retrieve domain-
specific knowledge appropriate for the task at hand. This issue is discussed in Section
14.2.

The operation of obtaining the data and its automation may not be a trivial matter,
as it is necessary to determine whether the data already exists or not. In the latter case a
plan needs to be elaborated regarding how to get it. Sometimes it is necessary to merge
data from different sources (databases, OLAP cube, etc.). Section 14.3 discusses these
issues in more detail.

The area of preprocessing and transformation has been explored more by various
researchers in the AutoDS community. Methods exist for selection of instances and/or
elimination of outliers, discretization and various other kinds of transformations. This
area is sometimes referred to as data wrangling. These transformations can be learned
by exploiting existing machine learning techniques (e.g., learning by demonstration).
More details can be found in Section 14.3.

14 1 Introduction

One other important are of data science involves decisions regarding the appropriate
level of detail to be used in the application. As has been shown, data may be summa-
rized by appropriate aggregation operations, such as Drill Down/Up operations in a given
OLAP cube. Categorical data may also be transformed by introducing new high-level
features. This process involves determining the right level of granularity. Efforts can be
made to automate this, but more work is needed before it is possible to offer practical
solutions to companies. More details about this issue can be found in Section 14.4.

Automating the design of complex systems (Chap. 15)

In this book we have dealt with the problem of automating the design of KDD workflows
and other data science tasks. A question arises regarding whether the methods can be
extended to somewhat more complex tasks. Chapter 15 discusses these issues, but the
focus in this book is on symbolic approaches.

We are well aware that many successful applications nowadays, particularly in vi-
sion and NLP, exploit deep neural networks (DNNs), CNNs, and RNNs. Despite this, we
believe that symbolic approaches continue to be relevant. We believe that this is the case
for the following reasons:

• DNNs typically require large training data to work well. In some domains not many
examples are available (e.g., occurrences of rare diseases). Also, whenever the ex-
amples are supplied by a human (as, for instance, in data wrangling discussed in
Chapter 14), we wish the system to capable of inducing the right transformation
on the basis of a modest number of examples. Many systems in this area exploit
symbolic representations (e.g., rules), as it is easy to incorporate background knowl-
edge, which is often also in the form of rules.

• It seems that, whenever AI systems need to communicate with humans, it is advan-
tageous to resort to symbolic concepts which can easily be transferred between a
human and a system.

• As human reasoning includes both symbolic and subsymbolic parts, it is foreseeable
that future AI systems will follow this line too. So it is foreseeable that the two
reasoning systems will coexist in a kind of functional symbiosis. Indeed, one current
trend involves so-called explainable AI.

The structure of this chapter is as follows. Section 15.1 discusses more complex
operators that may be required when searching for a solution of more complex tasks.
This includes, for instance, conditional operators and operators for iterative processing.

Introduction of new concepts is addressed in Section 15.2. It discusses changes of
granularity by the introduction of new concepts. It reviews various approaches explored
in the past, such as, constructive induction, propositionalization, reformulation of rules,
among others. This section draws attention to some new advances, such as feature con-
struction in deep NNs.

There are tasks that cannot be learned in one go, but rather require a sub-division
into subtasks, a plan for learning the constituents, and joining the parts together. This
methodology is discussed in Section 15.3. Some tasks require an iterative process in
the process of learning. More details on this can be found in Section 15.4. There are
problems whose tasks are interdependent. One such problem is analyzed in Section 15.5.

1.3 Advanced Techniques and Methods (Part II) 15

1.4 Repositories of Experimental Results (Part III)

1.4.1 Repositories of metadata (Chap. 16)

Throughout this book, we discuss the benefits of using knowledge about past datasets,
classifiers, and experiments. All around the globe, thousands of machine learning exper-
iments are being executed on a daily basis, generating a constant stream of empirical
information on machine learning techniques. Having the details of experiments freely
available to others is important, as it enables to reproduce the experiments and verify
that the conclusions are correct and use this knowledge to extend the work further. It
can thus speed up progress in science.

This chapter starts with a review of online repositories where researchers can share
data, code, and experiments. In particular, it covers OpenML, an online platform for
sharing and organizing machine learning data automatically and in fine detail. OpenML
contains thousands of datasets and algorithms, and millions of experimental results on
these experiments. In this chapter we describe the basic philosophy behind it, and its
basic components: datasets, tasks, flows, setups, runs, and benchmark suites. OpenML
has API bindings in various programming languages, making it easy for users to interact
with the API in their native language. One hallmark feature of OpenML is the integration
into various machine learning toolboxes, such as Scikit-learn, Weka, and mlR. Users of
these toolboxes can automatically upload all the results that they obtained, leading to a
large repository of experimental results.

1.4.2 Learning from metadata in repositories (Chap. 17)

Having a vast set of experiments, collected and organized in a structured way, allows us
to conduct various types of experimental studies. Loosely based upon a categorization of
Vanschoren et al. (2012), we present three types of experiments that explore OpenML
metadata to investigate certain issues to be described shortly: experiments on a single
dataset, on multiple datasets, and experiments involving specific dataset or algorithm
characterization.

As for the experiments on a single dataset, Section 17.1 shows how the OpenML
metadata can be used for simple benchmarking and, in particular, to assess the impact
of varying the settings of a specific hyperparameter. As for the experiments on multiple
datasets, Section 17.2 shows how the OpenML metadata can be used to assess the ben-
efit of hyperparameter optimization, and also, the differences on predictions between
algorithms. Finally, for the experiments involving specific characteristics, Section 17.3
shows how the OpenML metadata can be used to investigate and answer certain scien-
tific hypotheses, such as on what type of datasets are linear models adequate, and for
what type of datasets feature selection is useful. Furthermore, we present studies whose
aim is to establish the relative importance of hyperparameters across datasets.

1.4.3 Concluding remarks (Chap. 18)

The last chapter of the book (Chap. 18) presents the concluding remarks with respect to
the whole book. It includes two sections. As metaknowledge has a central role in many
approaches discussed in this book, we analyze this issue in more detail here. In particular,
we are concerned with the issue of what kind of metaknowledge is used in different
metalearning/AutoML tasks, such as algorithm selection, hypeparameter optimization,

16 1 Introduction

and workflow generation. We draw attention to the fact that some metaknowledge is
acquired (learned) by the systems, while other is given (e.g., different aspects of the
given configuration space). More details on this can be found in Section 18.1.

Section 18.2 discusses future challenges, such as better integration of metalearning
and AutoML approaches and what kind of guidance could be provided by the system for
the task of configuring metalearning/AutoML systems to new settings. This task involves
(semi-)automatic reduction of configuration spaces to make the search more effective.
The last part of this chapter discusses various challenges which we encounter when
trying to automate different steps of data science.

References

Brazdil, P. and Konolige, K. (1990). Machine Learning, Meta-Reasoning and Logics.
Kluwer Academic Publishers.

Chan, P. and Stolfo, S. (1993). Toward parallel and distributed learning by meta-
learning. In Working Notes of the AAAI-93 Workshop on Knowledge Discovery in
Databases, pages 227–240.

Guyon, I., Bennett, K., Cawley, G., Escalante, H. J., Escalera, S., Ho, T. K., Macià, N.,
Ray, B., Saeed, M., Statnikov, A., et al. (2015). Design of the 2015 ChaLearn AutoML
challenge. In 2015 International Joint Conference on Neural Networks (IJCNN), pages
1–8. IEEE.

Huisman, M., van Rijn, J. N., and Plaat, A. (2021). A survey of deep meta-learning.
Artificial Intelligence Review.

Kowalski, R. (1979). Logic for Problem Solving. North-Holland.
Lemke, C., Budka, M., and Gabrys, B. (2015). Metalearning: a survey of trends and

technologies. Artificial Intelligence Review, 44(1):117–130.
Michie, D., Spiegelhalter, D. J., and Taylor, C. C. (1994). Machine Learning, Neural and

Statistical Classification. Ellis Horwood.
Rendell, L., Seshu, R., and Tcheng, D. (1987). More robust concept learning using

dynamically-variable bias. In Proceedings of the Fourth International Workshop on Ma-
chine Learning, pages 66–78. Morgan Kaufmann Publishers, Inc.

Rice, J. R. (1976). The algorithm selection problem. Advances in Computers, 15:65–118.
Shearer, C. (2000). The CRISP-DM model: the new blueprint for data mining. J Data

Warehousing, 5:13–22.
Smith-Miles, K. A. (2008). Cross-disciplinary perspectives on meta-learning for algo-

rithm selection. ACM Computing Surveys (CSUR), 41(1):6:1–6:25.
Vanschoren, J., Blockeel, H., Pfahringer, B., and Holmes, G. (2012). Experiment

databases: a new way to share, organize and learn from experiments. Machine Learn-
ing, 87(2):127–158.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons license, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons license and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

1.4 Repositories of Experimental Results (Part III) 17

http://creativecommons.org/licenses/by/4.0/

	1 Introduction
	1.1 Organization of the Book
	1.2 Basic Concepts and Architecture (Part I)
	1.3 Advanced Techniques and Methods (Part II)
	1.4 Repositories of Experimental Results (Part III)
	References

