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Series Preface

Applications and modelling and their learning and teaching in school and university
have become a prominent topic for many decades now in view of the growing world-
wide relevance of the usage of mathematics in science, technology and everyday
life. There is consensus that modelling should play an important role in mathe-
matics education, and the situation in schools and university is slowly changing to
include real-world aspects, frequently with modelling as real world problem solving,
in several educational jurisdictions. Given the worldwide continuing shortage of
students who are interested in mathematics and science, it is essential to discuss
changes of mathematics education in school and tertiary education towards the inclu-
sion of real world examples and the competencies to use mathematics to solve real
world problems.

This innovative book series established by Springer International Perspectives on
the Teaching and Learning of Mathematical Modelling, aims at promoting academic
discussion on the teaching and learning of mathematical modelling at various educa-
tional levels all over theworld. The serieswill publish books fromdifferent theoretical
perspectives from around the world dealing with Teaching and Learning of Math-
ematical Modelling in Schooling and at Tertiary level. This series will also enable
the International Community of Teachers of Mathematical Modelling and Applica-
tions (ICTMA), an International Commission on Mathematical Instruction affiliated
StudyGroup, to publish books arising from its biennial conference series. ICTMA is a
unique worldwide educational research group where not only mathematics educators
dealing with education at school level are included but also applied mathematicians
interested in teaching and learning modelling at tertiary level are represented as well.
Six of these books published by Springer have already appeared.

The planned books display the worldwide state-of-the-art in this field, most recent
educational research results and new theoretical developments and will be of interest
for awide audience.Themesdealtwith in the books focus on the teaching and learning
of mathematical modelling in schooling from the early years and at tertiary level
including the usage of technology in modelling, psychological, social, historical and
cultural aspects of modelling and its teaching, learning and assessment, modelling
competencies, curricular aspects, teacher education and teacher education courses.
The book series aims to support the discussion on mathematical modelling and its

v



vi Series Preface

teaching internationally and will promote the teaching and learning of mathematical
modelling and research of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known
scholars, who bring in their long experience in the field as well as their expertise
to this series. The members of the editorial board are: Maria Salett Biembengut
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to
promote the teaching and learning of mathematical modelling all over the world.

Hamburg, Germany
Ballarat, Australia

Gabriele Kaiser
Gloria Ann Stillman

Series Editors
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Part I
Introduction



Chapter 1
Mathematical Modelling Education
in the Cultural Contexts of West and East

Frederick Koon Shing Leung, Gloria Ann Stillman, Gabriele Kaiser,
and Ka Lok Wong

Abstract The title of this book is Mathematical Modelling Education in West and
East, arising from the ICTMA-19 conference with the same theme. It is argued
that since both mathematics itself and mathematics education are human products,
and solving problems in real-life context is at the heart of mathematical modelling
and its applications, mathematical modelling, and its teaching and learning should be
considered in their cultural contexts. Hence, consideration of issues about mathemat-
icalmodelling inWest and East will bring out the richness ofmathematicalmodelling
education. In this regard, the hosting of ICTMA-19 in Hong Kong, a meeting point
of Western and Eastern cultures, has special significance for the discussion on math-
ematical modelling. After an introduction of the theme, the classification of the
chapters of the book and structure of the book are explained.

Keywords Mathematical modelling education · Pedagogical issues · Assessment ·
ICTMA-19 · Confucian Heritage Culture (CHC) · International Mathematical
Modelling Challenge (IMMC)

1.1 Introduction

Mathematics is often perceived as universal truth (Ernest 2009), and as a corollary,
principles of mathematics education should be applicable irrespective of the culture
and tradition students are situated in. Mathematical modelling education, as a branch
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of mathematics education, is perceived likewise. Based on this premise, a book on
mathematical modelling should cover topics on mathematics modelling activities
applicable to everywhere in the globe. However, research in mathematics education
in the past three decades has shown that both mathematics itself and mathematics
education are human products (Bishop 1988; Lerman 2000; Ellis and Berry 2005).
As such, it will be very valuable for scholars from different cultural traditions to
gather together in an international conference and share experiences on mathemat-
ical modelling education arising out of their own cultural tradition. In fact, it can be
argued that since solving problems in real-life context is at the heart of mathematical
modelling and its applications (Blomhøj and Carreira 2009), it is all the more impor-
tant for mathematical modelling and its teaching and learning to be considered in
its cultural context. Consideration of mathematical modelling in its cultural context,
and sharing and contrasting research and practices from different cultures, will bring
out the richness of mathematical modelling education. How boring it would be if
mathematical modelling were done in the same way in all parts of the world!

The themeof this book, andof the ICTMA-19 conference held inHongKongSAR,
China (https://www.ictma19.org/), from which the chapters of this book are derived,
isMathematicalModelling Education inWest and East. China, amajor country in the
East, has fostered a unique tradition of mathematical education, which has profound
influence on its neighbouring countries such as Japan andKorea throughout its history
(Martzloff 1997). Mathematics education in China is deeply rooted in its profound
culture established in a 5000-year history of civilization, particularly Confucianism,
and the related so-called examination culture (Leung 2006) and textual culture
(Cherniack 1994). As educators and policy makers around the world have come
to realize the importance of learning from experiences of other countries under a
different culture, the success of students in China and more generally in countries
under the influence of the Chinese culture (referred to as Confucian Heritage Culture
or CHC) (Biggs 1996) in international studies of mathematics achievement (Mullis
et al. 2016; OECD2016) has drawn attention frommathematicians andmathematical
educators and researchers all over the world. Educators and policy makers are partic-
ularly interested in issues relating to the curriculum and the teaching and learning
of mathematics, including the issue of integration of mathematical modelling in the
teaching and learning of mathematics.

There was a strong emphasis on algorithm and computation in the mathematics
tradition in China (Martzloff 1997), as illustrated in the Nine Chapters of Mathemat-
ical Art or Jiu Zhang Suan Shu (composed from tenth to second century BCE)
(Straffin 1998), and this emphasis has now seen a renaissance in mathematical
modelling and applications whenChina hasmade significant progress with economy,
science and technology. In recent decades, teaching and learning of mathematical
modelling as well as contests in mathematical modelling have been flourishing at
different levels of education inGreater China includingMainlandChina, HongKong,
Macau and Taiwan. Courses in mathematical modelling have become elective or
core courses in universities or vocational colleges in China. At the secondary school
level, in the forthcoming National High School Mathematics Curriculum in China
(MOE 2017), mathematical modelling is included as one of the core mathematical

https://www.ictma19.org/
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competencies for students and is a compulsory requirement in the curriculum, with
designated classroom teaching hours. Partly because of this emphasis, teachers and
researchers in China today become keener to learn from their western colleagues
in the teaching of mathematical modelling and its applications. And as pointed out
above, researchers and educators in the West are also interested to learn about what
is happening in the East in terms of the role played by mathematical modelling in
mathematics education. Hence, dialogue and communication between colleagues
from across the globe will provide new impetus and resources for mathematical
modelling education and its research in both West and East.

Alongside this increased attention tomathematicalmodelling, a number of compe-
titions related to mathematical modelling at various levels of the education system
have been developed. It is admitted that mathematics education is not about compe-
tition. In fact, some scholars denounce competition as having a negative effect on
mathematics teaching and learning. However, it should also be admitted that in
certain areas of mathematics education, competition does have its role in promoting
the learning of mathematics, unless it is overemphasized (Yao et al. 2012). Take the
International Mathematics Olympic (IMO) as an example. It has played an impor-
tant part in inculcating mathematics geniuses, but if the IMO type of competitions
is promoted in a universal scale, as is alleged of being done in China, it may pose
harmful consequences. As for mathematical modelling competition, it is argued that
if managed well, it will exert a positive effect on mathematical modelling education,
encouraging youngsters to solve complex modelling examples, which in turn will
contribute to mathematics teaching and learning more generally. Moreover, interna-
tional mathematical modelling competitions have a further effect of promoting the
interflow of ideas (and friendship) through interaction of the students participating
in the competitions.

In recent years, HongKong, the venue for ICTMA-19, has been paying increasing
attention to the role that mathematical modelling and its applications play in the
teaching and learning of mathematics, and one of the means through which this is
achieved is via mathematical modelling competitions. For example, an interschool
contest in mathematical modelling for secondary school students has been running
for more than 10 years, and in recent years, it is merged with another newly estab-
lished competition, International Mathematical Modelling Challenge (IMMC) in
Hong Kong. With the hosting of ICTMA-19 in Hong Kong, mathematicians and
mathematics educators and researchers from across the globe have been able to get
to knowmore about the development in the promotion of mathematical modelling in
Hong Kong and in the Greater China region more generally. Chinese educators and
researchers are also afforded the opportunity to learn and connect with the interna-
tional community of teachers and researchers involved in mathematical modelling
and its applications.

With a history of more than 150 years, Hong Kong is unique for blending the
eastern and western cultures. Hong Kong has played an important role in not only
ushering in western culture and education to China but also in introducing China
to the West. With the increasing awareness and efforts in mathematical modelling
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education all over the world, Hong Kong will continue to be a super-connector
between West and East.

As mentioned above, this book is a result of the ICTMA-19 conference held in
HongKong and is ameans for providing dialogue and communication for researchers
and educators from bothWest and East across the globe who are interested in sharing
new ideas on modelling teaching and practices, inside and outside the classroom.
Unfortunately but perhaps not unexpectedly, not too many of the papers presented at
ICTMA-19 addressed the conference theme ofMathematicalModellingEducation in
West andEast, similar to the situation inmany other education conferences. However,
the very fact that ICTMA-19 was held in Hong Kong sits very well with the theme
of the conference, and has encouraged attendance of participants from the Asian
region. In fact, compared to the past few ICTMA conferences, both the number of
participants from theAsian region and the number of papers presented by participants
of Asian origin are higher. And ICTMA-19 is only the second ICTMA conference
being held in Asia (the last time was ICTMA-10 held in Beijing in the year 2001), in
an international metropolis and educational and cultural hub known to be themeeting
point of Western and Eastern cultures.

The chapters in this book come from some of the papers presented at ICTMA-
19. At ICTMA-19, papers were roughly grouped under different themes such as
Teacher Education; Teaching Cases at Primary and Secondary Levels; The Process
of Modelling; Technology Use in Modelling; Teaching Methods; Students’ Perfor-
mance inMathematical Modelling; Teachers’ Knowledge; Teaching Cases in Higher
Education; Cognition,Metacognition andAttitudes; Social and Cultural Influence on
MathematicalModelling; TaskDesign; Context and Strategy; Curriculum; etc. Given
thiswide classification, amore clear-cut classification is needed for the book. Instead,
considering the nature of the content of the papers submitted for this book, we can
easily find that a substantial number of papers addressed the standard issues of the
nature of mathematical modelling, and issues addressing the pedagogy and assess-
ment of mathematical modelling, and so the first three sections of the book cover
theoretical issues, pedagogical issues and assessment issues respectively. There are a
number of chapters on experiences of teaching practices in mathematical modelling,
with quite a number of papers reporting some innovative teaching approaches, and
these constitute the next two sections of the book. Some further examples on teaching
mathematical modelling are provided in the following section, and there are also a
number of chapters reporting experiences on mathematical modelling at the tertiary
level. The last section covers miscellaneous topics on mathematical modelling. The
chapters within each section are then arranged in alphabetical order.

1.2 Theoretical Issues

A number of theoretical issues in mathematical modelling are covered in the first
section of the book.
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Ang (Chap. 2) explores and explicates the role of computational thinking, one
of the key skill sets for the future, in mathematical modelling, and examines the
relationship between computational thinking andmathematicalmodelling. Examples
from different modelling approaches are provided to contextualize the relationship,
and to demonstrate that mathematical modelling may serve as a platform for the
practice and development of computational thinking.

Fisher (Chap. 3) argues for the importance of enabling secondary school students
to build models for analysing complex systems problems in order to increase their
understanding of nonlinear feedback systems they will encounter as professionals
and citizens in the future. Examples of the types of system models normally outside
the reach of the secondary school students are provided, and their advantages for
enhancing students’ ability in analysis of real-world mathematical problems, as well
as the use of technologies in solving these problems, are discussed.

Lewis (Chap. 4) establishes a theory for facilitating modelling tasks as a bridge
between modelling as content and modelling as vehicle. An example of how one
teacher vacillates between nurturing students’ development of modelling as content
and targeting curricular objectives through formalization of desired mathematical
content as vehicle is used to illustrate how the teacher navigates between these two
epistemological approaches to develop students’ mathematical modelling capacity.

Orey and Rosa (Chap. 5) argue that the combination of local (emic) and global
(etic) approaches in ethnomodelling research contributes to a holistic understanding
of mathematics. Local knowledge is essential for an intuitive and empathic under-
standing of mathematical ideas and procedures, while global dialogical knowledge is
essential for the achievement of cross-cultural communication. Acquisition of both
local and global knowledge is a goal of ethnomodelling research, which should be
conducted through respect, appreciation, dialogue, and interaction.

Rosa andOrey (Chap. 6) argue that ethnomodelling can aid in recording cultural-
historical forms of mathematical practices developed bymembers of distinct cultural
groups and bring in cultural perspectives to the mathematical modelling process.
Insubordination triggered by ethnomodelling may evoke a sense of disturbance that
causes conscious review of rules and regulations endemic tomany curricula contexts.
This process enables educators to use positive deviance to develop pedagogical
actions that deal with content often disconnected from the reality of the students.

Sevinç (Chap. 7) provides a theoretical discussion on the epistemological content
of self-regulated and collaborative model development. Utilizing Piaget’s theory of
cognitive development as the foundation for the “models-and-modelling” perspec-
tive, a genre of activities called model-eliciting activities are produced. It is argued
that Piaget’s reflective abstraction and series of successive approximations support
the cyclic and self-regulatory nature of model development, which occurs as a series
of assimilations, accommodations, and (dis)equilibrium.
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1.3 Pedagogical Issues

This section of the book includes chapters related to pedagogical issues in
mathematical modelling.

Ay and Ostkirchen (Chap. 8) present the pilot study of a project entitled Diversity
inModelling (DiMo+)which analyses how15-year-old students inGermany handled
mathematical modelling tasks. Different patterns of action in modelling are found
among students of different social backgrounds. It is argued that compared to many
other countries, educational success in Germany is strongly determined by social
background. This is especially the case for success inmathematical modelling, where
modelling tasks involve authentic use of extra-mathematical content.

BorromeoFerri (Chap. 9) argues that teacher education inmathematicalmodelling
is necessary so that modelling lessons can be realized in schools. The historical
development of teacher education in mathematical modelling is then discussed, and
an empirical study on measuring teacher competencies for mathematical modelling
is presented. This is followed by the presentation of a case study on the views of
university educators after teaching amathematicalmodelling course as towhat school
teachers need to know in modelling.

Ferrando, Segura andPla-Castells (Chap. 10) report a study inwhich 224 Spanish
pre-service primary school teachers analysed students’ written solution plan of a
sequence of modelling tasks involving estimations. The results show that there is a
relation between the solution plan used by the students and the characteristics of the
context of the real estimation task. Conclusions regarding the characterization of this
kind of modelling tasks and the potential use of this sequence of tasks to promote
problem solving flexibility are then derived.

Geiger, Galbraith and Niss (Chap. 11) report the interim findings of a national
project in Australia that aims to promote effective teaching and learning practices
in mathematical modelling through attention to implemented anticipation. From the
findings, a Design and Implementation Framework for Modelling Tasks (DIFMT) is
generated. The study suggests that specific pedagogical practices can act as enablers
of students’ attempts to appropriate the process of mathematical modelling.

Guerrero-Ortiz (Chap. 12) reports a study on the relationships between the
mathematical modelling processes adopted by pre-service teachers while designing
modelling tasks and the knowledge in relation to content, technology, and pedagogy.
A way to integrate modelling and Technological Pedagogical Content Knowledge
(TPACK) into an analysis framework is demonstrated, which deepens the current
understanding of teachers’ knowledge and development of resources to support the
integration of modelling and technology as a part of teaching practice.

Hartmann and Schukajlow (Chap. 13) examine whether students are more inter-
ested in and feelmore enjoyment and less boredomwhile solving real-world problems
outside than inside the classroom. Results of the study indicate that location does not
influence the development of students’ interest and emotions. The authors argue for
the importance of authentic problems for students to develop interest and emotions.

Hearne (Chap. 14) explores the use ofmathematical modelling to enhance grade 6
learners’ understanding of fractions. It is found that learners’ understanding improves
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as effective connections are made between and within their intra-mathematical and
extra-mathematical knowledge, and they benefit by connecting symbols and their
referents and procedures and their underlying concepts rather than focusing on the
surface features of Arabic notation.

Huang, Lu and Xu (Chap. 15) employ a qualitative text analysis approach to
analyse the mathematics curricular syllabi or standards at primary, middle and high
school levels in China in order to investigate the historical development of mathe-
matical modelling in the country. A number of interesting observations are made,
e.g., the term “modelling” might not appear in syllabus, but the idea of mathemat-
ical modelling rooted in the tradition of “solving real-world problem” has been in
existence for a long time.

Schmitz and Schukajlow (Chap. 16) study the role of pictures in solvingmathemat-
icalmodelling tasks through assessing the picture-specific utility value andmodelling
performance of upper secondary school students. The picture-specific utility value
reflects the perceived usefulness of a picture for understanding the problem, students
assign a lower utility value to the pictures that contain additional superfluous numer-
ical information. However, no significant differences in the students’ modelling
performance are found.

1.4 Assessment Issues

Issues related to assessment in mathematical modelling are covered in this section
of the book.

Alagoz and Ekici (Chap. 17) validate a mathematical modelling assessment with
the input of content expert from multiple disciplines in building, defining, and clari-
fying the interdisciplinary competencies involved in the modelling tasks. The valida-
tion process involves scoring, interpretation and uses, and consequences of interdis-
ciplinary mathematical modelling assessment results. Confirmatory factor analysis
indicates construct validity for an assessment with two higher-order factors indi-
cating conceptual and procedural dimensions of interdisciplinary learning enacted
by mathematical modelling.

Frenken (Chap. 18) presents the construction of a test instrument for assessing
metacognitive knowledge of mathematical modelling based on a theoretical defi-
nition of the term “metacognitive knowledge” and its domain-specific connec-
tion to mathematical modelling. The scalability and possible reduction of items
of the instrument are analysed, and the item construction and evaluation process is
described.

Göksen-Zayim, Pik, Dekker and van Boxtel (Chap. 19) explore the mathemat-
ical modelling proficiency in both primary school and lower secondary school in
the Netherlands. Two modelling tasks on three difficulty levels are administered,
and it is found that learners encounter difficulties when constructing a meaningful
representation of the described modelling problem or may even fail to understand
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the problem. Representation problems are qualitatively analysed and are shown to
be partially related to learners’ language problems.

Wang (Chap. 20) investigates the mathematics modelling competency of pre-
service mathematics teachers in 4 universities in China. A scoring framework of the
mathematicalmodelling steps in solving amodelling item is used, and a questionnaire
on modelling competition experience is administered. The results show that there is
correlation between the modelling competition experience of student teachers and
their modelling competency.

Wess, Klock, Siller andGreefrath (Chap. 21) present a theory-based development
of a structural model and an associated test instrument to measure the competence of
teachers in their skills and abilities for teaching mathematical modelling. The extent
to which the proposed conceptualization of the structural model can be empirically
confirmed is discussed, and insights into the test instrument are presented and results
of the structural equation analysis of the model are presented.

1.5 Teaching Practice

This section of the book includes chapters on teaching practices in mathematical
modelling.

Czocher andHardison (Chap. 22) present a theoretically coherentmethodological
approach for understanding the situation-specific attributes students find relevant in
mathematical modelling tasks, and when students’ situation-specific meanings for
inscriptions change while engaged in modelling. The utility of this approach is illus-
trated by analysing the modelling activities of a purposefully selected undergraduate
student.

Hansen (Chap. 23) analyses the procedural choices and assessments the pre-
service teachers let their pupils make and how they facilitate critical thinking during
a practice period. It is found that although the pre-service teachers often empha-
size mathematical exploration, they tend to offer specific tasks to assist pupils with
the exploration, and pupils are not often given the opportunity to narrow down the
mathematical modelling problem and decide how to collect and represent data.

Ikeda and Stephens (Chap. 24) survey pre-service mathematics teachers on the
kinds of educational effects gained when addressing a task from the perspective that
mathematical modelling can be used to enrich students’ knowledge both in the real
world and in mathematics. The results suggest that pre-service teachers are able to
appreciate that modelling can not only enrich students’ ability to solve real-world
problems, but also deepen their ability to develop further mathematics.

Vargas and Jara (Chap. 25), in order to identify the implicit and explicit features in
the practices of teachers inmathematicalmodelling, design a questionnaire consisting
of two categories which emerge from a theoretical analysis using an onto-semiotic
approach: epistemic and didactic. The questionnaire is administered to 30 ninth-
grade mathematics teachers in Bogotá, Colombia who have extensive experience
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in teaching mathematical modelling. The data are collected using the Google Docs
platform and analysed in relation to the theoretical framework.

Yvain-Prébiski (Chap. 26) presents an epistemological study to investigate the
possibilities of giving students the responsibility for mathematical work that makes
it possible to make an extra-mathematical situation accessible through mathematical
treatment. A situation for teaching and learning mathematical modelling based on
an adaptation of a professional modelling problem is designed, implemented and
analysed.

1.6 Innovative Teaching Approaches

This section of the book reports some innovative teaching approaches in the teaching
of mathematical modelling.

Brown (Chap. 27) investigates teacher noticing and novice modellers’ developing
conceptions of noticingduring aprimary schoolmathematicalmodelling task through
teachers observing Year 3/4 students attempting the task. It is argued that to achieve
success in solving real-world tasks, students must notice what is relevant and decide
how to act on this to progress their solution, and teachers must also discern what is
relevant and nurture student capacity to notice.

Buchholtz (Chap. 28) reviews findings on mobile learning with math trails and
presents the results of a study on digital support of the mathematical modelling
processes of 11th graders when doing math trails. It is argued that math trails contain
tasks that promote essential elements of mathematical modelling such as mathema-
tising, and the fact that math trails are more and more supported by digital media
affects students’ motivation and achievements.

Burkhardt (Chap. 29), based on his 55 years of experience as a researcher in
mathematical modelling education, introduces some core concepts in mathematical
modelling, and then focuses on the design strategies and tactics that are learned
in the projects that he has been involved in, including the roles for technology. The
difficulties of achieving improvement on a large scale are discussed, based on specific
design issues in teaching modelling, and elements of a way forward are outlined.

Garfunkel,Niss andBrown (Chap. 30) contrast the opportunities for mathematical
modelling offered to students in their normal classroomversus extra-curricular events
in terms of the support available from a more knowledgeable other. Such support
within the classroom is usually provided by the classroom teacher, while support
for extra-curricular modelling opportunities is sometimes non-existent. Using the
International Mathematical Modelling Challenge as an example, it is argued that the
learning environment of such challenges is conducive to student engagement with
mathematical modelling.

Jung and Lee (Chap. 31) explore the integration of group creativity into mathe-
matical modelling in a ninth-grade class, grounded in a sociocultural perspective.
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Findings from lesson observation and interviews with participants indicate that
group creativity contributed to simplifying the situation and elaborating models,
and to get a more elaborated model, group composition reflecting cognitive diver-
sity and teacher’s guide for interactions based on mathematical grounds should be
emphasized.

Kawakami and Mineno (Chap. 32) examine ninth-grade students’ data-based
modelling to estimate previous and unknown Japanese populations. The results show
that the data-based modelling approach can be used to construct, validate, and revise
various models while flexibly combining mathematical, statistical, and contextual
approaches generated by using data from real-world contexts. It is argued that data-
basedmodelling can be a pedagogically dynamic and flexible approach for balancing
the development of generic modelling proficiency and the teaching of mathematics
and statistics through real-world contexts.

Manzini andMhakure (Chap. 33) explore the implications of using mathematical
modelling as a framework for the teaching and learning of mathematical concepts
such as proportional reasoning in some under-resourced schools in low socio-
economic areas of South Africa. The results show that the initial apprehension that
students experienced when exposed for the first time to a model-eliciting activity is
soon transformed into a diverse range of creative mathematical approaches, when
they learn that the activity is open-ended by default.

Mhakure and Jakobsen (Chap. 34) investigate the mathematical thinking style of
Grade 11 students in two schools from low socio-economic areas in South Africa
when they are working on a modelling task involving a real-world problem on
geometrical constructions. It is found that although students are able to find solutions
to the scaffolded questions, they have problemswith identifying the keymathematical
concepts required during the mathematization process and the assumptions required
to solve the modelling task.

Passarella (Chap. 35) presents a teaching case in a primary school class on multi-
plication as iterated sum during regular mathematics lessons, where the researcher
designs a model-eliciting sequence with the aim of bringing out formal mathemat-
ical concepts from students. It is argued that the implementation of model-eliciting
activities can foster emergent modelling, i.e., the students’ attitude to discover and
(re-)create new mathematical concepts.

Sokolowski (Chap. 36) reports a study of 21 high school students in amathematical
modelling activity involving the topic of theFundamentalTheoremofCalculus (FTC)
that utilizes scientific reasoning to support the learning of mathematics concepts,
based on research on and recommendations about designing effective exploratory
STEM modelling activities. The students’ responses show positive effects of this
activity in understanding FTC.

Tangkawsakul and Makanong (Chap. 37), following a context-based approach,
report the design of some mathematical modelling activities which emphasize
authentic situations that are closely related to the real life of ninth-grade students.
The aim is to encourage students to integrate mathematical knowledge, skills and
processes in the creation of mathematical models to understand and solve problems.
It is found that most of the students engage inmathematical modelling processes with
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their friends during the activities, which allows them to use and practically connect
mathematics with real situations and problems encountered during their daily lives.

Zhou, Li, He and Li (Chap. 38) explore how to infiltrate mathematical modelling
in calculus teaching (such as including definition introduction, theorem application
and practice training) from the perspective of teachers. Three examples are presented
in detail as illustrations. It is argued that integrating mathematical modelling into a
calculus course teaching is an effective way to cultivate students’ innovative and
practical abilities.

1.7 Examples on Mathematical Modelling

This section of the book provides some further examples on teaching mathematical
modelling.

De Bock,Deprez and Laeremans (Chap. 39) argue that instead of taking examples
and contexts exclusively from physics or other natural sciences in learning about
mathematical applications and modelling, applications from economics, business, or
finance in secondary school mathematics should be more utilized. To study the role
of such applications, all Proceedings of past ICTMA conferences are scrutinized.
It is found that economic applications are indeed not well represented, however a
positive trend is revealed since ICTMA12, the first ICTMAwhose conference theme
explicitly refers to economics.

Ekici and Alagoz (Chap. 40) report on design-based research experiments that
extend the modelling of circular motion to advanced periodic orbits from a series of
trigonometric functions. Inquiry-based orbital modelling allows students to exper-
iment with modelling of periodic orbits with technology-rich tasks in interpreting
the connections of periods and amplitudes of circular functions and the emergent
patterns. The results show that learners experience coherence while interpreting,
comparing, and validating their orbital models in circular, functional, and complex
trigonometry with connections in between.

Greefrath and Vos (Chap. 41) discuss a variety of issues relating to the increasing
use of digital tools and media in mathematical modelling tasks. A classification
system for ICT-based mathematical modelling tasks is developed, and the classifica-
tion is validated with three example tasks. A visual presentation based on the clas-
sification system enables the evaluation of qualities of a given ICT-based modelling
task and can give insight into potential adaptations.

Kacerja, Cyril, Gierdien, Herheim, Lilland and Smith (Chap. 42) present a study
in which Norwegian and South African prospective teachers discuss critical issues
relating to a task on themathematical model of the BodyMass Index. Four themes are
identified, and the themes are discussed in relation to prior research on mathematical
models in society and teacher education. The potential of such modelling examples
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to promote critical discussions about the role of mathematical models in society is
argued.

Steffensen and Kacerja (Chap. 43) study how lower secondary school students
reflect when using a Carbon Footprint Calculator (CFC) in their work with climate
change in the mathematics classroom from a socio-critical modelling-perspective.
The findings show that students reflect on various issues such as making sense of the
use of CFC and global emissions. It is argued that CFCs have the potential to bring
about critical reflections on mathematical models with the power to impact people’s
lives.

1.8 Issues at Tertiary Level

A number of issues on mathematical modelling at the tertiary level are covered in
this section of the book.

Aragón andDelgadillo (Chap. 44) contrast the problems presented by a professor
in an engineering course and the mathematical modelling project developed by
students in the practical section of said course. It is argued that there is evidence
of modelling competence in engineering being promoted and developed and that it is
possible to consider it as a connector between the various training cores, identifying
mathematical models that will allow us to understand and establish relationships
between such training cores.

Durandt, Blum and Lindl (Chap. 45) report a study about the influence of two
different teaching designs on the development of first-year engineering mathematics
students’ modelling competency. One is an independence-oriented teaching style,
aiming at a balance between students’ independent work and teacher’s guidance,
while the other is the more traditional teacher-guided style. The results show that
all groups have significant learning progress, but the group taught according to the
independence-oriented design has the biggest competency growth.

Julie (Chap. 46) reports a study in which a group of practising teachers in an
introductory immersion course on mathematical modelling construct a model for
funding and ranking of universities and present their model to other members of
the participating cohort of teachers. Data analysis is anchored around the notions
of internal and external reflections occurring during the interactions between the
group who construct the model and their peers. The analysis renders four themes
of which two are distinctly aligned to internal reflections, and the other two are an
intertwinement between the external and external reflections.

Rogovchenko, S. (Chap. 47) analyses engineering students’ written reports on
a mathematical modelling assignment. A commognitive framework is used in the
analysis of students’mathematical discourse inwritten solutions andoral discussions,
and analysis of students’ narratives indicates the development of exploratory routines
in the process of solving mathematical modelling tasks. It is argued that teaching of
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mathematical modelling at the university does not only contribute to the development
of mathematical competencies and motivates the interest to mathematics but also
plays an important didactical role in promotingmathematical thinking of engineering
students.

Rogovchenko, Y. (Chap. 48) reports a study on the extra-curriculum activities of
biology undergraduates, focusing on the selection of mathematical modelling tasks
with different levels of cognitive demand and the level of teacher’s guidance during
students’ collaborative work on the tasks.

Spooner (Chap. 49) studies the experience of first-year university students in a
mathematical modelling course. Using reflective thematic analysis, student interview
data are inductively analysed to identify themes relating to their collective learning
experiences. The results show that through guidance during lectures, students are
able to have an independent modelling experience. To further enhance this, it is
recommended that lecturers work through problems unfamiliar to themselves during
lectures.

1.9 Other Subjects

A number of other subjects related to mathematical modelling are covered in this
last section of the book.

Ärlebäck and Frejd (Chap. 50) report a study where upper secondary students
devise and implement a plan for tackling a mathematical modelling question, and
reflect on the aspects and factors thatmight have influenced their adopted strategy and
results. The analysis focuses on students’ reconstruction and categorization of the
models, modelling strategies, and the variability that the activity elicits. The results
show how the central statistical idea of variability is manifested in the models and
strategies developed and implemented by the students.

Frejd and Ärlebäck (Chap. 51) analyse the 17 ICTMA books published to date
and the books from ICME-6 and the 14th ICMI study in order to characterize the
potential connections and synergies between statistics and mathematical modelling
education. The results show synergies in terms of some identified themes on the
teaching and learning of statistics and modelling. The context units analysed often
provide suggestions for how to teach statistics using modelling approach, but seldom
is the relationship between mathematical and statistical modelling from a theoretical
point of view discussed.

Galbraith and Fisher (Chap. 52) provide illustrations on system dynamics
modelling as a means of real-world problem solving relevant to secondary level and
beyond. It is argued that national curricula around the world increasingly emphasize
the importance of students being enabled to apply mathematics in the workplace, as
citizens, and for private purposes. Examples of common structures (archetypes) are
used to demonstrate application to problems made tractable by free online software.

Moutet (Chap. 53) reports a study on the teaching sequence for chemistry students
in the last year of secondary school (grade 12) in France. The study aims to show how



16 F. K. S. Leung et al.

the extended Mathematical Working Space (extended MWS) theoretical framework
can be used to analyse the tasks implemented during a few stages of amodelling cycle
in a chemical problem. It is argued that the extended MWS theoretical framework
makes it possible to study the multidisciplinary aspect of the different tasks that
students perform on problems solving.

Tetaj (Chap. 54) describes an analytical scheme designed for investigating the
mathematical discourse of biology tasks. The scheme is developed in the context
of analysing tasks that are part of a fisheries management graduate-level course
at a Norwegian university. Grounded in the commognitive perspective, the scheme
focuses on different aspects of the tasks. The choice of the categories included in
the scheme is justified and its use on one specific task is exemplified to illustrate the
potential of analysis.
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Part II
Theoretical Issues



Chapter 2
Computational Thinking
and Mathematical Modelling

Keng Cheng Ang

Abstract Computational thinking has been a subject of much discussion in educa-
tion in recent times and is regarded by educators and policy makers as one of the key
skill sets for the future. Many schools have introduced coding and programming to
students, sometimes very early in their education years, in a bid to help them develop
computational thinking. In this chapter, we explore and explicate the role of compu-
tational thinking in mathematical modelling, and examine the relationship between
them. Examples from the different modelling approaches will be used to contextu-
alize this relationship, and to demonstrate that mathematical modelling does indeed
provide an excellent platform for the use, practice and development of computational
thinking. In addition, these examples will also illustrate how computational thinking
fits into mathematical modelling naturally in some modelling situations.

Keywords Computational thinking · Coding · Mathematical modelling ·
Programming · Simulation models

2.1 Introduction

There is a growing interest in computational thinking among educators and educa-
tional researchers, and its importance in K-12 education has been the subject of much
discussion in recent years. The idea of computational thinking is gaining attention
worldwide partly due to the perception and belief that the attitude and skill set
involved are essential in tackling problems, and partly because of the widespread use
of technology, and computing tools and devices for work and pleasure in the world
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today. Indeed, computational thinking is often seen as an important twenty-first
century skill for “everyone” (Mohaghegh and McCauley 2016).

Because coding, or computer programming, is considered as one of the key skills
required in computational thinking, various initiatives to teach coding have been
taken in different parts of the world to reach out to students, and the general public.
However, these are relatively new and recent initiatives, and their impact on problem
solving in general has not been studied extensively (Denning 2017; Yasar 2018).

While the use of Information and Communication Technology (ICT) in mathe-
matical modelling as well as in the teaching of mathematical modelling has been
discussed extensively, the role of computational thinking in mathematical modelling
is not as well studied. Indeed, being able to use a technological tool, no matter
how sophisticated, does not equate to being able to formulate a problem or design a
solution through a computational thinking process. The intent of this chapter, there-
fore, is to examine and explicate the relationship between computational thinking
and mathematical modelling through the use of tested modelling tasks. Throughout
the chapter, we will view mathematical modelling from the educational perspective,
and the examples discussed will present and illustrate the different approaches to
modelling that can be experienced in the classroom.

2.2 Computational Thinking

In his book, Mindstorms: Children, Computers and Powerful Ideas, published in
1980, Seymour Papert envisioned how the computing machine could help children
learn and think in ways different from the traditional modes, the key idea being
that learners construct knowledge with the help of computers. Further, one of the
perspectives offered by Papert is the possibility of integrating what he suggests as
“computational thinking” into everyday life (Papert 1980, p. 182).

Central to Papert’s proposition was the use of “turtle geometry”, which he
describes as a computational style of geometry. In this environment, children can
give simple commands to a “turtle” and make it draw geometrical shapes. So, instead
of the computer teaching the user, the user is giving instructions to the computer to
do something. As the shapes that one wishes to draw become repetitive or complex,
one may then need to invoke the use of loops, iterations, mathematical formulae,
procedures and sub-routines. Gradually, one begins to think in terms of steps and
algorithms, and to solve problems systematically and in an organized manner.

Although there have been attempts to explain what computational thinking is,
a precise and yet universally accepted definition has yet to emerge. Wing (2006),
perhaps in an attempt to promote the study of computer science, suggests that “com-
putational thinking is a fundamental skill for everyone” and that it can be used
to solve any problem (p. 33). However, others argue that this may be over-selling
computer science and raising expectations that cannot be met (Tedre and Denning
2016). Nonetheless, it seems fair to say that it is possible to recognize the different
aspects and characteristics of computational thinking, and how these can be used or
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observed in the process of problem solving. Here, we adopt a more specific rather
than generic view of computational thinking so that the discussion on its relationship
with mathematical modelling may have a sharper focus.

For the purpose of the ensuing discussion, we shall adopt the notion that compu-
tational thinking is a process of designing, constructing and executing solutions to
problems with a view to implementing them on the computer or using a computing
tool. The key idea, therefore, is to think about problems in such a way that computers
can help us solve the problems. In general, the skills or habits involved in this thinking
process include the following:

• gathering important information to scope the problem and discarding non-
essential parts or components (abstraction);

• studying and analysing the problem to see if there are trends or repeated sequences
that may fit some known or familiar solution method (pattern recognition);

• breaking a large, complex problem into smaller parts so that these may be solved
more effectively or efficiently (decomposition); and

• developing a set of step-by-step instructions that lead to a solution (algorithm).

The above four problem solving skills or approaches have been accepted by the
community as the four “cornerstones” of computational thinking (ISTE 2011; Wein-
trop et al. 2016). However, it would seem that these ideas are not entirely new and
are in fact what one would have normally observed as characteristics of mathemat-
ical problem solving. One might then ask, what is so special about computational
thinking that makes it different from other forms of “thinking”, such as mathemat-
ical thinking? In addition, how are these four skills, habits, or characteristics linked
to computational thinking? One possible answer could lie in the one skill that is
commonly taught in computer science courses—computer programming, or coding.

2.2.1 Habits Developed Through Coding Exercises

It iswidely believed that one effectiveway of developing the skills stated abovewould
be through learning computer programming or coding, and through the practice of
solving problems that require some form of coding (Ho and Ang 2015). It is perhaps
this belief that has led to growing interest in coding schools and classes, both formal
and informal, in many parts of the world. Coding lessons are available freely at
websites such as code.org, Hour of Code, Code Academy and FreeCodeCamp. In
some European countries such as England, Greece and Estonia, programming is
included in the school curricula as a compulsory subject and children are exposed to
coding at a young age (see Mannila et al. 2014).

Certain useful and critical habits are gradually developed through the process
of problem-solving with coding. Typically, one needs to think through the solution
process in a logical and systematic manner, and develop an algorithm. The coder
may make use of a flowchart to visualize the flow of the process. Sometimes, there is
a need to break a big problem into smaller parts, and employ a “divide and conquer”
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strategy in solving the problem. This is equivalent to simplifying or decomposing a
problem, and constructing procedures and sub-procedures in the code.

To write code, one has to follow and obey the syntax of the language used, and
keep to certain rules. This is, in fact, a form and practice of abstraction since only the
most important and relevant pieces of information will be extracted and used, just
like in the model formulation phase in mathematical modelling. In addition, coding
requires one to use variables as representations of factors involved in a problem.Quite
often, the code will involve iterating through loops, or managing and manipulating
data sets. There is also the opportunity or need to think numerically or in terms of
actual numerical instances in solving the problem, especially when empirical data
sets are involved. Such exercises help one develop a sense of pattern and pattern
recognition in tackling modelling problems.

However, does coding necessarily lead to computational thinking? If computa-
tional thinking is seen to be a habit of mind, then coding is part of the strategy used
to develop such a habit. In other words, while necessary, it may not be sufficient.
That is, simply being able to write code does not mean that one will be able to
solve a problem using a computational method. Computational thinking involves
analysing a problem, examining the context, studying available data, simplifying the
situation, designing an algorithm and finally, writing the code, if applicable, during
implementation.

In the next section, we will discuss three examples of modelling tasks. The
approach used in each case is one that involves a computational strategy, either
in the model or in the solution method. These examples show that indeed, those
aspects of computational thinking discussed earlier do manifest themselves in many
mathematical modelling activities and tasks.

2.3 Examples

2.3.1 Example 1: From Data to Model

In this first example, we discuss how publicly available data on the outbreak of a
contagious disease could be used to construct a model for its spread. Although the
problem is not new or current, it provides a rich context for a discussion on the
influence of computational thinking in constructing mathematical models. Here is
the problem statement.

The SARS epidemic
In 2003, a deadly and contagious disease called the Severe Acute Respiratory
Syndrome, or SARS, descended upon the world. Some countries in the Asia–
Pacific region, in particular, were heavily hit and Singapore was one of them.
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Table 2.1 Number of individuals infectedwith SARS during the 2003 outbreak in Singapore (Heng
and Lim 2003)

Day
(t)

Number
(x)

Day
(t)

Number
(x)

Day
(t)

Number
(x)

Day
(t)

Number
(x)

Day
(t)

Number
(x)

0 1 15 25 29 101 43 163 57 202

1 2 16 26 30 103 44 168 58 203

2 2 17 26 31 105 45 170 59 204

3 2 18 32 32 105 46 175 60 204

4 3 19 44 33 110 47 179 61 204

5 3 20 59 34 111 48 184 62 205

6 3 21 69 35 116 49 187 63 205

7 3 22 74 36 118 50 188 64 205

8 5 23 82 37 124 51 193 65 205

9 6 24 84 38 130 52 193 66 205

10 7 25 89 39 138 53 193 67 205

11 10 26 90 40 150 54 195 68 205

12 13 27 92 41 153 55 197 69 205

13 19 28 97 42 157 56 199 70 206

14 23

During the 2003 SARS outbreak in Singapore, 33 lives were lost within a span
of about 70 days.

Using the data shown in Table 2.1, construct a mathematical model to
describe the outbreak of the SARS epidemic.

One of the modelling approaches that can be used in this case is to examine the
data carefully, and see if we can find an existing model that may be suitable. It is
perhaps more convenient to study the data set visually and so the first step would
be to plot a graph. Obviously, this would be a graph showing how the number of
infected individuals varies with time, as shown in Fig. 2.1.

From the graph in Fig. 2.1, it is evident that the number of infected individuals
increases slowly at first, and then rapidly from about Day 15–55 before slowing
down again towards the end of the epidemic episode. One could recognize that this
is generally how a sigmoid curve would behave and a suitable function that could be
used to represent this behaviour would be the logistic function.

From a population dynamics perspective, it is known that in such a compart-
mentalized model can be represented by a logistic equation in an “S-I” epidemic
model, where “S” and “I” represent the susceptible and infected individuals in the
population, respectively. Using this model, we may construct the equation



24 K. C. Ang

Fig. 2.1 A plot of the data
showing the number of
individuals infected with
SARS
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where x and y are the number of infected and susceptible individuals at time, t , and
β is a constant. Further, if we assume a closed community of N individuals, then,
+y = N . The equation may be rewritten as

dx

dt
= kx

(
1 − x

N

)

where the constant k represents the rate of transmission. Solving the differential
equation with the initial condition, x(0) = x0 yields the solution,

x(t) = Nx0
x0 + (N − x0)e−kt

,

which may be rewritten as

x(t) = N

1 +
(

N
x0

− 1
)
e−kt

.

The parameter k may be estimated from the dataset in a variety of ways.We could,
for instance, define an “average error” between the data points and themodel, and use
the method of least squares or a computing tool, such as the Solver Tool in Microsoft
Excel to minimize the error. For a description of this method, as well as explanation
of how the Solver Tool is used to find estimates of k, the reader is referred to article
where this example first appears (see Ang 2004).

Using this method with x0 = 1 and N = 206, we obtain k = 0.1686. The graph
of the model is plotted and compared with the data points in Fig. 2.2a. It can be
seen that the model generally compares well with the actual data. However, there are
certain parts with obvious deviations. In fact, by examining the figure carefully, we
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Fig. 2.2 Comparison of
SARS data and logistic curve
models: a SARS epidemic
model using one logistic
curve b SARS epidemic
model using two logistic
curves
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observe that in fact two logistic curves may better describe the situation, as shown
in Fig. 2.2b.

This example demonstrates that when dealing with data to construct an empirical
model, the specific skill of observing and recognizing patterns in a dataset proves
useful in formulating the mathematical problem. The resulting model is solved and
refined using a computational method implemented on a computing tool such as an
electronic spreadsheet. This habit of pattern recognition is one aspect of compu-
tational thinking that will further develop and expand a student’s competencies in
mathematical modelling.

2.3.2 Example 2: From Processes to Model

Consider the situation where a certain organization needs to hire a secretary by
choosing the best person from a group of possible candidates through walk-in
interviews. The specific conditions are described in the problem statement below.
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The Secretary Problem
A company needs to hire the top-ranked candidate for a secretary’s position
under the following conditions.
• The total number of candidates, n, is known.
• The candidates are ranked with no ties.
• Candidates are interviewed sequentially and in a random order.
• Relative ranks of interviewed candidates are known.
• The candidate is either accepted or rejected right after the interview.
• Rejected candidates may not be recalled or accepted.

The task is to develop a strategy so that the best candidate is chosen.

In order to have a better grasp of the problem, one could construct a simulation
of the hiring process. The steps involved can be written out as a flowchart as shown
in Fig. 2.3.

The flowchart helps one to think through the process of the simulation in a system-
atic and organized manner, keeping track of the variables involved and going through
the steps of the process. The flowchart therefore serves as a guide or algorithm for
one to write the code. Using the flowchart, the code for simulating the hiring process
based on the conditions of The Secretary Problem can be written. Coding often helps
one understand the process even better, and in this case, it helps in providing away for

START

Initialise 
p(i) array

Assign rank values 
to p(i) for all i

First candidate’s 
r/rank set to 1

YES NO

END

Display outcome
YESLast 

Candidate?

Obtain 
User Decision

Process Decision

Display next 
candidate’s  r/rank

Reject?

NO

Fig. 2.3 Flowchart for the hiring process
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one to think about what might be a good and consistent strategy to adopt. Randomly
determining when to accept or reject a candidate would lead to nowhere.

With this simulation, the process is basically constructed for exploration. After
a few simulation rounds, it is not hard to realize that one strategy would be that of
always rejecting a certain number, say, k, of candidates, and then accepting the next
one with a highest relative rank.

We can investigate this strategy by automating the hiring process with different
values of k. For each value, we run the simulation many times and calculate the
experimental probability of successfully picking the best candidate. A flowchart for
this simulation is shown in Fig. 2.4.

Implementing the simulation using the steps detailed in the flowchart shown in
Fig. 2.4, and running the simulations with 100 candidates and k = 0 to 99, and 10,000
trials for each k, the experimental probabilities can be found. These are plotted against
k and compared with the theoretical probabilities in Fig. 2.5. The simulation results
show that an optimal strategywould be to reject the first 37%, approximately, and then
accept the next top candidate, which agrees with the theoretical optimal probability
of 1/e. The theoretical optimal probability has been derived and discussed by several
other authors (e.g. see Ferguson 1989).

Running the simulation many times to obtain experimental probabilities to repre-
sent the actual probabilities is an application of the law of large numbers and a
common approach in simulation models. The ability to think through the process and

t > T ?

Is top = 
best of p(i)?

START

Set No. of 
Candidates (C)

Set No. of Trials 
(T)

Set = 1
(Reject first − 1

candidates)

Initialise p(i)
Assign rank values

to p(i) for all i

Find first top rank 
after rejecting first ( − 1) candidates

Initialise Trial No.
Set t = 1

Set success = 0
(Initialise success)

Increment Trial No.,
Set t = t + 1

Increment success
YES

NO

Increment k

Is 
k > C ?

YES

NO

END

Display 
Outcome

YESNO

Fig. 2.4 Flowchart for simulating runs of hiring process for all possible values of k
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Fig. 2.5 Graph of
experimental probability of
success against k
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to write the code for the simulation algorithm will certainly enhance one’s ability to
design, construct, and solve simulation models.

This example demonstrates how an algorithm for a simulation can be constructed
by examining a process in detail, studying each step and the conditions for moving
to the next step, and checking of the status of critical variables along the process.
Flowcharts are commonly used by computer programmers to aid their coding process
and in this case, the use of flowchart helps one think through the simulation model
more systematically. Being systematic and abstracting only the essential information
to formulate the simulation is another aspect of computational thinking that will also
develop one’s competency and acumen in mathematical modelling.

2.3.3 Example 3: From Decisions to Model

In this example, we discuss the problem of allocating funds to members of a depart-
ment for the purpose of staff development. In particular, we consider the problem
given below.

Resource Allocation Model
The Head of a department in an academic institution is allocated a fixed annual
budget, based on “headcounts” (number of members in the department), to
provide financial support to members of the department for staff development
(such as attending or presenting at a conference) for that year. This could be,
say, $x per person. Staff members will then indicate their staff development
plans and apply for funding. However, because some may need more than $x ,
while others may request for less (or do not plan to use the funds at all that
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year), the amount eventually allocated to each staff member will generally
differ.

What would be a fair way of distributing the allocated budget while
maximizing the utilization rate?

This is a real-life situation that may arise in many institutions and organizations;
an annual budget is allocated for a purpose, and the expectation is to maximize
utilization of the budget so that the funding authority will continue to fund and
support the purpose. Should the utilization rate be low, the institution or organization
risks having the budget reduced the following year as it may be deemed that a lower
amount is actually required.

In this current situation, suppose at the beginning of the year, a budget of amount
B is given and, obviously, the total funds allocated to staff must not exceed this
amount. Suppose there are n requests for funding, and each amount requested is Ai

where i = 1, 2, . . . , n.
For simplicity, we make the following assumptions:

(i) each staff member can only make or submit one request for funding per year;
and

(ii) the department head may approve up to the full amount requested.

Based on assumption (ii) above, suppose for each requested amount of Ai , the
department head aims to approve μi Ai where μi ∈ (0, 1), then the objective would
be to minimize the quantity,

X = B −
n∑

i=1

μi Ai

subject to the condition,
∑n

i=1 μi Ai ≤ B. In other words, what is required in this
model is to find the set of μi for each i so that X is minimized.

In addition, it would not be unreasonable to take into consideration two other
factors when deciding the amount of funding each staff member should be allocated.
Firstly, the amount that one has been given the previous year should have some
bearing on the amount that one ought to be allocated in the current year. Secondly, if
the purpose of funding is for staff development, then the stages of academic career
of the staff members should also play a role in the decision. Assuming that these are
part of the objectives of the model, then we could impose the conditions that more
support should be given to those staff members who:

(a) were allocated smaller amounts the previous year; and
(b) are junior in academic rank or are in more need of development.

If these two factors are to be considered in allocating the funds, then they must
somehow be built into the model and be taken into account when determining all
the μi . As a first step, a simple model would be to place each staff member into a
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Table 2.2 Relative levels of
support for staff members in
different categories

Career stage (C) Previous support (P)

Low (1) Medium (2) High (3)

(1) Junior 5 4 2

(2) Middle 4 3 1

(3) Senior 2 1 0

certain category or group for each of the two factors. For instance, for condition (a),
the amount given to staff members in the previous year could be classified as “Low”,
“Medium” or “High” corresponding to the actual low, medium or high levels of
financial support obtained. The known or given data would have to be the previous
year’s allocated amount to each staff member and based on these data, each staff
member will be placed in the appropriate category.

To incorporate the second condition, we could also categorize the staff member
based on their academic ranks. Here, one’s academic rank is used as a proxy to repre-
sent one’s need for professional development. For instance, a more junior member is
probablymore in need of such development and therefore ought to be better supported
compared to a more senior member of staff. For simplicity, we could use three cate-
gories, “Junior”, “Middle” and “Senior”. For instance, in a typical university setting,
a newly appointed Assistant Professor or Lecturer could be placed in the “Junior”
category, while the “Senior” group would include tenured Full Professors.

Based on these simple, discrete categories, one could draw up a table or matrix
with cells where the value in each cell indicates the relative level of support that a
staff member emplaced in that cell should receive, with zero as the baseline. Here,
we assume for a senior member of staff who had received a high level of support the
previous year, the allocation this current time would be the baseline from which the
rest will take reference. In other words, an application for funding from a member
in this category should have the lowest value of μi . The other values in the cells are
assigned, while arbitrarily in some sense, with the intention of satisfying conditions
(a) and (b) above. An example of such a table is shown in Table 2.2.

Each staff member’s application for funding will then be assigned a value based
on where it is found in the table. Let this value be wi . With this graduation of level of
support assigned, the problem of finding all the μi can be simplified. In the simplest
case, we adopt the following linear, stepwise model,

μi = μ + wi�μ

where μ is a base value (between 0 and 1), and �μ is a “step” from the base. The
problem then reduces to finding �μ that will minimize the quantity, X .

As an illustration, consider the following situation. Suppose a budget of B =
$27,000 has been approved, and ten staff members of various appointment ranks
have applied for funding for different amounts listed in the last column in Table 2.3.
The total requested amounted to $38,900, which the budgeted amount will not be
able to meet. The fund given to each individual in the previous year is shown in
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Table 2.3 Illustrative example of ten staff members and their applications for funding

No Name Career stage Previous grant wi A μi μi × A

Rank C Amount ($) P

1 Aidel Asst P 1 0 1 5 3990 0.79 3140.37

2 Bala Assoc P 2 2950 3 1 3990 0.64 2543.27

3 Chen Lecturer 1 3680 3 2 5230 0.67 3529.33

4 Dharna Full P 3 2100 2 1 5230 0.64 3333.66

5 Emery Assoc P 2 2820 3 1 3990 0.64 2543.27

6 Faharna Asst P 1 950 1 5 1800 0.79 1416.71

7 Godfrey Asst P 1 2250 2 4 1200 0.75 899.58

8 Haiyue Full P 3 0 1 2 5230 0.67 3529.33

9 Ingham Snr Lect 2 2410 2 3 3010 0.71 2143.83

10 Jiale Assoc 2 1500 1 4 5230 0.75 3920.66

Total 38,900 27,000.00

Column “Previous Grant”. The respective weights, w, are determined by the values
of C and P.

Setting μ = 0.6 (that is, everyone should get at least 60% of what is requested),
we can proceed to use Excel’s Solver Tool to find �μ by minimizing X . In this case,
it turns out that the optimal value for �μ is 0.037. Using this value, we can then
compute the allocated amount μi × A for each application i as shown in Table 2.3.

This example demonstrates the need to reduce a complex problem, and hence
the skill of decomposition shown in computational thinking. Decisions have to be
made, and in this model, we consider logical factors and build rules into the model.
In the process, we also make assumptions to simplify the situation, and to reduce
to problem to a manageable size. Decomposition and tackling smaller bits to build
a more complete model is a modelling skill students develop through this kind of
computational thinking exercises.

2.4 Discussion

As can be seen in the examples described, modelling can be greatly enhanced if
one possesses and is able to apply certain computational skills and a certain way
of thinking such that these skills can be effectively applied to tackle the problems.
In other words, the ability to think of problem solving strategies that make use of
computational tools or programming constructs is a valuable modelling competency.

In Example 1, the use of data in the empiricalmodel is evidently an opportunity for
one to observe the pattern and determine if a known or existing model can be used to
describe the disease outbreak. In addition, there is a need to first simplify the situation,
and later refine the model. Certain important computational tools (such as the Solver
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Tool in Excel) are used in the solution process. A computational thinker would likely
study the data set, and explore ways of making use of it after observing the pattern.
Of course, beyond that, one has to have some inter-disciplinary knowledge— in this
case, knowledge in population dynamics or epidemics. To construct a model and
realistically produce a plausible solution, however, such knowledge is necessary but
not sufficient. Some computational skills are still required, as can be seen in the
solution process in this example.

InExample 2, simulationmodels are developed, guidedby step-by-step algorithms
to first understand the problem situation and then to tackle the problem. Constructing
the solution requires one to think computationally in terms of writing out the steps
for the simulation, as well as the code for the simulation programs. Developing a step
by step algorithm is a common practice in coding exercises or programming courses.
The essential skills of identifying variables required in the problem, simplifying the
process, recognizing the need to perform certain tasks in a certain sequence or order,
and so on, are all part of computational thinking. When all these become a habit of
mind, developing a simulation to model a process can be another useful and effective
modelling competency.

In Example 3, some assumptions are first made to simplify a rather complex
real-life problem. These assumptions also help in abstracting the real situation into
a mathematical formulation, from which a model, which is essentially a decision-
making model, can be constructed and subsequently solved. In a decision-making
situation, a computational thinker would gather and consider the factors that would
lead to the decision, turn them into variables andfind away to connect them to provide
the necessary information to make the decision. Again, such situations arise quite
often in coding exercises or computer programming problems, and over time, these
exercises help one develop both the skill and the habit of systematically identifying
and connecting variables in a real life problem. This aspect of computational thinking
is well illustrated in this example.

Clearly, as discussed above, the skills involved in handling the modelling tasks in
all three examples are not dissimilar to those that are closely related to computational
thinking. To reiterate, these skills, which can be acquired through exercises such
as coding or computer programming, serve to support the mathematical modelling
process and provide additional tools for developing appropriate models. It is also
important to point out that while skills can be taught and learnt in a short period
of time, the habit of mind that makes one a computational thinker takes longer to
develop.

Nevertheless, with additional computational skills, one could enhance one’s
competency and ability in tackling mathematical modelling tasks. At the same time,
mathematical modelling tasks or situations provide an excellent platform for one to
practise and apply one’s computational skills and thinking.
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2.5 Conclusion

In this chapter, we discuss three modelling tasks, and in each case, we use a compu-
tational approach to solve the problem posed. Using these examples, we identify the
various computational skills that are useful in modelling and explain the compu-
tational thinking process that has led to the model. These skills are also devel-
oped through computational thinking tasks, such as coding exercises. It is clear that
there is, therefore, a connection or link between computational thinking and certain
approaches of mathematical modelling.

There are several questions that one could address to further examine the link
between mathematical modelling and computational thinking. Some of these are
listed below as further work that can be taken up by interested researchers.

• How do we “recognize” computational thinking? In other words, how can we tell
when someone is “thinking computationally” when solving a problem? Does the
use of a computational tool necessarily mean that computational thinking is part
of the process?

• While coding is certainly a useful skill, how does it help in developing compu-
tational thinking and mathematical modelling competencies? Is there any way of
determining the impact of coding on the development of computational thinking
and competencies in mathematical modelling?

• If modelling activities are useful in developing computational thinking, how do
we design activities targeted at doing that?

• How can we strategically and intentionally develop computational thinking
through mathematical modelling?

• If or whenwe are able to design tasks that develop computational thinking through
mathematical modelling, how do we detect and measure such development?

Given the digital world we now live in, computational thinking will remain an
important and relevant concept in education for some time. Its usefulness and poten-
tial in the area of mathematical modelling has been demonstrated and explicated
through the examples described in this chapter.

In conclusion, understanding the importance and relevance of the relationship
between computational thinking and mathematical modelling could lead to better
design of tasks in both computational thinking and mathematical modelling. Better
and more meaningful tasks could in turn lead to enhanced learning and develop-
ment of the relevant competencies and skills in both computational thinking and
mathematical modelling.
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Chapter 3
Global Understanding of Complex
Systems Problems Can Start
in Pre-college Education

Diana M. Fisher

An invasion of armies can be resisted, but not an idea whose
time has come.
Victor Hugo

Abstract In this chapter, an argument is made for the importance of enabling
secondary school students to build models for analyzing complex systems prob-
lems, to increase understanding of the myriad nonlinear feedback systems they
will encounter as professionals and citizens. Secondary school students in some
schools in the USA have been building such models for over 20 years. A sequence
of natural resource depletion models is presented to demonstrate the types of system
models secondary school students can and have built. Advantages such activities
have for enhancing the mathematical analysis of problems normally outside the
reach of the secondary school curriculum are discussed. It is argued that the time
is ripe for secondary school students to experience instruction which, using current
technologies, canprovide awealth of applications rich, real-world, relevant problems.

Keywords System dynamics · Complex systems ·Modelling · Secondary school
students · Algebra · Technology

3.1 Introduction

The conceptual basis of complex systems ideas reflects a dramatic change in perspective that
is increasingly important for students to develop as it opens new intellectual horizons, new
explanatory frameworks, and new methodologies that are becoming of central importance
in scientific and professional environments. (Jacobson and Wilensky 2006, p. 12)

There has been a dramatic increase in the scope of applications of mathematics
over the past few decades due mostly to an ability to create computer simulations,
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perform digital computations, and analyze large volumes of data (National Research
Council of the National Academies 2013). Moreover, there has been a corresponding
“explosion” over approximately the same time period in complex system science.
Problems most commonly expressed in closed form, that required the assumptions
of “smoothness” (in calculus), or independence (in statistics) are sharing space with
problems that have multiple causes, interdependence, and nonlinearity (Bar-Yam
2012).

While facility with and creation of closed-form equations to represent functional
relationships has served us well as guiding principles for secondary school courses in
the past, it is no longer sufficient preparation for students in today’s world. Emerging
problems faced in business, science, engineering, politics, medicine, psychology,
economics, management, and interdisciplinary pursuits require an understanding of
complex, dynamic, systemic behavior (e.g., Galbraith 2010). For this purpose, an
understanding of closed-form equation representation alone falls short. Technology
provides new methods of observing and generating dynamic behavior, compressed
in time, through which students can be prepared for future challenges in work
contexts, and as responsible citizens. Examples of the serious issues facing our global
community are described or displayed in the news every day.

One such “new” analytical method facilitated by the computer, system dynamics
(SD), uses numeric solution of differential equations to enhance understanding
of complex systems. This methodology was created by Jay Forrester at the
Massachusetts Institute of Technology (MIT), in the mid-1950s, to model systemic
problems. Recently, a free, web-based (basic) version of the software (Stella Online)
has been created, allowing educators to bring this model building representation of
dynamic systems into any web-accessible classroom.

This chapter will demonstrate, in a sequence of increasingly sophisticatedmodels,
how secondary school students can build (and have built, for over 20 years) models
of complex, dynamic, feedback systems using the method of system dynamics.

3.2 Introduction to the SD Software

There are four primary icons that are used to create models using SD.
A stock (rectangle, see Fig. 3.1) is used to represent the main function variable

whose value the modeler wants to track over time. It is an accumulator, an integral.
A simple example of a stock variable might be the deer population in an ecosystem.

Fig. 3.1 Four main icons used to create SD models
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Table 3.1 Recursive
calculation of deer population

Year Deer population (recursive
calculation)

Initial deer population 30

Deer pop. after 1 year 30 – (0.1)30 + (0.3)30 = 30 +
(0.2)30 = 36

Deer pop. after 2 years 36 + (0.2)36 = 43.2

… …

Deer pop. after 26 years 2861.9 + (0.2)2861.9 = 3434.3

Recursive equation Pt–1 + (0.2)Pt–1 = Pt

A flow (see Fig. 3.1) is a unidirectional1 pipe with a valve that is drawn with the
arrowhead either pointing toward the stock (increasing the stock value) or pointing
away from the stock (decreasing the stock value). The combination of all flows
attached to a stock represents the rate at which the stock value changes over time,
hence represents the first derivative of that stock variable. For the previous deer
population stock, an inflow might be designated deer births, while an outflow could
be designated deer deaths.

A converter is a circular icon that holds additional parameters, variables, or
simple arithmetic combinations of variables. For our previous example, a converter
could hold the deer birth fraction.

A connector is a thinly shafted arrow that sends numerical information from
one icon to another within the model. It shows dependencies of each variable upon
parameters or other variables.

A simulation time unit, a fractional interval2 of the time unit (DT) for updating
model values, integration method (Euler or Runge–Kutta 4), and simulation dura-
tion can be specified by the modeler. The model engine uses recursive numerical
calculations to update model values, recalculating each time step (DT).

Graphs and tables3 can be produced to show the output of the model over the
simulated time specified by the modeler.2

3.3 A Basic Deer Population Model

Consider an ecosystem containing 30 deer. Without a predator, we assume that deer
normally have a 30% reproduction rate (birth fraction) and a 10% mortality rate
(normal death fraction) each year. Assume that there is ample vegetation over the

1Bidirectional flows are permitted but are not used in any examples in this paper.
2The DT of the simulation software is like the “dt” of a calculus integral, or more accurately like a
Riemann Sum or Simpson’s Rule approximation of a calculus integral.
3Tables are not available in free Stella Online software, but one can read values from graph.



38 D. M. Fisher

30

0.3 0.1
* *

a b

Fig. 3.2 a Equivalent Stella diagram representing this deer population, with icon values superim-
posed on each icon in the diagram, and b graphical output for the Deer Population

simulation time of 26 years. We want to track the number of deer in the environment
over time.

Table 3.1 shows the recursive calculations that would occur within the simulation
software given the data in the previous paragraph and, for simplicity, assume the time
step (DT) is 1 year and the integration method is Euler.

After placing an icon in the modeling window, one double clicks on the icon
and designates the value for that icon and its units in the panel that appears. So the
stock,Deer Population, is set at 30 {deer}, birth fraction is set at 0.3 {deer/deer/year
= 1/year}, normal death fraction is set at 0.1 {1/year}, births are defined as Deer
Population * birth fraction {deer/year}, and deaths are defined as Deer Population
* normal death fraction {deer/year}.

3.4 A More Realistic Deer Population Model

Resource availability places a constraint on any animal population. We will assume
that the environment within which our deer are living can support at most a constant
4000 deer. The previous model can be modified by adding a component, carrying
capacity, defined as 4000 {deer}. We will compare the current Deer Population to
the carrying capacity each time step. As the Deer Population value grows toward
the carrying capacity value, fewer resources are available per deer so the deer death
rate begins to increase.

In the model, one uses a graphically defined converter, here labeled effect of
carrying capacity on death fraction, to create the mechanism that increases the death
rate as the Deer Population grows. See Fig. 3.3.

The effect of carrying capacity on death fraction usually has an independent
variable axis definition represented as a ratio. Here, the independent variable is
defined asDeer Population/carrying capacity (DP/CC). This ratio has domain values
from 0 to 1. The vertical axis represents a unitless numeric value, designated as a
multiplier (with a range from 1 to 3). As theDeer Population grows, the ratio DP/CC
grows larger, moving the simulation to the right on this graphically defined function.
As the simulation moves the DP/CC ratio to the right horizontally, the output value
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Or
  P0 = 30 

Where f(r) =

r = Deer Population / carrying capacity

So,

30*
0.1

*
0.3

*
4000

r

f(r)

a b

Fig. 3.3 a Deer Population with fixed carrying capacity of 4000 deer. Defining values are super-
imposed on the appropriate icons. b An equivalent closed-form logistic representation and also
calculus initial value problem representation for this scenario

(vertical axis value) is increasing, linearly (for this example).4 This dimensionless
output value is then multiplied by the normal death fraction value to create the value
for the actual death fraction component. The actual death fraction is the value used
to calculate deaths in the model. The actual death fraction grows larger and larger as
the Deer Population approaches the carrying capacity, until, when Deer Population
= carrying capacity (and the ratio DP/CC = 1), the multiplier is 3, so the actual
death fraction becomes 0.3, matching the birth fraction. At this point, the model
achieves steady state (or dynamic equilibrium).

3.5 Modeling a Real-World Scenario

Problem: In 1944, the US Coast Guard brought 29 reindeer to St. Matthew Island
in the Bering Sea, about 200 miles off the coast of Alaska. They brought them as
a potential supplement for their food supply. The US Coast Guard abruptly left St.
Matthew’s Island a few years later but left the reindeer behind. The reindeer ate
mostly lichen on the island, which can take decades to regenerate. There were no
reindeer predators on the island. In 1963, there were about 6000 reindeer on the
island and the reindeer population collapsed so that only about 42 reindeer remained
in 1965.

To replicate the behavior described in this scenario, we would not want to create
a model with a constant carrying capacity but rather have the reindeer population
depend upon a food source that is being depleted over time. Since it takes lichen so
long to regenerate, we could model this food source as non-renewable.

We do not know how much original vegetation was on the island but we can
estimate it using trial and error as we try to reproduce historical data. Reindeer

4The linear “effect of carrying capacity …” graphical shape, sketched as part of the definition by
the modeler, is only one of many possible shape choices.
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normally produce one offspring per year, so increasing the birth fraction to 40%may
be a reasonable modification of our previous model.

Notice that the carrying capacity shown in Fig. 3.3a has been replaced by a stock
of vegetation (lichen) (see Fig. 3.4a) which is consumed by the reindeer each year,
and which takes so long to regenerate that it can be assumed to be a non-renewable
resource. Hence, theVegetation stock only has an outflow, consumption (by reindeer).
Assume that each reindeer consumes one packet of Vegetation per year (the “needed”
vegetation, we assume, reindeer must have to survive).

In preparation for designing the graphical converter that alters the death fraction
based upon available vegetation, we need first to establish an appropriate ratio for
the independent variable for this graphical definition. The death fraction value will
be influenced by the ratio of Vegetation/Reindeer Population compared to needed
vegetation per reindeer. Needed vegetation per reindeer is constant.

The graphical converter effect of vegetation per reindeer on death fractionwill not
change the normal death fraction—until the ratio of Vegetation/Reindeer Population
drops below the needed … amount. Then, the actual death fraction value increases
very quickly. Note that death fraction= 1/lifespan, so a larger death fraction indicates
that the lifespan of the animal is reduced. A death fraction of 0.1 indicates a lifespan
of 10 years. A death fraction of 1.5 = 15/10 means a lifespan of 10/15 or 2/3 of a
year.

The graphical converter definition is shown in Fig. 3.4b.
Unfortunately, the output of the model shown in Fig. 3.4a does not replicate the

desired historic output for the Reindeer Population as well as we would like. We
need the population collapse to be more pronounced. Lack of food would not only
influence the actual death fraction of the reindeer, but also influence the ability of
the female reindeer (cows) to reproduce. Weak or starved cows do not come into
heat.

Assume the ratio of Vegetation/Reindeer Population compared to needed vege-
tation per reindeer also influences the birth fraction. A new graphically defined

Ratio vegetation per 
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Fig. 3.4 a Current version of the SD model. b Graphical definition of how the current Vegeta-
tion/Reindeer Population compared to needed vegetation per reindeer affects the death fraction of
the reindeer population
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Fig. 3.5 a Finalmodel for St.Matthew IslandReindeer Population.bGraph ofReindeer Population
starts with 29 reindeer in 1944, shows 1500 in year 1957, and 94 reindeer at end of 1965. The herd
reaches a maximum of 5751 reindeer in year 1962. c Historic reindeer population for St. Matthew
Island. Retrieved from www.geo.arizona.edu

converter should reduce the birth rate dramatically if the Vegetation per Reindeer
ratio falls below what is needed.

Thismodel is not a perfect replication of the problemwith theReindeer Population
on St. Matthew Island over the years 1944–1966 but it is a close approximation and
something that secondary school mathematics students (ages 15+) can build and
understand. The focus of SD model building is to design a stock/flow structure that
includes the most important elements and (feedback) relationships of the systemic
problem under study. As a guiding principle for the model design, the modeler
will often have a behavior pattern she/he will want the model structure to replicate.
Sometimes these behavior patterns are historical (as in the case of St. Matthew
Island reindeer), or intuited from conversations with stakeholders of the problem.
SD modeling is not designed to reproduce or capture specific data points. The focus
is on behavior patterns over time and identifying characteristics of the problem that
produce those patterns (allowing the modeler to test policies that might mitigate the
problem).

Secondary school students have built models similar to Figs. 3.2a and 3.3a in
regular (non-honors) algebra classes5 and built original models (Figs. 3.4a, 3.5a and
3.6a) in a modeling class.6

5The models in Figs. 3.2 and 3.3 have been built by secondary school algebra students using guided
discovery where students are then asked to modify and explain the model.
6Models of the types shown in Figs. 3.4a, 3.5a, and 3.6a (and other similar student original modeling
projects) require additional time (10 weeks) for secondary school students (aged 15–18) to research,
build, debug, and explain (by writing technical papers and giving presentations and/or producing
posters).

http://www.geo.arizona.edu
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a b

Fig. 3.6 aModel of a sustainable reindeer population (growing from 29 to about 265) and sustain-
able vegetation (growing from 25,000 to about 26,000 vegetation units) over 26 years, if reindeer
are managed so they consume only the vegetation that can be regenerated each year. b Output of
the model shown in part Fig. 3.6a

3.6 Can We Sustain the Reindeer Population?

We could modify Fig. 3.5a to allow Vegetation to be renewable. Such a modifica-
tion would add an inflow to the Vegetation stock identified as regeneration, with
some appropriate regeneration fraction per year (here 0.01). Here, the ratio (used
by the two graphical converters) should be created to compare the regeneration of
vegetation/reindeer to needed regeneration per reindeer per year.

3.7 Discussion

Interweaving SD model building representations with the traditional closed-form
equation approach used in secondary school mathematics courses reinforces the
basic characteristics of the functions studied in those courses. For example, taking
an exponential function, as shown in Fig. 3.2a, the simplest closed-form equa-
tion representing the value of population over time would be P = 100(1 + 0.3 −
0.1)t = 100(1.2)t . While we simplify the closed-form equation, there can be advan-
tages to keeping the growth rate separate from the decay rate (as demonstrated in
Figs. 3.3a, 3.4a, 3.5a and 3.6a). Assessment questions regularly required students to
move between closed-form equation and SD model representations, where possible.
Similar closed form versus stock/flow representation arguments can be made for
quadratic, logistic, and sinusoidal functions. As function equations become more
complicated, the equivalent SD diagram can be very useful in displaying the problem
structure, component relationships, and feedbacks that produce the characteristic
behavior patterns.

Another advantage of having students build stock/flow models is that almost all
of the interpretation of model behavior is done graphically. Students are expected
to anticipate the model behavior, graphically, and then explain any discrepancies
between their prediction and the model output. As we know, students’ ability to
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correctly interpret graphs is problematic (Shah and Hoeffner 2002). Moreover,
students are often asked to graph the flow behavior as well as the stock behavior on
the same grid requiring that they use the flow behavior to explain the stock behavior.
This is advantageous for two reasons: (1) Having students draw connections between
flow behavior and stock behavior is a conceptual preparation for fundamental prin-
ciples of calculus, at a level where the interpretation is clothed in application, repeat-
edly connected to the real world, without the overhead of complicated calculus
notation, and (2) Calculus students have difficulty interpreting correlational graphs
(Carlson et al. 2002). Carlson et al. (2002) indicate that understanding covariational
reasoning, especially involving rates of change, is fundamental to “understanding
major concepts of calculus… and for understanding models of dynamic function
events” (p. 374). In addition to more practice interpreting graphs, these two addi-
tional attributes move students forward in mathematical understanding of dynamic
phenomena while still at the early secondary school mathematics level of equation
manipulation.

Now let’s turn to the fact that a visual representation of the structure of a problem,
using full words and phrases, allows other students and teachers to more easily
understand the modeler’s mental model, and hence to more naturally interact with
the modeler to modify or enhance her/his model. This characteristic is valuable in
helping to identify misconceptions a modeler may have about the problem being
analyzed. (Models are built first to analyze a problem, but then to communicate the
insights gained by the modeler after having built the model). So a more natural,
visual, and descriptive representation of the problem is an aid to the modeler and the
modeler’s audience.

The visual nature of the model enhances not only communication but allows the
modeler tomovebeyondwhat he/shewould have been able to build using closed-form
equations. The modeler can now represent more realistic situations (as is demon-
strated by Figs. 3.3a, 3.4a, 3.5a and 3.6a). While the model shown in Fig. 3.6a
represents a “first world” problem, it could be modified to represent a human popu-
lation and food supply or potable water problem. SD models could involve topics
of epidemiology, criminal justice, social services, causes of poverty, etc. Not only
can students work on more sophisticated problems using scripted lessons, but the
less abstract representation seems to increase theirmathematical bandwidth of under-
standing, thereby allowing students to create a wide variety of original models, which
they are able to make operational and explain7 (Fisher 2011).

Students adapt much more quickly to using stock/flow representations than
teachers do. Students are allowed to communicate with each other as they build
SD models. One concern for teachers includes students’ increased ability to ask
questions for which teachers may not know the answers (Fisher 2016).

Finally, system dynamics modeling software environments support the ability
to capture nonlinear relationships between variables—see many of the graphically

7A sample of over 20 secondary school student model diagrams, student technical papers explaining
their models, and some student videos explaining their models can be found at: https://ccmodelin
gsystems.com.

https://ccmodelingsystems.com
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defined components in Figs. 3.4a, 3.5a and 3.6a. Secondary school students have
shown a facility with developing these nonlinear definitions for models, allowing
them to cross the threshold to building models of complex, nonlinear, dynamic,
feedback systems. Moreover, students can build SD models that capture material
and information delays that occur in many real-world systems.

3.8 Conclusion

Arguably, the time has come for secondary school mathematics and science educa-
tors to supplement the emphasis given to the exclusive manipulation of closed-form
equations, with approaches that teach students to understand and model the dynamic
behaviors occurring everywhere in theworld. To the extent that these abilities support
students to become more active and competent global citizens, they will be better
enabled to develop and test policies needed to tackle difficult problems. One of our
current challenges is to intellectually fortify students, allowing them to retain hope
that there is still time to effect the changes needed to secure human futures, personally
and globally.
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Chapter 4
Theorizing ‘Modelling as Bridge’
Between Content and Vehicle

Stephen T. Lewis

Abstract In this paper, a theory for facilitating modelling tasks as a bridge between
modelling as content and modelling as vehicle is established. Drawing on data from
a micro-ethnographic study of one classroom, I outline one teachers’ mathemat-
ical modelling practice when facilitating tasks. I examine how the teacher vacillated
between elaborating on student mathematical ideas, nurturing the development of
modelling as content, while simultaneously targeting curricular objectives through
formalization of desired mathematical content in modelling as vehicle. Through her
implementation, I identify how the teacher navigated between these two epistemo-
logical approaches to developingmodelling capacity and use this analysis to establish
a theory for modelling as bridge between content and vehicle.

Keywords Modelling as content ·Modelling as vehicle · Discourse analysis ·
Scaffolding

4.1 Introduction

Achieving a balance of rigorous mathematics content, cultural competence and crit-
ical consciousnesses through mathematical modelling is a complex endeavour, yet
an attainable goal that merits much scholarly attention (Anhalt et al. 2018). Cai et al.
(2014) argued for additional research to help in characterizing the essential features
of mathematical modelling, document what instruction looks like when modelling is
facilitated in modelling contexts, determine what factors motivate task selection by
teachers of modelling, and further to examine classroom discourse in mathematical
modelling that supports modelling practice. This study addresses these epistemo-
logical, mathematical, and pedagogical issues in a theoretical nature by examining
interactions that occur in mathematical modelling contexts. In particular, I explicate
a teachers’ particular view of mathematical modelling and consider how her socio-
mathematical modelling practice, or sociomodelling practice (Lewis 2018), resides
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as a bridge betweenmodelling as content andmodelling as vehicle (Julie andMudaly
2007).

It is known that there are institutional, mathematical, cultural, and pedagogical
barriers that exist that prevent the implementation and facilitation of modelling tasks
with fidelity (Anhalt et al. 2018; Manouchehri et al. 2018), and further that there
exists a need for additional scholarly reports on existing efforts aimed at improving
specific pedagogical capacities among teachers (Manouchehri et al. 2018). Further,
facilitatingmodelling cognition involves attention to cultural backgrounds, life expe-
riences, intuitions, and prior mathematical knowledge that learners draw upon (Cai
et al. 2014; Manouchehri and Lewis 2017; Orey and Rosa 2015; Rosa and Orey
2010). Yet, a productive method for bridging the gap between mathematics and the
realities of learners within modelling contexts is still unknown (Anhalt et al. 2018).
This study takes up the calls to action and examines the particularities of classroom
practice when facilitating modelling tasks.

Two questions guided my research of classroom practice, (1) How are social
practices in mathematical modelling contexts developed through implementation
of modelling tasks? (2) How does teacher scaffolding within these tasks promote
development of modelling capacity in learners? In this paper, I will focus primarily
on the initial question and articulate how the teachers’ practice in itself acted as a
bridge between mathematical modelling as content and mathematical modelling as
vehicle, which I characterize as modelling as bridge.

4.2 Background Literature

While various definitions of mathematical modellingmay exist (Lesh and Fennewald
2010), agreed-upon processes in mathematical modelling involve assumption-
making, mathematizing, parameterization, the selection of variables, simplification
of a system, decision-making, and validation of the model (Blum and Leiss 2007;
Lesh et al. 2000; Niss 2010; Niss et al. 2007). It is how these aspects of mathematical
modelling emerge across definitions that one ought to consider. Regarding teacher
practice in mathematical modelling, one cannot necessarily assume a teacher has
a particular conception of mathematical modelling that necessarily coincides with
one epistemological view of mathematical modelling, but rather that their defini-
tion is informed by their realities of teaching, background mathematical knowledge,
knowledge of modelling, and that these definitional components emerge across their
practice. Across the literature, two predominant epistemological views of modelling
instruction exist, modelling as a content, and modelling as a vehicle (Galbraith et al.
2010; Julie and Mudaly 2007).
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4.2.1 Teaching Mathematical Modelling

Galbraith et al. (2010) argue that modelling as vehicle focuses on developing
prescribed mathematics and is used as a means for learning new concepts, proce-
dures, ways to conjecture, or use context-driven justifications to solve problems. This
they argue affords the use of modelling to service curricular needs of mathematics.
Within modelling as vehicle, problems are pre-formulated and typically involve a
particular real-life context. Through the use of these contextualized examples, the
study of mathematics is motivated. The real-life situation is used primarily in this
way, as a basis for abstraction.

Within modelling as content, mathematics is the outcome of the model develop-
ment process (Galbraith et al. 2010; Julie andMudaly 2007). These authors argue that
modelling as content entails scrutiny, dissection, critique, extension and adaptation of
existing models for the purpose of assessment and evaluation. Modelling as content
is motivated by genuine real-world contexts and is anchored in the processes used
for solving these problems. This view of modelling affords access to critical issues
or inequities that people face through assumption-making to articulate a problem
statement within the real world, and then develop models to address it.

While Julie and Mudaly (2007) argue that these epistemological views of math-
ematical modelling are not mutually exclusive, but rather a spectrum of presen-
tation and dissemination, research in mathematical modelling has predominantly
treated them as such. Tasks are most often characterized as modelling as content OR
modelling as vehicle. However, in order to consider this spectrum at greater depth, a
view of how tasks are facilitated in actual classrooms and by actual teachers needs
to be established. In this way, I turned to discourse analysis (Bloome et al. 2010) to
robustly analyse the implementation of modelling tasks and consider how practices
pertaining to mathematical modelling emerged.

4.3 Methods

The overarching program of research aims to analyse interactions in mathematical
modelling contexts, and focuses dually on teacher scaffolding mechanisms through
reflexive discussion (Qualley 1997), as well as ways students interpret and respond
to tasks drawing on their contextual and mathematical knowledge (Manouchehri
and Lewis 2017). The data for this study comes from a micro-ethnographic study
of an 11th-grade pre-calculus class at a private academy in the Midwestern United
States that occurred during the 2017–2018 academic year. The teacher of this class
was in her 11th year of teaching and had a focus on implementation of mathemat-
ical modelling tasks on a regular basis over the course of the year. She indicated
that aside from her major curricular goals of teaching concepts in pre-calculus,
she wanted to help her students understand the applicability of mathematics, and
viewed modelling and applications as the means to accomplish these objectives.
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In observing her teaching, I attempted to characterize those sociomodelling prac-
tices which established activity within mathematical modelling from both a local
and dialogic perspective thus establishing cultural models for enacting mathematical
modelling.

Prior tomy formal data collection, I had attended the participating teacher’s classes
over the previous two years observing her instruction and developing a friendship as
well as a professional relationship with the teacher. Targeted data collection for this
study involved video and audio recording subsequent lessons across a 12-week period
during the 2017–2018 academic year. Daily event mapping (Hennessy et al. 2016)
was used to identify broadly what transpired across teaching sessions. These event
maps were drawn from both video data and detailed fieldnotes transcribed during
the class itself. Particular modelling events were selected, transcribed into utter-
ances and analysed using line-by-line discourse analysis (Bloome et al. 2010). Key
components of the teacher’s mathematical modelling practice emerged across these
observations and coded according to their social functions. The frequency of these
codes occurrence was compared and those that appeared most often were deemed
significant. They were then validated by the teacher through reflective discussions.
Subsequent and previous class sessions were also observed to look for intercon-
textual links to these key events, and evolution of practice was considered. This
triangulation of observations and reflective interviews establishes validity of inter-
preted results (Bloome et al. 2010). In order to establish reliability of the coding
process and data, multiple coders examined the data and feedback were provided on
particular components of practice, and their social functions. This was done so that
the reported data accurately reflected the practice of the teacher and her intent.

4.4 Results

Analysis of data examined four deliberate modelling and application experiences:
The Answer Is, a problem-posing taskwhere students generated increasingly complex
problems whose answer was $73.13. Measure the Height, a trigonometric geom-
etry problem where students determined the height of selected objects using three
different methods, and then results were compared and validated. Shortest Path to the
Lunchroom, a taskwhere students determinedwhich buildings on campus yielded the
shortest path to the cafeteria using both physical measurement and an aerial map of
the campus. Lastly, Trig Whips, a task where students investigated rotational motion
and angular velocity by linking arms and moved in a circle and determining the rate
that the outward most person would have to move to maintain a solid chain.

Analysis of these sessions revealed that the teacher vacillated constantly between
building modelling capacities, or the skills needed for effective modelling practice,
and linking these capacities to targetedmathematical concepts of her curriculum.This
vacillation was made apparent through the enactment of components of her prac-
tice. Twenty-three interrelated but distinct components were identified across these
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sessions1 that targeted the advancement of mathematics, two of these components,
in particular, and their interrelationship made the teachers’ view of modelling trans-
parent—elaborating student mathematics and formalizing curricular mathematics.
Elaborating student mathematics marked instances where the teacher acknowledges
the conceptual tools that the learners drew upon and supported their elaboration
in mathematical ways. This involved attending to student views of particular prob-
lems and building on THEIR solutions mathematically, not those linked to a desired
curricular outcome.

While the teacher’s long-term goals involved developing modelling capacity in
learners, she was also concerned with formalizing the curricular concepts mandated
by the course. Formalizing curricular mathematics involved enculturating students
intomathematical concepts through direct instruction or problem-solving as opposed
to modelling. When she recognized the connection between contextual problems
and her overarching content goals, she was more likely to include modelling in
her instruction. During these instances, the teacher would start with modelling or
contextual problem-solving, allow students to explore their ideas and intuitions, then
link student solutions or ideas to deliberate mathematics during discussion. Often
this involved selecting particular student solutions of which to expand.

Figures 4.1 and 4.2 document the vacillation between elaborating student mathe-
matics and formalizing curricular mathematics across those specific tasks. Across all

Event Phases Elaborating 
Student 
Mathematics

Formalizing 
Curricular 
Mathematics

Th
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ns

w
er
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 T

as
k Introduction of problem posing task x

Discussion of Task Interpretation x
Establishing Solution Criteria x
Student work on problem posing activity x
Teacher Monitoring and Group Scaffolding x
Sharing Solutions x
Elaboration of Solutions x
Teacher Summary of Task and Solutions x

M
ea
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re

 th
e 

H
ei

gh
t T

as
k

Introduction of Task and Demonstration of Inclinometer x
Establishing solution criteria x
Student work to determine height of three objects in 
three different ways

x

Teacher monitoring and supporting solution strategies x
Debrief discussion of measure the height task x
Sharing and discussion of solutions x
Formalizing Sine, Cosine, and Tangent as way of 
determining height

x

Students practice using Sine, Cosine, and Tangent on 
exercises 

x

Validation of measurements for task using Sine, Cosine, 
and Tangent

x x

Fig. 4.1 Elaborating and formalizing interrelationship: The Answer is and Measure the Height

1Specific components of teacher practice are elaborated in detail in Lewis (2018).



50 S. T. Lewis
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Formalizing 
Curricular 
Mathematics
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Shortest path task pre-discussion and task overview
Teacher monitoring of student solutions x
Shortest path debrief discussion with whole class x
Connecting shortest path to calculating triangle concepts x
Determining contextual angle measurements with 
protractor

x

Comparing measurements to calculated solutions x x
Problem posing exercise using aerial map of campus x
Summary of shortest path task and solution outcomes x
Sharing strategies used for determining length of 
triangles

x

Validating measurements by remeasuring physical 
distances (error analysis)

x

Comparing calculated and collected values of distances x x
Averaging measured distances and comparing calculated 
outcomes

x

Teacher introduces Law of Sines Calculator Activity x
Law of Sines Exploration x

Tr
ig

 W
hi
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sk

Introduction of angular speed and task overview x
Teacher monitoring and supporting student work on task x
Trig whip debrief discussion and sharing of solutions x
Formalizing angular speed (introduction of formulas) x x
Applying angular speed to trig whips task x
Derivation of angular speed from linear speed and arc 
length

x

Teacher monitoring of using angular speed on trig whip 
inquiry activity

x x

Trig Whip extension overview x x
Angular speed and extension wrap-up discussion x x
Angular speed practice exercises x

Fig 4.2 Elaborating and formalizing interrelationship: Shortest Path and Trig Whips

problem-solving tasks, the teacher began the discussion by elaborating on students’
mathematical ideas, and then transitioning into formalization of those ideas in some
capacity. Formalization involved connecting the discussion to the mathematical and
curricular goals of the lesson. In this way, the teacher was able to anchor the devel-
opment of her intended curricular goals grounding these formalizations on students’
mathematical ideas. Drawing on learners’ ideas, intuitions, and solutions, she was
able to portray them as a means for solving the problem, not the means. Thus,
she was able to maintain the validity of learners’ solutions along with ideas in the
modelling process, while at the same time, advance her own curricular agenda. Some
instances were dominated by formalization, while others elaboration, but consistent
across encounters was a deliberate dance between facilitating tasks as modelling
and content coupled with modelling as vehicle bridging the gap between these two
epistemological views of modelling instruction.
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4.5 Discussion and Conclusions

While the literature outlines and distinguishes between the epistemological views
of modelling as content and modelling as vehicle, the teacher’s view of modelling
acted as a bridge between modelling as content and modelling as vehicle. On the one
hand, the teacher adopted a holistic view of modelling as the interaction between
mathematics and real life (Kaiser 2007). On the other hand, she also supported
the organization of social practices to establish arguments and support their deci-
sions, adopting a socio-epistemological perspective (Cantoral et al. 2018). In this
way, the curricular objectives alone did not drive her teaching process of mathemat-
ical modelling, but are bridged with the stance that learners should be equipped to
consider real-world problems through the lens of their own experiences and draw
on conceptual tools to support the development of well-conceived solutions. In this
way, she was able to reconcile both goals of advancing curricular knowledge and
supporting learners’ real-world problem-solving and decision-making.

Analysis further revealed that in establishing her sociomodelling practice, the
teacher relied on her professional vision and pedagogical resources (Goodwin 1994;
Schoenfeld 2009) when planning for facilitatingmodelling tasks. Professional vision
is characterized as those particular ways that members of a group examine events of
interest and affords a means to notice and interpret actions, and further is the driving
force for what transpires across interactions around a professional agenda. Resources
are considered to encompass both the conceptual and physical tools at one’s disposal.

Figure 4.3 reflects the relationship between the teacher’s sociomodelling prac-
tice, components of that practice, and its relationship to her epistemological view of

Fig. 4.3 Modelling as bridge
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teaching mathematical modelling. At the heart of sociomodelling practice is profes-
sional vision, informed by her contextual knowledge, mathematical knowledge and
her beliefs about practice.With the teacher’s agenda in developingmodelling capacity
in her students, there exists evidence of both modelling as content and modelling as
vehicle, and components of her practice emerged in each phase of the modelling
process. Elaborating student mathematics drawing on their experiences is inter-
twined with modelling as content from a definitional standpoint, and formalizing
curricular mathematics to modelling as vehicle. In this capacity, her overarching
practice was observed to vacillate between these two epistemological views of math-
ematical modelling linking the development of student mathematical ideas to her
curricular objectives. This phenomenon I characterize as Modelling as Bridge, as
the teacher attempts to bridge these two epistemological views of mathematical
modelling in and across her instruction.

In contemplating the significance of these findings, it was only in those instances
where the teacher recognized a link between her curricular goals and contextual
problems that mathematical modelling was initiated. It was her vision that afforded
modelling tasks sensitive to learners’ ideas while keeping an eye on curricular objec-
tives. The teacher had to reconcile her short-term instructional goals of mastering
particular mathematical concepts and her long-term goals of developing modelling
capacity.

Anhalt et al. (2018) argued that teachers need to become fluent with the nature of
the mathematical modelling cycle as an approach to solving open-ended problems
in familiar contexts (p. 558) and further to promote creativity in solutions should
resist steering learners’ towards pre-determined approaches but rather support their
own thinking (p. 560). However, generic talk about implementation of mathemat-
ical modelling tasks or even showing examples of modelling is necessary, but not
sufficient. Rather the skill of facilitating modelling tasks demand a bridge between
curricular mathematics and learner unique solutions need to be further developed. In
this sense, one could revisit curricular resources and elaborate on productivemethods
of facilitation through the development of curriculum guides that highlight how to
promote both modelling and mathematics. Further, these guides need to find produc-
tive ways to expand on multiple solution paths and how each path might target a
particular curricular or contextual outcome. Without guidance of this nature, it is
not likely that the breadth of our research in mathematical modelling and tasks will
come to fruition in classroom settings.

The ways in which teachers vacillate between elaboration of learners’ ideas and
formalization of mathematical concepts to accomplish curricular needs strengthen
the argument for facilitating modelling tasks as modelling as bridge. More studies
of this nature ought to be facilitated in order to gain a better conception in the
particularities of these types of mathematical modelling practices.
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Chapter 5
Glocalization of Cultural Mathematical
Practices Through Ethnomodelling

Daniel Clark Orey and Milton Rosa

Abstract In this chapter, the authors share how the acquisition of both local
(emic) and global (etic) knowledge forms an alternative goal for the implemen-
tation of ethnomodelling research. Local knowledge is essential for an intuitive and
empathic understanding ofmathematical ideas and procedures developed throughout
history.Global dialogical knowledge is essential for the achievement of cross-cultural
communication that demands standard analytical units and categories. It is used
for conducting ethnomodelling research that applies both local and global knowl-
edges through respect, appreciation, dialogue, and interaction. Our main objective
is to share the combination of local and global approaches in which ethnomodelling
research looks at how diverse ideas and procedures contribute to the acquisition of a
holistic understanding of mathematics.

Keywords Ethnomodelling · Glocalization · Local · Global · Cultural practices ·
Cultural approaches

5.1 Initial Considerations

A challenge for investigators is to develop methodological procedures that assist in
perceiving or understanding what is often deemed as culturally bound mathematical
ideas, procedures, and practices that have been developed by members of distinct
cultural groups without letting their culture interfere with the cultural background
of these individuals. In this context, as it is often based on philosophy, assumptions,
and values that are strongly influenced by colonization, modernWestern civilization,
and technological advancement. Thus, it is necessary to deconstruct the notion that
mathematical ideas and procedures are uniquely European in origin.
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There are investigators who believe that mathematical practices are unique to
Western science and are the same for all cultures, and that their techniques are equally
applicable to everywhere. At the same time, many non-Western cultures developed
their own interpretation of the local environment (emic approach) opposed to the
outsiders’ global interpretation (etic approach) of that specific cultural group (Rosa
and Orey 2019). An important goal of research in ethnomodelling is to understand
and explain existing variations found in diverse mathematical ideas, procedures, and
practices that often vary due to influences of history, context, culture, race, ethnicity,
gender, sexual orientation, and other sociocultural traits.1

This context enables ethnomodelling to become a tool in the translation of daily
experiences that apply mathematical ideas and practices within a culture. It is also a
fluid and dynamic research tool that incorporates both culturally universal and cultur-
ally specific mathematical practices that often lead to new discoveries and innova-
tive pedagogical actions in the development of inclusive approaches in mathematics
education.

5.2 Developing Three Cultural Approaches
to Ethnomodelling

Whenworkingwith ethnomodelling, it is possible to identify at least three approaches
that have come to help us investigate, study, and further understand mathematical
ideas, procedures, and practices developed by the members of any given cultural
group.

Global (etic) refers to the outsiders’ view on beliefs, customs, and scientific and
mathematical knowledgedevelopedby themembers of distinct cultural groups.Glob-
alization has reinforced the utilitarian approach to school mathematics, as well, it
has helped to globalize pervasive mathematical ideologies, including the view that
mathematics is the same for everyone everywhere. Particularly, traditional school
mathematics is a culturally homogenizing force, a critical filter for status, a perpet-
uator of mistaken illusions of certainty, as well an instrument of power (Rosa and
Orey 2015). In this approach, comparativist researchers have attempted to describe
differences among cultures, and thus are considered, for better or worse, culturally
universal (Sue and Sue 2003).

Local (emic) refers to the insiders’ view of their own culture (how we do this),
customs, beliefs, and scientific and mathematical knowledge. Local knowledge is
important because it has been tested and validated within the local context (Cheng

1Sociocultural traits are considered as socially learned system of beliefs, values, traditions, symbols,
and meanings that members of a particular cultural group develop throughout history. These traits
identify members of a specific culture because they are deposits of knowledge, experiences, actions,
attitudes, hierarchies, religion, notions of time, roles, spatial relationships, universe concepts, and
artifacts developed by themembers of distinct cultural groups from generation to generation through
consistent acknowledgment and valorization of individuals and their collective efforts (Samovar and
Porter 2000).



5 Glocalization of Cultural Mathematical Practices Through … 57

2005), and creates a framework from which members of cultural groups are able
to understand and interpret the world around them (Barber 2004). In this approach,
members of distinct cultural groups describe their culture in its own terms and values
(Rosa and Orey 2013). Currently, many investigators recognize the importance of
local perspectives to the development of scientific and mathematical knowledge.
They are considered as culturally specific individuals (Sue and Sue 2003).

Glocalization (emic-etic/dialogical) represents a cultural dynamism between two
or more cultures in continuous and ongoing interaction between globalization and
localization. It offers a perspective that both approaches (emic-etic) are elements of
the same phenomenon (Kloos 2000). It involves blending, mixing, and adapting two
processes in which one component addresses the local, as well the outside system of
values and practices (Khondker 2004). In a glocalized society, members of distinct
cultural groups must be “empowered to act globally in their own local environment”
(D’Ambrosio 2006, p. 76). Therefore, it is necessary to work with different cultural
environments and, acting as ethnographers, describe mathematical ideas and prac-
tices of other peoples.Aswell, it is crucial to givemeaning to both thesemathematical
findings (D’Ambrosio 2006).

It is necessary for us to first focus on the local knowledge and then integrate global
influences in order to create individual and collective views rooted primarily in local
experiences and contexts. This approach is equipped with a glocal knowledge that
creates a sort of localized globalization (Cheng 2005). It goes deeper than traditional
multicultural views of mathematical practices. In this regard, ethnomodelling allows
researchers to move beyond what is in danger of being relegated to the curious or
exotic findings and focuses on creating deeper understanding toward how members
of distinct cultural groups actually use, or came to use, mathematics to solve their
own problems within their own local communities.

For example, can researchers agreewith imposed cultural universalities (global) of
mathematical knowledge or theymight take on techniques, procedures, and practices
of its cultural relativism? Thus, researchers seeking to link universal (global) and
community-specific (local) approaches face the classic dilemma of scientific goals
conflicting with investigations in ethnomodelling (Rosa and Orey 2019). Yet, both
local and global approaches are often perceived as incommensurable paradigms. We
beg to differ. While these approaches are often thought of as creating conflicting
dichotomies, in the context of ethnomodelling they are considered complementary
viewpoints.

However, rather than posing a dilemma, the use of both approaches in ethnomod-
elling research deepens our understanding of cross-cultural scientific and mathemat-
ical investigations (Rosa and Orey 2013). Since these two approaches are comple-
mentary, it is possible to delineate forms of synergy between the local and global
aspects of mathematical knowledge through the development of ethnomodelling
research. Hence, a combined local–global approach requires researchers who first
attain local knowledge developed by the members of distinct cultural groups. This
approach may allow them to become familiar with relevant cultural differences in
diverse sociocultural settings (Rosa and Orey 2015).
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Similarly, the resurgence of debates regarding cultural diversity has also renewed
the classic global/local or emic/etic debate since investigators need to comprehend
how to build scientific generalizations while trying to understand the role of sociocul-
tural diversity. Yet, attending to the unique mathematical interpretations developed
in each cultural group challenges fundamental goals of mathematics in which the
main objective is to build a theoretical basis that helps to describe the development of
mathematical practices in academic ways through ethnomodelling (Rosa and Orey
2019).

In this context, local observations seek to understand culture from the perspective
of internal dynamics and relationships as influenced within a specific cultural group.
A global approach is a cross-cultural contrast or comparative perspective that seeks to
comprehend or explain different cultures from aworldview best described as from the
outside (Rosa andOrey 2013). Localworldviews clarify intrinsic cultural distinctions
while the global viewpoints seek objectivity as an outside observer across cultures
(Anderson 2007). This local approach helps to examine native principles of classi-
fication and conceptualization from within each cultural system. Local knowledge
and interpretations are essential to emic analyses.

In this regard, it is from the viewpoint of the participants that will conveymessages
about sociological and behavioral dimensions for the understanding of cultural
contexts. Therefore, it is important to highlight that “what is emphasized in this
approach is human self-determination and self-reflection” (Helfrich 1999, p. 133). A
global analysis has a cross-cultural approach. Many etic-oriented investigators have
examined the question of a cross-cultural perception so that their observations are
taken in accordancewith externally derived criteria. This context enables for compar-
isons of multiple cultures where “both the objects and the standards of comparison
must be equivalent across cultures” (Helfrich 1999, p. 132).

Accordingly, in the conduction of ethnomodelling research, the cultural, social,
linguistic, political, religious, and ethnic affiliations are integrated into a unified
holistic solution. This approach allows for a deeper examination of ethnomathe-
matical ways from what has been in the past considered as a study of the strange,
simplistic, curious, or exotic mathematical ideas and procedures developed by the
many others. In this manner, the intended mathematical practices are given a stake in
the overall process and not just its mere result, or traditional competitive comparisons
related to: this is nice, but we do it better.

5.3 Tree Trunk Cubing: An Example of a Glocal
Ethnomodel

Because mathematics is a culturally bound social construct, the authors define
ethnomodelling as the study of mathematical phenomena within a culture, which
brings the cultural aspects of mathematics into the modelling process. The objective
of this ethnomodel is to share the combination of local and global approaches where
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ethnomodelling research takes ethnomathematics beyond the study of the exotic or
curious to look at how diverse ideas and procedures contribute to the acquisition of
a holistic understanding of mathematical practices developed in distinct contexts.

Some ethnomodelling investigations have revealed sophisticated mathematical
practices that include geometric principles in craft work, architectural concepts, and
practices in the activities ofmanynative and indigenous peoples, local, andvernacular
cultures. These mathematical practices are related to diverse numeric relations found
in measuring, calculation, games, divination, navigation, astronomy, and modelling,
as well in a wide variety of mathematical procedures and techniques found in cultural
artifacts.

In investigations conducted in Brazil, it was proposed that the elaboration of
mathematics activities related to the determination of the volume of tree trunks
with participants of this movement (Knijnik 2006; Rosa and Orey 2019). These
activities were related to the method of cubagem (cubing) of the tree trunk, which is a
traditional cultural practice used by the members of the Landless Peoples’ Movement
(Movimento dos Sem Terra–MST ), which allows them to estimate the volume of a
tree trunk in their settlements (occupation sites).

In this regard, wood cubing processes are associated with the sociocultural envi-
ronment of members of this cultural group. Cubing is used by these members to
determine how many cubic meters of woodcutters use in the construction of sheds,
houses, and animal shelters (Knijnik 1993). In this context, one of theMST members
provided an example in which she used a tree trunk found on the ground to determine
her method in determining the volume of a log (Knijnik 1996), which we consider
as an emic ethnomodel:

To begin with, we mark here in the middle of the tree trunk, because it is thicker there at the
end of the log and it is thinner at this end of the trunk. So, the middle of the trunk gives, more
or less, its average. Now, I take a string and I go around it. Now, I have the measurement of
the trunk outline at its middle. Then, I fold the string into four parts. After that, I measure it
to see how many centimeters are there. It is 37 cm. Now, I multiply 37 by 37, which gives
1369. Then, I measure the length of the tree trunk. It is 1 meters and 64 centimeters. Now, I
multiply the length of the log by 1369. It’s 199874 cubic centimeters of wood. It’s the same
as doing side times side times length.

This emic mathematical knowledge can be represented by an etic ethnomodel
applied in the cubing procedure used to estimate the volume of a given tree trunk
(Amorim et al. 2007).

(a) First, it is necessary to estimate the center point of the tree trunk, so that the
diameter is taken at half the length of the log (Fig. 5.1).

(b) From this point, by using a string, the perimeter of the tree trunk (circumference)
is determined (Fig. 5.2).

(c) Then, the string related to the perimeter that was previously determined is folded
into four equal parts (Fig. 5.3), which gives: 2π r = 4 sides or 2π r = 4s.
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Fig. 5.1 Estimation of the
center point of the tree trunk

Fig. 5.2 Determination of
the perimeter of the tree
trunk

Fig. 5.3 Division of the
string into four equal parts

2πr = 4s

s =
(
2πr

4

)

s =
(πr

2
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Fig. 5.4 Squaring the
quarter of the string

(d) Then, the measure of the quarter of the string (circumference) is squared
(Fig. 5.4).

A =
(π

2

)2

(e) And, finally, the value of the quarter of the string (circumference) is multiplied
by the height of the tree trunk in order to obtain the volume in cubic meters (m3)
of the wood. The volume is calculated as if the log was a cylinder.

In the glocal (dialogical) ethnomodel shown in Fig. 5.5, members ofMST approx-
imate the truncated cone (tree trunk) by a cylinder. This approximation is given as
perimeter by determining the average between the perimeters of the smallest and the
largest bases of the tree trunk.

The minor difference at the top of the tree trunk is compensated by the major
difference at its bottom. By dividing the string into four parts and raising it to the
square, the members ofMST then calculate the area of a square by transforming the
circle into a square (Fig. 5.6).

Although the perimeters are the same, the areas are different (Fig. 5.7).
Subsequently, the volume of a square prism is calculated by multiplying its area

of the base by its height. The volume calculated in this way is relatively accurate if
the shape of the tree trunk approaches a cylinder (Fig. 5.8).

Fig. 5.5 Approximation of
the truncated cone to a
cylinder
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Fig. 5.6 Transforming the circle into a square

Fig. 5.7 Different areas, same perimeters

Fig. 5.8 Volume of a square prism

This method used to determine the volume of a tree trunk basically consists of
two steps. In the first step, a tree trunk (essentially a cylinder) was identified through
a mathematization process in which its circumference coincides with the middle part
of the tree trunk. In the second step, a tree trunk (again a cylinder) was identified
as a square prism whose side measurement is equal to a quarter of the perimeter
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of the cylinder base in this mathematization process. This method of cubing wood
(cubagem) finds the volume of the trunk as the volume of a square prism whose side
of the base was obtained by determining the fourth part of its circumference, which
corresponds to the base of the cylinder, and was obtained through an ethnomodelling
process, that is, as part of the elaboration of a dialogical ethnomodel of the tree trunk.

The representation of this cultural practice can be explained by the ethnomodel
that transforms the trunk of tree into a cylinder. The authors believe that the emic
approach, such as found in this example, may be considered an attempt to understand,
translate, discover, and describe a mathematical system used by this specific cultural
group, in its own terms, and by identifying its units and structural procedures,whereas
an etic approach is primarily concerned with characteristics pertaining to academic
mathematics.

The particular type of mathematical knowledge used and developed by MST
members consists of socially learned and transmitted mathematical practices, which
are represented in the elaboration of ethnomodels taken from sociocultural systems
that are part of their own daily life. In the glocal (dialogical) approach, the emic obser-
vation sought to understand the cubação of the tree trunk from the perspective of the
internal cultural dynamics and relations of this movement with the environment in
which they livedwhile an etic approach provided a cross-cultural contrast, employing
comparative perspectives with the use of academic mathematical concepts.

5.4 Final Considerations

Across human history, members of many different cultural groups have come into
close contact often through colonization, conquest, and/or trade. In some cases, these
cultural encounters sought for amutual understanding in terms of the culture towhich
one belongs as well in terms of the specificity of cultural knowledge pertaining to
the cultures encounters (Iser 1994). As a “result of these encounters, no culture
can call itself static and definitive” (D’Ambrosio 2006, p. 76). It is necessary to
present alternative approaches to hegemonic views of globalization (etic-outsiders)
by arguing for a contextualization guided by localization (emic-insiders).

In this context, ethnomodelling can be seen through the lens of glocalization,
which provides an approach that looks at ethnomathematics as expressions of glocal
(dialogic) relations between local and global procedures and practices. This dialogue
provides the development of glocal mathematical knowledge that has the potential to
generate empowering synergies between localization and globalization. This process
enables to conceive ways to articulate mathematical knowledge in more inclusive
and synergistic modes.

Glocal (dialogic) approaches help us to create synergistic spaces of interde-
pendent, reflexive, and co-arising relationships between global and local processes
(Kloos 2000) for the development of glocal mathematical knowledge. However, it is
necessary that global mathematical practices adapt themselves to local cultures and
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vice versa. According to D’Ambrosio (1998), contact of local knowledge with other
external knowledge systems provokes the development of cultural dynamism.

In this regard, intense cultural dynamics caused by globalization may produce
innovative mathematical models, perspectives, ideas, and thinking developed in
diverse contexts (D’Ambrosio 2006). Similarly, glocal mathematical knowledge
helps us realize how objectivity and subjectivity, global and local, transcendental
and cultural, universal and specific, and Western and non-Western can peacefully
coexist side-by-side (Robertson 1995), and indeed can support each other in the
development of new mathematical ideas, procedures, and practices.

Therefore, if we look at glocalization as a useful tool for creating dialogue and a
curriculum for local and global knowledge systems, we obtain a better understanding
of the challenges and potential benefits of this dialogue. By using ethnomodelling
to describe the relation between these two interdependent and mutually consti-
tutive approaches, we help individuals explain how members of distinct cultural
groups experience their world in multi-scalar sociocultural terms, and to connect
local communities to play important roles in developing and sustaining global
mathematical practices (Rosa and Orey 2019).

In this context, the termglocalization is a process bywhich a culture easily absorbs
foreign (outside) ideas and/or the best practices that meld those with their own points
of view, needs, and traditions without the loss of ancient practices or self-esteem.
This approach provides a voice and context for understanding the ethnomodelling
process, how the group identity is constructed, and how processes of globalization
and localization work in tandem to create innovative scientific and mathematical
knowledge through the development of unique cultural forms.
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Chapter 6
Positive Deviance in the Pedagogical
Action of Ethnomodelling

Milton Rosa and Daniel Clark Orey

Abstract An impasse in mathematics education is related to its often lack of
acknowledgment of local mathematical practices in its research theoretical basis.
Pedagogical action of ethnomodelling can aid in recording cultural-historical forms
of mathematical procedures and practices developed by members of distinct cultural
groups. Ethnomodelling adds cultural perspectives to the mathematical modelling
process without attempting to replace academic mathematics during the develop-
ment of this process. Hence, insubordination triggered by ethnomodelling is creative
and often evokes a sense of disturbance that causes conscious review of rules and
regulations endemic to many curricula contexts. This process enables educators and
investigators to use positive deviance to develop pedagogical actions that deal with
content often disconnected from the reality of the students.

Keywords Ethnomodelling · Ethnomodels ·Mathematization ·Method of
cubação · Pedagogical action · Positive deviance

6.1 Initial Remarks

Ethnomodelling is a form of pedagogical action that offers a contrast to traditional
academic curricula by challenging the view that members of local and/or distinct
cultural groups only develop exotic and/or simplisticmathematical ideas, procedures,

1The concepts of creative insubordination (Crowson and Morris 1982), responsible subversion
(Hutchison 1990), or positive deviance (Zetlin et al. 1990) are equivalent as they relate to the
adaptability of rules and regulations in order to achieve the welfare of the members of distinct
cultural groups. However, there are subtle conceptual differences that must be discussed during the
development of investigations.
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techniques, and practices. According to Rosa and Orey (2017), the development of
ethnomodelling is related to the concept of positive deviance1 (Zeitlin et al. 1990)
as it relates to the flexibility of rules and regulations that helps these members to
achieve a deeper understanding of their mathematical thinking and reasoning.

The concept of positive deviance refers to the practices of researchers and educa-
tors that, in an insubordinate, creative, subversive, and responsible way, and with
discernment, are opposed to educational practices that no longer make any real peda-
gogical sense, especially in regard to the educational bureaucracies and traditions of
public policy (Rosa and Orey 2017). This approach refers to actions assumed in
relation to norms and institutional rules that aim at better commitments to the needs
of students who compose the school population.

Researchers and educators who are able to create innovative pedagogical alterna-
tives, such as ethnomodelling, are conscious in relation to the achievement of better
results for the common good of the community that is constituted by their colleagues,
students, parents, and school administrators. In this context, these professionals can
be candidates for positive change in their communities. This action is often in oppo-
sition and, generally, represents a challenge to established authorities and long-held
school traditions, even if they are related to, or cause unintentional exclusion and/or
discriminatory school policies.

For example, a wide variety of mathematical procedures and techniques chal-
lenge primitivist2 views held by members of distinct cultural groups as ideas that
possess mathematical knowledge they use to explain the world around them, navi-
gate, and create remarkable architectural monuments, and to solve problems faced
in their communities. Positive deviance also challenges epistemological stereotypes
most damaging to these members. Thus, a sense of positive deviance becomes an
important source for adaptive transformational capacities by members of distinct
cultural groups that produce non-conformist actions. Its main objective is to modify
these norms and rules by applying inclusion, innovation, creativity, and adaptability
through ethnomodelling (Rosa and Orey 2017).

Positive deviance means that researchers and educators gain awareness about
when, how, andwhy to act against establishedprocedures or guidelines that are unjust,
racist, homophobic, or unfavorable to any member of a school community. This
means that individuals who are positively deviant because they assume that members
of distinct cultural groups are unfinished humanbeingswho take criticality, creativity,
responsibility, and curiosity as the foundation of an ongoing and transformative
process in the production ofmathematical knowledge (D’Ambrosio andLopes 2015).

Ethnomodelling can be considered both a positive and deviant pedagogical action
because it causes a certain disruption to the existing order in academic mathematics
by encouraging and developing the study of the mathematical ideas, procedures,

2Primitivism refers to cultures believed to lack cultural, social, technological, or economic sophisti-
cation or development. Historically, primitivism has been used to justify conquering themembers of
other cultural groups. In cultural terms, primitivism means a deficiency in those qualities that have
been used historically in the Western world as indicators of so-called civilized cultures (Rhodes
1995).

https://en.wikipedia.org/wiki/Culture
https://en.wikipedia.org/wiki/Technology
https://en.wikipedia.org/wiki/Economy
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techniques, and strategies found locally, which includes diverse mathematical prac-
tices that are in accordance with the emic3 perceptions of the members of distinct
cultural groups (Rosa and Orey 2017).

Through ethnomodelling, it is possible to recognize divergent ways, as well as
value the diverse modes that mathematical knowledge is produced by other cultures
and environments (Rosa and Orey 2015). It is necessary to reclaim contributions of
the conquered,minority, ormarginalized peoples in the development ofmathematical
knowledge through the elaboration of ethnomodels in the ethnomodelling process.
Ethnomodelling generates a new respect for diverse forms of mathematical knowl-
edge and assists members of distinct cultural groups in resolving ethical dilemmas
involved in these investigations.

Thus, positive deviance can be triggered by initiating a disturbance that causes a
review of school mathematical knowledge by increasing the potential for growth and
the emergence of new opportunities for the discussion of the nature of the mathe-
matics curriculum. For example, Rosa and Orey (2015) affirm that positive deviance
contributes to the confrontation of taboos toward assumptions suggesting that math-
ematics is a field of study without traditions and cultural roots. Mathematical knowl-
edge is acquired through unequal cultural interactions and conflicts, which reflects
the dynamics of the cultural encounters.

6.2 Aspects of Positive Deviance in Ethnomodelling
Research

Researchers in ethnomodelling have revealed cultural influences in the evolution
of mathematical knowledge through the study of real-life contexts. This approach
helps the analyses ofmathematical ideas, procedures, and practices developed locally
by offering innovative views about the nature of this knowledge (Orey 2000). This
context enables a posture of positive deviance to be developed because the traditional
trajectory of learning, norms, and rules applied in academic mathematics are often
found to be inconsistent with the mathematical knowledge developed in terms of the
local realities, customs, and needs of the learners and their realities. Investigations
in mathematics education have often ignored connections between academic math-
ematical knowledge and the practices developed locally by the members of distinct
cultural groups.

However, in order to reduce the gap between theoretical and practical mathe-
matical knowledge, there is a need for both researchers and educators to look for
possible connections between mathematical practices developed in diverse cultural

3The emic and etic approaches were developed by Pike (1967) from a distinction in linguistics
between phonemic and phonetic. In their original meanings, phonemics refers to examination of
sounds for their meaning-bearing roles in a particular language, while phonetics denotes study on
universal sounds covering all languages.
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contexts and mathematical modelling. The positive deviance aspect of ethnomod-
elling recognizes both the uniqueness and diverse perspectives of members of
distinct cultural groups by emphasizing the relevance of emic knowledge systems
(Rosa and Orey 2015). Unique combinations of geography, climate, language, reli-
gion, politics, economic, and social, cultural, and environmental contexts influenced
the way members of distinct cultures counted, ordered, patterned, measured, and
mathematized and modelled their own realities.

In this regard, Lloyd (2011) suggests the development of actions that search for
creative and innovative solutions to these challenges because research on these prac-
tices can be regarded as a form of resistance toward the imposition of academic
mathematical knowledge and as pedagogical actions, which value the development
of local mathematical knowledge. According to D’Ambrosio (2011), members of
distinct cultural groups, in their search for transcendence and survival, develop expla-
nations for problems they face, as well as they collect information that makes for the
creation of their own myths and mysteries, which help them to explain their socio-
cultural and natural environments by developing cultural artifacts. Ongoing inves-
tigations in ethnomodelling describe the ideas and procedures implicit in locally
developed mathematical practices.

Material representations of reality (artifacts), which are organized in the form
of spirituality, language, procedures, strategies, and techniques, are observable and
can be interpreted by the use of codes and symbols, which are created through
the development of mental images that are shared by these members through the
use of diverse artifacts that help them to constitute their cultural background (Orey
2000). Mathematical artifacts are first generated by the members of distinct cultural
groups who try to both cope and deal with natural, social, economic, political, and
sociocultural environments in order to solve problems, and to explain and understand
mathematical facts and phenomena that occur in their day-to-day life (D’Ambrosio
2011).

In this regard, Rosa and Orey (2017) emphasize the importance of community for
schools, as it seeks to connect academicmathematical practices tomathematics devel-
oped locally. It is necessary that the development of school curriculum be designed
to value and promote the valorization of local knowledge and practices developed
by communities who integrate school contexts. This perspective provides a neces-
sary balance to mathematics curriculum since it integrates cultural components into
the mathematical modelling process. This approach aims at the humanization of
mathematics through the elaboration of contextualized activities by applying the
pedagogical action of ethnomodelling.
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6.3 Land Demarcation: An Example of a Positive Deviance
Ethnomodel

Ethnomodelling proposes a dialogue between local and academic approaches to the
construction of mathematical knowledge through cultural dynamism. The develop-
ment of ethnomodelling processes increases the potential for continual growth in the
debate related to the nature of mathematical modelling and how it relates to culture.
This process enables the development of concepts for positive deviance that offers
a basis for decision-making processes in the elaboration of diverse ethnomodels.
The acknowledgment of local mathematical knowledge as well as its implications
for social justice, cultural empowerment, and political transformation encourages
debate about the true nature of mathematics as it relates to culture and society by
analyzing cultural artifacts (Rosa and Orey 2017).

In this context, Rosa and Orey (2013) discussed an example of land demarca-
tion used by members of the Landless People’s Movement (Movimento dos Sem
Terra—MST ) in Southern Brazil. This “demarcation activity examined the method
of cubação of the plots, which is a traditional mathematical practice applied by the
participants of this movement” (p. 80) Thus, Rosa and Orey (2019) argue that the
daily necessities of these movement members caused them to capture the procedures
of these techniques, showing that, despite their low level of schooling, they were
able to develop procedures and techniques related to the methods of cubação of
land, which is one of the tools they used to solve problems related to the measure-
ment of land with irregular shapes by applying distinct methods to determine this
area.

Thismethodmet the specific needs of themembers of thismovement because they
applied it to determine land areas related to the delimitation of planting sectors aswell
as to demarcate the plot of land of each family in the settlement (Knijnik 1996). The
access to a plot of land and to live and produce on it makes the practices of measuring
the land to be a central activity of the members of this movement, mainly because
of the importance placed on sustainability and planning of agricultural production
(Rosa andOrey 2019). The validation of thismethodwithin agricultural communities
and settlements results from the development of informal agreements of signification
that results from a cumulative process of generation, intellectual organization, social
organization, and diffusion of this knowledge.

For example, mathematical practices investigated in the study conducted by
Knijnik (1993) consisted of a method that was called by her students in the classroom
asAdão’s Method. This chapter presents a further development of this method, which
was briefly described by Rosa and Orey (2013). In this context, Adão, one of the
members of MST movement, explained how to determine his method that transforms
the shape of an irregular quadrilateral into a rectangle (Knijnik 1993):

Well folks, this is the most common formula that is used on the countryside, up there on the
farm, right? And, let’s assume that I am the owner of a crop and I lent this frame here to a
friend to mow and I told him that I will pay three thousand by the fourth. Then, he mowed
this land and he even passed the rope himself to find its area. Then, he measured this wall
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here, 90 metres, the other, 152 metres, 114 metres, 124 meters. Did you notice that there is
no wall, no base, and no height that has the same measure, right? The two landmarks that
are lying down are the bases and the heights are those that are standing up. Ok, so, I did the
following here, right: I added the two bases and divided the sum by 2. I found 138. So, the
base is 138 here and 138 there, understood? So, I have here the two heights, 114 plus 90. I
found 204 and divided it by 2, 102, right? So, now we just need to multiply the base times
height, Ok? I think the answer is 14076 square metres, right? This is the area that he mowed.

According to Rosa and Orey (2019), it is important to state that, during his narra-
tive, Adão used jargons that are specific expressions locally relevant to the members
of MST cultural group, such as:

(a) Walls (paredes) that mean the landmarks of the land.
(b) Frame (quadro) that means the area of a land with a quadrilateral shape.
(c) To mow (carpir) means to clean or to prepare the land for planting.
(d) Fourth (quarta) that means an area measurement used in the Brazilian rural

context, which is equivalent to a quarter of a Paulista bushel used in the state of
São Paulo, Brazil, that measures 24,200 m2.

(e) Pass the rope (passar a corda) means tomeasure the land by using a rope (p. 21).

These terms are the jargons used by these members to describe the procedures of
the development of their local mathematical practices (Rosa and Orey 2019). Table
6.1 shows Adão’s method of determining an area of a land with irregular shape.

The representation of thismathematical practice can be explained by the following
etic ethnomodel procedures: (a) transform the shape of the irregular quadrilateral in
a rectangle the area of which can be determined through the application of the area
formula, (b) determine the dimensions of the rectangle by calculating the average of
the two opposite sides of the irregular quadrilateral, and (c) determine the area of the
rectangle by applying the formula: A = b × h.

According to Rosa and Orey (2013), the “mathematical knowledge of the landless
can be represented by a model that transforms the shape of the given land into a
rectangle of 138 m × 102 m with an area of 14,076 m2” (p. 81). Figure 6.1 shows

Table 6.1 Adão’s method of determining an area of a land with irregular shape (Adapted from
Knijnik 1993, p. 24)

Adão’s explanation (Emic knowledge) Academic explanation (Etic knowledge)

This is a piece of land with four walls This is a convex quadrilateral

First, we add two of the opposite walls and
divide them by two

First, we find the average of two opposite sides

Second, we add the other two opposite sides
and also divide them by two

Second, we find the average of the other two
opposite sides

Third, we multiply the first obtained number by
the second one

Third, we determine the product of the two
average numbers previously determined

That is the cubação of the land This is the area of the rectangle whose sides
are the average of the two pairs of opposite
sides of the convex quadrilateral



6 Positive Deviance in the Pedagogical Action of Ethnomodelling 73

Fig. 6.1 Representation of an ethnomodel that transforms an irregular quadrilateral into a rectangle
(Adapted from Rosa and Orey 2013, p. 81)

a representation of an ethnomodel that transforms an irregular quadrilateral into a
rectangle.

Thus, this mathematical knowledge can be represented by the elaboration of an
ethnomodel that transforms the shape of the given land into a rectangle of 138 m ×
102 m with an area of 14,076 m2.

Area =
(

a + c

2

)
×
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2

)
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(
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2

)
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(
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2

)
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(
276

2

)
×

(
204

2

)

Area = 138× 102

Area = 14,076m2

Indeed, it is relevant here to state that there is historical evidence that the method
of cubação in which a quadrilateral is transformed into a rectangle was used with the
purpose of land taxation in Ptolemaic and Roman periods, as well in ancient Egypt
(Peet 1970). This method is also used in Chile and Nepal, and in the Brazilian states
of Bahia, Pernambuco, Rio Grande do Norte, Rio Grande do Sul, São Paulo, and
Sergipe (Silva 2012). It is also important to state that positive deviance related to
the development of this method was orally transmitted and diffused to MST family
members by their ancestors across generations.

In this context, Knijnik (1996) has affirmed that the method used by Adão is
a mathematical practice that rural workers in Southern Brazil employ in order to
transform irregular figures into regular ones. This method demonstrates procedures
that rural workers in this distinct cultural group employ in order to transform figures
with irregular shapes that represent their land into squares and rectangles, which are
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well known geometric figures. The choice of the quadrilateral geometric shape used
by thesemembers is due to the fact that it is the one that is similar to the configurations
of the agricultural areas in Southern Brazil.

This method is used to calculate the total area of a region, after its occupation,
in order to calculate the amount of money needed to be paid or received for the
cleaning work of the property or for the preparation of the land for planting as well
as the demarcation of areas to be cultivated, to plan, and to delimitate areas for the
construction of houses and shelters for animals. It is important to emphasize that
this method can be related to the development of the positive deviance concept in
the teaching and learning process in regards to the use of local techniques in solving
problems faced by members of distinct cultural groups in their daily lives.

According to Rosa and Orey (2019), mathematical knowledge involved in this
local method is also related to productive activities that members of this specific
cultural group performed in their daily routines. For example, the need for the devel-
opment of cubação of land with irregular shapes was in accordance with its acces-
sibility depending on its topology and the quality of desired agricultural products.
In the study conducted by Knijnik (1993), it was proposed for the elaboration of
curricular mathematics activities related to the demarcation of land with participants
of this movement. These activities were related to the method of cubação of land,
which is a traditional mathematical practice applied by participants of this specific
cultural group to measure and determine the area of the land in their settlements.

It is important to emphasize that positive deviance in the context of ethnomodelling
research refers to behavioral, cultural, political, economic, environmental, and social
changes premised on the observation that when members of distinct cultural groups
confront similar challenges they employ uncommon, yet successful mathematical
ideas, procedures, and strategies that enable them to find solutions to the problems
they face in their own communities (Rosa and Orey 2017).

Consequently, D’Ambrosio (2011) discusses how cultural artifacts provide neces-
sary material tools that help in the development of clothing, shelters, navigation and
defense, and transportation, which have come to assist members of distinct cultural
groups to solve daily problems by using their own scientific and mathematical tech-
niques and strategies. These artifacts are considered as tools, devices, and instruments
of observation.

This is one concrete example of how it is possible to apply localmathematical ideas
in the context of teaching mathematical content. It is important, as well as enjoyable
to seek the construction of effective bridges between the method of cubação of land
and academic mathematics. This context is an example of why we can state that
this approach can be used as a pedagogical action in the mathematics classrooms
in order to help students to (re)discover mensuration relationships by developing
ethnomodels.
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6.4 Final Remarks

The example shared in this chapter has enabled the use of positive deviance in
conducting research in ethnomodelling. For example,mathematical thinking is devel-
oped and used in distinct sociocultural contexts with specific needs and ways of life.
Thus, it is important to analyze the relation between culture and mathematics by
questioning the predominant view that mainstream mathematics is culture-neutral.
It is also necessary that both researchers and educators are willing to, indeed, be
supported in taking risks associated with the decision of exploring local mathemat-
ical knowledge in the formal mathematics curriculum. For example, D’Ambrosio
(2006) affirms that one important pedagogical action for the development of math-
ematical modelling is related to the transformation of mathematics into a living
knowledge that integrates real situations through questionings, analysis, and critical
reflection of phenomena that occur in the everyday life of the students.

This approach can be understood as a fight against the dehumanizing effects of
bureaucratic authority that occurs during the conducting of research and investiga-
tions related to ethnomathematics as a program. By developing systematic studies by
using ethnomodelling, it is possible to comprehend new contexts and perhaps skills
that allow us to observe mathematical phenomena on more inclusive and broader
wavelength (Rosa and Orey 2017). Thus, ethnomodelling can be considered as the
study of mathematical phenomena within a culture, and it differs from the traditional
conception that considers it as the foundations of one kind of mathematics that is
constant and applicable to everyone and everywhere. Mathematics then becomes a
social construct because it is culturally bound.

This chapter discussed concepts of positive deviance from the perspective of
ethnomodelling. This specific form of pedagogical action helps students to over-
come the use of disassociated techniques and formulas often blindly memorized. As
well, it allows them to develop strategies and techniques in order to give access to
diverse mathematical representations in a new formative dimension of the mathe-
matical nature. This pedagogical action transcends physical environments in order to
welcome knowledge and procedures developed in the diverse sociocultural contexts
of students (Rosa and Orey 2015). This approach recognizes that it is in the school
community itself that researchers and educators can easily find didactic elements
of mathematical content necessary in the development of mathematics curriculum
(D’Ambrosio 2006).

In the context of ethnomodelling, positive deviance can be considered as a tool to
combat the dehumanizing effects of curricular and bureaucratic authority by decol-
onizing mathematical ideas, procedures, and practices in a search for peace. For
example, Rosa and Orey (2017) argue that the objective of this deviance is to ensure
that curricular bureaucracies do not disservice students when public policies and
institutional procedures have no real connections within the school communities. In
this regard, positive deviance aims to reduce prejudice, inequity, and harm due to
disconnections betweenmathematical knowledge as practiced in the academy and its
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practical use in everyday life. Ethnomodelling may then lead us to new viewpoints
in the development of mathematical modelling process in order to improve cultural
sensitivity in the development of teaching practices.
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Chapter 7
Models-and-Modelling Perspective
Through the Eyes of Jean Piaget

Serife Sevinç

Abstract Models-and-modelling perspective has produced a genre of activities
called model-eliciting activities. Many researchers addressed American pragmatists
for the evolvement of the central premises of the models-and-modelling perspec-
tive. In this chapter, I focused mainly on Piaget’s theory of cognitive development
as a foundation of this modelling perspective and employed document analysis
that incorporated thematic analysis. In-depth analysis of Piaget’s ideas and models-
and-modelling literature indicated that Piaget’s reflective abstraction and series of
successive approximations supported the cyclic and self-regulatory nature of the
model development that occurred as a series of assimilations, accommodations,
and (dis)equilibrium, in Piagetian terms. Thus, this chapter provided a theoretical
discussion on the epistemological content of self-regulated and collaborative model
development through the eyes of Jean Piaget.

Keywords Models-and-modelling perspective ·Model-eliciting activities ·
Accommodation · Self-regulation · Social interaction · Document analysis

7.1 Introduction

Models-and-modelling perspective is one of the modelling perspectives and catego-
rized under contextual modelling (Kaiser and Sriraman 2006). This perspective is
centered onmodel-eliciting activities in which students develop amodel as a solution
to the given problem and through which the models are elicited. These activities are
constructed using the following six design principles:
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1. reality or personal meaningfulness principle—involving a realistic and mean-
ingful problem situation,

2. model construction principle—requiring the construction of amodel that express
students’ mathematical interpretation,

3. construct share-ability and reusability principle—requiring the construction of
a model that would be shareable with other people and applicable in similar
situations,

4. model documentation principle—encouraging students to document their
evolving ways of thinking,

5. self -assessment principle—asking for self-evaluation and validation of the
model, and

6. effective prototype principle—providing an effective prototype for students’
future modelling processes (Lesh, Hoover et al. 2000).

Model development in these activities requires students to go through several cycles
of expressing, testing, and revising the model. More specifically, these modelling
cycles involve an understanding of the problem situation, developing a mathematical
model as a solution to the given problem, expressing the model via some form of
representations such as tables, graphs, and equations, testing the usefulness of the
model and revising/refining the model if needed (Lesh and Lehrer 2003).

Since model-eliciting activities aim to motivate students to work in groups and
develop a mathematical model that is based on their own resources and competen-
cies rather than authoritative directions (Lesh et al. 2003; Zawojewski et al. 2003),
it was seen in “the realm of psychological concept development” and as possessing
“promising aspects associated with both socio-cultural theories and theories of situ-
ated cognition” (Kaiser and Sriraman 2006, p. 306-307). Furthermore, a number
of researchers investigating models-and-modelling perspective have addressed the
theoretical underpinnings of this perspective (e.g. Lesh and Doerr 2003; Lesh and
Lehrer 2003; Lesh and English 2005; Lesh and Sriraman 2005). According to these
researchers, this perspective evolvedprimarily out of Piaget,Vygotsky, and theAmer-
ican pragmatists such as William James, Charles Sanders Peirce, Oliver Wendell
Holmes, George Herbert Mead, and John Dewey (English et al. 2008; Kaiser and
Sriraman 2006). In this regard, models-and-modelling perspective presuppositions
have been summarized as follows:

• Conceptual systems are human constructs, and so they are fundamentally social in nature
(Dewey and Mead);

• Themeanings of these constructs tend to be distributed across a variety of representational
media ranging from spoken and written language, to diagrams and graphs, to concrete
models, to experience-based metaphors (Pierce);

• Knowledge is organized around experience at least as much as around abstractions—and
the ways of thinking which are needed to make sense of realistically complex decision
making situations nearly always must integrate ideas from more than a single discipline,
or textbook topic area, or grand theory (Dewey);

• The “worlds of experience” that humans need to understand and explain are not static.
Because they are, in large part, the products of human creativity, they are continually
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changing, and so are the knowledge needs of the humans who create them (James)
(Kaiser and Sriraman 2006, p. 306).

Albeit their discussions addressed the theoretical essences, they have drawn a general
rather than a detailed picture (e.g. Lesh and Harel 2003; Lesh and Lehrer 2003). In
this chapter, I intended to provide a theoretical discussion of Piagetian roots serving
as a foundation of the models-and-modelling perspective. Specifically, I addressed
the following research question: What are the Piagetian roots of the models-and-
modelling perspective?

7.2 Methods

For this theoretical investigation, I employed document analysis that incorporated
thematic analysis as a method of qualitative inquiry. Document analysis is a system-
atic and analytical review of printed and/or electronic documents (Bowen 2009).
As Merriam and Tisdell (2016) stated, “[d]ocuments of all types can help the
researcher uncover meaning, develop understanding, and discover insights relevant
to the research problem” (p. 189). Document analysis starts with selecting and orga-
nizing the data that can be “excerpts, quotations, or entire passages” (Bowen 2009,
p. 28) and follows by the analysis of the data that often takes place as content
analysis and/or thematic analysis. Thus, for this investigation, I first carried out a
comprehensive reading of the selected documents, including the books of Piaget
and his followers, to understand Piaget’s ideas in depth. I also examined models-
and-modelling literature to identify fundamental features of this perspective and to
articulate the features that are rooted in Piaget’s theory of genetic epistemology
and cognitive development. Although there are a variety of modelling perspectives
(Kaiser and Sriraman 2006), the scope of this investigationwas limited to themodels-
and-modelling perspective, and therefore the related literature was included in the
data corpus.

To make sense with the size of the data corpus, chapter-sized documents (i.e.
book chapters and/or journal manuscripts) were identified as the units of the docu-
ment analysis. Thus, the data corpus involved 182 book chapters on Piaget’s theory
of cognitive development, and 104 book chapters and 21 journal manuscripts on
models-and-modelling perspective. All the documents in the data corpus were read
several times. The first round of reading resulted in the selection of the relevant
passages and recording them as block quotations into MAXQDA (VERBI Software
2017), a qualitative data analysis software, for coding. The index pages of the books
and keywords for the manuscripts were utilized to identify the relevant passages.
The unit of analysis for coding varied from a single sentence to a paragraph or an
entire document. In other words, in the second round of selective reading, any mean-
ingful unit indicating a characteristic of the models-and-modelling perspective was
identified as a segment to attribute a related code. Then, I grouped the codes into
broader categories through focused coding and then into themes through theoretical
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Fig. 7.1 Coding path of the thematic analysis

coding (Saldaña 2009). This pattern recognition process is the core analytical act
of the researcher in the thematic analysis (Bowen 2009). Figure 7.1 below shows a
simplified version of the thematic analysis path from codes to categories and themes.

In this thematic analysis path, circles and squares represent the codes derived from
Piaget’s theory and the models-and-modelling perspective, respectively. I used the
black-filled squares to indicate the cognitive aspects and the gray-filled squares to
designate both the cognitive and social aspects of themodels-and-modelling perspec-
tive. As seen in Fig. 7.1, this thematization process resulted in four fundamental ideas
of the models-and-modelling perspective, all of which were found to be based on
Piaget’s theory of cognitive development. To triangulate the themes and codes, I
consulted with another researcher who had extensive research experience in both
Piaget’s theory and the models-and-modelling perspective. We discussed the themes
and the codes that produced the themes and resolved the disagreements through a
series of meetings.
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7.3 Piagetian Roots of the Models-and-Modelling
Perspective

According to the models-and-modelling perspective, a model informs teachers and
researchers about students’ cognitive processes that are elicited through their group
work in model-eliciting activities (English et al. 2008), indicating that the modelling
process involves both cognitive and social aspects. During the thematic analysis, I
articulated the following aspects of the model development:

1. Model development has a cyclic and self-regulatory nature.
2. Models are the result of a series of assimilations, accommodations, and

(dis)equilibrium.
3. Modelling involves social interaction that could cause accommodation in the

models.
4. Modellers are cognizant problem solvers.

Considering Piaget’s assertion of experience and social transmission as two of
the four basic factors (along with maturation and equilibrium) in explaining chil-
dren’s knowledge formation (Piaget 1964), these aspects were found primarily based
on Piaget’s theory of genetic epistemology and cognitive development. Thus, the
following sections present the results of the document analysis; that is, histori-
cally, philosophically, and theoretically important ideas in themodels-and-modelling
perspective, through the eyes of Jean Piaget.

7.3.1 Modelling as a Series of Assimilations
and Accommodations

This section presents the first two aspects listed above; that is, model development is
a cyclic and self-regulatory process and involves a series of assimilations, accommo-
dations, and (dis)equilibrium. Lesh and Lehrer (2003) pointed out Piaget’s view that
complex conceptual systems are formed using primitive-level systems. However, to
reach a complex level system, simply gathering lower-level systems is not sufficient.
Instead, it requires evaluating the fitness of a variety of systems and reorganizing them
through reflective abstraction (Piaget 1977/2001). This continuous self-evaluation
has roots in Piaget’s notion of reflective abstraction (Piaget 1970). Piaget (1985)
explained reflective abstraction as follows:

Reflective abstraction includes two indissociable activities. One is “reflecting” or projecting
onto a higher level something borrowed from a lower level… The other is more or less
conscious “reflexion” in the sense of cognitive reconstruction or reorganization of what is
transferred. (p. 29)

Both ways of reflective abstraction are related to cognitive development involving
“reorganization” of concepts and “reconstruction” of the ones that were already
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present in the conceptual structure. Similarly, in the models-and-modelling perspec-
tive, conceptual changes occur when an existing conceptual structure fails to fit a
new experience (Lesh and Lehrer 2003). Students start model building with intuitive
and primitive level conceptual systems and then develop new systems:

…, emergent properties at higher-level systems evolve from (and are reflectively abstracted
from) systems of interactions at more primitive/concrete/enactive/intuitive levels; and, these
conceptual reorganizations occur mainly when models fail to fit the experiences they are
intended to describe, explain, or predict. (Lesh and Lehrer 2003, p. 120)

When problem solvers realize the inadequacy of their models, they feel the pertur-
bation or disequilibrium, in Piagetian terms, which motivates them to continue to
revise and refine their models until they overcome the disequilibrium. During this
process, problem solvers experience a series of what Piaget called assimilation,
accommodation, disequilibrium, and equilibrium in successive modelling cycles.
As Inhelder et al. (1974) explained, “Piaget holds that objects can only be known by
a series of successive approximations constructed by the subject through his various
activities” (p. 6). Piaget’s “series of successive approximations” parallel with the
series of modelling cycles of expressing, testing, revising, and refining, and the activ-
ities ensuring the continuity ofmodelling cycles rely on the self -assessment principle
of the model-eliciting activities. Lesh and Doerr (2003) expressed the importance of
this principle as follows:

… students themselves must be able to judge the relative usefulness of alternative ways of
thinking. Otherwise, the problem solvers have noway to know that theymust go beyond their
initial primitive ways of thinking; and, they also have no way of judging the strengths and
weaknesses of alternative ways of thinking—so that productive characteristics of alternative
ways of thinking can be sorted out and combined. (p. 18)

Thus, it is not surprising to articulate that continuous modelling cycles are aligned
with the continuous knowledge development proposed by genetic epistemologists:

For genetic epistemologists, knowledge results from continuous construction, since in each
act of understanding, some degree of invention is involved, in development, the passage from
one stage to next is always characterized by the formation of new structures which did not
exist before, either in the external world or in the subject’s mind. The central problem of
genetic epistemology concerns themechanism of this construction of novelties which creates
the need for the explanatory factors which we call reflective abstraction and self-regulation.
(Piaget 1970, p. 77)

Likewise, the model development process includes expressing ideas, testing, and
revising them based on the feedback from the continuous self-evaluations. There-
fore, models-and-modelling perspective views the modelling process as interacting,
self-regulating, and continually adapting (Lesh, Lovitts et al. 2000), and perceives
the problem solvers as evolving, self-regulating, and adapting organisms (Lesh
and Lovitts 2000). Von Glasersfeld (1995) affirmed the cyclic and self-regulatory
nature of thought development through assimilation and accommodation: “As Piaget
himself has occasionally suggested, action schemes are like feedback loops, because
their inherent dual mechanism of assimilation and accommodation make them self-
regulations and therefore circular in that specific sense” (p. 73). Thus, the cyclic and
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self-regulatory nature of themodelling process, as well as the continuity ofmodelling
cycles during model construction, have foundations in Piaget’s theory of cognitive
development.

7.3.2 Modelling Involves Social Interaction as Well
as Cognition

This section presents Piagetian foundations of the latter two aspects of the models-
and-modelling perspective that were drawn from the thematic analysis. These two
aspects consider the modelling as involving social interaction that could cause
accommodation and the modellers as cognizant problem solvers.

Smith (1996), a Piagetian researcher, argued that “social experience is stated to be
necessary—but not sufficient—for intellectual development from cradle to the grave”
(p. 110). Not only his followers but also Piaget, himself, addressed the role of social
interaction in cognitive development even though his theory has often been criticized
for the lack of a specific social component. As von Glasersfeld (1995) stated, “Piaget
has stressedmany times that themost frequent cause of accommodation is interaction,
and especially linguistic interaction, with others” (p. 66). Doise (1985) also pointed
out that social interaction is a cause of “socio-cognitive conflict” and subsequent
accommodation that is a component of the modelling process, as mentioned in the
above section.

Similarly, Brown et al. (1996), Piagetian researchers, explained the role of social
interaction in producingperturbations: “The conflict arising fromgroupdisagreement
creates disequilibrium and the resulting adjustment to this state is a primary cause
of cognitive development” (p. 146). Piaget (1962) emphasized that not only hearing
other people’s ideas but also understanding the differences among ideas can trigger
accommodation:

… if an individual A mistakenly believes that an individual B thinks the way A does, and if
he does not manage to understand the difference between the two points of view, this is, to
be sure, social behavior in the sense that there is contract between the two, but I call such
behavior unadapted from the point of view of intellectual co-operation. (p. 8)

Piaget called the communication that builds intellectual cooperation as a social-
ized speech that involves cognitive position-taking. This position-taking, which
entails understanding and evaluating each other’s perspectives, is also a key element
in modelling cycles because collaborative work on model-eliciting activities allows
for entertaining different perspectives, selecting the most appropriate and the most
useful ideas, eliminating irrelevant ideas, and combining the relevant ones (Lesh
and Carmona 2003; Lesh and Yoon 2004). As Zawojewski et al. (2003, p. 342)
stated, “by placing our discussion of small group work in the context of model-
eliciting activities, we can focus on understanding the processes that lead to the
potential for mathematical power in collaboration.” This mathematical power is
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enhanced by peer interaction during the work of understanding each other’s perspec-
tive because each student brings his/her own potential. Furthermore, thinking from
different perspectives and/or being challenged by others and other situations serve
for the construct share-ability and reusability principle of model-eliciting activi-
ties. To produce models that are shareable with other people and applicable in other
situations, modellers need to consider different perspectives and different situations,
which could be achieved by welcoming group members’ ideas and taking them into
account during the model development. Thus, Piaget’s views about the role of indi-
viduals’ communication with others in cognitive development set a foundation for
small-group model development in the models-and-modelling perspective.

Given the centrality of language in human communications, Piaget commented
that “one of the ways in which environment influences cognitive development is
through language” (Inhelder et al. 1974, p. 17). Language has a central role in cogni-
tive development because it is the tool used by “the mind of the thinker,” in not only
interpersonal communication (with others) but also one’s intrapersonal communi-
cation. On the one hand, the power of the small-group work in the models-and-
modelling perspective signifies the role of language in one’s interpersonal commu-
nication with others. On the other hand, language as a tool in one’s intrapersonal
communication indicates that the modelling process demands a cognizant problem
solver who experiences a series of accommodations toward a particular goal given in
the real-life modelling problem. Piaget (1959) also mentioned that cognitive devel-
opment is a conscious goal-directed activity, and the language plays a significant role
in that activity:

Directed thought is conscious, i.e. it pursues an aim which is present to the mind of the
thinker; it is intelligent, which means that it is adapted to reality and tries to influence it; it
admits of being true or false (empirically or logically true), and it can be communicated by
language. (p. 43)

Similarly, the models-and-modelling perspective describes mathematical models
by emphasizing the purposeful nature of problem-solving:

Mathematicalmodels are conceptual systems that are: (a) expressed for some specificpurpose
(which John Dewey referred to as an “end-in-view”), and (b) expressed using some (and
usually several) representational media. (Lesh and Lehrer 2003, pp. 111–112)

Therefore, the language mediates the modelling process toward a particular goal,
and the use of language both depends on and is limited with the cognizant modellers.
Because of the primary role of the subject, Piaget’s theory has been characterized
as “the child’s theory of mind,” referring to children as active seekers of knowl-
edge through constructing ideas within their social world (Brockmeier 1996). Von
Glasersfeld also described Piaget’s conceptualization of knowledge as “the organi-
zation of the experiential world, not the discovery of ontological reality” (p. 18), in
which the organization involves a series of modifications and transformations of the
cognizant subject.

Language plays an essential role both in Piaget’s cognitive development and in the
models-and-modelling perspective. It is because, on the one hand, it functions as a
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purposeful tool of the cognizant problem solver in model development as mentioned
above, and on the other hand, it functions as a tool used to express the models that
are sharable and re-usable. Models-and-modelling researchers described the models
as conceptual systems that are developed and expressed through media (Lesh and
Doerr 2003; Lesh and Lehrer 2003). The media used to express a model could be in
the form of spoken language, written language, diagrams, graphs, or any concrete
models, or any way of expressing ideas. Language is thus one of the most important
resources for collaborative model development, model documentation, and model
share-ability and reusability (Lesh, Hoover et al. 2000).

7.4 Conclusion

This chapter provided a document analysis indicating that Piaget’s theory of cogni-
tive development provided a robust foundation for the cognitive and social aspects of
the modelling process. Specifically, during the model development, problem solvers
work in groups, interact and communicate with others, and experience a series of
assimilations, accommodations, and equilibrium. Modellers create communities of
mind that invite different perspectives to the model development process. Not only
interaction with others but also self-assessment and self-regulation aspects of the
modelling contribute to cognitive development. Thus, this chapter provided a theo-
retical discussion on the epistemological content of self-regulated and collaborative
model development in the models-and-modelling perspective through the eyes of
Jean Piaget.

I consider this chapter as one of the steps in deepening the epistemological under-
standing of the models-and-modelling perspective, and therefore found worthwhile
to inquire about the links between this modelling perspective and Piaget’s theory of
cognitive development. Such investigations are important to understand the theoret-
ical orientation of modelling-based research that is strongly related to educational
psychology. However, this investigation was limited to accessible documents that
articulated Piaget’s theory of cognitive development. Therefore, incorporating other
theories such as Vygotsky’s socio-cultural theory of development and carrying out a
comparative analysis would extend the epistemological understanding of themodels-
and-modelling perspective. While this can be one path for future research, another
one can be articulating the epistemological roots of other modelling perspectives,
which will open a gateway to the exchange of knowledge within the community of
mathematical modelling researchers from East to West.
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Chapter 8
Influence of Social Background
on Mathematical Modelling—The DiMo+

Project

Ilja Ay and Friederike Ostkirchen

Abstract Educational success in Germany is—compared to many other coun-
tries—strongly determined by social background. Therefore, teachers and educa-
tion systems need to consider these social disparities. Naturally differentiating tasks
may help to create learning environments, where students themselves decide on the
difficulty of their approach and benefit from on their individual level. Especially
mathematical modelling tasks have a strong potential considering their authentic use
of extra-mathematical content. Still, there seem to be different patterns of action
in modelling among students of different social backgrounds. The aim of this pilot
study of the project Diversity in Modelling (DiMo+) is to analyse individual charac-
teristics of 15-year-old students in terms of social background and show how their
handling of modelling tasks differs. This chapter presents the operationalization of
social background and first video analyses.

Keywords Mathematical modelling ·Mathematical performance · Natural
differentiation · PISA · Qualitative content analysis · Social background

8.1 Introduction

PISA and many other studies have shown relations between mathematical perfor-
mance and the social background of children (e.g. Organisation for Economic Co-
operation and Development [OECD] 2013). Comparing German children frommore
and less privileged parental homes the Institute for Quality Development in Educa-
tion (IQB) found a discrepancy of three years between those two groups regarding
their mathematical competencies (Pant et al. 2013). In his international meta-study,
Hattie (2008) found that socio-economic status plays an important role in students’

I. Ay (B) · F. Ostkirchen
University of Münster, Münster, Germany
e-mail: i.ay@wwu.de

F. Ostkirchen
e-mail: f.ostkirchen@wwu.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
F. K. S. Leung et al. (eds.), Mathematical Modelling Education in East and West,
International Perspectives on the Teaching and Learning of Mathematical Modelling,
https://doi.org/10.1007/978-3-030-66996-6_8

93

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66996-6_8&domain=pdf
mailto:i.ay@wwu.de
mailto:f.ostkirchen@wwu.de
https://doi.org/10.1007/978-3-030-66996-6_8


94 I. Ay and F. Ostkirchen

learning (d = 0.52). Since the effect size, d, is higher than 0.4, Hattie refers to
socio-economic status as being within the “zone of desired effects”, which repre-
sents the zone of greatest importance. Thus, students’ school success depends on the
income, education level and profession of their parents. Considering these findings
and that “families from different social classes are not equally equipped to support
their children’s learning” (Calarco 2014, p. 25), it stands to reason that the OECD
(2016) concludes that the “Socio-economic heterogeneity in student populations
poses another major challenge for teachers and education systems” (p. 63).

Hence, the educational system needs to create conditions that reduce social dispar-
ities, to give all children opportunities to benefit from their school education.Oneway
is to differentiate in mathematical teaching such that it is manageable for teachers.
Therefore, tasks are crucial that can be solved “by using different processes or strate-
gies but also […] allowing for students at different stages […] to benefit” (Small
2017, p. 7) from them. These tasks transfer the responsibility and opportunity of
differentiation to the students naturally since they decide on the complexity of their
approach (Krauthausen 2018). Modelling tasks might fulfil these characteristics.

Yet, it is little studied how social background influences students’ modelling of
real-world problems and thereby, partly contradictoryfindings emerge.WhileCooper
and Dunne (2000) point out that socio-economic status is more strongly related to
the resolution rates of items with realistic content than to the resolution rates of
purely mathematical items, Schuchart et al. (2015) could not confirm these findings.
Concerning the handling of modelling tasks, according to Cooper and Dunne (2000)
students from less privileged homes tend to get stuck in context and thus overlook
the mathematical core of the task. These students seem to overemphasize everyday
experiences. Whereas according to Leufer (2016) these students tend to use offi-
cial methods (e.g. formulas) to resolve uncertainties. Thus, they are more likely to
overemphasize the mathematical context. What the studies have in common is that
these students tend to make wrong decisions, with regard to the intended scope of
use of mathematics, when processing modelling tasks.

The investigation being reported focusses on this issue to connect—and to
contribute to—the debate on social background and mathematical modelling. First,
the concept of social background and its determination will be presented. After-
wards, mathematical modelling and the modelling task used will be explained with
regard to the German Educational Standards (KMK2003). This chapter aims to illus-
trate a statistically safeguarded operationalization of social background and presents
connections between education, occupation and wealth of parental homes within the
given sample. Furthermore, first tendencies will be presented of how students with
different social backgrounds handle mathematical modelling tasks.
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8.2 Theoretical Background

According to Bourdieu’s habitus (1984), social background summarizes opportuni-
ties, restrictions, preferences and aversions, which were internalized during child-
hood. Hence, certain resources and values are firmly anchored in identities and,
thus, lead to various ways of thinking. As a consequence, typical approaches and
behaviours during modelling processes may occur. Identifying these could thus
lead to new ways of dealing with social, cultural and economic diversity. However,
social background is a broad theoretical concept (OECD 2016), which cannot be
queried comprehensively. Hence, it will be reduced to the quantifiable PISA Index
of Economic, Social and Cultural Status [ESCS] (OECD 2017).

8.2.1 ESCS—Index for Economic, Social and Cultural Status

The ESCS is a composite score built by three indicators (OECD 2017): (1) The Inter-
national Socio-Economic Index of Occupational Status (ISEI), (2) the Index for the
parental education in years of schooling (PARED) and (3) the Index of home posses-
sions (HOMEPOS). Figure 8.1 visualizes the computation of the ESCS through the
example of Linda (see also Sect. 8.4.2).

Linda’s father is a medical doctor. To compare his occupation with others, it is
transferred into the ISEI measure. The ISEI captures the socio-economic status of an
occupation by putting it on a one-dimensional hierarchical scale (Ganzeboom et al.
1992). This measure focusses on knowledge, expertise and income and is scaled
from 10 (e.g. kitchen helper) up to 89. Linda is attributed 89 as highest ISEI of
her parents (HISEI) since her mother is a nurse (ISEI: 48). Secondly, in order to
find indicators for the education level of her parents, “education programmes and
related qualifications” (OECD et al. 2015, p. 9) are scaled. For every country, school
education and vocational training are coded differently into the PAREDby estimating
the parental number of years of schooling (OECD2016). Since one of Linda’s parents
holds a university degree, her PARED yields 18 in Germany (OECD 2017, p. 435).
Thirdly, the students are asked about several home possessions. It is believed that
data about household possessions “capture wealth better than income, because they

Fig. 8.1 Computation of ESCS through the example of Linda (based on OECD 2017, p. 340)
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reflect a more stable source of wealth” (OECD 2005, p. 283). The HOMEPOS is
an index for the equipment of the parental home. Included are cultural, educational
and other home possessions (OECD 2017). On this basis, the person parameters can
be estimated on a one-dimensional dichotomous Rasch Model to obtain a metrical
measure for the home possessions (Warm 1989). After standardizing the indicators
HISEI, PARED and HOMEPOS, so that the population has average scores of zero
and standard deviations of one, the ESCS can be constructed via principal component
analysis [PCA] (e.g. Izenman 2008). Overall, the ESCS “is judged to be a valid and
comprehensive index of social background” (Ehmke and Siegle 2005, p. 1).

The research aims to combine these thematic areas and find new ways of dealing
with this diversity. As pointed out in Sect. 8.1, modelling tasks have the potential to
address this diversity, therefore, mathematical modelling will be presented briefly.

8.2.2 Mathematical Modelling

As one of six general competencies described by the German Educational Standards
(KMK 2003), mathematical modelling requires students to translate a situation into
mathematical terms, structures and relations, to work within the respective mathe-
matical model and to interpret and check results with respect to the corresponding
situation. Modelling tasks are reality-related and initiate these activities. Addition-
ally, good modelling tasks should contain relevant problems for students’ daily life
or future. They should include authentic use of extra-mathematical context andmath-
ematics in the particular situation and, furthermore, should be open, that is to say,
allow multiple possible solutions (e.g. Maaß 2010).

An example of a modelling task used in the study is the Fire brigade Task (see
Fig. 8.2). The decisive factor in this modelling task is, that there is more information
given than necessary to solve the task. Students have to decide, which information
is imported for the solution. The task can be solved, for instance, with Pythagoras’
Theorem.

8.3 Design and Method

The pilot study of the DiMo+ project explores the following research questions:

Q1: Can the ESCS be constructed statistically safeguarded within this sample?
Q2: How does the handling of modelling tasks among students differ in terms of
social background?

This study was conducted in the summer of 2019. Sixty-four students, as well
as their parents, participated in the survey. The participants from two different high
schools were, on average, 15.3 years old. Moreover, both, the students and their
parents completed questionnaires, querying indicators of their social background (see
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Fire-brigade
In 2004, the Munich fire-brigade got a new 
fire engine with a turn-ladder. Using the 
cage at the end of the ladder, the fire-
brigade can rescue people from great 
heights. According to the official rules, 
while rescuing people, the track has to 
maintain a distance of at least 12 metres 
from the burning house.
The technical data of the engine
Engine model:
Construction year:
Power:
Capacity:
Dimensions of the engine:
Dimensions of the ladder:
Weight of unloaded engine:
Total weight:

Daimler Chrysler AG Econic 18/28 LL – Diesel
2004
205 kw (279 PS)
6374 cm³
length 10m; width 2.5 m; high 3.19 m
30 m length
15540 kg
18000 kg

From which maximum height can the Munich fire-brigade rescue persons with this engine?

Fig. 8.2 Modelling problem Fire brigade (according to Schukajlow et al. 2015)

Fig. 8.1). From this sample, eight students participated in a video study. Four students
were selected according to their ESCS,whereby twowere from theupper quartile, one
from the middle quartiles and one from the lower quartile. These students were free
to choose a partner and then, four pairs were filmed while solving the modelling task
Fire brigade (see Fig. 8.2). The basis for the data evaluation isMayring’s (2014) qual-
itative content analysis. Here, the deductive category system for the analysis of the
processes is based mainly on the following modelling sub-competencies according
to Blum and Leiss (2007): understanding, simplifying/structuring, mathematizing,
working mathematically, interpretation, validation and presenting.

8.4 Results

The following subsections will present the determination of the ESCS in the
conducted study and, subsequently, first quantitative and qualitative results.

8.4.1 Determining the ESCS

For measuring the HOMEPOS the students were asked about 17 possessions in
their home environment, based on PISA and IQB studies (among others OECD
2017). Conducting reliability analysis and a PCA, the most important independent
factors were extracted. The Kaiser–Meyer–Olkin Test (KMO= 0.56), the significant
Bartlett’s Test of Sphericity (p < 0.001) and MSA > 0.5 for each variable indicate
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Table 8.1 Factor loadings and reliability [Cronbach’s alpha (1951)]

Hisei Pared Homepos reliability

Factor loadings [this survey] 0.89 0.80 0.75 0.75

Factor loadings [Germany] (OECD 2017, p. 340) 0.83 0.81 0.74 0.70

a good factor analysis (Hartas 2010). After removing five critical items, the person
parameters of the home possessions were estimated for every participant (Warm
1989). Andersen’s (1973) Likelihood Ratio Test evidenced the validity of the Rasch
Model (LR value = 19.01, p = 0.061). For determining the estimated number of
years of schooling (PARED), the parents were asked about their school education
and their vocational training. The professions of the parents were queried in the
student’s as well as in the parent’s questionnaire by asking them to describe the
parental professions in detail. This double-check helped coding the professions into
the socio-economic status ISEI (Ganzeboom 2010). Comparing 48 coded descrip-
tions of occupations the Intra-Class-Correlation (0.973) indicated excellent relia-
bility (Koo and Li 2016). Thus, the highest socio-economic status of the parents
(HISEI) can be interpreted purposefully and statistically safeguarded. In this popu-
lation it yielded approximately 54 on average, which, for example, corresponds to
trade brokers or police inspectors (Ganzeboom 2010).

Finally, the Index for Economic, Social and Cultural Status (ESCS) was deter-
mined via PCA of the three z-standardized variables (Izenman 2008). This analysis
retained one factor, including all three components, which accounted for 66.8% of
the total variance. The factor loadings were close to each other and thus, of similar
importance for the construction of the ESCS and they, furthermore, deviated only
slightly from the loadings of the German population (see Table 8.1). The determined
standardized ESCS scores lie within a range of−3.07 and 1.54. ESCS scores higher
than 0.74 were assigned to the upper quartile and scores lower than −0.79 to the
lower quartile.

Comparing those variables in this survey, the HISEI correlated strongly with the
PARED (r = 0.61, < 0.001; Cohen 1988) and the HOMEPOS (=0.50, <0.001).
There was also a moderate correlation between the HOMEPOS and the PARED (r =
0.33, p < 0.001). Thus, students—whose parents work in skilled occupations—had
on average more cultural and educational possessions in their home environment
and were wealthier. Most of these socio-economically advantaged students (highest
25% of the population) had highly educated parents with 87% completing at least
university level tertiary education.

8.4.2 Video Analysis

Eight students participated in the video study. All of them read the task, identified
what they considered to be important information, mathematized their real model
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Fig. 8.3 Student solutions: a Christine and Linda. bMark

using Pythagoras’ Theorem and worked mathematically. Two student pairs drew a
real-world sketch (realmodel) aswell as an inner-mathematical sketch (mathematical
model). These students developed an adequate mathematical model by setting up the
term of Pythagoras’ Theorem correctly and considering the height of the fire brigade
vehicle (see Fig. 8.3a). The other students did not draw a sketch and additionally
developed a wrong mathematical model (see Fig. 8.3b). Exemplarily, two solutions
will be presented briefly.

Christine (ESCS: 1.52) and Linda (ESCS: 1.37) approached the problem after
reading the given information by selecting important data such as height, length and
width of the vehicle and the length of the ladder. Their first sketch plotted elements of
the real world (such as the house, the ladder and the fire vehicle) based on Pythagoras’
Theorem. By drawing the sketch, they discussed which length was unknown and that
the height of the vehicle had to be added in the end. Afterwards, they identified the
right angle and confirmed their decision to use Pythagoras’ Theorem. During this
mathematization, they also converted the information into an inner-mathematical
sketch of a triangle to identify the sides and the hypotenuse. The following fragment
of the transcript shows a validation of their solution.

Christine: About 20 Point …
Linda: 396.
Christine: Okay, great. And well … eh … shall we just write down the answer?

Linda: Yeah. Let’s do it.
Christine: Well it … wait. May I have a look?
Linda: Ah! Plus the height of the vehicle.

They validated, that they have calculated the height of the house without the
vehicle height and, therefore, summed up their solutions.

After reading the task, Mark (ESCS: −1.72) immediately started a process of
mathematization by deciding to use Pythagoras’ Theorem. He did not draw a sketch,
rather he developed the term of Pythagoras’ Theorem by using the formula. Without
any discernible considerations, he indicated values for the formula. Itmaybe assumed
that he has not developed an adequate situation model of the real-world problem.
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Afterwards, he explained his solution to a classmate (ESCS: 0.12) and noticed his
mistake:

I did it completely stupid, because … OK, I notice my mistake. I have looked wrong, and
instead, the length of the ladder would have been 10 m and I have not seen, that the length
of the ladder is 30 m. (Mark)

His classmate groaned and they consensually decided to take the wrong solution
anyway.

8.5 Discussion and Conclusion

First quantitative analysis of the questionnaires shows, that the socio-economic status
can be determined from descriptions of occupations, with good inter-rater reliability.
Thereby, querying parents and students turned out to be useful to extract the most
important information. Also, the ESCS could be constructed statistically safeguarded
via PCA, whereas the factor loadings of the three components HISEI, PARED and
HOMEPOS are similar to the German populations’ (see Table 8.1) and, summarized
in a single factor, accounted for 66.8% of the total variance. For this population,
it could be shown, that parental occupations and home possessions are strongly
connected. FollowingZhu (2018), the results show thatmost parentswith high skilled
occupations are highly educated as well. Also, students from socio-economically
advantaged families have better access to cultural and educational resources in their
home, as stated by Calarco (2014).

Within this sample, exploring students’ processes showed that students who did
not drawa sketch developed awrongmathematicalmodel (see alsoRellensmann et al.
2017). Regarding modelling sub-competencies, these students were more likely to
begin a process of mathematization after reading the task instead of communicating a
spatial idea of the problem. The analysis suggests that these weremore often students
from less privileged parental homes. Therefore, findings, that children from less
privileged homes tend to argue non-formally referring to their everyday life (Cooper
and Dunne 2000), have not become apparent (yet). Rather, only students from more
privileged homes drew real-world sketches as well as inner-mathematical sketches.
The findings rather support the assumption that students from less privileged homes
were more likely to look for the “right” formula to solve the task compared to their
more privileged peers. Considering these results, it may rather be presumed that less
privileged students tend to overemphasize the inner-mathematical context, as Leufer
(2016, p. 242) pointed out.

However, some limitations of the study need to be considered. Within this pilot
study, analyses of four modelling processes only allow the drawing of tendencies
so interpretations of preliminary results should be viewed with great caution. More-
over, there is no evidence that the patterns of action found can be traced back to
social background. Therefore, a standardized mathematics achievement test should
be carried out, to take the impact of achievement into account. Also, a larger sample
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allows better monitoring of gender-specific patterns of action. Further, this requires
a stringent selection of the sample with pairs as homogeneous as possible in terms
of social background. For future surveys, students should be given possible partners
with similar ESCS and similar mathematics achievement from which they can then
choose. That way the advantages of free choice of partners can be combined with the
advantages of homogeneous groups and the impact of achievement can be controlled.

Nevertheless, this study shows the need to address social disparities in mathemat-
icalmodelling. First analyses suggest that there could be different patterns of action in
modelling among students of different social backgrounds. Analysing these patterns
could help to reduce social disparities in mathematics education, such as through
targeted interventions and awareness-raising among teachers. To give one example,
Hoadley (2007), among others, suggests beingmore explicit about evaluation criteria
to promote the participation of all students. To explore connections between perfor-
mance, social background and the way of dealing with modelling tasks, taking also
natural differentiation into consideration, more investigations are necessary and will
be presented in the future.
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Chapter 9
Mandatory Mathematical Modelling
in School: What Do We Want
the Teachers to Know?

Rita Borromeo Ferri

Abstract Defining mathematical modelling as mandatory content within school
curricula is taking place in many countries around the world. Teacher education in
modelling is necessary so that modelling lessons can be realized in schools. Within
the international discussion, one finds best practice examples of teacher education
in modelling, which differ concerning regional, national and cultural aspects. What
do we want the teachers to know? This chapter sheds light on this difficult ques-
tion. The aim is mainly to present the historical development of teacher education
in mathematical modelling. In addition, an empirical study on measuring teacher
competencies for mathematical modelling is presented. This is followed by a case
study, which gives insight into the views of university educators after teaching a
mathematical modelling course and their opinion as to what teachers need to know.

Keywords Assessment · Comparative study · Historical overview ·Modelling
course ·Modelling teaching competencies · Teacher education

9.1 Introduction

Mathematical modelling in the sense of Pollak (1969), that means linking mathe-
matics to real world situations and problems, is presently a strong and internation-
ally well-recognized research field in mathematics education. This becomes evident
through various international groups and research programs such as the Interna-
tional Conference on the Teaching of Mathematical Modelling and Applications
(ICTMA), the Congress of European Research inMathematics Education (CERME)
or the International Congress onMathematical Education (ICME). Also, it is evident
through regional meetings, for example, in Latin America, the modelling and tech-
nology strand within the framework of the Latin American Meeting of Educational
Mathematics (RELMEin Spanish).
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Furthermore, this is clearly a result of the strong research discussion, modelling is
seen as a necessary practice for learning mathematics and it helps to prepare students
for their daily and professional lives (see, e.g., Hernandez-Martinez and Vos 2018).
Thus, in some countries earlier (e.g. Germany) and in some more recently (e.g.
South Korea), educational policy makers have decided to implement mathematical
modelling as amandatory part of the school mathematics curriculum. This represents
a great success but at the same time presents a challenge. Far more than before it
becomes clear that we need teachers who are able to teach quality mathematical
modelling with professionalism. What do we want the teachers to know?

This chapter tries to shed light on this difficult question. At first, the historical
development on teacher education in mathematical modelling is discussed. This
overview shows that it took a long time before today for teacher education in
mathematical modelling, and competencies for teaching mathematical modelling,
to become an explicit focus for research.

But what is meant by teaching competencies for mathematical modelling? There
is currently no general characterization for the term “teaching competencies for
mathematical modelling”. However, based on current studies (Borromeo Ferri 2019;
Klock et al. 2019), the competencies for teaching mathematical modelling would
include Pedagogical Content Knowledge (PCK) (e.g. Ball et al. 2005) for modelling.
These are expressed as dimensions or facets in current models, for example, knowl-
edge about themodelling cycle, diagnostics, assessment, knowledge aboutmodelling
tasks and their development, planning and conducting modelling lessons or teacher
interventions. Furthermore, teaching competencies for modelling are not the same
as modelling competencies. According to Blomhøj and Jensen Højgaard (2007),
modelling competency is the ability to construct and to use mathematical models by
carrying out appropriate steps, as well as to analyse or to compare given models.
Without going into discussion about modeling competency at this point, it quickly
becomes clear that modeling competency is a part of the teaching competencies to
be acquired.

In Sect. 9.2, an empirical study is shown as an example of a current research
emphasis, in which the teaching competencies for mathematical modelling were
assessed before and after a university course. The development and the evaluation of
university courses and workshops for teaching modelling have been dealt with in the
past 20 years within the modelling discussion. However, there was little knowledge
gained about how and whether one can measure teacher competencies for modelling.
The empirical study presented in this chapter is therefore, amongst other things, a
way of showing which teacher competencies for mathematical modelling are seen
as necessary and which instruments can be used to measure these competencies.

In addition to the measurability of teacher competencies for modelling, there is
the fundamental question of how teaching at university should be designed so that
teachers are appropriately educated for the implementation of quality modelling in
school. Therefore, when an overview of research in mathematical modelling teacher
education is presented in the second section of this chapter, the term “teacher educa-
tion” is clarified in terms of the chapter focus. Many years ago, Allen (1940) indi-
cated that terms like teacher education and teacher training refer to the policies and
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procedures designed to equip (prospective) teachers with the knowledge, attitudes,
behaviours and skills required to perform their tasks effectively in the classroom,
school and wider community. This kind of definition is used by the author as a basis
by specifying this for mathematical modelling:

Teacher education or training in mathematical modelling means to equip (prospective)
teachers with knowledge and competencies that they require to teach modelling qualitatively
and effectively in school, which include Pedagogical Content Knowledge for modelling.

If prospective teachers at university are to be adequately trained to teach math-
ematical modelling, then also good lecturers are needed. So far, there is not much
empirical evidence about the views of lecturers, what prospective teachers and educa-
tors of the educators should be able to do, and how they subjectively assess such
outcomes after their modelling course. This important aspect rounds off the chapter,
in which a case study with university educators from Germany, Spain and Japan is
presented. This qualitative study gives insight into the level of achievement of some
competencies for teaching mathematical modelling, which the university educators
consider to be particularly important. Finally, to end the chapter, an outlook on further
research in teacher education in mathematical modelling is presented.

9.2 Historical Overview—Teacher Education
in Mathematical Modelling

Learning and teaching go hand in hand, and thus one can assume that research
on teacher education should always and automatically be a part of both from the
beginning. In order to confirm this hypothesis to a certain degree for the field of
mathematical modelling education, an analysis of ICTMA proceedings in particular
(but also of journals like ZDM) was conducted. The goal was to find studies that deal
with research on developed courses and research on the development of courses for
teaching mathematical modelling for prospective and practicing teachers. Further-
more, studies were sought that show, based on reliable test instruments, the degree
of learning success of the teachers after a course in mathematical modelling.

Because research on teacher professionalism in modelling up to the present day is
a long-term development process, achievements are made transparent by considering
three time periods. The first before the year 2000, the second from then until 2019,
while the third offers an outlook for possible future research topics in this field. The
justification for the three time periods resulted from the literature search. Research on
teacher education or on developed and evaluated modelling courses was not really in
focus until about the year 2000. From the year 2000, professionalization of teachers
generally came to the fore in education policy in most countries of the world. Many
international comparative studies focusing primarily on mathematics have benefited
from this. This mainstream focus affected various areas of mathematics education
as well as mathematical modelling. This development continues to this day, but
in 2019, new knowledge regarding the measurability of teacher competencies for
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mathematical modelling can be gained. The time periods are described in more
detail below, as far as this is possible for reasons of space.

Period 1 (before year 2000): In contrast to the topic of modelling competency,
which has been a continuing research area until today (e.g. Kaiser 2006), research on
teacher education and professionalismwas rarely to be seen before year 2000. There-
fore, it is not comparable in terms of the number of empirical studies that can be found
onmodelling competency. Before 2000, many empirical studies showed insights into
the effects of using strategies when teaching modelling, which had a positive effect
on themodelling competency of learners (e.g.Mevarech andKramarski 1997). These
aspects illustrate thatwhile there have been studies on teachingmodelling, little atten-
tion has been paid as to how the associated approaches are to be taught to the teachers
who implement them. For a long time, the focus relied heavily on the learners’
perspective and the teachers’ involvement was more implicit. In terms of the effect
chain, “teaching competencies=>quality teaching=> student learning” (Borromeo
Ferri 2018), until the year 2000 we were more at the end than the beginning.

Period 2 (since year 2000): The development of teacher education as a research
field in modelling since the year 2000 was strongly influenced by the fact that teacher
education receivedmore attention in general through large-scale studies. Through the
findings of international comparative studies on teacher professionalism, in partic-
ular TEDS-M (e.g. Blömeke et al. 2011) the national German study, COACTIV
(Kunter et al. 2013), and also the meta-analysis from Hattie (2009), teacher educa-
tion became more important both in general and for educational policy in the sense
of “Teacher matters most!”. In turn, this leads to deeper thinking about what teacher
professionalism means specifically for mathematical modelling.

From the beginning of 2000, the importance of teacher education increased—
somewhat slowly—but one landmark was set by the ICTMA 10 book (Ye et al.
2003). Zhonghong et al. (2003) presented modelling courses which they conducted
for preservice teachers. They made clear that the overall goal was to encourage the
teachers to solve real-life problems and to understand what mathematical modelling
means. Furthermore, a contribution from Holmquist and Lingefjard (2003) showed
that prospective teachers could acquire modelling competency through modelling
activities. However, solving modelling tasks is not the only competency that teachers
need for teaching modelling at school. The types of modelling courses mentioned
above often did not make the connection to practice, which is of great importance.
With practice, the author means conducting modelling at school with learners and
reflecting on their own teaching.

Between 2000 and 2019, the field became much broader, featuring several ideas
for modelling courses and empirical research in teacher education. Since 2005, many
modelling courses for pre- and in-service teachers have become visible in the liter-
ature, and thus, the list of cited researchers in this time period is incomplete to a
degree. Pragmatically one can subdivide the developed teaching approaches into three
categories: (1) modelling days/weeks; (2) modelling courses at university/training
courses; (3) distance/online courses. In the following, they are described in a more
detailed way.
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Modelling days/weeks normally connect theory with practice. The goal of
modelling days is that pre-service teachers who are prepared through university
courses to solve complex modelling problems, then coach students in modelling in
school for three or more days. The school component not only focuses on solving
complex modelling problems, but also in particular on other aspects, such as teacher
interventions, which are introduced, deepened and discussed using, for example,
videos (e.g. Blomhoj and Hoff Kjeldsen 2006; Borromeo Ferri 2018; Bracke 2004;
Kaiser and Schwarz 2010).

The second approach, modelling courses, also mostly connects theory with prac-
tice. The difference from the modelling days/weeks is that the prospective teachers
do not supervise a group of learners for several days in school. As part of learning
about the teaching competencies, the prospective teachers are required to develop a
modelling problem in groups, to plan and carry out corresponding lessons in school,
and to present and reflect on their results. In the literature, one can findmany different
ways that these courses are structured and also where the focus lies (e.g. Borromeo
Ferri 2018; Borromeo Ferri and Blum 2010; Huincahue et al. 2018; Schorr and Lesh
2003).

The planning and implementation of digital learning in many educational areas
is currently a much discussed and researched topic. Especially when educational
institutions are closed due to crises, digital learning is the saviour for home schooling.
However, digital learning is also usedwhen teachers cannot personally attend training
programs or when a topic is not part of the curriculum in teacher training. Distance
learning through e-learning tutorials allows people to continue education. E-learning
courses specifically for learning and teaching of mathematical modelling for school
purposes are still rare, but they exist and are important for those teachers who have
no other possibility for being educated in modelling, but wish to do so (Biembengut
and Faria 2001; Maaß and Gurlitt 2011; Orey and Rosa 2018).

In addition to the development and evaluation of these courses for teachers,many
empirical research studies concerning teachers’ roles within learning and teaching
of mathematical modelling have been conducted. The results of these studies offer
the opportunity to integrate them into courses for mathematical modelling teacher
education over the time. Aspects like teacher interventions and scaffolding (e.g.
Leiß 2007; Stender and Kaiser 2015), formative assessment (e.g. Besser et al. 2013),
teacher noticing (e.g. Galbraith 2015), relevance of multiple solutions (e.g. Schuka-
jlow and Krug 2014), teachers’ beliefs, aspects of quality teaching and technology
(e.g. Blum 2015; Brown 2017; Greefrath et al. 2018) etcetera are seen as relevant
content in addition to the central competency of solving modelling problems. So, the
list is very long if all achievements are to be included. Althoughmany teachingmate-
rials and modelling problems are available now, for teachers, there are still barriers to
teach modelling, because in their view, they do not have the right materials. Further-
more aspects of time and limited knowledge about assessingmathematical modelling
from a teachers’ view are challenges as well (Borromeo Ferri and Blum 2014). We,
as educators of the educators, still have to take this into account.
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9.3 Teaching Competencies for Mathematical Modelling
and Their Measurement

Papers addressing the conceptualization and measurement of teacher competencies
for mathematical modelling have been recently published (Borromeo Ferri 2019;
Klock et al. 2019). This section gives a brief overview of how one model for teacher
competencies formathematicalmodellingwasdeveloped. SeeBorromeoFerri (2018)
for more details. The development of a test instrument based on this model, geared
to measuring the PCK of prospective teachers in an intervention study is described.

The author started developing and conducting modelling courses for prospective
and in-service teachers in the year 2004. At that point, the main questions were, if
and how future teachers (for all school types) can be prepared in tertiary courses for
teaching modelling at school, and in particular, what contents and methods would
be appropriate. Additionally, a focus was to investigate how prospective teachers’
processes of learning and understanding develop during such courses, to identify the
main difficulties and problems, and investigate how progress can be observed.

The question “what do teachers need to know?” should be answered through a
long-term process approached through design-based research (DBR) (Collins 1990),
so that finally a suitable structure, specific content and several teaching methods can
support the development of a course for pre- and in-service teachers (Borromeo Ferri
2018). Such a modelling course taught all over the world (e.g. Turkey, USA, Spain,
Chile, etc.) can enrich teaching through the development of cultural perspectives. In
2010, a first model for teaching competencies was conceptualized (Borromeo Ferri
and Blum 2010) which mainly reflected the structure of the modelling course being
described. The model was further modified to its current form as shown in Fig. 9.1
(Borromeo Ferri 2014, 2018; Borromeo Ferri and Blum 2010). In the meantime,
further research groups have developed other approaches, which include facets of
teacher professionalism in mathematical modelling (e.g. Klock et al. 2019).

Fig. 9.1 Model for teaching competencies formathematicalmodelling PCK (BorromeoFerri 2018)
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Using a design-based research approach over several years, with continuous eval-
uation of the course, and through the written learning diaries of the prospective
teachers, it becameevident on a qualitative level that teaching competencies increased
with respect to the four dimensions as shown in Fig. 9.1. At a certain point, however,
the question arose as to how these teaching competencies could be measured empiri-
cally, in order to assess the effect of themodelling course. This represents a challenge
when recognizing the complexity of the model with its four dimensions and several
sub-facets.

Within the first approach of test development and evaluation, most of the items
were open ended. However, the decision to use a multiple choice format with closed
items was finally made for measuring declarative and conceptual knowledge in a
balanced and economic way across all dimensions. Concretely, one has to choose a
correct answer according to a given statement, or for example, on the basis of the
analysis of a written dialogue produced by learners while modelling. Options varied
between two or five possibilities, depending on the item—respondents were required
to select the right answer, or to write down the correct response for the question being
asked. The answer format offers the possibility for dichotomous coding,whichmeans
0 for incorrect and 1 for correct answer. The final test version was rated and discussed
with experts during construction, and then piloted intensively with several cohorts of
prospective primary, secondary and high school teachers in their fourth semester at
university. Thus, a reliable test instrument was ready for use. In order to make items
more transparent, some examples are shown. Within the theoretical dimensions for
example, the testing of declarative knowledge with 26 items was in the foreground.
Two of them are presented in Fig. 9.2. Within the scale “instruction dimension”, 14
items cover declarative and conceptual knowledge. Two items of this scale are shown
in Fig. 9.3. For more details concerning the test instrument with examples of items,
see Borromeo Ferri (2019).

Fig. 9.2 Example items of the scale “theoretical dimension” (Borromeo Ferri 2019, p. 1157)

Fig. 9.3 Example items of the scale “instruction dimension” (Borromeo Ferri 2019, p. 1157)
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In the following, results of an intervention study with N = 66 prospective
secondary, high school and vocational teachers in their third year at university are
presented. In order to measure the increase of teaching competency, a pre- and post-
test design was used, where the modelling course was the treatment. This modelling
course had four blocked sessions each of three hours, taught by the author, based on
the PCK for modelling shown in the model as shown in Fig. 9.1. Between the third
and fourth session, the prospective teachers taught a modelling lesson in school and
observed learners during modelling activities.The pre-test was administered at the
beginning of the first session, and the post-test at the end of the fourth and last day
of the course. Before starting with the modelling course, the participants had only
limited knowledge about mathematical modelling, acquired from one lecture in their
first semester. In Table 9.1, an overview of the number of items per scale (teaching
dimension) and the corresponding Cronbach’s Alpha measure is given. Following
the well-known rule of thumb for Cronbach’s Alpha (e.g. George andMallery 2003),
the reliabilities of the scales are acceptable—with 0.69 for the instruction dimension
close to the notional value of 0.70.

For analysing the data, a t-test was carried out for related samples. The four scales
formed by the sum score were examined in a pre-post comparison. Cohen’s d was
calculated as the effect measure. Looking at Fig. 9.4, the values of the x-axis are the
mean values in comparison and on the y-axis are the four dimensions.

Table 9.1 Number of items per scales (four teaching dimensions) and Cronbach’s Alpha

Teaching dimensions

Theoretical Task Instruction Diagnostic

Number of test items 26 11 14 14

Cronbach’s Alpha 0.86 0.71 0.69 0.71

Fig. 9.4 Results of the intervention study for teaching competencies
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When looking at the means in Fig. 9.4, one can see already visual differences for
pre- and post-tests. These are confirmed by the statistical calculations. The Cohen’s
d statistic for each dimension shows a strong effect. Thus, the difference from pre-
to post-test was significant in all four dimensions and interestingly most of all in the
theoretical dimension.

The test results are encouraging, however, of great importance is that modelling
courses with all their activities are being conducted inmathematics teacher education
in many international locations. This test instrument helps to make more visible, the
possibility that teacher competencies can be measured. Other test instruments exist
(e.g. Klock et al. 2019). These test instruments can be used for several aims, for
example, by teacher educators in order to evaluate their teaching or for offering
(prospective) teachers some kind of additional certificate—because such modelling
courses are mostly not in the curriculum for teacher education. Such a certificate
could be seen as a further and necessary qualification, and finally, it could be a good
argumentation base for policy makers.

Nevertheless, what results can be expected, when the test instrument presented in
this chapter is used in other modelling courses? “You get what you test!” The test
instrument can, in principle, be used worldwide, but it will certainly work best, if
the content of the modelling courses is very close to the one presented here—with
the four dimensions of teaching competencies covered. Taking this as a challenge,
a comparative study was conducted with Germany, Japan and Spain. The teacher
educators were offered the course slides including all materials, which were trans-
ferred, modified and implemented to fit the possibilities and circumstances in their
countries.

The further focus in this chapter will not lie in the presentation of the quantitative
results of the prospective teachers fromGermany, Japan and Spain, but on qualitative
results of a case study on the views and challenges of university teacher educators
in these three countries. Regarding the question “what do we want the teachers to
know?”, it is important to think about what is possible in our teacher education in
mathematical modelling right now in several countries, especially when modelling
is mandated in the school curriculum.

9.4 Views of the Educators of the Educators for Teaching
Modelling

Due to the fact that altogether only four teacher educators participated, (because
they taught the courses in their countries), the presented insights are results of a
small qualitative case study and thus limited concerning generalization, particularly
in regard to cultural comparisons. However, the written responses from four expe-
rienced teacher educators, one each from Japan and Germany and two from Spain,
offer interesting insights and subjective views, on the questionnaire developed by
the author. These may be used to plan further empirical studies. The questionnaire
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consisted of 19 open and closed items, which the teacher educators answered in a
written form after teaching the modelling course in their countries. The following
sections give an idea of the broad range of information that was included:

(a) Educator background (e.g. since when they taught modelling courses),
(b) Course preparation (e.g. if they used only author’s slides or other material),
(c) Course conduct/conditions (e.g. number of course lessons, time restrictions for

teaching modelling),
(d) Participants/feedback/testing (e.g. opinion of active involvement of partici-

pants),
(e) Teachers’ knowledge—educators’ of educators knowledge (e.g. opinion which

knowledge, competencies are needed).

Thedatawere analysed according to the principles of grounded theory (Strauss and
Corbin 1998), a social science approach for the systematic processing of primarily
qualitative data with the aim of generating theory. In order to come to a theory,
the procedure is to use open, axial and selective coding for all data. The starting
point of open coding is reading the texts and marking text passages using short,
concise and comparatively abstract concepts (codes) that characterize the content
of the respective text passage. Axial coding is about working out the context and
conditions that make it possible to identify actions or omissions, strategies, routines
and their consequences in their respective social frameworks. Selective coding is
becoming increasingly compact, and key categories are being worked out.

The core purpose of the analysis was firstly to identify the views concerning
teachers’ necessary knowledge, and secondly to access university educators’ knowl-
edge. However, feedback from all parts of the questionnaire was included in the
analysis for these purposes. In the questionnaire, the educators were asked to answer
in addition, two central questions regarding their focus:

(1) “What do you think teachers need to know (which competencies do they need)
for teaching modelling?”, and

(2) “Which knowledge/competencies should the educators of the educators possess
for teaching how to teach modelling?”

When thinking about what knowledge and skills university educators must have in
order to be able to train teachers in teachingmodelling, there are already assumptions
from theory. One assumption is, for example, to offer a clear structure of the course
with aims and goals; another is to be able to offer a balance between theory and
practice in the course for participants (Lesh and Doerr 2003).

At first, the comparison of questions (1) and (2) above revealed that the differences
between the knowledge and competencies that the teacher educators and prospective
teachers should havewere not great. It was argued of course that the teacher educators
especially should have knowledge and experience of how to teach amodelling course
effectivelywith appropriatemethods. The focus is on goodpreparation for amodeling
course, which is clear from the following quote: “What I have to have with me is a
well-prepared script for each session and give my students all the support they need
to believe that they will be able to domathematical modelling in their future classes.”
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Besides this aspect, both teacher educators and (prospective) teachers, should have
theoretical knowledge ofmodelling, a central point being that teachers should be able
to create their own modelling problems. This competency is seen as very important
within all responses, because in doing this, a person will understand what modelling
means, and how to implement this in the lesson. For example, one of the educators
wrote: “I think that one of the essential competencies is the ability to develop suitable
modelling problems for students”.

To compress the outcome statements to a more abstract level, which is the goal
of grounded theory, the result of the analysis can best be visualized in a causal chain
as a theoretical approach as shown in Fig. 9.5. The analysis showed that many of
the competencies required for teaching mathematical modelling at university or in
training courses correspond to what is needed by the teachers they are educating.
The intuitive idea that teachers teach modelling better if they are properly trained is
obvious, but the analysis made it increasingly clear that the quality of the training
for future teachers depends on the personal and external conditions of the teacher
educators. In the following, Fig. 9.5 is explained more in detail.

Personal conditions refer to the individual conditions of the teacher educator,
which can influence the qualitative training and education of teachers. Not everyone
who trains teachers for teaching modelling is also a researcher in the field and there-
fore has a lot of background knowledge. Therefore, aspects such as professional
background and previous knowledge of mathematical modelling education play a
role. Educators with a strong mathematical background can focus differently on a
course development than a teacher who has been in practice for a long time. There is
also the point, which should not be underestimated, as to whether the educators are
required to give a course, or whether they like to do it out of interest. For this reason,
affective characteristics in relation to modeling are included. General experience
with teacher training and further education gives the teacher educator an advantage
in their individual planning and implementation. Finally, the teacher educator’s own
further training for teaching modelling should also be noted. This can be by way of
reading the literature or participating in a webinar or e-learning course.

External conditions include factors that the teacher educator can only influence to
a limited extent for the implementation of her/his course. Notably, the time available
for a course differs within a country, but also between countries. Mostly, this depends

Fig. 9.5 Conditions for qualitatively taught modelling courses through teacher educators
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on whether modelling is a part of the teacher education curriculum or not, and
how important modelling is seen to be for teacher training. The cultural setting
can influence the teaching methods on the one hand and the focus of the course
on the other. The background of the participants can also be different and must be
adjusted according to the situation. Dealing with teachers who have been teaching
for 20 years requires a different approach from that taken with young prospective
teachers. Another aspect to consider is the extent to which a university is equipped
with books and materials for mathematical modelling so that course participants can
use them. Finally, the question is what type of modelling course is needed by the
teacher educator, who then requires preparation accordingly. Personal and external
conditions are in constant interaction.

The optimization phase then follows, in which the conditions are “filtered”. This
means that the teacher educator uses the best results of this interaction as a basis
to plan the course. Then follows an executed plan, which should always include
evaluation and reflection. This leads to consequence I—namely that the teacher
educator increases their own competencies through progressive iterative interactions
between execution and optimization. The professionalization of the teacher educator
ultimately benefits the teachers—as consequence II—with an increase in teaching
competencies for mathematical modelling.

9.5 Summary and Outlook

Mathematical modelling is becoming a mandated part of the school curriculum in
more and more countries across the world. This requires that teacher education
in mathematical modelling starts at university. The historical overview shows that
since the year 2000, teacher education in mathematical modelling has come more
into focus through large-scale international assessment studies in teacher education
and other types of courses. There has been a corresponding increase in research.
Finally, models for teaching competencies for mathematical modelling could be
developed. Existing test formats can be used to show that teaching competencies
for modelling can be improved significantly by participating in a modelling course.
Such test successes are particularly important as an argument for the importance of
mathematical modelling in the current educational policy debate for STEM. They
show that teachers and learners can obtain enough background to create realistic and
desirable interdisciplinary lessons.

Following the historical timeline from Sect. 9.1, at this point time period 3 is
described by presenting interesting research questions, which can form a basis for
work in the coming years on teacher education in mathematical modelling. A central
research question could be, whether teaching competencies have an effect on the
quality of teaching of modelling in the classroom. From an empirical perspective,
this is not an easy task. To actually measure empirically whether the modelling
competence of learners has increased due to better teaching competence of the teacher
in a given course requires good test instruments and strict test conditions. Adding a
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control group (i.e. teachers who did not take part in a modelling course) would make
the differences visible.

A crucial point is still the question of the assessment of modelling processes of
the students in all school classes. There, we need much more research, for example,
what evaluating competence means, and how this form of evaluating competence
can be conceptualized and measured with teachers. A first approach can be found by
Strauch and Borromeo Ferri (in press).

To sum up, the knowledge and the power of teacher competencies should be used
for further research with the goal of increasing teacher professionalism in mathe-
matical modelling. What do we want the teachers to know? Although it is a difficult
question, this contribution aims to give some first answers. There is a consensus that
our mathematical modelling teachers need to get the best education or training from a
likewise well-trained educator. It has become clear that a combination of external and
personal influences on teacher educators ultimately leads to teachers who are well
trained to teach mathematical modelling. Additionally, teachers should be motivated
to recognize how great modelling lessons can change their minds and also those of
their learners.

Let me end with a citation of Socrates:

“I cannot teach anybody anything, I can only make them think”. (Socrates)
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Chapter 10
Analysis of the Relationship Between
Context and Solution Plan in Modelling
Tasks Involving Estimations

Irene Ferrando, Carlos Segura, and Marta Pla-Castells

Abstract In this chapter we analyse students’ written solution plan of a sequence
of modelling tasks involving estimations. Our research objective is to statistically
analyse whether there is a relation between the solution plan and the characteristics
of the context of the real estimation task. From previous work, we have identified
some task variables that are directly related to the context. In this study we have
designed a sequence of modelling tasks and we have analysed the productions of
N = 224 Spanish pre-service primary school teachers. The results show that there
is a relationship between the variables of the task and the solution plan used by
the students in each case. From the results of this study, we derive conclusions
regarding the characterisation of this kind of modelling task and the potential use of
this sequence to promote problem solving flexibility.

Keywords Context variables · Estimation · Modelling · Pre-service teacher · Task
variables · Solution plan

10.1 Introduction

Different researchers have shown that the approach of modelling tasks based on real
contexts make mathematics meaningful and motivating for students (Blum 2011;
Kaiser and Sriraman 2006). In this work we use problems that focus on making esti-
mates of a large number of elements enclosed in a bounded area, such as knowing
the number of people who fit in a public square. These real estimation tasks are
contextualised problems that students can solve by introducing modelling elements
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(Albarracín and Gorgorió 2014). It has been shown that students often have difficul-
ties when they have to consider aspects of the real context that are described in the
task statement (Greer 1993). Indeed, students’ written productions when faced with
modelling tasks are a key source of information for understanding aspects linked to
the teaching and learning processes of mathematics.

In previous studies we have analysed students’ written productions when faced
with solving tasks consisting of obtaining a reasoned estimate of the number of
elements that can fit into a rectangular region and we have observed that students’
productions are diverse (Ferrando et al. 2017; Gallart et al. 2017). Although these
problems are similar and ask the same question (How many can fit?), the diversity
of student solutions has led to the question of whether different contexts in which
the number of elements in a rectangular region must be estimated promote one type
of solution (a model or a strategy) more than another. In order to characterise the
different contexts of these problems, five context variables have been considered
in this research: size of the region, size of the elements, shape of the elements,
arrangement of the elements and shape of the region. These context variables have
been used to design a sequence of four problems with different real contexts. A
total of N = 224 students have solved this sequence and their productions have
been categorised in four different solution plans. A mixture of analysis combining
qualitative and quantitative techniques is the key to answer the research question:
Is there a relationship between the context of the problem and the solution plan
proposed by the student in this type of modelling task?

10.2 Theoretical Framework

A particularity of real context problems is that they often do not contain all the infor-
mation needed to obtain a solution. These problems, known as problemswithmissing
information, foster skills such as estimation, considered important and useful for
students (Ärlebäck 2009). Ärlebäck (2009) defines Fermi problems as open, non-
standard problems requiring the students to make assumptions about the problem
situation and to estimate relevant quantities before engaging in, often, simple calcu-
lations. Certainly, there is a strong connection between the Fermi problem solving
process and the work developed during the modelling cycle for the development of
a mathematical model (Ärlebäck 2009; Borromeo Ferri 2006).

The development and creation of mathematical models intended to describe or
abstractly represent a given phenomenon or reality is a complex process (Blum,
2011). Following the definition proposed by Lesh and Harel (2003), a mathematical
model is a system formed by mathematical concepts, symbolic representations of
reality, relations, regularities or schemes, as well as the procedures, mathematical or
not, associated with its use. In Achmetli et al. (2019), the authors established three
ways to differentiate solutions of a real context problem.Thefirst one is to fixdifferent
assumptions when solving real-world problems with vague conditions and generally
leads to different results. The secondone results fromapplyingdifferentmathematical
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strategies to solve a problem and generally leads to the same mathematical result.
Finally, the third one is the combination of the two above. In previous work, based on
this third way and Lesh and Harel’s model definition, we have developed the notion
of a solution plan for the analysis of student productions when they solve modelling
tasks (Gallart et al. 2017). The solution plan has been the key to identify differences
between the productions of students with experience in modelling with respect to
novices.

The solution plan is formed by two components (that are dependent on each other):
an emerging model that corresponds to the conceptual component of the model, and
a solution strategy that corresponds to the procedural component of the model. In the
followingwewill give a complete definition of these components for Fermi problems.
In order to delimit our research, we focus on problems involving estimation of the
number of elements in a bounded enclosure.

The emergingmodel refers to the initial model that includes different assumptions
related to the configuration and the distribution in the space (e.g. a carpark) of the
elements (e.g. cars) whose number must be estimated. Indeed, when we have to
obtain a reasoned estimate of the number of objects that fit into a bounded enclosure
(e.g. a porch), the first step is to fix the distribution of the objects (e.g. people) in
space. One way to do this is to assume that the elements are arranged in rows and
columns; this leads us to reduce the initial problem (of areas) to a problem of lengths.
This one-dimensional emerging model corresponds to what Albarracín and Gorgorió
(2014) call a “grid distribution model”. Otherwise, the elements can be distributed
directly on the surface and this necessarily implies that the solver will argue from the
estimated value of the total area using two possible strategies that will be described
later. This configuration corresponds to a two-dimensional emerging model.

Once an emergingmodel has been set, it is necessary to use some strategy to obtain
the estimated number of elements. The most elementary—but the least efficient—
strategy is the direct count. Another way is to argue from the space (area or length)
occupied by an element and get the result by dividing the total area (or length) by the
area (or length) occupied by an element. This corresponds to the base unit procedure
established in Gallart et al. (2017). Finally, it is possible to argue from density,
estimating the number of elements in a given unit of area (or length) and multiplying
this value by the total number of units of area (or length). Different combinations of
emerging model and strategy produce different solution plans. Section 10.3 presents
a categorisation of the solution plans based on the productions of the students who
participated in this experience.

When we present tasks to students it is important to identify which elements of
the task can influence the solving process. Kilpatrick (1978) studied and classified
the characteristics of a task as possible values of what he called “task variables”.
Following the definition established in the book edited by Goldin and McClintock
(1984):

Task variable will mean any characteristic of problem tasks which assumes a particular value
from a set of possible values. A task variable may thus be numerical (e.g., the number of
words in a problem) or classificatory (e.g., problem content area). (Kulm 1984, p. 16)
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Kilpatrick (1978) included three classifications of these variables: context vari-
able, format variable and structure variable. In the present work we will focus on
context variable understood as the physical characteristics of the real context of the
task. Since we are interested in those tasks involving an estimation of the number of
elements in a bounded enclosure, we identify five context variables: the size of the
elements, the size of the area, the elements’ shape, the distribution of the elements
and the shape of the enclosure.

These variables allow designing a sequence of this type of task in which some
values of the variables change. Through this sequence it is possible to analysewhether
the values of the context variables foster the choice of a solution plan. A positive
answerwill allowus to study in furtherworkwhether this sequence promotes students
to change their solution plan from one problem to another, that is, what Elia et al.
(2009) call inter-task flexibility. Therefore, the present work is a first step towards
a systematic investigation of flexibility in the framework of real context problem
solving.

10.3 Method

In this section we will describe the methodological design of the experience in three
parts: description of the sample of students who participated in this experience,
justification of the design of tasks and the procedures used, and the data analysis.

10.3.1 Sample

The experience was developed throughout the academic years 2017–2018 and 2018–
2019. The N = 224 participants were students in their last year of the Degree in
Primary School Education at the University of Valencia (Spain). This is an incidental
sample that includes 25% of the total population: prospective teachers in the last
year of their formation in the biggest Faculty of Education of the region of Valencia.
The choice of conducting the research with prospective teachers is based on the
fact that subject-related teacher competencies have a strong influence on students’
performance (Baumer et al. 2010).

10.3.2 Procedure and Tasks

First, we designed a sequence of problems that request students to describe a solution
plan to obtain a reasoned estimate of the number of elements in a bounded enclosure.
The criteria for the design were the following: the sequence should include four
problems; all problems consist of obtaining an estimate of a number big enough that
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it cannot be effectively solved by counting; all problems are contextualised in the
immediate student environment.

Since our objective is to identify if there is a relationship between the context
variables of the tasks and the solution plans, it is important to clearly identify the
variables and the possible values they can take. As we have already remarked in the
theoretical framework,when a task consisting of estimating the number of elements in
a bounded enclosure is posed, the following context variables and their corresponding
values are identified:

• size of the elements: big (more than 1 m2), medium (between 1 cm2 and 1 m2) or
small (less than 1cm2);

• size of the area: big (about 1002 m2), medium (about 102 m2) or small (about 12

m2);
• shape of the elements: homogeneous or heterogeneous;
• distribution of the elements: there’s a regular pattern, there’s no regular pattern;
• shape of the enclosure: the enclosure canbe a simple shape (rectangular, triangular,

…) or it can be the combination of different simple shapes.

Since we only want to set four tasks, we will fix some values of the context
variables and some will not be considered. The variable “shape of the enclosure”
has been set as rectangular in all the problems of the sequence. Aware that this
implies a limitation of the scope of the study, this decision has been taken to simplify
students’ calculations and to be able to observe, in this case, the influence of the other
variables in the choice of the solution plans. InTable 10.1wepresent the combinations
considered with respect to the sizes of the elements and of the area. We have shaded
the problems where there is homogeneity in the shape of the elements, and we have
used bold letters in those in which the elements are arranged following a regular
pattern. The four problems are:

P1-People. How many students can stand on the faculty porch when it rains?
P2-Tiles. How many tiles are there between the education faculty building and
the gym?
P3-Grass. How many blades of grass are there in this space?
P4-Cars. How many cars can fit in the faculty parking?

Table 10.1 Combinations of context variables considered in the sequence design

Area size Element size

Less than 1 cm2 1 cm2 to 1 m2 More than 1 m2

About 1 m2 P3 XXX XXX

About 102 m2 XXX P1 P2 XXX

About 1002 m2 XXX XXX P4

Note A shaded cell indicates homogeneity of the elements in the problem. Bold indicates elements
are in a regular pattern
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During the experience, we provided each student with the written problem state-
ments and a small image for each one. We allowed a half page blank space for
each problem so that the students could write down their solution plan. One of the
researchers was present during the experience at each group classroom. The students
worked individually in the usual classroom. The working session lasted 45 min.
During the first 10 min, it was explained to the participants that they were going
to face a sequence of four tasks. The following aspects were emphasised: in each
problem they should raise a possible solution plan indicating the measures they
would need to obtain the estimation; the work should be done individually; they
should explain their procedures in written form and may use drawings or diagrams;
and, finally, they were not expected to obtain a solution but rather only to explain
how to get the requested estimate.

The experience included a second part in which the students, in groups, had to
choose one of the solution plans proposed in the first part and, taking data in situ, they
had to carry out the strategies. In this second part of the experience, the mathematical
work, interpretation and validation phase were dealt with. However, for the present
study we will focus only on the data collected during the first part because our aim
is to study the relationship between solution plans and context variables.

10.3.3 Data Analysis

The data analysis has two phases: first a qualitative analysis was done and then
we conducted the quantitative one. In this section we will first describe the criteria
and the procedures of the qualitative analysis. The collected data were qualitatively
analysed at the end of each academic year. Following Van der Zee and Rech (2018),
we consider that interpretation of qualitative data depends on the stances adopted by
the researchers before the analysis. Therefore, in order to ensure use of fixed criteria
for the qualitative analysis of the productions, we split the codification process into
two phases. For the 2017/18 academic year productions, one researcher made a first
analysis followed by a revision of the other two researchers and by discussion in
case of discrepancies. For the 2018/19 academic year productions, the analysis was
done directly by pairs. We have classified students’ productions in five categories.
We illustrate some categories with transcriptions of students’ answers to P1-People,
How many students can stand on the faculty porch when it rains?

Incomplete resolution: is the one where not enough detail to obtain the estimate is given as
shown in this student example:

We need to know the size of the porch as a whole. We would have to measure the width and
the length to be able to obtain the total square metres.

Counting: In this case, students just propose a direct exhaustive counting procedure to get
the estimation.

Linearisation: This corresponds to the productions that propose a one-dimensional emerging
model. For example, a student wrote:
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This problem can be solved by using the width and length of the porch. Once we have these
measures, we take another, which corresponds to the measure of a person. Imagine that a
person occupies about a half metre, with this measure we can know how many people fit in
each row and multiply by the number of rows that can be made in total. Example: in each
vertical row → 30 people. 30 × 120 rows → 3600 people.

In this case, the student assumed that people stand up in rows and columns, thus
we consider that he based the resolution on a one-dimensional emerging model.
Regarding the strategy, the student used a base unit procedure. Nevertheless, in the
presentwork, all thewritten productions based on a one-dimensional emergingmodel
will be in the same category regardless of the strategy used.

2D-Base unit: This corresponds to the productions based on a two-dimensional
emerging model. In all the cases, students proposed, from one side, to obtain the total
area of the rectangle, and from the other side, to obtain the estimate by dividing this
area by the area occupied by an element. For example, a student wrote:

First of all, with the measurements of width and length, I would calculate the space inside.
Then I would calculate the space occupied by one person. Finally, you would get the number
of people by dividing the total measure by the measure of one person.

2D-Density: this corresponds to the productions based on a two-dimensional
emerging model. In all the cases, students proposed, from one side, to obtain the total
area of the rectangle, and from the other side, to obtain the estimate by multiplying
this area by the estimated density. A student example is:

To begin with I would measure the width and length of the covered porch, then I would
change to square metres. Thirdly, I would measure several times how many people fit in
a square metre. Then I would take an average and multiply it by the square metres of the
covered porch.

Once the qualitative analysis of the students’ productions has been carried out, we
proceed to count the number of productions in each category for each problem. From
the contingency table, we perform an inferential statistical analysis to determine
whether there is a significant relationship between the categories identified in the
solution plans and the problem variables. In the following section we will show the
results of these analyses.

10.4 Results

Table 10.2 contains the absolute frequency and the percentage of use for each solution
plan for each problem.

In order to determinewhether there is a statistical relationship between the context
variables of the problems and the categorised solution plans proposed by the students,
we have performed an inferential analysis based on the Chi-Square Test for inde-
pendence (df = 12, N = 896). We have assumed as null hypothesis that there is
no relationship between the context variables of the problems and the categorised



126 I. Ferrando et al.

Table 10.2 Classifications and frequency of student productions for each problem (n = 224)

Task Incomplete Counting Linearisation 2D-base unit 2D-density

P1 People 34 (15.2%) 1 (0.4%) 28 (12.5%) 110 (49.1%) 51 (22.8%)

P2 Tiles 34 (15.2%) 6 (2.7%) 92 (41.1%) 71 (31.7%) 21 (9.3%)

P3 Grass 44 (19.6%) 2 (0.9%) 15 (6.7%) 67 (29.9%) 96 (42.9%)

P4 Cars 28 (12.5%) 4 (1.8%) 31 (13.9%) 160 (71.4%) 1 (0.4%)

Total 140 (15.6%) 13 (1.5%) 166 (18.5%) 408 (45.5%) 169 (18.9%)

solution plans. We fix α = 0.001, and the test gives us a result for χ2 = 269.92
and p-value = 0.000 that led us to reject the null hypothesis. Since Chi-Square Test
for independence may not provide a reliable guide to measure the strength of the
statistical relationship between the variables, we used a Cramers’s V (see Acock and
Stavig 1979). A value of Cramer’s V close to 1 means that the relationship between
the variables is very strong and if it is close to 0, the relationship is very weak. In
this case V = 0.31, which is considered a medium to large effect (Leppink 2019).

10.5 Discussion and Conclusions

Inferential analysis indicates that there is a statistically significant and moderate
relationship between the context variables of the tasks and the components that have
enabled us to categorise the solution plans: emergingmodels and strategies. Based on
the DISUMmodel of the modelling process (Blum 2011), in this experience students
areworking on constructing the situationmodel, simplifying/structuring the situation
model in order to obtain the real model of the problem and, finally, mathematising.
In the second step of this process the identification of variables of interest is crucial
(see, for instance Houston 2007). This process is deeply related to construction of
the emerging model.

From Table 10.2 we can infer some effects from the four context variables consid-
ered in the sequence design (as shown in Table 10.1) in the construction of the
emerging model and, particularly in the identification of variables. The regularity in
the distribution pattern of the elements whose number is being estimated increases
the occurrence of one-dimensional emerging models (i.e. linearisation): we observe
that this happens when the regular arrangement pattern of the elements is evident
(as in the case of the P2-Tiles problem). Indeed, although the percentages of one-
dimensional and two-dimensional (i.e. base unit and density) emerging models are
equal in this problem, the proportion of one-dimensional emerging models is signif-
icantly higher than in the other problems. However, in problem P4-Cars only 14%
of productions are based on a one-dimensional emerging model. In fact, although
the distribution of elements could be regular, it is not as evident an assumption for
students as in problem P2-Tiles: in the parking there are large empty spaces and the
sizes of vehicles are irregular. Perhaps, in this case the students do not consider that
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the value of the variable “distribution” can be a “regular pattern”. On the contrary,
the irregular distribution of the elements fosters, as we see in problems P1-People
and P3-Grass, emerging two-dimensional models.

In two-dimensional emerging models there is another context variable that is
identified by the students and, therefore, leads to particular solution strategies: the
size of the elements. This variable will influence the mathematisation phase of the
modelling cycle. Indeed, in the problem P4-Cars we find a significant proportion of
solution plans that include the strategy that corresponds to the base unit procedure.
In fact, considering the average size of a vehicle, it is more natural to argue from its
dimensions (in this case, the estimated area) than from the number of vehicles that
fit into a given area. Moreover, the high proportion of solution plans that include the
density strategy in the P3-Grass problem confirms that it is a more natural strategy
than the base-unit when the size of the elements is small.

Nevertheless, in order to confirm whether relative size of the elements also has
effects on the strategies associated with the one-dimensional model, it would be
convenient to analyse in more detail the productions categorised here as “Linearisa-
tion” or even to design an alternative sequence with problems involving lengths and
not areas (e.g. estimating the number of students needed to surround the perimeter
of the yard or finding the number of cars parked along an avenue). This, together
with the fact that we have only focused on the first phases of the modelling process,
is a limitation of the present work.

Although there is a significant relationship between the context variables of the
problem and the categorised solution plan, in almost half of the analysed productions
the students posed a two-dimensional emerging model associated with the base unit
strategy. This, together with a high ratio of incomplete solutions, leads us to suggest
a possible reason might be students’ flexibility, that means: to what extent students
know different solutions for this type of modelling task and are able to adapt them
according to the context? This requires further investigation.
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Chapter 11
Generating a Design and Implementation
Framework for Mathematical Modelling
Tasks Through Researcher-Teacher
Collaboration

Vince Geiger, Peter Galbraith, and Mogens Niss

Abstract How to support student in applying the mathematical modelling (MM)
process is an ongoing line of research enquiry. This chapter outlines interim find-
ings from an Australian national project that aims to promote effective teaching and
learning practices in MM through attention to implemented anticipation. This effort
gained focus through attention to the generation of a Design and Implementation
Framework for Modelling Tasks (DIFMT). The DIFMT was the result of collabora-
tion between teachers and researchers aimed at the effective design and implemen-
tation of MM tasks in upper secondary classrooms. The study suggests that specific
pedagogical practices can act as enablers of students’ attempts to appropriate the
process of MM.

11.1 Introduction

In keeping with a number of countries, Australia has been stressing the importance of
equipping students to apply their mathematics in real-world settings (e.g., ACARA
2015). Such abilities are necessary for (1) successful participation in other school
subjects where the use or interpretation of models is important; (2) gaining access to
mathematics, science, technology and engineering (STEM) careers or other profes-
sions based on applied mathematics (e.g., economics); and (3) for informed partic-
ipation in personal, civic and work life. In this chapter we outline our efforts to
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address these needs within a curriculum context in which mathematical modelling
(MM) is a mandatory element of mathematics assessment within the final years of
schooling (Years 11 and 12). Despite the requirement that Years 11 and 12 students
engage with MM, experience and expertise in instruction for this element of the
curriculum is varied—from very capable designers of MM tasks through to novices.
Even among those that were capable task designers, we found a dearth of expertise
in the implementation of MM activities. Our response to this theory/practice gap
has been to work in collaboration with teachers to develop effective principles for
instruction embedded in a Design and Implementation Framework for Modelling
Tasks (DIFMT) within a nationally funded project. Central to the development of
this framework was an understanding that the capacity to anticipate, is an essential
meta-cognitive facility in both the deployment of the modelling process by students
and teachers’ capability with its instruction. Consequently, the aims of the project
are to:

(i) describe the nature of anticipatory metacognition and identify and describe the
enablers necessary for students to translate real-world situations into successful
mathematical models;

(ii) design modelling tasks that support the development of students’ anticipatory
metacognition, and/or allow for the identification of issues that are problematic
for that development;

(iii) develop, trial, and refine teaching practices that support the growth of students’
anticipatory metacognition while working on effective modelling tasks.

In the section which follow, we focus on the theoretical perspectives that underpin
the DIFMT and describe other enablers of MM which emerged when teachers
attempted to align their instructional practices with this framework. Evidence for
the efficacy of these enablers are drawn from teachers’ commentaries on their
implementation of tasks.

11.2 The Nature of Mathematical Modelling

Given the plethora of interpretations within the field of modelling in education we
provide clarification of our meaning of the term. Consistent with statements in the
opening paragraph, we are concerned to nurture qualities that enable students to
apply mathematics to solve problems in domains outside itself (see Niss et al. 2007,
p. 4). In the following we outline sequential stages in the modelling process; as an
analytical reconstruction of a modelling/problem-solving process, remembering it is
neither a lock/step approach, nor a detailing of moves made by individual modellers.
In the diagrammatic representation below (Fig. 11.1a), the heavy clockwise arrows
(1–7) depict the modelling process as a problem-solving activity, connecting stages
(A–G). The double headed arrows indicate that in pursuing a solution there will be
intermediate transitioning/revisiting, within and between any of the stages. This will
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1. Identify a (real-world) problem
2. Specify related mathematical question(s)
3. Formulate a mathematical model to address 

the question (involves making assumptions, 
choosing variables, estimating magnitudesof
inputs etc.)

4. Solve the mathematics

5. Interpret the mathematical results in terms 
of theirreal-world meanings

6. Make a judgment as to the adequacy of the 
solution to theoriginal problem(s)

7. Either report success with 
recommendations, or makeadjustments and 
try for a better solution

a

b

Fig. 11.1 a Representation of the modelling cycle (Galbraith 2013), b Transitions between
modelling phases (Galbraith 2013)

include meta-cognitive and anticipatory activity. (These arrows are incomplete for
clarity—they potentially connect any of the stages).

11.3 Anticipatory Metacognition

Implemented anticipation, as formulated by Niss (2010), is a process by which
students anticipate and carry out within the act of modelling: (a) actions that they
perceive as potentially useful context-wise and mathematically in subsequent steps;
and (b) decision making that brings those steps to fruition. Implemented anticipation
is central to a modeller’s ability to mathematise and to undertake the mathematical
processes entailed, and then complete a modelling problem successfully.

The term anticipatory metacognition describes an associated construct that also
includes the additional capabilities of ‘modelling oriented noticing’ and strategic
planning, e.g. with regard to seeking and gathering information and data and deciding
whether to involve statistical analyses of the data collected. This applies before
and during a modelling experience. It represents the capacity to recognise possible
avenues to pursue during the modelling process when engaging with an unstructured
real-world problem by taking cues from progress made in other contexts and situ-
ations. Both require an ability to think forward and are applicable to learners and
teachers.

For teachers it represents thinking along the lines “Where, in the modelling
process, will this group of students be likely to encounter obstacles? And what
can/should I do to help themmove forward?” It involves reflecting on student thinking



132 V. Geiger et al.

as intermediary to the problem itself. Resulting prompts direct students to use the
modelling process to resolve an impasse, rather than giving direct hints as to the
solution itself.

11.4 Anticipation and Modelling

Because modelling proceeds through ideal–typical stages, an attribute for success is
the ability to look forward and to anticipate what may be needed at a later point in the
process, requiring that the modellers project themselves into subsequent modelling
steps before taking them; and implement such anticipation throughout the modelling
process (Niss 2010; Niss, Martin 2017; Jankvist and Niss 2020).

Implemented anticipation as an essential component of anticipatory metacogni-
tion pertains to all necessary steps in the modelling process: pre-mathematisation
(e.g., posing questions, assumptions, simplifications), mathematisation, mathemat-
ical treatment, interpretation, and model evaluation. This capability is significant for
individual modellers, but also for teachers and mentors, who seek to promote the
development of modelling abilities in their students. Examples are listed below:

• Anticipating features that are essential in mathematising a feasible problem from
the real situation being currently considered; anticipating mathematical repre-
sentations and mathematical questions that, from previous experience, or present
analysis, seem likely to be effective when forming a mathematical model.

• Thinking forward about the utility of the selected mathematisation and the
resulting model to provide a mathematical solution to the questions posed.

• Thinking forward to identify related problems and refinements that are suggested
by progress. Some of these may not have been thought of at the outset of the
problem.

11.5 Enablers of Implemented Anticipation

Enablers of implemented anticipation, developed previously (Niss 2010), were
directed specifically at features central to developing individualmodeller capabilities.
Their European origins paid attention to contexts where the worth ofmodelling could
not be taken for granted, for example, where only pure mathematics is considered an
approved subject for study by the education system, or by students. Australia has a
history within which applied mathematics has occupied an accepted role. However,
ways in which respective preferences (e.g., pure versus applied) impact on teaching
and learning remain a continuing influence. In theoretical terms these are impacted
by considerations of socio-mathematical norms (e.g., Yackel and Cobb 1996) and
didactical contracts (e.g., Brousseau 2002). Bearing in mind the Australian context,
adaptations of Niss’ original modelling enablers (ME) have been developed and an
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Table 11.1 Niss’ enablers adapted for Australian contexts

ME1: (Adapted for Australia): Students believe that the inclusion of modelling activities is a
valid component of mathematical coursework and assessment

ME2: Students possess mathematical knowledge able to support modelling activities (e.g.,
possess mathematical knowledge and skills, and ability to manage abstraction)
ME3: (Additional): Students possess an understanding of a systematic modelling process that
includes successive stages from problem question to model evaluation
ME4: Students are capable of using their mathematical knowledge when modelling. (This
implies a core understanding of and engagement with the modelling process (Formulate, Solve,
Interpret, Evaluate) so that the right questions can be asked and pursued systematically)
ME5: Students have perseverance and confidence in their mathematical capabilities (e.g.,
continue to follow through, or try new directions within a problem if necessary)

Table 11.2 Implementation enablers

IE1: The mathematical demand of problem tasks does not exceed the mathematical capabilities
of the student group

IE2: Problem tasks are introduced so as to engage the students fully with the task context, while
ensuring that goal of the task is understood
IE3: Assistance provided during modelling sessions (measured responsiveness) is geared to
helping students use the modelling process to reach a solution, rather than treat a problem as an
individual exercise
IE4: Students are encouraged/required to organise and report their work using headings/sections
consistent with the modelling process
IE5: Productive forms of collaborative activity are used to enhance and hold to account the
quality of on-task progress. Effective use of digital technologies. Students’ interest in a problem

additional enabler, to do with knowledge of the modelling process, has been added
to the original set of modelling enablers—ME3 (Table 11.1).

In terms of the project, the centrality of effective implementation means that
teaching (or implementation) enablers (identification and description) have been
added to the originals thatwere directed at enhancing themodelling process itself. See
Table 11.2. In reviewing the developing enablers framework, after initial classroom
observations, we became aware of factors, that while not exercising a gatekeeping
role, could facilitate (or not) the success of modelling activities. We have designated
them Catalytic Enablers (IE5).

11.6 Approach to Developing the DIFMT

The project has been conducted over a three year-period. Data for this chapter are
drawn from the engagement of three teachers from different schools and one class of
their students per year (Years 9–11). The project coincided with a time of curriculum
revision which included new course content and greater scrutiny of assessment prac-
tices, including a component devoted to MM. Two of the teachers had extensive
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prior experience in developing and implementing modelling tasks, while the third
had only superficial familiarity.

The research design was based on an iterative process of design-implement-
reflect as the basis for researcher/teacher collaboration in developing the DIFMT.
This process was effected through three whole-day researcher/teacher meetings and
two classroom observation visits per year. Classroom visits took place between
researcher/teacher meetings. The purpose of researcher/teacher meetings was to:
develop MM tasks; plan for their implementation in classroom; reflect upon the
design of tasks and their implementation after each successive round of implemen-
tation; draft and refine the DIFMT. Classroom observation visits were conducted
to generate data related to the effectiveness of: tasks, for specific classroom condi-
tions; and teachers’ approaches to task implementation. Initial tasks and advice on
implementation was provided by researchers, with teachers becoming increasingly
involved, moving towards autonomy, in the development of principles for the design
of tasks and their implementation—leading to the drafting and successive refinement
of the DIFMT as the project unfolded [for detail of this approach see Geiger et al.
(2018)].

Data collectionmethods included video-recorded classroomobservations of small
groups of students during observation visits, teacher pre- and post-lesson interviews,
student post-lesson interviews and student video-stimulated recall sessions following
each visit. Students who were likely to articulate their approaches to a task clearly
and without a sense of reserve were invited to participate in both video and interview
sessions on the basis of teacher advice.

11.7 The DIFMT

In this section we provide an outline of the DIFMT. Word limit prevents a full
discussion of its development; thus, the purpose of the following description is to
provide the reader with sufficient background to link the DIFMT to implementation
enablers for which we provided illustrative excerpts.

The DIFMT consists of three overarching structural dimensions—Principles for
modelling task design, Pedagogical architecture, and Completion under which sit
defining elements and their descriptions. While this chapter focuses on the Pedagog-
ical Architecture dimension of the framework, a condensed version of the whole is
presented in Table 11.3.

The dimensions and defining elements of the DIFMT are aligned with the imple-
mentation enablers. For example, IE1, which relates to the articulation of students’
mathematical capabilities and the embedded challengewithin a problem, is an impor-
tant element of task design. The students’ introduction to a problem (IE2) requires
careful attention during the pre-engagement/initial problem presentation phase. The
type of assistance students should receive when engaged with a problem (IE3) is
captured in the body of the lesson descriptors. Responses to a problem will need to
be reported in a structured manner (IE4), as outlined in the completion element of
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the DIFMT. Productive collaboration (IE5) is seen as a catalytic enabler and is also
included in the body of the lesson descriptors.

11.8 Emergent Enablers

During task implementation, using the DIFMT as a guide, other aspects that
promoted or constrained students’ attempts at ‘modelling problems’ emerged. These

Table 11.3 Integrated modelling task and pedagogy framework

Principles for modelling task design

Nature of problem Problems must be open-ended and involve both intra- and
extra-mathematical information

Relevance and motivation There is some genuine link with the real world of the students

Accessibility It is possible to identify and specify mathematically tractable
questions from a general problem statement

Feasibility of approach Formulation of a solution process is feasible, involving (a) the
use of mathematics available to students, (b) the making of
necessary assumptions, and (c) the assembly of necessary data

Feasibility of outcome Solution of the mathematics for a basic problem is possible for
the students, together with interpretation

Didactical flexibility The problem may be structured into sequential questions that
retain the integrity of the real situation

Pedagogical architecture

Pre-engagement Understand of the modelling process and its
application—illustrate what the modelling process. Support
materials include a modelling process diagram

Modelling process review Reviewing pre-engagement as required

Initial problem presentation • Teacher provides brief general description of the problem
scenario

• Students organised into small groups and provided with time
to read the task description and ask questions of clarification

• Students in groups discuss how to approach the problem
(including defining a mathematical question?) and report back
to whole class via a group representative

• Teacher orchestrates discussion of mathematical question(s)
towards consensus

• Students in groups consider assumptions and variables
relevant to the agreed mathematical question. Outcomes
reported back to whole class by a group representative

• Teacher synthesises/prioritises students’ initial assumptions
and variables sufficient to begin modelling process for an
initial model (As students gain experience teacher scaffolding
in this section can be greatly reduced and perhaps eliminated)

(continued)
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Table 11.3 (continued)

Principles for modelling task design

Body of Lesson Students
• Proceed in groups to create
model, solve, interpret, etc.
in terms of their
mathematical question.

• Engage in productive
student–student
collaboration.

• Identify and make use of
technology where applicable
(e.g., source relevant
information, check
calculations and/or generate
solutions)

• Develop a report of their
progress in terms of the
stages of the modelling
process (e.g., formulate,
solve, interpret, evaluate)

Teachers
• Help bring to student
consciousness those things
that are implicit

• Activate teacher meta-meta
cognition: (a) How will the
students be interpreting what
I as a teacher am
doing/saying at this point?
(b) What should the students
be asking themselves at this
point in the modelling
process?

• Structure mathematical
questions that promote a
viable solution pathway

• Support students with
making progress through the
modelling process

• Anticipate where students
might have problems, e.g.,
interpreting the problem

• Employ measured
responsiveness—rather than
providing specific advice
about the problem, students
should be prompted to think
about where they are in the
modelling process

• Encourage the use of tools
(digital or other)

• Support student progressive
development of a report (e.g.,
guidelines on report writing)

Completion

Present findings and
summary

• A representative from each group shares their findings with
justification. Findings should be reported in a succinct fashion
(e.g., 3–4 min video)

• Teachers/students ask questions of clarification or to test
arguments

Report • Students communicate their findings via a succinct, coherent,
systematic report. The report must make use of appropriate
mathematical language

• Teacher checks for the validity of the solution and supporting
justification
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included: actions related to teachers’ personal engagement with a modelling task
and its implementation; influences upon the teaching/learning environment (e.g.,
socio-mathematical norms and/or aspects of the didactical contract); and teachers’
own anticipatory actions. We now present illustrative examples of such emergent
enablers—supported through references to teachers’ comments recorded during
interviews that followed task implementation sessions.

11.8.1 Core Teaching Enabler: Utilising the Modelling
Process

It became apparent that teachers’ thorough understanding of both the modelling
process and the detail of anymodelling problems they implementedwas fundamental
to their students’ success in modelling. Teacher A was adamant that the modelling
process must be understood by teachers themselves if instruction was to be effective.

TeacherA: [Teachers need to] go through the framework.Not just the problembut the process
itself.

Teacher B comments on the importance they placed on developing a thorough personal
understanding of a problem before implementing it in their classroom.

Teacher B: It was actually quite challenging for me to figure out exactly what I would do. I
spent a fair bit of time researching.

11.8.2 Learning/Teaching Environment

The degree towhich teachers took advantage of opportunities to engage their students
with modelling tasks was influenced by their perception of factors that shaped class-
room socio-mathematical mathematical norms and/or the didactical contract. For
example, teachers perceived both opportunities and constraints related to their state-
wide curriculum context. This perception inhibited or provided encouragement for
how often they were prepared to implement tasks. Comments by Teacher C indicate
he saw the demands of a new syllabus as limiting his opportunity to engage students
with modelling activities because of expectations about developing student mastery
of content objectives in a limited period of time. This was despite a strong emphasis
in the syllabus on mathematical modelling.

Teacher C: We don’t do [modelling] as much as we used to…because we just don’t have
time. The new syllabuses just don’t allow that sort of stuff.

Teacher B, working within the same curriculum context, saw no such impediment.

Teacher B: I think it’s a good task for Year Ten because we do all that volume and money
exchange too, there’s a little bit of that… It’s good for Methods [Year 11] and General Maths
[Year 11].
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These differing commentaries on opportunities to implement modelling tasks
point to in-school expectations about which aspects of mathematics should be priori-
tised—in this case, fluency with mathematical techniques versus open-ended math-
ematical learning experiences in the form of modelling tasks. How the influences
of curriculum requirements are perceived can become manifest as school specific
socio-mathematical norms and the didactical contract that, in turn, trickle down to
student expectations ofwhat should take place duringmathematics instruction—their
interpretation of the didactical contract. Thus, such influences can act as enablers or
dis-enablers of student opportunity to engage with modelling tasks. Another inter-
esting observation was that some of the teachers tended to scaffold students’ work
rather tightly by teaching themwhat to do and how to do it, thus extending traditional
mathematics teacher behaviour to contexts where this is likely to impede students’
independent modelling work—thus another potential dis-enabler.

11.8.3 Teacher Anticipatory Capability

Also emergent from classroom observations was the importance of teachers’ own
anticipatory capabilities as these related to looking forward into a lesson to where
studentsmight experience difficulties or blockages. This form of anticipation enabled
teachers to plan for how to scaffold students’ modelling efforts in a measured but
effective fashion. For example, Teacher A anticipated that some students might find
challenge in the selection of essential information from a larger list.

Teacher A: It will be interesting to see if they can pick out that information from the table
that’s there. I think that will be a stumbling point for some of them …And they might be
seeking a little bit of clarification there.

Teacher A did not see this challenge as a negative experience for students but rather an
enabler of their development as modellers provided adequate support was in place—thus
reinforcing the important role of their own anticipatory capability.

Teacher A: I think that students need a bit of struggle and challenge…but with bringing them
back together and just getting that clarification before we go on, I think then they’ll be right,
and they’ll run with it.

11.9 Conclusion

This chapter reports on interim findings from a national project, conducted in
Australia, that aims to promote the effectiveness of both teaching and learning in
mathematical modelling through a focus on teachers’ and students’ anticipatory
capabilities. Both teacher and student practices, as syntheses of previous scholarly
work or observed during initial implementation phases of the project, are repre-
sented in the form of the DIFMT—developed in an iterative fashion as a collabo-
ration between teachers and researchers. Identifying other enablers or dis-enablers
of students’ opportunities to learn to model is ongoing. These include factors such
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as teachers’ preparatory practices before engaging students with modelling, socio-
mathematical norms and the didactical contract, and the development of teachers’
own anticipatory capabilities. Our future work, within this study, will continue to
focus on the identification of enabling factors, related to both students and teachers,
that promote or inhibit students’ efforts to employ mathematical modelling effec-
tively when solving real-world problems and in particular those that impact on the
pre-mathematisation and mathematisation phases of the modelling process.
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Chapter 12
Pre-service Mathematics Teachers’
Technological Pedagogical Content
Knowledge: The Case of Modelling

C. Guerrero-Ortiz

Abstract In this chapter, the process of modelling task design for teaching math-
ematics in digital environments developed by secondary school mathematics pre-
service teachers is examined. A way to visualise and integrate modelling and Tech-
nological Pedagogical Content Knowledge (TPACK) into an analysis framework
is demonstrated to describe pre-service teachers’ knowledge using an empirical
study. This is followed by a qualitative case study highlighting the relationships that
emerged between the modelling processes adopted by pre-service teachers while
designing a task and their knowledge in relation to content, technology, and peda-
gogy. Findings yielded by this investigation deepen current understanding of pre-
service teachers’ knowledge and development of resources to support the integration
of modelling and technology as a part of teaching practice.

Keywords Technology ·Mathematical modelling · Technological pedagogical
content knowledge · Simulation · Dynamic geometry software

12.1 Introduction

In recent years, use of digital tools in all life domains has increased dramatically,
transforming the way in which we carry out daily activities (Santos-Trigo 2019).
This shift is evident in the school context as well, necessitating that teachers provide
instruction using different types of technologies for different purposes (Santos-Trigo
2020). To expand the opportunities for mathematical modelling in the classroom, it is
essential that teachers know how to take advantage of modern technology to promote
learning processes. In particular, when teaching modelling, teachers need to identify
the types of tasks that promote modelling activity (Maaß 2010) and the processes
that can be developed (Borromeo Ferri 2006). They also need to be able to modify
modelling lessons in line with anticipated student difficulties (Borromeo Ferri 2018).
The role of the teacher for teaching mathematics in environments permeated by
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technologies has been explored from different perspectives (Drijvers et al. 2010).
Thus, the aim of the research reported in this chapter is to gain a better understanding
of pre-service teachers’ technological pedagogical content knowledge (TPACK), and
to enhance the learning of mathematical modelling in digital learning environments.
To meet this aim the research question guiding this study is: What elements of
mathematics pre-service teachers’ TPACK are present when designing modelling
tasks?

TPACK is the knowledge that teachers must possess in order to effectively
use technology while teaching (Koehler and Mishra 2009). In particular, for the
case of mathematics, Guerrero (2010) observed that this involves the management
of technology, instruction, and pedagogical knowledge. She thus identified some
key components of TPACK for the use of technology in the mathematics class-
room, namely Conception and Use of Technology, Technology-Based Mathematics
Instruction, Management and Depth, and Breadth of Mathematics Content. More
recently, Koh (2019) examined the type of knowledge needed to support the design
of technology-integrated lessons for mathematical inquiry with authentic problems.
However, although some aspects associated to teacher’s knowledge in the case of
modelling and technology with teachers in service have been explored (Brown2017),
studies into pre-service teachers’ TPACK in the case of mathematical modelling are
less prevalent. This gap is addressed in the present study. For this purpose, mathe-
matical modelling is understood as a process involving repeated transitions between
reality andmathematics (BorromeoFerri 2018). Special attention is paid tomodelling
as an instrument for analysing the processes that future teachers adoptwhendesigning
a modelling task. This is shown with an example of how the TPACK framework and
the modelling cycle can be integrated to study the knowledge of pre-service teachers
of mathematics.

12.2 Modelling, Technology, and Teacher Knowledge

In pertinent literature, some elements related to the use of technology that teachers
must take into account for the teaching of mathematics are defined, including types
and uses of digital tools, class management in a digital environment, affordances
and constraints, digital tools as mediators of learning, and beliefs about the use
of technology (Guerrero 2010; Santos-Trigo 2019). However, there is little empir-
ical evidence with respect to the affordances and constrains of using technology in
modelling activities, and some questions remain unanswered (Borromeo 2018), even
though the benefits of introducing modelling and technology in pre-service teacher
education are widely recognised (Villareal et al. 2018).

In mathematics classrooms, modelling has been positioned from two different but
complementary perspectives—modelling as a content to be taught, and modelling
as a means of learning and developing mathematical skills. Thus, modelling can be
considered as a didactic strategy or as a mathematical practice. In any case, it has
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become part of many national curricula, and teachers are responsible for its imple-
mentation. In extant studies, development of the competences that a teacher must
possess to teach modelling effectively has been addressed through four dimensions
(BorromeoFerri andBlum2010): theoretical dimension, tasks dimension, instruction
dimension and diagnostic dimension. The first dimension considers knowledge about
modelling cycles, goals/perspectives formodelling, and types ofmodelling tasks. The
second dimension involves the ability to solve, analyse, and create modelling tasks.
The third relates to the ability to plan and execute modelling lessons and knowl-
edge of appropriate interventions during the pupils’ modelling processes, while the
fourth dimension includes the ability for recognising phases in themodelling process,
as well as recognising student difficulties and mistakes. Modelling task design is
one of the key factors of teacher’s knowledge, and different aspects of this knowl-
edge become stronger when creating modelling tasks (Guerrero-Ortiz 2019). In the
case of modelling task design in technological environments, Geiger (2017) showed
how relationships between student, teacher, task and digital tools become dynamic,
requiring the teacher the ability to adapt the task according to the students’ solution
processes. In this research, the changes to the modelling cycle introduced by the
technology (Greefrath et al. 2018) are considered as having a potential impact to
keep in mind in modelling task design.

In their study on the influence of technology on modelling processes, Greefrath
et al. (2018) considered, in addition to the real world and the mathematical world, a
technological world. These authors point out that digital tools are used after math-
ematical expressions have been translated into a language that is understood by the
tool, and then after working in the technological world the results offered by tech-
nology are translated back into mathematical language. Moreover, they identified
the potential of the use of technological tools in the modelling cycle as a means
of better understanding the problem through simplification and mathematisation.
Specifically focusing on the case of a dynamic geometry software, Greefrath and
Siller (2017) characterised the uses of digital tools when students work on modelling
tasks as drawing, visualising, constructing, measuring, experimenting, calculating,
and researching. Other researchers have shown how pre-service teachers use tech-
nology to find and filter information, and how technology influences the process
of mathematical problem-solving and solution validation (Villareal et al. 2018).
Although these studies shed light on the interaction of technology and modelling
processes, in the present investigation, modelling tasks design is examined from the
teacher’s knowledge perspective, focusing on the modelling process developed by
pre-service teachers when designing a teaching task and on their knowledge about
technology, pedagogy, and mathematical content. For this purpose the notion of
TPACK is now introduced.

The definitions presented here are based on more general descriptions of TPACK
framework offered by Koehler and Mishra (2009), which were refined in the light of
the findings put forth by Guerrero (2010) and Koh (2019) to specifically relate them
to the teaching of mathematics. Pedagogical Content Knowledge (PCK) considers
aspects related to the learning of mathematics, such as students’ conceptions and
what may be challenging or interesting for them. It also includes the knowledge
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teachers must possess to plan a lesson, along with the consideration of students’
previous knowledge, errors and difficulties, different representations of objects and
characteristics of teaching tasks. Knowledge of the content (CK) involves knowing
mathematical concepts and their definitions, sequencing or nesting of mathematical
concepts, proof, demonstration and approaches to the development and generation
of mathematical knowledge (Ball et al. 2008). For analysis development, the term
EMK has been introduced to refer to extra-mathematical knowledge. Technolog-
ical Content Knowledge (TCK) involves the knowledge and mastery of a variety
of technological tools (TK) that can be used to process information, represent and
manipulate mathematical objects, solve problems, and interpret and communicate
results (Santos-Trigo and Moreno-Armella 2016). It also involves decision-making
regarding the ways in which content can be addressed depending on the advan-
tages and disadvantages imposed by the tools. Technological Pedagogical Knowl-
edge (TPK) includes knowledge of the pedagogical affordances and constraints of
the tools, such as the implications that different tools have for the design and strate-
gies for teaching mathematics in digital environments. The teacher must knowwhich
technologies are best suited for learning, and how teaching is modified depending on
the choice of technological tools (Santos-Trigo and Moreno-Armella 2016). He/she
must also be aware of theways inwhich students perform actions such as exploring or
building a mathematical object or even how to save information (Koehler andMishra
2009). TPACK subdomains will be explored in mathematics pre-service teacher’s
modelling task design.

12.3 Method and Context

To know what elements of TPACK are present when designing modelling tasks,
pre-service mathematics teachers were required to design a task for teaching in
secondary school (aimed at students aged 15–16 years). This was the final product of
a course, where participants should integrate their content and pedagogy knowledge
by creating a modelling task. The mathematical content should be freely chosen
and related to the curriculum. The participants were in a course, at the third of four
years of study, where the author was the teacher. All had a general understanding
of problem-solving and modelling strategies and were at an intermediate level in
terms of practical experience with the dynamic geometry software, Geogebra, used
for completing the task. Moreover, for about 1.5 months, the participants worked in
small groups (2–3 members) on the modelling task design, after which each group
made oral presentations on their progress. At the end of the course, fifteen groups’
written reports were received, along with an electronic file containing the modelling
task. In the reports, each group described how the real situation chosen by them
was studied, simplified, and adapted to become a teaching task. The lesson plan
and a priori analysis of the expected students’ answers were also included. In the
following section, the work of one group is analysed. This group consisted of three
participants, two of them very interested in exploring different forms of teaching, and
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the other one proficient in the use of Geogebra. In order to better identify the content
knowledge, tasks where the mathematical concept to be taught was clearly defined
and related to the dynamic configuration given in a simulation were chosen. This was
the selection criterion for choosing this group. Written reports, electronic files, and
researcher’s file notes were the data sources that were subjected to content analysis
(Bardin 1986) by the author. For data analysis, the design stages were characterised
according to the phases of the modelling cycle of Greefrath et al. (2018). Then, the
content of selected paragraphs from the written report was coded according to the
subdomains of TPACK (Koh 2019). The analysis of the record resulting from the
Geogebra construction processes complemented this coding. In the analysis, focus
is given to the initial design formulation, without considering its implementation
(Guerrero-Ortiz 2019). Finally, to ensure reliability, the coded and interpretations
were discussed and refined in a seminar with a group of researchers.

12.4 Analysis of Task Design

The task analysed here was intended for introducing the concept of ellipse to
secondary students. The learning objectivewas to recognise the ellipse as a geometric
locus, and according to the definition, the ellipse is the locus of all points on a plane,
such that the sumof the distances to twoother fixedpoints, called foci, is constant. The
task was presented in its entirety in the Geogebra environment (Fig. 12.1), where
the movement of comets is observed, without initially showing the graph of their
respective trajectories. Hence, those that find the solution should communicate their
findings, along with their reasoning regarding the movement of the corresponding
point (Item 1). In Item 2 (Fig. 12.1), the objective was directed to measuring the
distances between individual comets and the Sun, as well as a fixed point, or “focus”.
Intending to introduce the definition of ellipse as a geometric locus, students should
explore when the sum of different distances is constant.

Questions raised:

1. Describe the movement of the 
comet around the Sun. What 
geometric locus is it?

2. Is there a relationship between 
its distance to the Sun and to 
the focus?

Fig. 12.1 Movements of Comets. Task designed by pre-service mathematics teachers
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12.4.1 Elements of TPACK Emerging in Task Design

In this section, elements of TPACK that emerged in the task design carried out by
secondary school pre-service mathematics teachers are identified. When analysing
the written report to obtain information of the design process, their knowledge of
physics (EMK) was evident, as the pre-service teachers correctly concluded that the
movement of comets is governed by Kepler’s laws of planetary motion. The first
law states that planets move in elliptical orbits around the sun, while the second
law states that the radius vector that connects the planets and the sun sweeps equal
areas in equal time periods. In other words, when the planet is furthest from the
sun, its speed is minimal, but it is greatest when it is at the point closest to the sun.
On the other hand, the definition of ellipse as a geometric locus was recognised
in the activity intended for students (PCK). Therefore, the pre-service teachers’
knowledge of physics and mathematics is associated to CK and was put into practice
when designing the activity in the Geogebra environment. During this process, CK
underwent a transformation, emerging as TCK. In relation to this subdomain, in the
analysis of Geogebra’s record of the construction, three tool domain levels (TK)were
identified: basic, intermediate, and technical. Participants that are at the basic level of
proficiency recognise the Geogebra interface, know how to use dependent and non-
dependent basic objects, and are able to modify properties of the graphical interface.
In particular, the participants who designed this task used the dot object to represent
comets, the Sun, and stars. They used point on object to fix the movement on an
elliptical path, where the sun is represented by one of the foci. The use of the tool to
measure lengths was also observed. At the intermediate level of proficiency, the use
of buttons to control the animations of several objects simultaneously is expected.
In addition, to visually simulate the non-constant speed of movement of the points
when they are in different positions on the elliptical path, participants modified the
properties of the point to define speed as an inverse of the distance of a moving point
on the elliptical path around another fixed point.

Next, when analysing the activity intended for secondary students, it can be
observed that the objective and the questions denote that the focus is placed on
the exploration of the ellipse as a geometric locus to later relate it to its algebraic
representation x2

a2 + y2

b2 = 1. On the other hand, pre-service teachers’ knowledge
of physics, such as an approximation of Kepler’s third law—which postulates that
the square of the orbital period T of a planet is directly proportional to the cube of
the semi-major axis r of its orbit, T 2 = k r3—while used for the construction of the
dynamic configuration, was not demonstrated to the students. In other words, models
pertaining directly to physicswere integrated into the construction of a dynamic simu-
lation, but the learning objective for students was restricted to the introduction of
mathematical concepts. The next paragraph, extracted from the pre-service teachers’
group report, confirms this observation:

To simplify the task, we focus on the ellipse […]. In other words, Kepler’s second law was
only used in the creation of Geogebra [dynamic configuration] to show that comets move
faster near the Sun.
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Table 12.1 Classification of
the elements observed in the
task design

In relation to the simulation In relation to the expected
activity from the students

Content Knowledge
Model of Kepler’s laws
Ellipse definition
Technological Content
Knowledge
Drawing an ellipse given two
foci
Point on object
Measure distances
Control
Defining the velocity of the
movement of a point

Content Knowledge
Ellipse definition
Technological Pedagogical
Knowledge
Use of a simulation to
introduce mathematical
concepts

In relation to the TPK, this task can be pedagogically interesting for secondary
students as it would motivate them to visualise different types of movement through
technology. However, it is necessary to identify contexts in which such activities
would be cognitively enriching for them. Technology, in this task, was used solely
as a means to simulate a physical phenomenon and explore related mathematical
concepts. Table 12.1 summarises the elements associated with the TPACK subdo-
mains that were identified in the task. The left column shows elements referring to the
use of software tools, along with the physical and mathematical concepts identified
in the pre-service teachers’ task design. The right column shows elements identified
in the activity intended for secondary school students.

When this group of pre-service teachers designed a task aimed at introducing
secondary school students to the concept of ellipse as a geometric locus in tech-
nological environments, elements of their TPACK were evidenced, as previously
explained. In order to complement the previous analysis, now is described how the
work on the task design highlights their progression through the modelling cycle
(Greefrath et al. 2018). Where the CK and EMK could be expanded when the pre-
service teachers investigated published literature and online sources to gain insight
into the phenomenon to be studied. This strategy allowed them to develop a model
of the situation that was subsequently associated with Kepler’s laws and the concept
of ellipse (CK). With the definitions of these concepts as models from the fields of
mathematics and physics, the group built a dynamic configuration to simulate the
movement of comets, thereby transitioning to the world of technology. In the world
of technology, future teachers experimented with the dynamic configuration to antic-
ipate the actions of students. In this process, aspects related to their TCK, such as the
use of software tools to experiment, recognise, describe, measure, and test elements
related to the ellipse, were enhanced. In Fig. 12.2, the continuous line shows the path
traced by this group in the design process in relation to the modelling phases. Using
a dotted line, the activity intended for students is identified within the same cycle,
revealing intentions in the promoted activity (Fig. 12.3).
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Fig. 12.2 Modelling cycle followed by the pre-service teachers when designing the task

Fig. 12.3 Proposed activity
for students

As shown in Figs. 12.2 and 12.3 since the task was designed to be solved in
a simulation environment, the activity intended for students starts from a situation
created in the virtual world, and the proposed activities are fully developed in the
same virtual environment. Pre-service teachers described this as follows:

We plan that students trace the points associated with comets in order to realise that they
follow a fixed path, governed by the relationship between the point representing the comet
and the sum of the distance from this point to each focus. Once students conjecture about
these aspects, the teacher will explain the definitions and equations.

12.5 Discussion and Conclusion

The extended modelling cycle of Greefrath et al. (2018) allows one to systematise
the analysis of mathematical, pedagogical, and technological knowledge of pre-
service mathematics teachers when designing a modelling task. In adopting this
strategy, it was possible to elucidate how elements of their TPACK are present
in the design process. Moreover, pre-service teachers’ pedagogical intentions were
expressed through the activities intended for secondary students when they expect
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students tomeasure the distances between planets and the sun, recognise and describe
the locus, experiment when measuring different varying distances and realise that
the sum is constant; something they can mathematically prove. Detailed analysis
supported on themodelling cycle showedwhich phases of the design process encour-
aged pre-service teachers to use different types of knowledge (see a summary in
Table 12.2). The findings revealed that, in exploring the situation chosen by them,
knowledge about planetary motion emerged (CK, EMK). Then, in the construction
of dynamic simulation (TPK), models from physics and mathematics were used as

Table 12.2 Modelling cycle phases and TPACK subdomains

Modelling processes TPACK Description

Real situation TK—Use of technology to
search for relevant information
EMK—Extra-mathematical
knowledge associated with
planetary motion
PCK—Choosing a situation to
motivate secondary school
students

Exploration of several real-life
situations takes place, one of
which is selected for teaching

Situation model EMK—Extra-mathematical
knowledge associated with
planetary motion

A mental representation of the
situation is formed depending
on the PCK

Real model PCK—Considerations about
understanding the situation,
such as simplifications,
idealisations, and teaching
objectives

PCK is built from idealisations
influenced by teaching
objectives

Mathematical and physical
model

CK—Identification of relations
between mathematical objects
and objects from physics
PCK—The mathematical model
is built according to the
curriculum and teaching
objectives

Constituted by the
configuration of mathematical
objects that represent elements
of the situation

Computer model TCK—Construction of a
geometric configuration using
the ellipse object; defining the
velocity of the movement of a
point on object, use of point on
object and control tools
TPK—Using a simulation to
motivate student learning

Comprises the geometric
configuration that simulates the
situation

Computer results TCK/TPK—Measure distance
between points for students to
conjecture about the ellipse
definition

The work with the simulation
could allow students a better
understanding of the ellipse
definition
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tools (TCK). However, in the activities intended for students, the focus was restricted
to the concept of ellipse as a geometric locus (TPK).

The main contribution of this study stems from the analysis of the modelling
process performed by pre-service teachers when designing the task and the activity
intended for the students. When pre-service teachers designed the tasks, their mathe-
matical and extra-mathematical knowledge was enhanced, particularly in relation to
drawing upon knowledge of other sciences, as was previously shown by Guerrero-
Ortiz (2019). In this case, the physics models remained hidden behind the dynamic
configuration proposed for the work secondary students were expected to perform,
and the objectivewas tomotivate the learners to explore the concept of ellipse through
a simulated situation in virtual reality. This observation confirms the need to rethink
the learning scenarios included in prospective teachers’ training programs to allow
them to learn in an interdisciplinary way and better understand how the use of tech-
nology influences content design and teaching (Santos-Trigo and Moreno-Armella
2016). The relationships between the modelling phases and TPACK subdomains
reveal those elements of the teacher’s knowledge that should be improved when
designing modelling tasks in digital learning environments. Therefore, it can be a
tool for teacher training. Further research with a broader range of data to deepen
in other characteristics of TPACK that could appear in different modelling tasks
design is required. It is also necessary to explore what secondary students learn
about modelling with this type of task, which was a limitation of this study. Finally,
further empirical research needs to be developed in order to contrast the subdomains
of TPACK stemmed from the design and those that can be seen in the pre-service
mathematics teachers’ practice.
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Chapter 13
Interest and Emotions While Solving
Real-World Problems Inside and Outside
the Classroom

Luisa-Marie Hartmann and Stanislaw Schukajlow

Abstract Solving real-world (or modelling) problems outside the classroom can
link students’ real lives with mathematics on the basis of an authentic experience
with the subject matter. This may trigger students’ interest and positive emotions and
diminish their negative emotions. In the present study, we examinedwhether students
are more interested in and feel more enjoyment and less boredom while solving
real-world problems outside than inside the classroom. To answer these research
questions, students (N = 43) were randomly assigned to two groups, an outside
group and an inside group. Our results indicate that location does not influence the
development of students’ interest and emotions. We hypothesise the importance of
authentic problems for students’ development of interest and emotions and suggest
to examine this hypothesis in future studies.

Keywords Real-world problems ·Math trail · Teaching methods · Interest ·
Enjoyment · Boredom

13.1 Introduction

Interest and emotions are important for students’ learning. However, students tend
to feel more boredom than enjoyment in mathematic classes (Goetz and Hall 2014),
they are often not interested in mathematics, and their interest in mathematics even
tends to decrease from grades 5 to 10 (Pekrun et al. 2007). What are possible reasons
for these findings? Although mathematics is a part of our everyday lives (Niss 1994)
and mathematical knowledge fosters the understanding and development of aspects
of diverse extra-mathematical areas (e.g., medicine, pharmacy, architecture, security
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of online banking, or email encryption), students often do not recognise the connec-
tion between mathematics and reality. They perceive real-world problems in their
lessons as artificial and do not link their everyday or future lives to the contents of
mathematics lessons. As a result, students might not be interested in mathematics
and might thus feel bored in or fail to enjoy their mathematic classes. In order to
strengthen the connection between the real world and mathematics, school tasks
sometimes include photographs of real-world objects or videos of real-world situa-
tions. However, the typical mathematic class takes place inside the classroom. Given
that no one said that mathematics classes must take place inside the classroom, we
hypothesised that solving real-world problems outside the classroom as offered by
a math trail might motivate students more than solving the same problems inside
their regular classrooms. Following these considerations, we aimed to investigate
the effects of this teaching method on students’ interest and emotions.

13.2 Theoretical Background

13.2.1 Interest, Enjoyment, and Boredom

Interest describes a relationship of a person (e.g., a student) and an object or activity
(e.g., solving a mathematical problem) (Hidi and Renninger 2006). Theories of
interest have distinguished between situational and individual interest. If the student
enjoys solving the problem and values the problem, he or she will experience
high situational interest. This type of interest can be triggered by environmental
stimuli and can fluctuate from moment to moment (interest as a ‘state’) (Hidi and
Renninger 2006). However, if this situational interest is maintained over time, it can
change into individual interest (interest as a ‘trait’). Students with a high level of
individual interest look for mathematics in their environment, solve mathematical
problems in their free time, and discuss mathematical problems with other people
(Schukajlow et al. 2017). In the present study, we focussed on task-specific interest
(i.e., situational interest) because of its importance for the early stage of interest
development. According to the theory of interest, learning environments that provide
meaningful activities that have personal significance can trigger students’ interest
(Hidi and Renninger 2006). Students might perceive solving real-world problems
with an authentic experience with the subject matter of their everyday life as a mean-
ingful activity with personal significance, and therefore, this activity might improve
students’ situational interest.

The construct of interest and the construct of emotions are closely related to
each other. Emotions can be described as a complex, multi-dimensional construct
that comprises motivational, expressive, physiological, and cognitive parts (Pekrun
2006). In the present study, we focussed on the emotions of enjoyment and boredom
because these emotions are two of the most frequently reported emotions in the
context of learning (Pekrun et al. 2002). According to the control-value theory of
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achievement emotions, an emotion can be activating or deactivating and have a posi-
tive or negative valence. For example, enjoyment is a positive-activating emotion. If
students enjoy a situation, they will want to continue task processing and will feel
happy. Boredom is a negative-deactivating emotion. If students are bored, they will
not want to continue task processing and will not like the situation (Pekrun 2006).
In the control-value theory of achievement emotions, enjoyment occurs with high
control appraisals (e.g., high perceived competence in solving a problem) and high
value appraisals (e.g., the perceived importance of a learning activity) (Pekrun 2006).
Boredom occurs with too high or too low control appraisals and low value appraisals
(Pekrun 2006). Control appraisals are too high, for example, if the presented task is
too easy for the student, and they are too low, for example, if the presented task is
too difficult. Value appraisals are low, for example, if students do not consider task
processing to be important for them. An authentic experience with the subject matter
while solving real-world problems might improve students’ perceived importance
of task processing and therefore their perceived value. Thereby this activity might
affect their enjoyment and boredom.

13.2.2 Real-World Problems in the Context of a Math Trail

Real-world (or modelling) problems require demanding transfer processes between
reality andmathematics. Students begin to solve real-world problems by constructing
a model of the situation in the real world. Then they translate this model into a
mathematical model and switch from the real world to the mathematical world.
After that, calculations can bemade in themathematical world, and themathematical
results have to be interpreted and validated with respect to reality.

Real-world problems are usually complex, open-ended, and authentic (Maaß
2006). The authenticity of a problem can be determined by the presented context
or the learning environment. The present study focusses on authentic learning envi-
ronments because increasing authenticity can strengthen the relation of a problem
to the real world (Vos 2015). An example of a real-world problem is The Climbing
Frame task.

In Fig. 13.1, we present a real-world problem that can be offered to students in
the classroom. To solve a problem with missing information (also called a Fermi-
Problem), students must notice the missing information and make realistic assump-
tions, including identifying and supplementing the missing quantities (Krawitz et al.
2018). Photographs or videos can be helpful for estimating the missing information
and can make the relation between the problem and the real world more obvious.
However, real-world problems can be offered not only in the classroom but also
outside. Kleine et al. (2012) suggested that working on real-world problems outside
the classroom is more motivating than working with photographs or videos in the
classroom. A possible explanation could be that the learning environment outside
offers an authentic experience with objects in students’ environments, and students
therefore perceive that the processing of the task is more valuable.
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Fig. 13.1 Real-world problem The Climbing Frame

Prior research investigated real-world problems outside the classroom as part of
a math trail. Math trails are out-of-classroom activities. In such a trail, students can
solve mathematical problems that refer to real objects. Students discover these real
problems in their environment as they follow a planned route (Cahyono and Ludwig
2017). This learning environment offers an authentic experience with the subject
matter (Buchholtz and Armbrust 2018). Cahyono and Ludwig (2017) showed that
students were interested in solving real-world problems along a math trail outside
the classroom with the help of the MathCityMap-App,1 and a study by Buchholtz
and Armbrust (2018) revealed that students enjoyed solving real-world problems on
a math trail outside the classroom. However, to the best of our knowledge, neither
of these studies compared the effects of solving real-world problems inside versus
outside the classroom on students’ interest or emotions.

13.2.3 Research Questions

To help close this research gap, we aimed to address the following research questions:

(1) Are students who solve real-world problems outside the classroom on a math
trail more interested in solving these problems than students who solve the same
real-world problems inside the classroom?

(2) Do students who solve real-world problems outside the classroom on a math
trail feel more enjoyment and less boredom than students who solve the same
real-world problems inside the classroom?

On the basis of the importance of the learning environment for triggering students’
interest (Hidi and Renninger 2006) and results from empirical research by Cahyono

1The MathCityMap-App is a project from the IDMI of the Goethe-University in Frankfurt. It
provides the opportunity to develop interesting tasks concerning objects in reality and to solve them
in the form of a math trail (Cahyono and Ludwig 2017).
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and Ludwig (2017), we expected that students who solved the real-world problems
outside the classroom on a math trail would be more interested in solving the prob-
lems than students who solved the same real-world problems inside the classroom.
Concerning students’ emotions and based on results from empirical research by
Buchholtz and Armbrust (2018), we expected that students who solved the real-
world problems outside the classroom on a math trail would feel more enjoyment
and less boredom than students who solved the same real-world problems inside the
classroom because solving problems outside a classroom might improve the value
of task processing, which is important for enjoyment and boredom.

13.3 Methodology

13.3.1 Participants and Procedure

To answer these research questions, 50 sixth graders [74% female, 26%male, average
age: 11.38 years (SD = 0.49)] from a German middle school took part in this study.
The students had no prior experience in solving real-world problems with missing
information. On the basis of pretest results, students from each class were randomly
assigned to two groups with the same number of students in each group such that
the average age, interest in mathematics, ratio of males and females, and average
achievement level in mathematics did not differ. The students solved six problems
that referred to their school environment in groups of four to five and were given
60 min to finish the tasks (10 min each). Afterwards, they completed a questionnaire
about their task-specific interest, enjoyment, and boredom.

The experimental group solved six real-world problems outside the classroom by
measuring directly on the object in the real-world. The MathCityMap-App is used
in the group to locate the objects in the school environment. As real-world problems
solved inside the classroom usually contain photos of the real-world object, the
control group solved the same six real-world problems inside the classroom with
photos or videos. The problems were presented to the experimental group in the
app,2 whereas the control group used print-outs that were left on tables. In addition,
a photo of the object and a hint about the size of the objectwere located on each table in
the classroom. The tables in the classroomwere arranged in a learning circle. During
task processing, students could fall back on three staged hints. The experimental
group could access them in the app, whereas in the classrooms, they were presented
on flash cards on the different tables. After task processing, the experimental group
entered their result in the app and received direct feedback on its correctness. The
students in the classroom compared their results with the result on a flash card. Both
groups could then read one solution to the problem—the experimental group in the
app and the control group on the flash cards.

2For an impression of how the real-world problems were presented in the app, see https://mathci
tymap.eu/de/portal/#!/trail/891164.

https://mathcitymap.eu/de/portal/#!/trail/891164
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Table 13.1 Items used to assess task-specific interest, enjoyment, and boredom

Scale Item

Task-specific interest Task processing was exciting

I am already curious about further tasks

I would like to work on such tasks more often

Enjoyment I enjoyed task processing

I was happy during task processing

Task processing was great fun for me

Boredom Task processing was boring

I got so bored during task processing that I had trouble remaining alert

I did not want to continue my work because it was so boring

13.3.2 Measures

Tomeasure interest, enjoyment, and boredom, we used well-evaluated 5-point Likert
scales ranging from 1 (not at all true) to 5 (completely true). Interest was measured
with three self-developed items based on a well-evaluated scale used in prior studies
(Frenzel et al. 2012) (see Table 13.1). The scale for task-specific interest achieved
good reliability (Cronbach’s α = .88). To measure enjoyment and boredom, we
used items from the well-evaluated Achievement Emotions Questionnaire (Pekrun
et al. 2011). Each scale included three items (see Table 13.1). The Cronbach’s alpha
reliabilities were 0.88 for enjoyment and 0.69 for boredom.

13.3.3 Data Analysis

To test the results for significance, we used t-tests for independent samples. We
excluded three students with missing values (two students from the experimental
group and one student from the control group) and four students with outliers (two
students from each group) to avoid distorting the results. Thus, the number of students
was reduced to N = 21 in the experimental group and to N = 22 in the control group.

13.4 Results

13.4.1 Task-Specific Interest

We expected that students who solved the six real-world problems outside the class-
room on a math trail would be more interested in the tasks than students who solved
the same problems inside the classroom. Table 13.2 presents students’ task-specific
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Table 13.2 Values for
students’ task-specific interest

Location Task-specific interest

N M SD

Outside (EG) 21 4.25 0.92

Inside (CG) 22 4.14 0.65

interest while solving real-world problems inside and outside the classroom.
Both the experimental and control groups reported high task-specific interest. The

statistical analysis revealed that contrary to our expectations, students experienced
the same level of task-specific interest while solving the real-world problems inside
and outside the classroom (t(43) = 0.46, p = 0.646) and that the location had only
a small effect on students’ task-specific interest (dCohen = 0.138).

13.4.2 Enjoyment and Boredom

For students’ enjoyment and boredom,we expected that studentswho solved the real-
world problems outside the classroom on a math trail would feel more enjoyment
and less boredom than students who solved the same real-world problems inside the
classroom. The descriptive statistics concerning students’ enjoyment and boredom
are presented in Table 13.3 and revealed a high level of enjoyment and low level of
boredom in both groups.

Contrary to our expectations, students’ enjoyment during task processing did not
differ between the experimental and control groups (t(48)= 0.49, p = 0.627) and the
location had only a small effect on students’ enjoyment (dCohen = 0.145). Students’
boredom during task processing did not differ between the groups either (t(47) = −
0.67, p= 0.491) and the location also had a small effect on students’ boredom (dCohen

= 0.210). Hence, students experienced the same level of enjoyment and boredom
while solving real-world problems inside and outside the classroom.

Table 13.3 Values for students’ enjoyment and boredom

Location Enjoyment Boredom

N M SD M SD

Outside (EG) 21 3.99 0.94 1.40 0.45

Inside (CG) 22 3.85 0.99 1.51 0.59
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13.5 Discussion

13.5.1 Task-Specific Interest

In this chapter, we aimed to analyse how solving real-world problems outside the
classroom would affect students’ task-specific interest. On the basis of theoretical
considerations from interest theory (Hidi and Renninger 2006) and prior research
that indicated that students are interested in solving real-world problems outside
the classroom (Cahyono and Ludwig 2017), we expected that students would be
more interested in solving real-world problems outside the classroom than inside.
However, our analysis did not confirm this hypothesis. Students experienced the same
level of task-specific interest no matter whether they worked on it inside or outside
the classroom. One possible explanation for these results could be that the problems
were similar concerning their reference to objects in students’ school environment.
Although the objects were presented on photographs in the control group, students
may have perceived the problems inside the classroom as authentic problems.

13.5.2 Enjoyment and Boredom

Additionally, we aimed to analyse how solving real-world problems outside the
classroom would affect students’ enjoyment and boredom. On the basis of theoret-
ical considerations from the control-value theory of achievement emotions (Pekrun
2006) and prior research that indicated that students enjoy solving real-world prob-
lems from a math trail outside the classroom (Buchholtz and Armbrust 2018), we
expected that students who solved the problems outside the classroom would experi-
encemore enjoyment and less boredom than students who solved the problems inside
the classroom. Contrary to our expectations, our analysis revealed that students expe-
rienced the same level of enjoyment and boredomwhile solving real-world problems
inside and outside the classroom. Hence, our analysis did not confirm our hypoth-
esis. One possible explanation for these results could be that due to the similarity of
the problems, the two processing situations were accompanied by high control and
value appraisals. Both processing situations might be accompanied by high control
appraisals due to the staged hints and therefore the adaption of the tasks to students’
competences. High value appraisals may have been enhanced by the authentic and
realistic contexts and the significance of the problems for the students’ lives and
group work.
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13.6 Strengths and Limitations

As we aimed to investigate the effects of working on real-world problems outside
the classroom, we posed identical real-world problems with high levels of authen-
ticity in the experimental and control groups. Therefore, interest and emotions may
have been influenced by the newness of the problem type in both groups. Further,
the experimental group used digital technology, which can also influence students’
interest and emotions, whereas control group worked with print-outs in the class-
room. The reason for combining “outside” groupwith technology and “inside” group
with print-outs was the external validity of teaching methods and our intention about
drawing practical implications from our study. We do not think that the digital tech-
nology (MathCityMap-App) decreased the positive effects of working on the prob-
lems outside the classroom because digital technology was found to be the prevalent
source of students’ enjoyment of task processing (Cahyono and Ludwig 2017). The
real-world problems in our study were characterised by their relation to students’
school environment. However, the results have to be validated for other types of
real-world problems. In our study, students worked in small groups of four to five
students because group work was found to be preferable for solving real-world prob-
lems (Schukajlow et al. 2012). However, the clustering effects could have affected
our results because the students in each small groupmay have influenced each other’s
perceptions of interest and emotions. Finally, due to the small sample size, our results
have to be interpreted with caution.

13.7 Conclusion and Summary

Working on real-world problems as part of a math trail can give students the oppor-
tunity to perceive the connection between their world and mathematics. This can
offer an authentic experience with the subject matter and might thereby trigger posi-
tive emotions and interest. As interest and emotions have a high impact on students’
learning (Schukajlow et al. 2017), one of themain aims ofmathematics classes should
be to foster students’ interest and positive emotions and to diminish their negative
emotions. Therefore, the aim of this work was to examine whether students are more
interested in and experience more enjoyment and less boredom while solving real-
world problems outside the classroom than students who solve the problems inside
the classroom.

Our findings can contribute to a better understanding of the role that authentic
learning environments (e.g., outside the classroom) play in the context of solving
real-world problems. Overall, our results indicate that students have high interest and
experience high enjoyment and little boredom while solving real-world problems,
whether the problems are solved outside on a math trail or inside the classroom.
We conclude that it is not the learning environment outside the classroom that is
important for the development of students’ interest and emotions. We hypothesise
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that the authentic problem type referring to students’ school environment is important
for the development of students’ interest and emotions. This hypothesis should be
investigated in future studies.
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Chapter 14
Learners Developing Understanding
of Fractions via Modelling

Lindy Hearne and Dirk Wessels

Abstract Fractions are a notoriously difficult area to master. The use of a fraction
as an operator is one of the least commonly accessed sub-constructs of fractions.
We explore the use of mathematical modelling to enhance Grade 6 learners’ under-
standing of this sub-construct. Learners’ understanding improves as effective connec-
tions are made between and within their intra-mathematical and extra-mathematical
knowledge. The quality of connectionsmade during the task differed between groups.
We conclude that learners benefit by connecting symbols and their referents and
procedures and their underlying concepts rather than focusing on the surface features
of Arabic notation.

Keywords Modelling · Understanding · Fractions · Mathematics education ·
Semiotic approach

14.1 Introduction

Mathematical modelling has been developed as a vehicle for teaching mathematics
for understanding (Blum and Niss 1991). Though research into the use of modelling
in primary school mathematics has been gaining traction in the last ten years, it is
still in its early stages. Stohlmann and Albarracín (2016) recommend research on
developing, implementing, and assessing Modelling Eliciting Activities (MEAs) at
the primary school level:

For representational and conceptual competence future research can expand on the [mathe-
matical] content that has been studied. The content of … [amongst others] fractions… can
be explored as to how modelling can enable students to develop conceptual understanding
through different representations (p. 6).
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Poor sequencing (Aliustaoglu et al. 2018; Bayaga and Bossé 2018; Newstead and
Murray 1998), unmonitored informal misconceptions about fractions (Newstead and
Murray 1998), and a limited variety of problems have been identified as reasons
children find it difficult to learn fractions (Bayaga and Bossé 2018; Newstead and
Murray 1998).Modelling allows for use of learner’s informal knowledge and enlarges
the variety of activities that learners are exposed to using their fractional knowledge.
Modelling is thus, theoretically, a viable tool for the learning of this content area.

Though fractions are one of the most important content areas in this age group
(Aliustaoglu et al. 2018), very little mathematical modelling research has been
conducted in this content area in this age group. Few MEAs have been developed
(for one such study see Shahbari and Daher 2013) in the content area of fractions.
Furthermore, though these studies have reported on the capacity of modelling to
increase conceptual understanding, there is still a theoretical gap for exploring how
that understanding comes about. “Teachers need deeper knowledge of the compre-
hension processes during the solution of reality-based tasks so that they can also
emphasize linguistic and contextual aspects and provide targeted help to students
(Leiss et al. 2019, p. 1).” During the modelling process, learners are afforded the
opportunity to make connections between their representations. In understanding
fractions, it is important that learners make connections (Hiebert 1985) between the
symbols and their referents, between the procedures and their underlying concepts,
and between solutions and their reasonableness in both the real world and in relation
to other mathematics that is known.

Mathematical modelling utilises “tasks that require an effective linkage and trans-
lation between extra-mathematical context and intra-mathematical content (Leiss
et al. 2019, p. 2)”. This requires learners to display “the ability and willingness to
perform these translation processes” (Leiss et al. 2019, p. 2), in order to be compe-
tent modellers. This translation is a pragmatic process requiring higher levels of
integration by learners.

14.2 Fractions

According to Hiebert (1985), deep learning of fractions happens at two sites, one
of form and one of understanding. Fractions in the intermediate phase in many
South African schools are taught via a developmentally graded procedural system.
This establishes a strong foundation at the site of “form”. To encourage application,
fractions have associated word problems. Few, if any, of these word problems are
non-routine and there is little or no exploratory learning. Considering the possible
interrelationship between understanding the fraction concept and solving word prob-
lems involving operations between fractions (Aliustaoglu et al. 2018), this approach
may not be optimal for establishing fractions at the site of “understanding”.
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However, some researchers recognize that contextualizing fraction learning in real-world
problems helps to demonstrate the semantic structure of fractions and leads to greater learn-
ing… a number of factors can contribute to students gaining deeper semantic understanding
of fractions. (Bayaga and Bossé 2018, p. 1)

The fivemain sub-constructs in fractions include part-whole, measure, ratio, oper-
ator and quotient (Aliustaoglu et al. 2018; Bayaga and Bossé 2018; Shahbari and
Daher 2013).Many important big ideas, or important concepts, are foundwithin these
sub-constructs. For many researchers, these subconstructs form part of the semantic
boundary of fractions. That is, they are included in what fractions are collectively
understood to represent. However, the fraction as an operator, also known as multi-
plying a fraction with a natural number (Aliustaoglu et al. 2018) or finding the frac-
tion of a set (Newstead and Murray 1998), has been found to be the least commonly
accessed subconstruct of fractions (Aliustaoglu et al. 2018; Newstead and Murray
1998).

14.3 Modelling and Fractions as an Operator

If we are to utilise learner’s real-world knowledge, Modelling Eliciting Activities
(MEAs) should incorporate topics that learners are exposed to in their everyday lives.
All the learners in the class where the study reported in this chapter took place are
from a seaside town and four of them are avid surfers. The topic was thus designed to
incorporate their real-world knowledge, hoping to provide opportunities for arguing
with fractions as well as solving the sub-construct. The following Surfboards to Rent
MEA was designed:

Surfboards to rent
MrPieters has started a small business renting out boards at the beach. He plans
on renting out stand-up paddle boards (SUPs), long boards and surf boards. He
has a 4 × 4 with a tow hitch and has approached a business to design a trailer
to store and transport the boards. The designers can build a trailer with a rack
for a maximum of 24 boards.

Mr P has already bought the long boards and the SUPs. He knows one third
of the trailer will be filled with SUPs and a sixth will be filled with long boards.
He is currently trying to decide which smaller boards to buy.
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He’s done some research and knows that mini-mals are a good idea for
people who are new to surfing, so he’s considering three different size mini-
mals. He’s found a manufacturer, who will give him a good deal on the mini-
mals. They have sent him a table of the board lengths that are recommended
for different surfer weights. Mr P is considering the following three mini-mals:

Board (min-mal) Length Surfer weight (kg)

A 6′3′′ 45–64

B 6′6′′ 63–80

C 6′10′′ 80–91

Mr P obviously wants to rent out as many boards as possible. He’s come to
you for advice about which mini-mals he should buy. How many of each size
mini-mal should he buy?

In this chapter, we do not focus on the whole modelling process, as modelling in
this instance was used as a vehicle (see Mudaly and Julie 2007) to further learners’
understanding of fractions as an operator. Rather we analyse in a more atomistic
manner, focussing on mathematising as we are interested in the connections and
translations made as learners link their mathematical knowledge to their extra-
mathematical knowledge. Blomhøj and Højgaard Jensen (2007) concluded that “a
balance between the holistic approach and the atomistic approach is necessary when
considering the design of an entire educational programme aiming at [among other
things] developing the students’ mathematical modelling competence. Neither of the
two approaches alone is adequate (p. 137)”.

14.4 The Study

14.4.1 Data Collection

Six Grade 6 learners participated in the study. The sessions were video-taped and
audio-recorded, and written representations were collected. Audio recordings were
transcribed and mathematisation analysed according to semiotic categories.
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The study took place during the COVID-19 pandemic. The final session occurred
on theMonday just after the first cases of COVID-19 were identified in South Africa.
A graded set of problem-solving activities was presented to the learners who worked
in pairs. The pairs were randomly assigned with learners picking one of six playing
cards at the door of the classroom. Group one consisted of Alan and Ann, group two
of Byron and Brett and group three of Cam and Cindy (names have been changed to
protect learners’ privacy).

All the learners had worked with arithmetic fraction procedures, initially using
pre-partitioned drawings and then learning the Arabic procedures. The target sub-
construct, fraction of a set, has been covered formally in the classroom. All of the
subjects have learned to multiply both mixed numbers and fractions procedurally.
However, despite having completed six formal exercises and two assessments which
incorporated fractions as an operator, within their last 6 months at school, not all the
learners who participated in this study were able to solve the following problem:

There are 18 Smarties in a small box of Smarties.

(a) How many Smarties is one third of the box?
(b) How many Smarties is two thirds of the box?
(c) How many Smarties in one sixth of the box?
(d) How many Smarties in two sixths of the box?
(e) How many Smarties in four sixths of the box?

Three of the learners, Cindy, Cam and Brett solved a and b but only one of the
learners, Cam, could solve all of the parts. As 1/3 × 18 = 6 and 1/6 × 18 = 3, it
was postulated that the iterative nature of the solutions to these questions increased
the cognitive load of the task contributing to the breakdown of understanding. This
sub-construct of fractions was then targeted for additional support using a modelling
approach. The rationale for a modelling approach was that increased interaction with
the same set of data, in more depth, would allow time for the learners to stabilise this
sub-construct of fractions.

The learners are familiar with problem-solving activities but are novices to more
holistic and complex real-world problems. The problem statement asked them to
give good advice to a new business owner (see Surfboards to rent above). As this
was exploratory, an implicit approach to modelling (see Schukajlow et al. 2018) was
employed. The learners were encouraged to reapply their findings to the situation
once they had solved their mathematical models.

In the session following the modelling task, learners were presented with the
problem-solving set again to ascertain stabilisation of the sub-construct.

14.4.2 Results and Analysis

All the learners initially struggled with the complexity of the problem statement.
Their problem-solving experience is usually a short problem with no superfluous
information, though they are used to some ambiguity. After some discussion, one of
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the learners, Cindy, began to utilise a strategy of circling important information, and
this was observed and adopted by the other learners.

Each of the groups approached the task utilising a predominantly different repre-
sentational modality. Group one, Alan and Ann, used a rectangular area model which
required some reconstruction as they progressed (see Fig. 14.1). This was schematic
in nature and was continually used for reasoning. Alan and Ann worked interactively
through the solution process.

Group two, Byron and Brett, started with a representation of 24 boards but aban-
doned this approach and did not reason with their numerical representation. Instead,
they predominantly used skip counting (linguistic number facts) to solve the MEA
(see Fig. 14.2). They did not work interactively but rather in parallel. Both learners
managed to find the individual quantities but were unable to expose them in relation

Fig. 14.1 Alan’s written representation
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Fig. 14.2 Brett’s written representation

to the situational model. This required intervention from the teacher to link it back
to the real situation. They then wrote each quantity above the part of the problem
statement it related to.

Group three, Cindy and Cam, used Arabic numerals to solve the MEA (see
Fig. 14.3). Cam is the expert peer who had solved the entire problem-solving
sequence. He had explained the problem-solving set using both Arabic procedures
and a schematic representation. Cam solved the MEA using what he called “reverse
simplification”. Cindy observed his writing but waited for him to complete his calcu-
lations before asking him what she should write. Though Cam showed good transla-
tion between his mathematical and real-world knowledge, Cindy did not. Once they
had discussed solving for 1/3 of the set, Cam began to help Cindy solve for 1/6 of
the set. The following interaction followed Cindy writing 1/6 = 4/24:

Cindy: Reduce it now?
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Fig. 14.3 Cindy’s written representation

Cam: No but, but you want it into twenty-four because that’s it that’s howmuch…
the maximum, 24 boards.

Cindy needed Cam to pinpoint each step of the Arabic procedure, telling her
where to write each Arabic numeral. She continually wanted to reduce each fraction
and was unsure of both the procedure and what it revealed. When reminded that
“everyone needs to understand”, she used the time to “learn” what to say. The arrows
on her page are a strategy to remember the mathematisation process if she was asked.

Only Alan and Ann used their real-world knowledge of surfers and surfing to
determine the quantity of each mini-mal. They discussed their findings in the light
of who would be most likely to rent the boards. They decided it would be learner
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surfers who were adults. They did, however, include some smaller boards, in case
there were families.

Group three, Cam and Cindy, initially apportioned themmathematically. 12 mini-
mals, three types, so 4 of each. They expressed frustration when asked to go back to
reason with their answer.

Cam: 4, 4, 4 is the right answer. Why are you saying it can be something else?

After some discussion around what it would mean to give Mr P good advice, they
reassessed their answer. They reasoned that as long boards and SUPs are already
large boards, they would recommend predominantly smaller mini-mals so there was
a greater variety in sizes.

Group two,Brett andByron, figured out that therewould be space for 12mini-mals
but did not make any recommendations about the number of each mini-mal.

In the follow-up lesson, only four learners participated in the problem-solving
task. One, Byron, was absent due to the looming COVID-19 pandemic. The learners
were not paired up with the same partners. Cam, who had solved the problem set in
the first lesson, completed a different modelling task.

Both Ann and Alan were able to solve the problem set correctly. They answered
the questions without discussion, writing them in Arabic notation but without calcu-
lations or a diagram. However, they were reluctant to present their solutions. The
other two participants, Brett and Cindy, from group 2 and 3, respectively, solved
all the parts of the problem set, but incorrectly. Cindy initially agreed with Brett’s
answers. After some discussion between the learners, Cindy and Brett modified their
answers, agreeing with the solutions shared by Alan and Ann.

14.4.3 Analysis

We focus on Alan and Ann’s developing understanding of fractions as an operator
afforded by their mathematising of the MEA. Alan and Ann showed effective trans-
lation between fractions, 1/3, division and their multiplication facts, showing some
connection between fractions, division and multiplication. These, it could be argued,
are the underlying concepts of the process of using fractions as an operator.

Alan: I’m… three of those.. um.. this is hard.
Ann: 1/3, what is 24 divided by 3, that’s…8. [Alan writes 8 × 3 = 24.]

They also made connections between their schematic representation and other
mathematics, for example:

Ann: So 8. 1, 2, 3, 4, 5, 6, 7, 8. [Ann indicating the two left columns, Alan filling
in the two rows.]

Ann: Cool, cool, we got 8 is SUPs.

They also translated between their extra-mathematical and intra-mathematical
knowledge, making connections between their representation and the real world.
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In solving for 1/6, Ann made an error in accessing her multiplication facts:

Ann: And what’s 24 divided by 6. I’m guessing it would be 3, yeah, 3.
Ann: Okay, and then 6th, what’s 6ths…3.
Alan: Wow, this is hectic, wemade a breakthrough, guys.We’re getting it, just don’t

look ‘cause that’s wrong!
Ann: Well, 24 divided by 6 is 3.
Alan: Huh!

Ann, however, responded to her partner’s check. Alan was engaged in the process
and not just following instructions.

Ann: Oh, sorry it’s just, it’s not, so it’s 4, then that means that we must put in
another 4.

Alan: I need teacher to help us a bit hey?

Alan was uneasy and hoped for clarification from the teacher. Ann, however,
carried on with her process, linking her other mathematics to the schematic repre-
sentation. She then utilised her results to effectively link the left over squares to
number of mini-mals.

Ann: Because we have to fill in this row. [Alan colours the row in.]
Ann: Then there’s 12 less, so that’s 12 mini-mals.

14.5 Discussion

Though both Ann and Alan have had formal instruction using fractional procedures
for over a year, they do not use Arabic notation of fractions in their mathematising.
Rather, they make sense of the problem using an area model used in an array and
their multiplication facts. As drawing a schematic diagram has been encouraged in
weekly problem-solving classes, this may indicate their implicit understanding of
the problem-solving classroom’s contract.

In generating a diagram, Ann and Alan were not immediately able to produce
the accurate array; their representation originally had three rows, for reasoning with
thirds. However, they adapted this during their mathematising and removed the final
column, after checking that there were only 24 blocks to represent the 24 boards.
Thus, their partitioning of the rectangular array required adaption. This indicates
an accessing of relative magnitude. In this dialogue, we saw Ann make several
connections between her multiplication facts and the total number of boards. She
indicated these, and Alan tracked this on their diagrammatic scheme. From there,
she made a connection between the total number of boards and the number of SUPs.
Interestingly, not all learners were able to interpret their results in this context.

When Ann accessed her number facts incorrectly, she utilised the feedback
resolving this conflict correctly. She then connected her multiplication facts more
automatically to both the total number of long boards and their diagrammatic repre-
sentation, indicating some generalisation of her process. She was able to use her
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diagram to reason, linking the left over squares back to the problem statement and
solving for the required number of mini-mals. The approach, it could be argued, may
not benefit her ability to use Arabic notation in finding a fraction of a set; but her
developing connections between important aspects of this concept are evident. This
supports the aim of modelling to connect the mathematical and extra mathematical
world.

Alan is an avid surfer. This played a role in his development of the situational
model in order to mathematise. Alan and Ann did not spontaneously apply their
findings back to the real situation. The teacher encouraged them to think about the
advice they would give Mr P, reminding them that he had come to them for advice
because he needed help choosing the boards. The task then further engaged Alan’s
knowledge base of surfing. He used his outside world knowledge to contribute to the
real-world application in order to make good recommendations as to the number of
each minimal Mr P should buy. This is evident in their reasoning for the distribution
of 2, 4, and 6 to board A, B, and C, respectively. They had a discussion around who
would hire boards, and concluded that it would be novice surfers, as most surfers
adapt to their own boards. They also utilised the knowledge that beginners need
bigger boards as they are more stable on the water.

Alan and Ann both solved with fractions and argued with fractions effectively.
Solving with fractions allowed them to make effective connections between their
mathematics using a schematic diagram and other mathematics (their linguistic
number facts). It is likely that arguing with fractions allowed them to also estab-
lish connections between the usefulness of the fraction of a set and their real world.
The modelling task made a clear difference in Alan and Ann’s ability to use the
subconstruct of the fraction as an operator. In contrast, both Cindy and Brett were
still unable to independently solve the problem-solving set.

14.6 Conclusion

Utilising an implicit modelling approach, with learners being encouraged to reassess
their answers in response to the problem statement, was effective for two of the
three groups. Though not spontaneous, learners used their knowledge to argue with
fractions, and not just solve fractions. This allowed for translation of, and connections
between, their intra-mathematical and extra-mathematical knowledge.

Use of a MEA in the content area of fractions shows various benefits to learners’
ability to solve fractions as an operator. The quality of reasoningwithin themodelling
task indicated the benefit to their developing understanding of fraction of a set. The
quality of engagement of an individual with the model eliciting activity played a
role in their growth of understanding. Connecting symbols and their referents and
procedures and their underlying concepts appears to be ofmore benefit than figurative
involvement with surface features of Arabic system (as in the case of Cindy) or with
number facts (as in the case of Brett).
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Chapter 15
The Historical Development
of Mathematical Modelling
in Mathematics Curricular
Standards/Syllabi in China

Jian Huang, Xiaoli Lu, and Binyan Xu

Abstract This study investigates the historical development of mathematical
modelling(MM) in China’s curricula. It employs a qualitative text analysis approach
to analyse the mathematics curricular syllabi/standards (MCSs) at primary, middle
and high school levels in China. It was found that (1) the term “modelling” was not
seen in the MCSs before 1996, but the MM thinking rooted in “solving real-world
problems” has been in existence for a long time; (2) theMMcycle has developed from
a four-step cycle to a seven-step cycle which is consistent with the cycles described
in international literature; (3) the MCSs for high school have more requirements for
students than those for middle school, but they both lack requirements in students’
affective aspects; (4) the 2017 edition of the high school mathematics curricular stan-
dard puts more emphasis on the connection between the mathematical world and the
real world than the 2013 edition.

Keywords Mathematical modelling · Curricular syllabi · Standards · Qualitative
text analysis · China ·Modelling cycle

15.1 Theory

15.1.1 Different Perspectives on Mathematical Modelling

Mathematical modelling(MM) has been central to mathematical education during
the last 40 years. Though there is no consistently accepted definition, the under-
standing of what modelling entails will not vary greatly from field to field (Blum
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Fig. 15.1 a Four-step modelling cycleb Seven-step modelling cycle (Blum and Leiß 2007)

et al. 2007; Lesh and Fennewald 2010). Modelling is viewed as the link between the
“two faces” of mathematics, namely its grounding in reality, and the development of
abstract formal structures (Greer 1997).

When considered as a mapping process from the real world to the mathemat-
ical world, MM has a typical four-step cycle (See Fig. 15.1a). However, by paying
attention to the changes in the psychological state of participants in the process of
MM, Blum proposed a five-step cycle (Maaß 2006). Furthermore, by subdividing
the objective existence form and subjective understanding form of the real situation
into two states, we get the seven-step cycle proposed by Blum and Leiß (2007) (see
Fig. 15.1b). In this cycle, the modelling process consists of six states and seven
stages.

MM research in the field of education has gradually displayed many different
international perspectives. Kaiser (2017) categorizes the latest perspectives on MM
in schools. She includes: realistic or applied modelling (e.g. Kaiser and Schwarz
2006), epistemological or theoretical modelling (e.g. Garcia et al. 2006), educa-
tional modelling (e.g. Blum 2011), contextual modelling or model eliciting perspec-
tive (e.g. Kaiser 2014), socio-critical and socio-cultural modelling (e.g. Barbosa
2006) and cognitive modelling as metaperspective (e.g. Stillman 2011). Proponents
of realistic or applied modelling emphasize pragmatism and believe that the purpose
of modelling is to apply mathematics rather than to develop mathematics. Educa-
tional modelling comprises two facets: (1) didactical modelling and (2) conceptual
modelling. Didactical modelling emphasizes that students’ focus should be on devel-
opingvariousmodelling competencies,while conceptualmodelling followers believe
that the teaching of modelling should serve the learning of mathematical concepts.
Cognitive modelling as a metaperspective is more concerned with the changes in
cognition and emotion that occur in the students’ MM processes.

15.1.2 Mathematical Modelling of Curricular Standards
in Different Countries

There have been attempts during at least the last four decades to attribute a sizable
place and role to models and modelling in different mathematics curricula and in
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different contexts of teaching and learning (Niss 2012). Modelling competencies
play an essential role in many national curricula, showing the relevance of MM at
a broad international level (Kaiser 2014). The German mathematics education stan-
dards issued at the end of 2003 namedMM ability as one of the six major mathemat-
ical abilities that students should develop. In 2010, theCommonCore State Standards
for Mathematics issued by the USA regard MM as a route to solve problems. MM
was listed as a basic mathematical activity in the draft opinions on high school MCSs
issued by the Australian Curriculum, Assessment and Reporting Authority in 2010.
The current Swedish curriculum standards state that one of the aims of education is to
develop students’ ability to design and use mathematical models and critically eval-
uate conditions, opportunities and limitations of different models (Ärlebäck 2009).
In the newly issued national curricular standards for high school mathematics in
China, MM has been recognized as one of the six core competencies students should
develop during school mathematics (MOE 2018). When compared to Western coun-
tries such as Germany and the USA however, there is little information on the state
of MM in China. Both theoretical and empirical studies are needed.

Using the seven-stepmodelling cycle as a basis, this study definesMMas: “Under-
standing and building a real model in the face of a real situation, translating the real
model into a mathematical problem, building a mathematical model and solving the
mathematical problem using mathematical methods, then interpreting and checking
the mathematical solutions according to the real situation, and finally validating the
rationality of the model (Xu 2013)”.

What then is the course of development of “mathematical modelling” in Chinese
mathematics curricular standards? Specifically, we investigated the research ques-
tions: how is mathematical modelling described and what is required in the math-
ematical modelling process from the curricular standards of mathematics in China
from 1902 to 2018?

15.2 Method

15.2.1 Research Objects

The curricular documents analysed are mathematics curricular syllabi/standards
(MCSs) inChina from1902 to 2018. There are 24 primarymathematics syllabi and 43
secondary mathematics syllabi, published in Mathematics Volume of the Collection
of Primary and Secondary Curricular Standards/Syllabi in 20th Century in China,
from 1902 to 2000. Since 2000, there have been four national MCSs, two for Grade
1 to Grade 9 students (compulsory school)—2001 version and 2011 version, and the
other two for Grade 10 to Grade 12 students (senior high school)—2003 version and
2017 version. In sum, there are 71 MCSs (Table 15.1).
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Table 15.1 Research objects

Year Text Code Pages

1902–2000 Mathematics Volume of the Collection of Primary and
Secondary Curricular Standards/Syllabi in 20th Century
in China

685

2001 Mathematics curriculum standards for full-time
compulsory education (Experimental version)

“01 Compulsory” 102

2003 High school mathematics curriculum standards
(Experimental version)

“03 High School” 122

2011 Mathematics curriculum standards for compulsory
education (2011 Edition)

“11 Compulsory” 132

2018 High school mathematics curriculum standards (2017
Edition)

“17 High School” 180

15.2.2 Qualitative Text Analysis

The main research method is text analysis. Kuckartz (2014) divided coded text anal-
ysis into three categories: thematic qualitative text analysis which focuses on iden-
tifying, systematizing and analysing topics and sub-topics and how they are related;
evaluative qualitative text analysis which involves assessing, classifying and evalu-
ating content; and type-building text analysis which aims to differentiate rather than
develop a general theory. In order to get closer to the specific meaning of the text,
the coding process mainly adopts the thematic qualitative text analysis method.

15.2.2.1 Text Filtering

First,we screened all texts, sortedout and recorded the relevant paragraphs.A require-
ment for inclusion was that the extracted paragraphs contain the terms “model”
(mo-xing) or “modelling” (jian-mo). We then checked that the paragraphs from the
two researchers complemented each other, and finally, we made sure that no para-
graphs related to MM in the texts were missed. After that, the excerpts were filtered
twice: firstly, the paragraphs from the appendix section of the syllabuswere removed;
secondly, we removed any paragraphs that did not conform to MM definitions. In
these paragraphs, models did not refer to MM but rather to geometric or physical
objects. For instance, the text mentioning “geometric object model (cube or cuboid)”
in the 1952 syllabus was not included. Finally, we found 128 paragraphs that met the
requirements to be encoded. The coding framework was constructed by combining
inductive and deductive methods.
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15.2.2.2 Coding and Analysis

The first step was developing the main thematic categories and performing the first
coding process. Using the “two faces” ofMM, twomajor topics of “mathematics and
modelling” and “reality and modelling” were determined. The former uses mathe-
matics to do something and the latter connects mathematics with reality. In addi-
tion, it is important to include emotions in research on the teaching and learning of
modelling, but there is a significant lack of papers that investigated emotions (Cai
and Xu 2016; Schukajlow et al. 2018). Based on this, we regard “emotional attitude”
as the third topic. Two researchers conducted a first-step double-blind coding of all
data according to these three main topics, with consistency of more than 95% (Xu
and Zhang 2005).

The second step was further developing the main thematic categories and
performing the coding process. Fifty per cent of the data under each main topic
was randomly selected for preliminary classification. The two researchers then used
induction to code the selected data back to back. The final coding system is shown
in Table 15.2.

The MCSs emphasize two functions of mathematical knowledge in MM. These
fall under the main thematic category “mathematics and modelling” and include
two categories: (1) applying knowledge to a model or modelling and (2) applying
knowledge during model solving. The former emphasizes the role of mathematical
knowledge inMM,while the latter emphasizes the role ofmathematical knowledge in
themodel solving process. In addition, the concept of usingMMactivities to promote
the understanding and learning of mathematical knowledge is also mentioned in the
MCSs. Thus, under this topic, three secondary codes were obtained.

Under the thematic category “reality and modelling”, the description in the
paragraphs has a good correspondence with the steps described in the seven-step
modelling cycle. We therefore constructed four secondary codes according to the
seven modelling steps of Blum. These excluded the steps of modelling and mathe-
matical solving, and they fall under another main thematic category. We combined
interpreting and validating, encoding these as one secondary category. In addition,
we found many expressions similar to “use of modelling ideas to solve practical
problems”, which we categorized as “solve practical problems”.

For the eight sub-categories coded in the first two topics, only two codes are not
included in the seven-step cycle. These are “promoting mathematical learning” and
“solve practical problems”, which reflect the idea of teaching and learning MM in
the curriculum.

The sub-categories under the topic of “emotional attitude” were directly encoded
by the inductive classification method to obtain “increase interest” and “improve
attitude”.

The third step was to code all of the data according to the elaborate category
system. Two researchers coded all the paragraphs in a double-blind fashion. The
consistency of this two-person coding was more than 90%. Where there were differ-
ences, the two coders reached consensus by discussion. The final total number of
codes is shown in Table 15.3.
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Table 15.2 Coding system

Category Code Description Example (translated
texts)

C1: Mathematics
and modelling

C11: Mathematical
models

Using existing
mathematical models or
using mathematical
knowledge to build
mathematical models

Using these functions
to develop models;
selecting proper
function models;
constructing models

C12: Mathematical
solving

Using mathematical
knowledge to get a
solution

Solving the models;
calculating and
getting the solution

C13: Promoting
mathematical learning

Enhancing the
understanding of
mathematical
knowledge, acquisition
of skills, et cetera

Developing
mathematical
knowledge; acquiring
necessary knowledge
and skills (through
modelling)

C2: Reality and
modelling

C21: Understanding Understanding the real
problems

Finding proper
objects to study from
a mathematical
perspective

C22:
Simplifying/Structuring

The given real problem
is simplified in order to
build a real model or
posing mathematical
problems

Expressing the
problem with
mathematical
language; translating
to mathematical
problems;
mathematizing

C23:
Interpreting/Validating

Interpreting the
mathematical results and
validating

Improving the model;
verifying the
solutions (in real
situation); reflecting
on the modelling

C24: Apply it to practice Further apply the model
results to the actual

Interpretation and
application;
explaining economic
phenomenon

C25: Solve practical
problems

Use of modelling ideas
to solve practical
problems

Dealing with realistic
problems; solving
real-world problems

C3: Emotional
attitude

C31: Increase interest Conducive to the
improvement of interest

Inspiring students’
interest in learning
mathematics

(continued)
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Table 15.2 (continued)

Category Code Description Example (translated
texts)

C32: Improve attitude Improve students’ views
on mathematics

Gaining good
experience in affect;
feeling the value of
the application of
mathematical theory

Table 15.3 Number of codes

Curriculum Number of codes Curriculum Number of codes

Before 1996 0 2001 compulsory education 18

1996 senior high school 4 2003 senior high school 114

2000 junior high school 4 2011 compulsory education 18

2000 senior high school 5 2017 senior high school 147

15.3 Results

15.3.1 Evolution of Mathematical Modelling

The terms “mathematical modelling” and “mathematical model” have not been in
the Chinese MCSs for long (see Table 15.3). The latest high school curriculum
(1996), Full-time general high school mathematics syllabus (for trial use), changed
the sentence “…make students better understand andmaster knowledge, learn to use
mathematics knowledge to solve simple real-world problems” (p. 605) found in the
previous edition of the syllabus to “… make students better master the basic knowl-
edge, enhance the awareness of using mathematics and be able to use mathematical
model to solve some real-world problems” (p. 644). This shows the evolution ofMM
from the long-standing “solving [of] real-world problems”.

Before 2000 (1996–2000),MMseldom appeared in the syllabi andwas not clearly
defined, but the description of its process had initially been formed. When compared
to the four-step cycle, it contained the process “convert real problems into mathemat-
ical models and then solve to get mathematical results”, but neither “interpreting”
nor “validating”. In the twenty-first century (2001–2017), the incomplete four-step
cycle is gradually moving towards a seven-step cycle.

“01 Compulsory” further developed the MM process, pointing out that students
should be allowed the experience of “abstract[ing] the real-world problem into a
mathematical model and then explaining and applying it” (MOE 2001, p. 61). The
MMprocess at this point already included “interpretation, application and extension”,
but lacked the “validating” step. “03 High School” promulgated in 2003 highlighted
the importance of cultivating MM capabilities. In terms of the number of codes,
there are 114 codes in “03 High School”, which is almost 100 more than those in the
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Fig. 15.2 “03 High School”
mathematical modelling
framework diagram (MOE
2003, p. 41)

previous version. From the text itself, “03 High School” gave the framework diagram
of the MM process for the first time (Fig. 15.2). The diagram is a complete MM
cycle and is in line with the five-step cycle (with “problem posing” and “validating”
being added).

In the “11 Compulsory”, “model thinking” became one of the ten key terms (MOE
2012, p. 5). The MM process described in the “11 Compulsory” conformed to the
framework diagram given by “03 High School”. The description of the MM process
in the newly issued “17 High School” was upgraded from a five-step cycle to seven-
step cycle. It describes the process of MM as “discover problems in realistic situa-
tions from a mathematical perspective, pose problems, analyse problems, construct
models, determine parameters, calculate and solve, verify results, improve models
and finally solve the realistic problems” (MOE 2018, p. 35). In comparison to “03
High School”, the transition process from the real situation to model construction
has become clear and complete. In particular, the process of “finding problems from
a mathematical perspective” corresponds to developing a “situation model” in the
seven-step modelling cycle.

15.3.2 Requirements of Mathematical Modelling

15.3.2.1 Comparison Between High School and Compulsory Education

When comparing the coding data of high schools (“03 High School” and “17 High
School”) in MCSs since the twenty-first century with the coding data of compulsory
education developed for Grades 1–9 (“01 Compulsory” and “11 Compulsory”), it
can be seen that the number of codes in high schools is much higher than those
of compulsory education (see Fig. 15.3). MM is mentioned more frequently in the
MCSs of high schools, and the corresponding teaching requirements are higher.
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Fig. 15.3 Data comparison between high school and compulsory education

The same conclusion can be drawn from specific texts. Throughout the twoMCSs
of compulsory education, the low requirements for MM can be seen by their descrip-
tions in terms such as “experiencing” and “realizing”. “01 Compulsory” requires
that students “experience the process of abstracting a real problem into mathematical
models, interpreting and applying them…” (MOE2001, p. 1).Although “11Compul-
sory” emphasizes model thinking, it is not listed as the most important training goal.
Students are only required to “experience model thinking”.

The high schoolMCSs forMMrequirements aremore stringent. “03HighSchool”
requires students to “propose ways to solve problems, establish proper mathemat-
ical models and then try to solve the problems” (MOE 2003, p. 88–89). “17 High
School” specifies the teaching objectives of MM, requiring that “through learning
high school mathematics, students can express the real-world consciously withmath-
ematical language, discover and propose problems, make sense of the connections
between mathematics and reality, learn how to use mathematical models to solve real
problems…” (MOE 2018, pp. 5–6).

15.3.2.2 Comparison of Two Versions of Curricular Standards in High
School

The requirements for MM in the Chinese MCSs are mainly placed in the high school
segment, so are there any differences in the descriptions in the two versions of the
high school curriculum standards? When comparing the coded data (Fig. 15.4), it is
obvious that the prevalence of the three major topics is significantly different. Under
the topic of “mathematics and modelling”, there is little difference in the number of
codes found between the two. Under the topic of “reality andmodelling”, the number
of “17 High Schools” is significantly higher than that of “03 High School”, but under
the topic of “emotional attitude”, “03 High School” has more codes.

Looking at the codes in the high school curricula, it is apparent that there are fewer
affective aspects included in the “17 High School”. The number of affective codes
decreased from 23 in the previous version to 8. This is probably because affect and
attitudeswere one of the three basic curricular ideas of the 2003 version. The previous
version proposes a three-dimensional teaching goal as its basis namely “knowledge
and skills”, “processes and methods” and “emotional attitudes and values”. As a
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Fig. 15.4 Comparison of coding data between “03 high school” and “17 high school”

result, almost every “03 High School” curricular requirement is connected with
affect and attitudes. In contrast, “17 High School” emphasizes six core mathematical
competencies, and affect is not one of these. There are, therefore, fewer descriptions
of affective aspects and a greater focus on MM competencies, especially on reality
and modelling. The prevalence of codes under the category reality and modelling
has increased significantly to 89 (in the 2017 version) from 40 (in the 2003 version).
This is consistent with its curricular idea which emphasizes the connections between
mathematics and reality.

15.4 Discussion

Throughout history Chinese mathematics education has a cultural background
strongly highlighting practicality. The core problems in ancient Chinese mathemat-
ical works are a variety of “shu (术)” (i.e. give a general solution to a certain type
of problem).“Shu” is a mathematical model. In MCSs, the 1923 syllabus requires
students to learn to “solve real problems in their own life”; the 1951 syllabus
more specifically proposes to “train students to use mathematics familiarly to solve
various real problems in daily life”. The Chinese perspective on MM would thus be
the pragmatist view. China introduced the term “modelling” in 1996, conforming
internationally and continuing the tradition of Chinese mathematics education.

The findings of this chapter have the following implications for understanding
MM in the intended MCSs in China: (1) MM seems to be more demanding in the
curriculum for high school mathematics than for middle school mathematics, (2)
the characteristics of connections with reality of MM have been recognized and the
curriculum emphasizes mathematical foundations in the promotion of MM and (3)
affective aspects, such as students’ interest, are no longer prioritized. These charac-
teristics are consistent with the common understanding of mathematics education in
China, well recognized for its emphases on the mathematical contents and students’
performance rather than their interest in learning (e.g. Leung 2001).

The description ofMMinChineseMCSs is biased towards the “realistic or applied
modelling” perspective similar to Kaiser and Schwarz (2006). It emphasizes MM as
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important in applyingmathematical knowledge, and the coding data also supports this
view. The MCSs, however, do not pay enough attention to the function of MM “pro-
moting mathematical learning”. “Conceptual modelling” needs to be emphasized in
future practice (cf. Blum 2011).

In recent years, MCSs for MM have become more and more demanding. The
“interpreting” and “validating” steps in the modelling cycle, however, need more
attention compared with Kaiser (2007). Analysis of Chinese MM education high-
lights the need for comprehensive development of all aspects of MM. This study has
focused on the intended mathematics curriculum. Further research is needed to gain
insight into the state of MM in the enacted mathematical curriculum in China.
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Chapter 16
Pictures in Modelling Problems: Does
Numerical Information Make
a Difference?

Marcus Schmitz and Stanislaw Schukajlow

Abstract Pictures are an important part of everyday life, and they often accom-
pany modelling tasks. However, we do not know much about the role of pictures
in modelling. To address this research gap, we randomly assigned students to three
groups. In the experimental groups, in addition to the text, the problems included
useful or superfluous numerical information in pictures, whereas the pictures that
went with the problems in the control group did not include any numerical infor-
mation. We assessed the picture-specific utility value and modelling performance of
110 students in upper secondary school. The picture-specific utility value reflects the
perceived usefulness of a picture for understanding the problem. Students assigned
a lower utility value to the pictures that contained additional superfluous numer-
ical information. However, we did not find differences in the students’ modelling
performance.

Keywords Pictures · Cognitive load theory (CLT) · Text-picture comprehension ·
Utility value

16.1 Introduction

Improving students’ ability to solve real-world problems by using mathematics is
an important goal of mathematics education; thus, modelling competence is part of
school curricula all over the world (Niss et al. 2007). In order to strengthen the extent
to which modelling problems are linked to the real world, modelling problems often
include pictures. In addition, being able to deal with the combination of pictures
and text is important for professional and everyday life. Despite the importance of
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pictures for modelling, there is a large deficit in research on the effects of pictures in
modelling tasks and on the processing of tasks that include pictures.

Multimedia theories such as the integrated model of text and picture compre-
hension (Schnotz 2014) have suggested that text–picture design influences mental
processing and learning effects. One prerequisite for supporting students’ under-
standing of problems is that the students notice the usefulness of pictures that accom-
pany the problems. Prior studies have yielded inconsistent results concerningwhether
students perceive pictures as useful while solving real-world problems (Böckmann
and Schukajlow 2018; Dewolf et al. 2015).Moreover, we did not find any research on
the effects of different types of numerical information in pictures on the usefulness
of pictures or mathematical performance.

On the basis of these considerations, we aimed to gain more knowledge about the
role of additional numerical information in pictures on modelling performance and
the perceived usefulness of additional numerical information for understanding the
task. When we refer to ‘additional numerical information’ in this study, we mean
additional drawn information contained in pictures that is also described in the text.
For example, this additional numerical information may refer to distances with the
given length drawn in the picture.

16.2 Theoretical Framework

16.2.1 Pictures in Modelling Problems

At the core of mathematical modelling, there is a demanding process by which
information must be translated between the real world and mathematics. There are
several activities that are part of the solution process that are often described in a
cycle that begins with the student’s understanding of the real-world situation and
ends with the validation of the results (e.g. Blum and Leiß 2007). More specifically,
students need to construct a model of the situation that they will then simplify and
idealise before constructing amathematicalmodel. At the end of the solution process,
students need to interpret and validate their results.

In order to strengthen the extent to which modelling problems are linked to the
real world, modelling tasks that are presented in the classroom should, and often
do, include text and pictures. We assume that pictures can support certain modelling
activities and thus influence students’ modelling performance. For example, certain
pictures can be particularly helpful for understanding and creating amodel of the situ-
ation. The extraction of the necessary information from the text represents a potential
barrier for students when they solvemodelling tasks. Furthermore, superfluous infor-
mation in the text increases the difficulty of the task. Pictures can potentially help
students organise information, simplify the situational model, and mathematise the
information.
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Kite
Lucas got a new kite as a birthday present. The kite 
is 1m in length and 50cm in width. Lucas flies the 
kite with his friend Susan (see picture). They are 
standing at a distance of 80m from each other. The 
kite‘s string has a length of 100m. Susan is right 
under the kite and 20m from the sea.

How high is the kite flying at this moment? 

Fig. 16.1 Kite Task with no additional numerical information in the picture

Pictures used in combination with text can serve different functions. Elia and
Philippou (2004) developed a taxonomy of pictures for problem solving. There are
decorative pictures that are irrelevant to the contents of the corresponding text. The
picture does not refer to events or information in the text. Pictures with a repre-
sentational function “represent the whole or a part of the content of the problem”
(Elia and Philippou 2004, p. 328). Informational pictures present information that
is essential for solving the modelling problem. All pictures used in this study have a
representational function. In our study, we used photos as the pictures because they
are closely connected to reality. Such realistic pictures are two-dimensional simula-
tions of objects from a specific perspective with a great deal of potential to support
mental model construction (Schnotz and Cade 2014). Figure 16.1 shows an example
of a modelling task used in our study.

Comprehension of the Kite Task results in a model of the situation that includes
Lucas and Susan, a kite, a piece of string, and the positions of the two people and
the kite. To calculate the desired height of the kite, students can use the Pythagorean
theorem and add an estimate of Lucas’ height. The picture in the task can help
the problem-solver organize the information and construct a model of the situation.
In the modelling process, the picture can be used as an easily accessible external
representation of the situation.

16.2.2 Text and Picture Comprehension

Several studies have shown that students generally learn more deeply from text when
it is combined with pictures than from text alone (Mayer 2005). Models such as the
cognitive theory of multimedia learning (Mayer 2005) or the integrated model of text
and picture comprehension (Schnotz 2014) describe this positive multimedia effect.
They assume that a multimedia effect occurs only under certain conditions. One
assumption is that the text and the picture can only be processed into a joint mental
model if they are closely semantically connected. This conforms to the coherence
condition. According to the contiguity condition, the text and the picture can only
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contribute to the construction of a joint mental model if they are presented closely
together in space or time.

Furthermore, in multimedia theories, working memory plays a central role and
determines to a large extent whether the multimedia presentation leads to a posi-
tive learning effect through the optimal use of working memory or whether it
hinders learning through overloading. The cognitive load theory (CLT) (Sweller
1994) describes the different loads on working memory. It is integrated in multi-
media theories and builds the basis for the effectiveness of design of pictures (Mayer
2005). CTL distinguishes between the cognitive structures in long-term and working
memory. Long-term memory can store large amounts of information in schemas.
Schemas refer to cognitive structures that incorporate multiple elements into a single
element with a specific function. Schemas can be retrieved from long-term memory
into limited working memory in which all conscious cognitive processing occurs.
Thus, working memory can perform complex cognitive activities despite its limited
capacity by retrieving these schemas.CLT therefore represents learning as the process
of acquiring schemas.

According to CLT, there are three types of cognitive load on working memory
that occur during the processing of new and already stored information: intrinsic,
extraneous and germane cognitive load. Intrinsic load describes the load on working
memory caused by the complexity and difficulty of the learning content. Intrinsic
load is characterised by the number of interacting learning elements kept in working
memory for processing. The amount of load depends on the learners’ individual level
of expertise since the number of processed elements depends on the schemas stored
in long-term memory. Thus, all instruction has an inherent difficulty associated with
it, and this inherent difficulty, which produces intrinsic load, cannot be altered by an
instructor.

The manner in which learning material is designed can also produce cognitive
load. When such load is unnecessary and thereby interferes with building schemas,
it is referred to as extraneous load. Thus, extraneous cognitive load is generated by
the manner in which information is presented to learners and is under the control of
instructional design.

The third source of cognitive load is germane cognitive load. Whereas extraneous
cognitive load interferes with learning, germane cognitive load enhances learning. So
germane load is related to information and activities that foster processes of schema
construction and automation. Thus, when pictures support modelling activities such
as understanding or structuring, they produce germane cognitive load.

A central assumption of CLT is that the three types of cognitive load can be accu-
mulated into the total cognitive load. If this total cognitive load exceeds the capacities
of working memory, learning cannot occur (Sweller 1994). This hypothesis is only
valid if the intrinsic load is sufficiently complex. A high intrinsic load combined with
a high extraneous load can lead to an overload of working memory resources and
prevent germane load. However, if the learning content (intrinsic load) is very low,
an unfavorable design style (extraneous load) will not lead to an overload of working
memory. These ideas must be considered when designing learning material and are
therefore also important for the use of pictures in modelling tasks.
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16.2.3 Picture-Specific Utility Value

The expectancy-value theory links expectancies and personal values and describes
utility (or extrinsic) value as one of four components of values that influence task
performance, task choice and motivation (Eccles 1983). A task’s utility value refers
to the importance of a task or its parts (e.g. pictures) for extrinsic indicators of success
such as an accurate solution, grades, or career. In this study, we analysed utility value
of pictures for understanding modelling problems. We investigated different types
of pictures and the picture-specific utility value to determine whether the pictures
facilitated students’ understanding of the modelling problems and thus supported the
solution process.

A positive relation between values and students’ performance was confirmed
for problems with and without a connection to reality (Schukajlow 2017). Further,
students usually realise that decorative pictures are less helpful for understanding and
solving problems than pictures with representative or essential functions (Böckmann
and Schukajlow 2018). Otherwise, students often do not use information from repre-
sentative pictures in problems (Dewolf et al. 2015) or essential pictures in arithmetic
word problems (Elia and Philippou 2004) for their solution process.

The extent to which additional numerical information in pictures influences
picture-specific utility value or modelling performance has not yet been investigated,
and thus, we aimed to address this research gap in the present study.

16.2.4 Research Questions

We conducted this study to address the following research questions:

(1) How do students rate the utility value of representative pictures that contain
additional useful or superfluous numerical information?

(2) How does additional useful or superfluous numerical information in represen-
tative pictures affect students’ modelling performance?

Prior research has shown that students rate the utility value of representative
pictures higher than pictures with a decorative function. Thus, we expected that
students would assign a higher utility value to pictures with additional useful numer-
ical information and would assign a lower utility value to pictures with additional
superfluous numerical information than to pictures with no additional numerical
information.

The integratedmodel of text and picture comprehension (Schnotz 2014) describes
the concept that the positive multimedia effect depends on the text–picture design.
We expected that pictures with additional useful numerical information would result
in higher modelling performance and pictures with additional superfluous numerical
information would result in lower modelling performance compared with pictures
without additional information.
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16.3 Method

16.3.1 Design

One hunderd and ten students from five upper secondary schools in Grades 9 and
10 (mean age = 15.26, SD = 0.89; 47.8% female) participated in the study. The
students in each class were randomly assigned to one of three groups: a control
groupwith no additional numerical information in the pictures (CG), an experimental
group with additional useful numerical information in the pictures (EG-U), and an
experimental groupwith additional superfluous numerical information in the pictures
(EG-S). Students first estimated the picture-specific utility value for understanding
problems that described sixmodelling tasks in a questionnaire. The instructions in the
questionnaire were: ‘Read each problem carefully and then answer some questions.
You do not have to solve the problems!’ Then students read each problem and
answered the question about utility value. After completing the questionnaire, the
students solved the tasks.

In the present study, we used six modelling problems on the topic of the
Pythagorean theorem. The tasks were developed and tested in prior studies (Böck-
mann and Schukajlow 2018; Schukajlow 2017). Unlike in the prior studies, all tasks
included representational pictures in all three groups. The pictures used in this study
represent visually key mathematical elements of the situation (e.g. spatial geomet-
rical structure). In this study, the pictures representing the tasks differed across the
three groups in the additional numerical information given in them. In the experi-
mental groups, in addition to the text, the problems included useful or superfluous
numerical information in the pictures, whereas for the control group, the pictures
that accompanied the problems did not include any additional numerical informa-
tion. The pictures from a sample problem (i.e. the Kite Task) with three different
types of additional numerical information are shown in Fig. 16.2.

Fig. 16.2 Different pictures of the Kite Task with no additional numerical information (CG),
additional useful numerical information (EG-U) and additional superfluous numerical information
(EG-S)
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16.3.2 Utility Value

To measure the utility value of pictures with different kinds of additional numerical
information for each modelling problem, we used the statement ‘The picture helps
me to understand the problem’. The students rated the item on a five-point Likert
scale (1 = not at all true; 5 = completely true). Cronbach’s alpha as a measure of
reliability for the picture-specific utility value was satisfactory (0.73).

16.3.3 Modelling Performance

To assess students’ modelling performance, we estimated the accuracy of their solu-
tions to the problems on a three-point scale. Students achieved 0 points for a task if
they used an incorrectmathematicalmodel. If students used a partially accuratemath-
ematical model, they received 1 point. Students received 2 points for their modelling
performance if theirmathematicalmodelwas completely accurate. Figure 16.3 shows
an exemplary solution for the Kite Task that received a score of 2 points. After calcu-
lating the leg, the student added 1.65m because of the height of Lucas who is holding
the kite. This is why we gave the solution 2 points for modelling performance.

To test the inter-rater reliability of the codingprocedure, more than 15% of the
solutions were coded by twomembers of the research team. The inter-rater reliability
resulted in a good match between the two coders (Cohen’s Kappa = 0.98).

16.4 Results

The comparison of school grades in mathematics with an ANOVA indicated that
the experimental groups and the control group did not differ in their mathematical
abilities, F(2, 105) = 1.57, p = 0.212. To compare the groups, we calculated arith-
metic means for utility value and modelling. A one-way ANOVA with a post-hoc
Bonferroni correction was used to analyse group differences.

Fig. 16.3 Exemplary student solution for the kite task with 2 points for modelling performance
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Table 16.1 Means and standard deviations for picture-specific utility value

Additional numerical information in pictures

Superfluous (EG-S) Useful (EG-U) None (CG)

3.03 (0.70) 3.65 (0.59) 3.5 (0.73)

16.4.1 Picture-Specific Utility Value

To answer the first research question, we compared the utility value for the students
who rated the pictures that contained additional superfluous numerical information
(EG-S), additional useful numerical information (EG-U), and no additional numer-
ical information (CG). Table 16.1 shows that the utility value means differed across
the three groups.

As expected, students gave the lowest utility value ratings to the pictures that
contained superfluous additional numerical information and the highest to the
pictures that contained useful additional numerical information. There were signifi-
cant differences in picture-specific utility value between the three groups, F(2, 107)
= 8.41, p < 0.001. A post-hoc analysis using a t-test confirmed significant differ-
ences between the EG-S and CG (t(71) = 2.83, p = 0.006, d = 0.66) and between
the EG-U and EG-S, t(71) = 4.11, p < 0.001, d = 0.96. No significant difference
was found between the EG-U and CG, t(72) = −0.97, p = 0.337, d = 0.23.

16.4.2 Modelling Performance

The second research question referred to the comparison of modelling performance
in the three groups. Table 16.2 shows that the means and standard deviations of the
modelling performance scores differed across the three groups.

In contrast to our expectations, students’ modelling performance in the EG-S and
EG-U was close to each other and slightly higher than in the control group. The
ANOVA showed that there was no statistically significant difference in the three
groups’ modelling performances, F(2, 105) = 1.43, p = 0.244.

Table 16.2 Means and standard deviations for modelling performance

Additional numerical information in pictures

Superfluous (EG-S) Useful (EG-U) None (CG)

6.30 (2.57) 5.97 (2.24) 5.02 (3.05)
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16.5 Discussion

16.5.1 Additional Useful Numerical Information

According to the integratedmodel of text and picture comprehension (Schnotz 2014),
the conditions needed to create a positive multimedia effect are that the text and
the picture are semantically connected to each. In this study, we expected that the
coherence between the text and the picture and thus the picture-specific utility value
would be higher in the EG-U and that a stronger multimedia effect would increase the
modelling performance results. However, against our expectations, students assigned
similar utility value to the pictures that contained additional useful numerical infor-
mation (EG-U) and the pictures that did not contain additional numerical informa-
tion (CG) with respect to understanding the task. A similar finding was revealed for
modelling performance. One reason for these results might be that the difference
in coherence of text and pictures between the EG-U and the control group was too
small in our study.

16.5.2 Additional Superfluous Numerical Information

In line with our expectations, the EG-S showed the lowest utility value in this study.
Furthermore, we expected that the additional superfluous information in the picture
would increase the extraneous cognitive load and overloadworkingmemory for some
students and decrease their modelling performance. Contrary to what we expected,
the EG-S showed the highest modelling performance, even though it did not differ
significantly from the other groups.

It is possible that the superfluous information may have led the students to study
the pictures more intensively, thereby supporting their overall understanding of the
situation. According to this view, recognising that the information was superfluous
would be an example of one kind of cognitive load required to understand the learning
material. Thus, the pictures that contained the additional superfluous information
would result in an increased germane cognitive load, which could have a positive
effect on learning and would explain the slight increase in modelling performance
in the EG-S.

16.5.3 Overall Discussion and Implications

The results provide initial indications of the effect of different types of numerical
information in pictures that accompany modelling tasks. Students assign higher
utility value to pictures that provide additional useful numerical information than
to pictures with additional superfluous numerical information. However, a higher
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perceived utility value of pictures with additional useful numerical information did
not result in an increase in modelling performance. One possible explanation for
this result is that assigning numerical information to the appropriate object in the
picturemight not be themain barrier to solvingmodelling problems. Othermodelling
activities such as noticing that information is missing from the problem or making
assumptions about missing information were found to prevent students from finding
realistic solutions and solving modelling tasks (Krawitz et al. 2018).

Pictures with representative function can be designed differently. In our study,
we selected pictures as visual representation of the described situation in the text.
Moreover, it does not include any extraneous information (such as dogs, boats, etc.)
that might distract problem solvers from constructing mathematical models. The
results might be different for other implementations of representational pictures.

The results of our study offer initial implications for the design of pictures in
modelling tasks. The findings on utility value indicate that students noticed pictures
while solving modelling problems. Thus, additional numerical information that is
included in the pictures can influence the modelling process to a considerable extent.
We therefore suggest that teachers should think about designing pictures inmodelling
tasks and prepare them conscientiously.

Acknowledgements Thanks go to Maxim Brnic for his work in preparing the pictures used in this
study.
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Part IV
Assessment Issues



Chapter 17
Validity of Mathematical Modelling
Assessments for Interdisciplinary
Learning

Cigdem Alagoz and Celil Ekici

Abstract Teaching mathematical modelling produces interdisciplinary learning
outcomes that can be measured with formative assessments. Building, defining, and
clarifying the interdisciplinary competencies involved in the modelling performance
assessment tasks require the input of content experts frommultiple disciplines. These
interdisciplinary perspectives create the foundation for a valid modelling assessment
before administering and interpreting its results. The validation process involves
scoring, interpretation and uses, and consequences of interdisciplinary mathemat-
ical modelling assessment results. Confirmatory factor analysis indicated construct
validity for a mathematical modelling assessment with two higher order factors indi-
cating conceptual and procedural dimensions of interdisciplinary learning enacted
by mathematical modelling.

Keywords Validity · Assessing mathematical modelling · Assessment validation ·
Complex learning · Interdisciplinary learning

17.1 Introduction

Mathematical modelling is a research-based teaching practice with interdisciplinary
collaboration for K-20 mathematics, science, and technology education advocated
around the USA, Europe, and the globe (Andresen 2009; Blum 2015; Borromeo
Ferri 2013; NGACBP & CCSSO 2010; NGSS 2013). As a cognitively demanding
activity, the mathematical modelling involves non-mathematical competencies and
extra-mathematical knowledge (Blum2015). Interdisciplinary learning tends to cross
traditional boundaries between disciplines building on a fact, quality, or condition
that brings two or more academic fields (Roth 2014). Interdisciplinary mathematics
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education taps into mathematical modelling as a process to generate conditions
motivating crossing boundaries between disciplines to bring together relevant disci-
plinary perspectives for a common modelling purpose (Ärlebäck and Albarracín
2019; Williams and Roth 2019). Mathematical modelling can be implemented as
a prototype for interdisciplinary mathematics education demanding a coordination
and assessment of interdisciplinary complex learning outcomes (Borromeo Ferri and
Mousoulides 2017). Michelsen (2015) highlights that the mathematical modelling
can involve bothmathematical and science competencies. Intradisciplinary and inter-
disciplinary complex learning outcomes are emergent during the process of mathe-
matical modelling (Zawojewski et al. 2008). The defining challenge in mathematical
modelling assessment is how to account for learning through connections within and
across disciplines as students engage in mathematical modelling tasks.

Boaler (2001) called for new theories of learning to account for the nature of
the complex learning occurring during mathematical modelling. We need to recog-
nize that if complex learning outcomes during modelling are to be assessed well,
then an assessment that conveys this complexity is needed. We believe that the
interdisciplinary practices of mathematical modelling should be an area of research
requiring attention in developing valid measurements and assessments of mathe-
matical modelling competencies accounting for their use in practice across disci-
plines. Here, we present an argument-based approach towards establishing validity
of mathematical modelling assessments for interdisciplinary learning.

17.2 Problem and Background

Teaching mathematical modelling allows us to teach certain learning outcomes that
are not readily available in traditional instruction (Boaler 2001). The measurement
of the mathematical modelling skill set requires non-traditional measurement tools
to inform our teaching theory and practice. Mathematical modelling as an inter-
disciplinary activity system (Williams and Roth 2019) offers a driving goal to bring
perspectives from different disciplines for learners to confront, interpret, and process
new understandings, practices, and motives in response to a modelling situation.
Building on our previous work with mathematical modelling for STEM Education
(Ekici et al. 2018), the validity of mathematical modelling assessments is considered
here for interdisciplinary learning. For example, when modelling the population
dynamics of the queen conch, which is known to be a tasty, nutritious, and over-
fished sea snail in the Gulf of Mexico, this mathematical modelling activity requires
knowledge of fisheries, biology, sustainability, cultural habits, et cetera. The assess-
ments should properly align with the interdisciplinary learning with mathematical
modelling. The validity of mathematical modelling assessments requires interdis-
ciplinary perspectives involving different content experts and relevant community
members. This validity claim can be evaluated by analysing the psychometric prop-
erties of a modelling measure. When interdisciplinary competencies are heavily
involved in mathematical modelling performance tasks, their aligned assessment
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requires content expert input frommultiple disciplines in building, defining, and clar-
ifying the interdisciplinary competencies involved. This interdisciplinary input from
multiple disciplines creates the foundation for a valid assessment before its adminis-
tration, and interpretation of its results. In the USA, mathematical modelling is inte-
grated into standards for teaching and learning secondary mathematics and science
education. We investigated the validity of a standardized mathematical performance
assessment towards measuring mathematical modelling performance with the inter-
pretation and use of performance traits with affordances and challenges for interdis-
ciplinary learning. In this study, we examined the validation process for assessments
towards accounting for interdisciplinary learning with mathematical modelling.

17.3 Theoretical Framework

While there are multiple frameworks for validity, there has been a shift in the theories
developed since the 1950s. Earlier theories dating back to the 1950s used many types
of validity such as correlational, content, and construct. During the 1980s, the source
of evidence to establish validity became more of a concern (Messick 1989). The
validity theories of that era focusedonvarious areas such as content, response process,
internal structure, relation to other variables, use of scores, and consequences. Kane
(1992) takes a scientific approach to validity where assumptions are first made and
then evaluated resulting in hypotheses, and their analyses. From this perspective,
every assessment has a claim or an argument about a competence measure. Inter-
pretations and uses of scores are only valid when appropriate evidence is provided
(Kane 1992). Kane’s (1992, 2013) argument-based approach to validity is adopted
here. This approach considers scoring, generalization, extrapolation, decision, and
use.

17.3.1 Argument-Based Approach to Validity

The argument-based approach to validation involves two kinds of arguments. An
interpretation/use argument (IUA) explicates the reasoningbehind the proposed inter-
pretations and uses of test scores (Kane 2013) and articulates clearly what is being
claimed. The validity argument provides an evaluation of the IUA. Once developed,
it provides a framework for test development and validation, offering criteria for eval-
uating the proposed interpretations and use. The validation of a score interpretation
involves an investigation of whether the scoresmeanwhat they are supposed tomean,
and the interpretation is said to be valid if the claims inherent in the interpretation are
supported by appropriate evidence. Establishing validity involves a hypothesis about
a specific interpretation or decision focused on a specific construct and a collection
of evidence to support or refute the hypothesis about the targeted competencies.
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Our approach to providing a validity framework for a mathematical modelling
assessment involves identifying and addressing the potential uses and interpretations
of the scores. The following inferences are identified as related to a mathematical
modelling assessment. Interpretation and use arguments most commonly include
inferences and assumptions from scoring, generalization, extrapolation, theory-based
inferences, and score uses.

17.3.1.1 Scoring Inferences

Using a unidimensional and continuous scoring method to measure the mathemat-
ical modelling achievement starts with the assumption that mathematical modelling
achievement is a unidimensional construct. The scoring process that places students
on a unidimensional continuum is based on the claim that we can order students’
mathematical modelling skills on a unidimensional continuum. If we consider the
outcome as a dichotomy, we claim that students either have mathematical modelling
skill or not, rather than having this skill to some degree. Consequently, these inherent
assumptions carried in scoring processes have implications for the construct validity
of mathematical modelling.

17.3.1.2 Inferences of Score Uses: Consequential Validity

After the scoring, the consequences of using the scores provide consequential validity
evidence. If the scores determine a students’ achievement in mathematics, introduc-
tion of non-mathematical skills in mathematical modelling tasks poses problems to
the validity. On the other hand, avoiding the multidimensional, and interdisciplinary
measurement due to its complexity has detrimental consequences in our instruc-
tional practices such as resorting to teaching simplified skills which do not prepare
our students for real life. The use of simpler unidimensional and multiple-choice
measurement for mathematical modelling could have unexpected and unintended
consequences that challenge their validity.

17.3.1.3 Theory-Based Inferences: Construct Validity

Amathematical modelling construct is multidimensional. There are various theories
about the components andmeasurement of the modelling construct (Zöttl et al. 2011;
Hankeln et al. 2019). Learning outcomes that are expected to be taught and to be
learned during mathematical modelling instruction are informed by the theory-based
definition of the mathematical modelling construct. Dimensions of this construct
can be explored and confirmed with a measurement administration and analysis
of the results. One goal of the measurement is to evaluate the multidimensionality
of interdisciplinary mathematics learning as operationalized with a mathematical
modelling rubric.
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17.3.1.4 Generalization and Extrapolation

One important aspect of validity of an assessment is established by the degree that
assessment can be generalized. Learning outcomes of a mathematical modelling
instruction are not restricted to a certain level of mathematical knowledge. One
modelling problem can be approached and solved with the use of different mathe-
matical and science knowledge levels. Consistency of the construct across ages and
grades can be evaluated to provide evidence for the use of the scores.

17.4 Method and Data

17.4.1 Setting and Participants

Forty-one in-service secondary mathematics and science teachers participated in
modelling and assessment workshops conducted by the chapter authors during the
Summer of 2017 and 2018. Directed by the second author, teachers had been collab-
orating in developing and implementing interdisciplinary projects on locally relevant
issues since 2015.This researchproblememerged from theneed for valid assessments
that can measure interdisciplinary learning through modelling for STEM education.
The workshop activities focused first on mathematical modelling as a common inter-
disciplinary practice for integrated STEM learning and then on valid assessment
of mathematical modelling for interdisciplinary learning. In-service STEM teachers
engaged in the modelling process with locally relevant problems such as the queen
conch population. In total, 28 teachers completed mathematical modelling assess-
ment tasks. An assessment and validity workshop facilitated theoretical and practical
training on measuring and assessing mathematical modelling and interdisciplinary
learning. As a measure of modelling performance, we adopted a commonly used
rubric developed by the New York Performance Standards Consortium (2016). The
teachers analysed and discussed the assessment results with the rubrics providing
a hands-on training of content and processes involved in interdisciplinary mathe-
matical modelling practice. Participants revisited the modelling cycle again working
with interdisciplinary pairs and provided feedback. GAIMME’s modelling cycle
(Garfunkel and Montgomery 2016, p. 31) was given to reflect on modelling phases
and components during the assessment task such as “defining the problem, making
assumptions, defining variables, getting a solution, assessing the model” (p. 197).
Our research study employed mixed methods using quantitative analysis for relia-
bility and construct validity of measurements, qualitative methods for interpretation
and use arguments on validity.

Our design of the professional development formodelling assessment and validity
was informed byBlum andBorromeo Ferri (2009).We attended to the following four
dimensions for STEM teachers’ pedagogical content knowledge (PCK) on math-
ematical modelling and assessment: (1) theoretical dimension (modelling cycles,
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phases, assumptions, interdisciplinary perspectives), (2) task analysis (multiple solu-
tions, connections), (3) instructional dimension (culturally responsive pedagogies;
anticipated interventions), and (4) a diagnostic dimension (students’ difficulties).

17.5 Results

17.5.1 Scoring Inferences

Scoring of a complex formative assessment is achieved inmultiple steps. The scoring
process involves multiple raters from different backgrounds. Training was provided
on scoring with the performance assessment rubric. The rubric served as a standard
setting tool. Multiple raters scored each paper and inter-rater reliability was accept-
able for three factors, while it was low for communication. The rubric identified the
dimensions, and provided explanation for these dimensions. Scoring is undertaken
with a cognitive diagnostic classification model and diagnostic feedback is provided
from the scoring. This scoring has provided validity evidence consistent with the
formative nature and instructional purpose of the assessment.

17.5.2 Inferences of Score Uses: Consequential Validity

Since the purpose of the mathematical modelling assessment was instructional, it
was designed as a tool to support teaching mathematical modelling. While taking the
assessment, participants assumed the role of students, teachers, and raters. Teachers
scored papers in interdisciplinary teams composed of secondary mathematics and
science teachers. This allowed them to experience the whole assessment process
from multiple perspectives.

The assessment results for science teachers had direct consequences on their
instructional practices in science classes. For example, in response to the modelling
assessment, several participants were observed to have made scientifically unsound
assumptions with their constants and the key variables related to queen conches.
Science teachers paid more attention to assumptions made helping the interdisci-
plinary team to identify key variables and constants drawing from their scientific
knowledge, local policies and practices impacting the queen conch population such
as their harvesting age and abundance rates such as 25 adults per acre for ecological
self-sustenance. The mathematics teachers were benefiting from the contextually
relevant scientific knowledge science teachers were bringing. On the other hand, we
observed science teachers struggled with the mathematizing phase with the expo-
nential or logistic growth models; for example, one science teacher noted: “It is not
clear to me how this activity fosters reasoning and proof skills”.
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Table 17.1 Factor loadings
from confirmatory factor
analysis (CFA) of
mathematical modelling

Conceptual factors Procedural factors

Problem solving 0.340 0.709

Reasoning,
justification, proof

0.576 0.483

Communications 0.983 0.178

Connections 0.742 0.204

Representations 0.124 0.992

When asked to evaluate the measurement process and its consequences, teachers
focused their comments on the rubric. The descriptions of performance indicators
provided by the rubric are accepted as the standard by teachers. This highlighted
the importance of vetting the rubric by the practitioners thoroughly before adoption
allowing them to consider its use and consequences.

17.5.3 Theory-Based Inferences: Construct Validity

The construct is hypothesised to be multidimensional. Multidimensionality analysis
is provided as construct validity evidence for the use of mathematical modelling
scores. Maximum likelihood extraction is used with Varimax rotation. A two-factor
model adequately fits to the observed data with χ2 = 1.4 and “df = 1”, p = 0.229.

From the factor analysis as seen in Table 17.1, reasoning, justification, and
proof , communications, and connections are clustered together which we inter-
preted as referring mainly to conceptual competencies in interdisciplinary math-
ematical modelling. Secondly, problem solving and representations are clustered
together aligning with procedural competencies during interdisciplinary mathemat-
ical modelling. We found that interdisciplinary mathematical modelling assessment
tasks have balanced conceptual and procedural factors each of which are domi-
nated by communication and representations, respectively. The CFA measurement
model depicts the factors and their clusters as higher order factors as shown
in Fig. 17.1. These results show that this construct is valid for interdisciplinary
modelling assessment.

17.5.4 Generalization and Extrapolation

Mathematical modelling assessments have their own set of disciplinary and interdis-
ciplinary competencies and skills. The pattern emerging among teacher reflections
collected after the validity session indicated that there are three leading factors of
the mathematical modelling assessment works for interdisciplinary learning: “com-
munication”, “representation”, and “connections”, aligning with their overall CFA
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Fig. 17.1 Path diagram for mathematical modelling as measured by the existing rubric

factor loadings. Reflections indicated that science teachers found this rubric working
best in assessing interdisciplinary modelling competencies in communication and
connections. While they agreed on representations as critical in interdisciplinary
modelling assessment, there was a lack of consensus between science and math-
ematics teachers’ understandings and practices with representations. Mathematics
teachers initially struggled on the connection and communication competencies.
They benefited from working with science teachers and interdisciplinary experts
providing the support with interdisciplinary connections, building on locally relevant
justifications of their assumptions from local scientific perspectives.

Based on the assessment results, the generalization and extrapolation require
interdisciplinary participants to reflect on how they can adopt this, what they can do
next at their grade levels and across grade levels. This critical adoption process helps
interdisciplinary teachers to generate plans for adopting the mathematical modelling
assessment for their practice. The consistency of the construct across ages and grades
can be evaluated after teachers adopt it and implement it in their practice to provide
evidence for the use of scores. Building on modelling assessments as case studies for
interdisciplinary learning, this process can create new claims to be tested to expand
mathematically, scientifically, and contextually relevant knowledge and practices
aligning their use and interpretations across mathematics and the sciences.

17.6 Discussion

Communication is a critical performance element for interdisciplinary learning.
Teachers in this study realized that interpretation of the model brings back the
problem into its original context. Discussing the problem with interdisciplinary
teachers allows teachers to question their earlier assumptions.
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Based on their background, teachers were able to identify intra-disciplinary
connections andmultiple viable solutions when theywere analysing “the task dimen-
sion” of the mathematical modelling assessment. One of the modelling assessments
was based on the population dynamics modelling for the queen conch population
using different harvesting schemes. Depending on how the problem was formulated,
modelling “the changes in the proportion” of harvested queen conch reduced the
problem into a quadratic model. This re-framing decision for mathematizing made
the model more accessible. Otherwise, science teachers and middle school mathe-
matics teachers experienced problems with the logistic model in its exponential and
continuous form. “Doing the math” phase impacted “how the problem is framed”
mathematically. Ekici and Plyley (2019) demonstrate that mathematical modelling
tasks in growth modelling for lionfish or the conch population can be mathematically
framed with discrete, continuous, and stochastic models to generate alternative path-
ways for the mathematizing phase towards building intra-disciplinary connections
with implications on the intradisciplinary learning outcomes from the modelling
process.

Cultural context with its motives (Roth andWilliams 2016) shapes the interpreta-
tions and how to set up the problem. To better differentiate, teachers were asked first
to work in pairs on culturally relevant mathematical modelling tasks, such as lionfish
and queen conch population modelling. Motives were compared in modelling the
harvesting schemes for conch and lionfish. For conch population, modellers wanted
to keep the population alive for long-term sustainability of a desirable population
as a part of the livelihood of the ecological system. On the other hand, the targeted
harvesting goal for lionfish population was set to eradicate this invasive species due
to their threat to the ecological balance, directly or indirectly, with their high rate of
reproduction and growth, their voracious feeding capacity and lack of predators. In
addition, in modelling the conch population, participants are expected to examine
different conch harvesting scenarios, revising the growth functions, and harvesting
at different rates.

17.7 Conclusions

In collaborative interdisciplinary modelling projects, there are critical roles for inter-
disciplinary content experts in the mathematical modelling assessment design and
validation. The mathematical modelling problems with science and engineering
contexts benefit heavily from the rich contextual discussion provided by the science
and engineering educators in evaluating the assumptions and interpretation of the
targeted common modelling competencies from their disciplinary perspectives.
Towards making mathematical modelling more culturally and socially responsive,
the learning community should be inclusive of relevant interdisciplinary perspec-
tives supported by science, technology and engineering teachers, and community
partners who can be involved in and out of the classroom during the mathemat-
ical modelling process. We need to reconsider the modelling assessments to be more
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inclusive to perspectives from relevant disciplines towards interdisciplinary learning.
Construct validity essentially starts with an articulation process in determining what
to assess in terms ofmathematical and interdisciplinary learning outcomes informing
the construct design of complex learning assessment, interpreting the meaning of the
performance construct and the scores. This process should be informed by multiple
disciplinary standpoints within and across disciplines. The assessment validation for
interdisciplinary learning with modelling requires teacher collaboration to interpret,
use, extrapolate, and generalize the results for a coordinated mathematical modelling
community of practice across subjects in schools.

Using CFA, we identified that there are two high-order clusters for inter-
disciplinary mathematical modelling—the conceptual dimension and the proce-
dural dimension. This result aligns with the two-dimensional model for the sub-
competencies identified by Hankeln et al. (2019). The conceptual dimension refers
to reasoning justification, connections, and communication, concurring with the
combined interpreting and validating sub-competencies observed by Hankeln et al.
In contrast, the procedural dimension as identified here refers to problem solving
and representations, aligning with Hankeln et al.’s (2019) second dimension that
combines simplifying and mathematizing. Their model fits well for two but better
with four dimensions.

In establishing validity, assumptions are not trivial in setting up the model with its
interdisciplinary and intra-disciplinary connections as assumptions, problem posing,
and formulation are often critical parts impacting onhow the content is enacted during
themathematical modelling process (Galbraith and Stillman 2001). The validation of
the assumptions in a mathematical modelling assessment requires interdisciplinary
collaboration.

17.7.1 Future Directions

This study presents an approach to facilitating a standard-setting like process for
mathematical modelling assessments. The modelling assessments should align and
validate interdisciplinary and intradisciplinary perspectives utilized in authentic
mathematical modelling assessment tasks. We suggest involving interdisciplinary
groups of teachers as users and experts in learning outcomes in the validation process
for developing and revising the assessments for mathematical modelling.

There is a clear need for differentiation and consensus building in interdisciplinary
mathematicalmodelling assessments.With themathematicalmodelling assessments,
relevant domain analysis should be performed bymathematics, science teachers, and
faculty and content experts.

Different scoring guidelines, according to their purposes, should be established
to ensure validity. The same scoring or assessment rubrics should not be used inter-
changeably for formative and summative assessments. This has implications for the
construct related dimensions of assessments. The consequential validity helps to
articulate for interdisciplinary practitioners the relevant information emerging from
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mathematical modelling assessments so as to inform their practice in mathematics
and science classes at different levels. Mathematical modelling assessments must be
flexible to account for multiplicity of solutions depending on the assumptions made,
how the problem is formulated, and how the theoretical framework is used for its
mathematization with discrete, continuous, stochastic, or deterministic methods.

Broader questions we pose requiring further investigations are how to value, eval-
uate, and validate interdisciplinary learning outcomes with mathematical modelling
with targeted assessments. By positing mathematical modelling as an interdisci-
plinary practice across natural and mathematical sciences, collaborative research
should address how a series of modelling assessments can be designed to examine
the conditions for the transfer of interdisciplinary learning within and across disci-
plines. As mathematical modelling plays a pivotal role in cultivating interdisci-
plinary learning through collaboration, valid and reliable assessments are required to
measure its potential for intra-disciplinary learning by tapping into mathematizing
from multiple disciplinary perspectives.
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Chapter 18
Measuring Students’ Metacognitive
Knowledge of Mathematical Modelling

Lena Frenken

Abstract The support of modelling in school is a common issue in investigations
and in the relevant literature on modelling competence. In this chapter, research is
presented on constructing a test instrument for assessingmetacognitive knowledge of
modelling. Based on a theoretical definition of the term “metacognitive knowledge”
and its domain-specific connection to mathematical modelling, a large number of
items were developed. The scalability and possible reduction of items are analysed
in this chapter. The process of item construction and evaluation is described in detail.
With the help of a one-parameter Rasch analysis, it can be deduced that a selection
of items is suitable for measuring at least some aspects of metacognitive knowledge
of mathematical modelling.

Keywords Metacognition ·Metacognitive knowledge · Item development ·
Assessment ·Measurement · Rasch analysis

18.1 Introduction

Metacognition is—among other aspects such as sub-competencies or one’s own
attitude towards modelling—important for a successful holistic modelling process
(Kaiser 2007; Tanner and Jones 1995). Furthermore, studies have shown that digital
tools enrich and change modelling at school, for example, through using appro-
priate tools or presenting the problems in a more realistic way (Molina-Toro et al.
2019). Nevertheless, the question of how technology should be used effectively
for modelling at school has not yet been answered satisfactorily (English et al.
2016) partly due to ongoing developments of technology. Especially the imparting
of metacognitive knowledge, as a selected subcategory of metacognition, could be
considered as a viable possibility for promoting students’ modelling competencies,
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while learning in a computer-based learning environment, because of the associ-
ated self-regulated working formats (Veenman 2007). Furthermore, the correlation
betweenmodelling sub-competencies andmetacognitive knowledge has not yet been
investigated (Hankeln et al. 2019). These aspects are intended to be investigated in the
projectModi—Modelling digitally,which comprises the conceptualization and devel-
opment of a test instrument onmetacognitive knowledge of mathematical modelling,
among other things.

Initially, a detailed description of the termmetacognitive knowledge including the
establishment of a connection to mathematical modelling is presented in this chapter.
In addition, the test construction and its analysis are described so that conclusions
can be drawn about the use of the test instrument and the implications of the results
for modelling.

18.2 Theoretical Background

In order to conceptualize a test instrument that assesses students’ metacognitive
knowledge of mathematical modelling, it is necessary to first understand its under-
lying concepts. It is well known that metacognition, which is the paramount concept
of metacognitive knowledge, is fuzzy (e.g. Flavell 1981; Schoenfeld 1987), often
used, but often criticized as well, due to a lack of precise definitions. However, in
this chapter, similar terms are delimited in contrast to metacognitive knowledge,
and a construct definition that can be used for research in mathematics education is
targeted as a result.

18.2.1 Metacognitive Knowledge

Following a fundamental definition of metacognition, the term can generally be
understood as “knowledge and cognition about cognitive phenomena” (Flavell 1979,
p. 906). A differentiation between levels of cognition makes clear that metacogni-
tion is part of cognition itself, whereby cognitive processes entail defining objects of
other cognitive processes (Nelson andNarens 1990). For example, solving a systemof
linear equations involves a cognitive process and in contrast, answering the question
of how well someone solves such a system initiates a cognitive process about the
previous cognitive processes. To answer the latter question, proceeding metacog-
nitive activities mainly affect the answer. Thus, different cognitive levels become
evident. Because metacognition is still a broad field and the explicit contents are
not obvious, a partition of the concept into two to four theoretically considered,
interacting aspects is undertaken by several authors (e.g. Flavell 1979; Scott and
Levy 2013; Vorhölter 2018). For the Modi project, the division into metacogni-
tive knowledge and metacognitive skills is fundamental. To divide these terms, a
clear distinction is needed. In doing so, the most important aspect is to differentiate
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between the knowledge that individuals accumulate through various situations over
time about cognitive processes and the actions that individuals undertake to regulate
cognitive processes. Metacognitive knowledge means, for example, being aware of
the fact that the Gaussian algorithm is an appropriate strategy for solving a system
of linear equations. In contrast, the decision to execute the Gaussian algorithm and
not the addition method for solving a given system of linear equations can be seen
as a performed action and therefore constitutes a metacognitive strategy, because it
regulates the cognitive process of solving it. At this point, a question arises as to
the differentiation between cognitive strategies and metacognitive strategies, but is
beyond the scope of this chapter. Hence, here the author refers only to the distinction
between the two levels that were used to clarify the differences between cognition
and metacognition. Further, knowledge is verifiable, and thus can be rated as wrong
or right (Bolisani and Bratianu 2018). Taking a more detailed look at metacognitive
knowledge, Flavell (1979) considers three facets of the knowledge about influencing
factors in cognitive processes: person, task and strategy. The personal factors can
again be divided into knowledge or beliefs about inter individual differences, intra
individual differences and universals that are generated from the experienced differ-
ences. Thus, an example (again about solving a system of linear equations) of the
person category would be that there still is a lack of understanding on the Gaus-
sian algorithm—with regard to oneself, to the person sitting next to oneself or to
the whole class. Knowledge about the possible number of solutions when solving a
system of linear equations, ranging between none, one or infinitely many, constitutes
an example of the task variables. Knowledge about the Gaussian algorithm as an
appropriate strategy was already mentioned regarding clarifying the differentiation
between metacognitive knowledge and metacognitive strategies and can be related
to the strategy variables. Furthermore, knowledge about the aims of the Gaussian
algorithm can be mentioned as an example of this category.

Summarizing, metacognitive knowledge in this study is used as the generic term
for verifiable, domain-specific knowledge about the factors that affect cognitive
processes, which can be considered as relating to knowledge about the involved
person(s), about the tasks to solve and about appropriate strategies, including their
aims and objectives.

18.2.2 Metacognitive Knowledge of Mathematical Modelling

Mathematical modelling processes are executed as cognitive activities (Blum and
Leiss 2007). Accordingly, taking into consideration the domain-specific characteris-
tics (Veenman2007), cognitive processes and thinking aboutmathematicalmodelling
can be seen as metacognitive activities of mathematical modelling. The modelling
processes therefore become the object level (Nelson and Narens 1990). Specifying
this basis with regard to the focus of the chapter, metacognitive knowledge can also
be defined by referring to mathematical modelling. Thus, following the summary
in Sect. 18.2.1, metacognitive knowledge of mathematical modelling is used as the
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term relating to knowledge that affects the execution of modelling processes, and
can be considered as divided into the categories person, task and strategy. It should
also be taken into account that knowledge can be assumed as verifiable. The personal
variables can be interpreted as knowledge about difficulties encountered during the
modelling process, accumulated through learning about oneself and one’s problems
as amodeller (intra-individual differences), compared to problems of othermodellers
such as classmates (inter-individual differences). The task variables contain knowl-
edge about properties and characteristics, in this case, of modelling tasks. This
includes information about the design of modelling tasks, as well as about possible
structures of solutions and modelling processes. Underlying the two facets already
described, the strategy variables refer to the objectives behind appropriate strategies
on the one hand and knowledge of a repertoire of useful strategies on the other hand.
Referring tomodelling, knowledge about a solution plan, different reading strategies,
searching for an analogy, making a drawing or verifying the solution by comparing it
with known sizes, can all bementioned as appropriate strategies during the process of
solving reality-based problems (e.g. Schukajlow et al. 2015; Stillman 2004;Vorhölter
2018). Summarizing, metacognitive knowledge of mathematical modelling is part
of a competency that includes memorizing facts about different strategies, properties
of modelling and potential difficulties during the process.

Though Cohors-Fresenborg et al. (2010) state that procedural metacognition is
the aspect of metacognition that is important for modelling, previous investigations
have shown that some aspects of the above-mentioned definition of metacognitive
knowledge are crucial for a successful modelling process as well or could at least
influence it positively. For example, important relations between knowledge about
different models such as the real or themathematical model and their setting, by iden-
tifying misconceptions related to difficulties or errors, were provable (Maaß 2007).
Furthermore, it was shown that the awareness of different strategies and their aims
is a basis for decision-making when working on real-world problems (Stillman and
Galbraith 1998). Nevertheless, a lack of investigations on the structure of metacog-
nitive knowledge (of mathematical modelling) is conspicuous. Finally, the question
of an existing correlation of metacognitive knowledge and modelling competence
has been raised (Hankeln et al. 2019) and could help fill the gap in investigations on
the influence of metacognitive aspects of students’ modelling processes (Vorhölter
et al. 2019).

18.3 Method

Because no quantitative test instrument on metacognitive knowledge about mathe-
matical modelling has yet been constructed (Vorhölter 2018), this chapter addresses
the evaluation of newly developed items. Therefore, an attempt is made to answer
the following question:
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Is it possible to measure metacognitive knowledge of mathematical modelling as a latent
construct?

The author assumes that not all of the constructed items statistically fit the global
test instrument, although this is the requirement for investigating student differ-
ences or developments concerning the metacognitive knowledge of mathematical
modelling. However, several steps with regard to ensuring the quality of items are
undertaken. These various elements are presented in the following section, whereby
the focus is laid on student performance in five different classes and an analysis of
them.

18.3.1 Item Construction and Data Collection

With respect to the research question posed, several steps were undertaken. First of
all, the items were formulated and designed on the basis of the theoretical concepts
on the structure and contents of metacognitive knowledge, whereby the aim was to
create items which can be rated as either wrong or right. Afterwards, the items were
given to experts, with the instruction to fill in the test andmark all critical aspects. The
specialists, who all work at the Institute of Education in Mathematics and Computer
Science at theUniversity ofMuenster, conducting research on either test construction
or mathematical modelling, gave detailed advice. Especially, discussions about the
coding of items and the scales used were included. The content validity was also
ensured in this way. On this basis, items could be reformulated in a first round and
the items for the next step—the testing in classes—were selected. The distribution of
selected items across the categories strategy, task and person is shown in Table 18.1.

As can be seen from Table 18.1, in total, 39 items were to be included. Because
the processing time for solving a test with all items in one lesson of 45 min was
expected to be too long for 15-year-old students, two different versions of the test

Table18.1 Overview of the items and their distribution across the variables

Version A Version B

Introduction

Personal data

Strategy repertoire I
(6 Items, short answer)

Strategy repertoire II
(6 Items, short answer)2 anchor items

Person category (7 Items, Combined-Single-Choice)

Task category (8 Items, Combined-Single-Choice)

Strategy aims (14 Items, Combined-Single-Choice)
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were developed. Each version consists of 35 items, which may not seem like a large
reduction, but it should be taken into account that the quantity of the most time-
intensive items was indeed reduced. Furthermore, a qualitative study was conducted
within the research context of a master thesis, which aimed to identify the difficul-
ties students encountered while answering the test. On this basis, the results of the
statistical analysis can be reconsidered. Before the results of the statistical analysis
are presented, an overview of item examples is provided. The test was adminis-
tered to five classes, at two schools, of 15-year-old students, whereby 115 students
participated in total.

18.3.2 Item Examples

The description of selected items follows the structure of the test, which is shown
in Table 18.1. Before the metacognitive knowledge is assessed, the test starts with
an introduction and a short query on personal data. Afterwards, one item block on
the strategy variable is used to assess the repertoire. The strategy variable had to be
divided into twoparts in the test, because in previous investigations on strategyknowl-
edge, therewere criticisms that the assessed strategieswerementioned explicitly (e.g.
Pintrich et al. 1993).

Items with the following expected and as correctly rated strategies were designed:
solution plan, searching for an analogy, making a drawing, verifying the solution by
comparing with known sizes and reading strategies. As shown in Fig. 18.1, each of
the items on strategy repertoire consists of a modelling task, a dialog between two

2.1 Record Nail
In order to present the name of his restaurant, 
Mr. Nail set up an oversized steel nail in front 
of it. He took a picture of this nail. It is about 7 
m long and has a diameter of about 22 cm. A 
commercial carpenter’s nail is only about 20 
cm long and has a diameter of 6 mm. Now the 
nail shall be moved. The unloading crane of the 
truck available for transporting the nail is 12 
metres long and can lift a maximum of 1.5 t. Is 
it possible to move the nail with this truck?

(Adapted from Drüke-Noe et al. 2012)

Timur: So much text. Did you read everything?
Pascal: Yes, I’m done. But I don’t know exactly what is important and what is 
not.

What would you advise Timur and Pascal? (You don’t need to solve the 
nail task.)

Fig. 18.1 Example item for the strategy repertoire



18 Measuring Students’ Metacognitive Knowledge of Mathematical … 221

students who are facedwith a difficulty, and the question as towhat advice the student
would give. Answers to the shown example that are rated correctly contain reading
strategies, for example, marking important information or reading the task again.
This block of items was positioned at the beginning of the test, because the partici-
pating students became familiar with various modelling tasks in this way. Therefore,
the term modelling task could be used in the following items. Item 3.2, shown in
Fig. 18.2, is an example of assessing the person variables. Because beliefs dominate
this category in Flavell’s considerations (1979), the inter- and intra-individual parts
were not assessed. Nevertheless, universal difficulties during the modelling process
were assumed to represent the knowledge gained from the two categories; therefore,
one block of items was constructed, introduced by the request to think about oneself
and one’s classmates as modellers. During the expert discussions, the proposal was
made to defuse rigid categories of true and false, by using a four-point Likert scale
for the assessment (True—possibly true—possibly false—false). This still offers the
possibility of conducting a one-parameter Rasch analysis to ensure the quality crite-
rion of scalability, by interpreting the categories true and possibly true as one and the
categories of possibly false and false as the alternative. Assuming that the personal
variables can be statistically ascertained as part of metacognitive knowledge includes
the characteristics of being verifiable. But, because the explanations of metacogni-
tive knowledge also often include the term beliefs, the need for a different allocation
within the map of modelling competence can be assumed, and therefore, the Likert
scale was included as an alternative. An answer was thus coded as correct, when the
student, for example, ticked the box for true or possibly true, while rating a correct
statement and vice versa.

Concerning the assessment of the task variable—item 4.1 shown in Fig. 18.2
belongs to this category—the two categories of true and false were used directly,
and the content of statements is based on properties and characteristics of modelling
tasks, following a few items from the test instrument of Klock and Wess (2018). In
the second part of assessing the strategy variables, the aims of the above-mentioned

Fig. 18.2 Example items on the categories person (3.2), task (4.1) and strategy aims (5.5)
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strategies are formulated in different statements. With item 5.5 in Fig. 18.2, an
example of this category is provided as well. The chosen format of combined single-
choice items reduces the probability of guessing and includes one complete item
only being coded as correct, if the three accompanying statements are ticked in the
right combination of (possibly) true and (possibly) false.

18.4 Results of the Quantitative Analysis

To evaluate the test instrument, the data were scaled using a one-parameter Rasch
model (Rasch 1960) utilizing the software ConQuest (Wu et al. 2007). After the
requirement of normal distribution of the WLE-scores was checked, items with a
discrimination index under 0.2 were excluded as in PISA (OECD 2012), so that 27
items remained. The other 12 items have to be reformulated or excluded totally. On
the basis of the discrimination index, the problem of assessing the category person
becomes clear, because almost all of the items in this section had to be skipped and
only three remained. The reliabilities are satisfactory; the item separation reliability
amounts to 0.983 and the EAP/PV reliability, which can be compared to Cronbach’s
Alpha, is 0.641. The item fit statistics, which constitute another criterion for ensuring
the test quality, range between 0.82 and 1.13 for the unweighted mean square and
between 0.94 and 1.1 for the weighted mean square. Following Bond and Fox (2007)
and PISA (2012), these values indicate a high level of quality. A further analysis of the
item difficulties shows a floor effect, which means that the items were generally too
difficult for the participating students. Finally, an Andersen test was conducted with a
result of p= 0.28, which leads to the conclusion that the items do indeed measure the
one-dimensional construct of metacognitive knowledge of mathematical modelling
(Andersen 1973).

18.5 Summary and Discussion

This chapter focused on deducing a definition of metacognitive knowledge of math-
ematical modelling aiming at developing a test instrument that measures the asso-
ciated aspects of this term. Items were constructed on that basis and a pilot study
conducted to revise the quality criteria. It was found that the test instrument is usable
for a comparison of groups, and measures metacognitive knowledge of mathemat-
ical modelling (Bond and Fox 2007; Boone 2016). Incidentally, the differentiation
betweenmeasurement using a standardized, scalable test instrument, and assessment
using a test instrument that, for example, does not distinguish between item diffi-
culties, must be mentioned (Mislevy 2017). Therefore, the evolved test instrument
also enables measuring parts of the competence of mathematical modelling and is
an addition to existing test instruments that measure or assess other aspects, such as
sub-competencies (Hankeln et al. 2019) ormetacognitive strategies (Vorhölter 2018).
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Nevertheless, the unsatisfactory results in the dichotomous assessment of the person
category show that—despite the many investigations on the structure of modelling
competence and considerations onwhat aspects belong to it—the holistic competence
is still not fully determined. The assumption that the described aspects of the person
category belong to facets like self-efficacy or motivation, which influence modelling
processes and have to be assessed with other methods, can legitimately be made. To
complete a series of test instruments on facets of modelling (Kaiser 2007), further
analyses using the developed four-point Likert scale, and addingmotivational factors
or the facet of self-efficacy, should be conducted. The three remaining items on the
personal variablewill be excluded, and in further studies, strategy knowledge and task
knowledge remain as measured aspects of metacognitive knowledge of mathemat-
ical modelling. Because the categories of metacognitive knowledge were considered
theoretically (Flavell 1979) and not examined empirically, these new assumptions
about the structure and content of metacognitive knowledge should be verified in
other studies and different domains.However, sufficient statistical evidence is already
on hand, and at least aspects of metacognitive knowledge of mathematical modelling
can be measured with the instrument (Andersen 1973; Boone 2016). The test instru-
ment will be enhanced by consulting the results of a qualitative study on difficulties
encountered during the test processing. Beside the results concerning the suitability
of the test instrument, the students’ limited metacognitive knowledge of mathemat-
ical modelling reveals the importance of, and need to create, learning environments
for mathematical modelling, as well as integrating them into schooling more often
and intensively.
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Chapter 19
Mathematical Modelling in Dutch Lower
Secondary Education: An Explorative
Study Zooming in on Conceptualization

Sevinç Göksen-Zayim, Derk Pik, Rijkje Dekker, and Carla van Boxtel

Abstract In theNetherlands,mathematicalmodelling has become amajor subject in
the higher secondary education curriculum.However, it is absent from the greater part
of lower secondary education. To improve the vertical coherence in the curriculum,
this study explores the mathematical modelling proficiency in both primary school
and lower secondary school. Additionally, this study also gains insight into the diffi-
culties that students encounter while solvingmodelling tasks. The study includes two
modelling tasks on three difficulty levels for 248 learners ranging from 11 to 15 years
old. At each level, learners encounter difficulties when constructing a meaningful
representation of the described modelling problem or may even fail to understand
the problem. These representation problems are qualitatively analysed and are shown
to be partially related to learners’ language problems.
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19.1 Introduction

Mathematical modelling is a major subject among the activities associated with
mathematical thinking and has received more attention in recent years, including in
the Netherlands. Mathematical modelling became a new component of the examina-
tion programmes for the five-year stream (HAVO) and the six-year stream (VWO)
in 2015. However, mathematical modelling is absent in the greater part of lower
secondary education in the Netherlands.

In the field of mathematical modelling, various representations of the modelling
cycle exist. According to Blum and Leiß (2005), the modelling process begins with
understanding the real situation and problem, resulting in a situation model. Then,
the given situation has to be simplified, structured and made more precise, which
results in a real model (Blum and Leiß 2005; Blum and Borromeo Ferri 2009).
In the modelling cycle of Perrenet and Zwaneveld (2012), these first two parts of
the process are taken together as the conceptualization phase, followed by mathe-
matizing, solving, interpreting and validating. Plath and Leiß (2018) emphasize the
importance of the conceptualization phase and use this as the basis for all subsequent
decisions (see also Blum and Leiβ 2005; Borromeo Ferri 2006; Leiβ et al. 2019).
Therefore, in this chapter, we will focus especially on the difficulties that students
encounter in the conceptualization phase.

Assumption making is one of the modelling competencies used to understand
a real problem and to set up a model (Maaβ 2006). Galbraith and Stillman (2001)
emphasized the role of assumption making as an underrated aspect of successful
modelling activity. Seino (2005) argued that assumptions are “the bridge” that
connects the real world and the mathematical world. While the ability of novice
modellers to make assumptions is rather weak (Chan et al. 2012), it hardly receives
attention in the Dutch mathematics curriculum. Therefore, it is important to examine
students’ difficulties related to assumption making, especially in lower secondary
education.

Usually, modelling problems in context-rich assignments are offered to learners
through texts. One of the first obstacles students may encounter is reading and inter-
preting text. In secondary school, being able to read a problem is a decisive factor
in solving a problem (Korhonen et al. 2012). The language used at school often
forms an obstacle to learning mathematics (Van Eerde and Hajer 2009). Language
proficiency may play a different role in every phase of the modelling cycle. In the
conceptualization phase, the student has to be able to understand the text in which
the problem is posed to translate it into a conceptual model. Plath and Leiβ (2018)
pointed out that the linguistic features of understanding and solving mathematical
modelling tasks have not been thoroughly examined. Therefore, this study will also
investigate the role of language comprehension in the conceptualization phase.

To improve vertical coherence in the curriculum, more insight is needed into the
modelling ability of students in lower secondary education and the difficulties they
encounter while solving modelling tasks. Therefore, this study explores two research
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questions: How do Dutch lower secondary students perform on context-rich mathe-
matical modelling tasks?Which problems do they encounter in the conceptualization
phase?

19.2 Method

To answer these questions, we developed two modelling tasks and two mathematical
core assignments for three age groups and conducted task-based interviews.

19.2.1 Participants

The participants in the study were 73 students from Grade 6 (age 11–12), 116
students from Grade 8 (age 13–14) and 59 students from Grade 10 (age 15–16).
In the Netherlands, Grade 6 is the final year of primary school, Grade 8 is part of
lower secondary education and Grade 10 is part of upper secondary education. In
total, four primary schools and four secondary schools with seven classes located in
an urban environment participated in this research (see Table 19.1).

Schools A, B and C were primary schools and schools D, E, F and G were
secondary schools. All schools were located in an urban environment. In schools B,
D and E, most students were raised bilingually with different parental languages.
School G had a more mixed population. The other schools, A, C and F, have more
homogeneous populations whose first language is mainly Dutch.

The teacher of each class selected two students, one with strong language profi-
ciency and onewithweak language proficiency, withwhomwe performed task-based
interviews. These teachers had taught these students for over a year. Task-based
interviews were performed with 26 learners (see Table 19.2).

Table 19.1 Number of students per task, grade and school

School A B C D E F G Total

Task 1, Grade 6 16 23 39

Task 1, Grade 8 39 19 58

Task 1, Grade 10 22 22

Task 2, Grade 6 21 13 34

Task 2, Grade 8 17 41 58

Task 2, Grade 10 11 26 37

Total per school 21 16 23 35 28 80 45 248
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Table 19.2 Number of
interviewees per task and
grade

Grade Task 1 Task 2 Total

6 4 4 8

8 6 4 10

10 4 4 8

Total 14 12 26

19.2.2 Modelling Tasks

We designed two paper-and-pencil mathematical modelling tasks in a rich context
with three difficulty levels. The first level was Grade 6, the second level Grade 8
and the third level Grade 10. The complexity increased with each level, such as by
adding more data to the process (Task 1) or by providing a context that is further
from students’ daily experiences (Task 2). Furthermore, the modelling tasks were
developed according to the design principles of Galbraith (2006) and were improved
using feedback from two primary school teachers, three secondary school teachers
and an independent mathematics education researcher.

Task 1
You want an iPad for your birthday. That is why your mother asks you to
investigate the prices of iPad Pros. Figure 1 shows the two different sizes of
the iPad Pro in inches. In many English-speaking countries, an inch is used as
a measure of length.

Imagine that your mother travels the world for her work. She is able to buy
an iPad for you in one of the countries she is visiting. She only does this if it
is cheaper than in the Netherlands. Next week she has to go to San Francisco.
That is in the USA, where they use the American dollar. Then, she travels to
Singapore. That is in Asia. In Singapore, they use the Singapore dollar. The
values of the various currencies against the euro can be found in Table 1. The
prices of the various iPads are shown in Table 2.

Advise your mother where the best place is to buy the iPad. It is important
that you also explainwhich format you choose andwhy. Explain to yourmother
how you came to your decision.

Task 2
Just before the holiday you organize a dance party in this classroom for the
children in your grade. There will be 32 children at the party. There are a few
tables and chairs and a few more closets.
1. Try to calculate if there is enough space to dance.
2. Make a map of the classroom during the party and give the dimensions.
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The first modelling task consisted of an algebraic problem. In this task, all the
information needed for the student to solve the task was given. Consequently, this
task contained a longer text to read. The student had to discern the information rele-
vant to construct a model. We used a single best answer question format, which is
comparable to problems in mathematics textbooks and the Dutch national examina-
tions. The task concerned a pupil who needs an iPad for school. Her mother travels
the world for her work and would be able to buy an iPad in one of the countries she
is visiting. The question for Grade 6 students was to calculate where the iPad is the
least expensive. Task 1 shows the shortened version of the task for Grade 6. We left
out the tables showing the currencies from different countries, the iPad prices in the
different countries and an image of an iPad. Grade 8 students also had to account for
the Value-Added Tax, and Grade 10 students also had to calculate the import taxes.

The second task concerned geometry. The problem description was stated as an
open-ended question. The task concerned the organization of a dance party. Grade
6 students had to organize a dance party in the classroom for the students in their
grade, as shown in Task 2. The original version of this task also contained a picture of
dancing children in a classroom. Grade 8 students had to organize a dance party in the
school canteen and Grade 10 students had to complete the same assignment for the
music hall. Students needed to calculate the dancing space for the appropriate number
of party-goers and make a map of the party, including the dimensions. This second
task had missing information that required students to make spatial and numerical
assumptions.

19.2.3 Mathematical Core Assignment

We designed a mathematical core assignment focusing on the mathematical content
without any context to identify pure mathematical problems. The mathematical core
assignment of the first task focused on currency calculations, percentages and reading
abilities. The students in Grades 8 and 10 had to solve an additional question with a
percentage calculation. For all grades, the table showing the currencies in the different
countries was given. The core assignment of task two asked for the meaning of the
word area, applications of the metric system and the area calculation. The students
in Grades 8 and 10 had to solve a second question regarding calculating an area and
a third question for which they had to draw a 0.5 dm2 area.

19.2.4 Task-Based Interview

We conducted semi-structured interviews with 26 students. We prepared ten main
questions and, depending on the given answers, the interviewer asked clarification
questions. The questions that were posed focused on the understanding of the task,
text comprehension, word problems, problems the students encountered, outcomes
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and the approach taken, focusing on the different ways of solving the task. Examples
of the questions asked include the following: Can you explain in your own words
what you had to do? Are there words that you did not know, or are there sentences
that you did not understand? How did you perform the task?

19.2.5 Procedure

The students had to construct their answers individually. After the modelling task
was handed in, the core assignment was given. Most of the students finished both
assignments in 30 min. The interviews were conducted at school directly after the
assignments.

19.2.6 Analysis

19.2.6.1 Analysis of Student Work

All student answers were scored using an answer model. In addition, we highlighted
(parts of) the answers that could inform us of the problems that the students encoun-
tered. Because all tasks had different total scores, we calculated the percentages of
the points obtained for each student and task. A portion of the student answers were
scored by a second rater (n = 37). A Cohen’s kappa of κ = 0.73 indicated suffi-
cient inter-rater agreement. Linear mixed model analyses were conducted in SPSS
to account for the hierarchical structure of the data. In the first step of the analysis, a
three-level null model (model 0) was estimated without explanatory variables. This
baseline model was used to determine the variance within and between Task 1 and
Task 2. In the next step (model 1), the explanatory variables, the mathematical core
assignment scores, were added and the interaction between the task andmathematical
core assignment (MCA). In the second step of the analysis (model 2), we included
grade and the interaction between the task and grade. We ultimately excluded the
school level due to the small numbers. The correlations between the scores for the
modelling task and the mathematical core assignment were calculated.

19.2.6.2 Analysis of Task-Based Interviews

The interviews with each student lasted from 6 to 20 min. The audio recordings of
the interviews were transcribed. We used the modelling cycle of Perrenet and Zwan-
eveld (2012) as a tool to analyse the students’ answers (see also Kaiser et al. 2006).
First, we coded the data in terms of the modelling activities of conceptualization,
mathematization and solving, interpretation, validation, reflection (on the modelling
process) and iteration (to improve the model). Assumption making was also added to
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this coding scheme. Second, we coded the problems that students encountered. Next
to difficulties with understanding words and sentences (which we asked about during
the interview), we used open coding with an ongoing formulation and refinement of
the categories.

19.3 Results

In this section, we report the results of the paper-and-pencil modelling tasks and the
results of the task-based interviews.

19.3.1 Results of the Modelling Tasks

Table 19.3 reports the average percentages of the correct answers given for Task
1, Task2 and the respective mathematical core assignments (MCA 1 and MCA 2).
The students generally did not perform well on the modelling tasks, although the
standard deviations indicated some variation. In Grade 6, students failed to earn half
the number of points possible on Task 1 and the corresponding mathematical core
assignment (MCA 1), while students fromGrades 8 and 10 performed better on these
tasks. In contrast, the multilevel analysis showed that Grade 6 students performed
better on Task 2 than Grade 8 students (p = 0.02). The same effect could not be
shown for Grade 6 students versus Grade 10 students (p = 0.07).

In each grade, the learners who performed well at the mathematical core assign-
ment also performed better at the modelling task (p < 0.005). For each additional
point on the mathematical core assignment, the score on the modelling task was
0.277 points higher (p < 0.002).

A remarkable finding is the better performance on Task 2 of Grade 6 students
compared with the performance of students in Grades 8 and 10. It is possible that
this group’s surprisingly better performance on the second task can be attributed to the
physical surrounding in which the problem of the Grade 6 students was situated (the
classroom)while the problem of the Grade 8 students was the canteen of their school.
Galbraith and Stillman (2001) havementioned the significant importance of students’
physical experience with the context. Therefore, wemore closely examined students’

Table 19.3 Means and standard deviation on the tasks per Grade

Grade Task 1 MCA 1 Task 2 MCA 2

M SD M SD M SD M SD

6 41.9 29.3 46.6 19.2 59.1 20.0 48.5 26.1

8 57.1 30.3 70.7 16.6 40.1 21.4 43.4 24.3

10 57.6 24.2 82.5 15.9 47.6 19.3 45.9 24.0
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drawings andnoticed differences in the quality anddetail of the drawings that students
created during Task 2. As in Rellensman et al. (2017), we found situational and
mathematical drawings but also drawings where learners experienced problems with
reducing three-dimensional objects to a two-dimensional map, as well as drawings
that were too abstract and have lost too much detail for the student to successfully
continue with the modelling problem. The latter type of drawings occurred more
often in the higher grades. The students in Grade 6 focused more on the details than
the students in Grades 8 and 10.

Furthermore, we asked in MCA 2 for the meaning of the word area. Remarkably,
most of the students simply provided the formula of length multiplied by the width
instead of offering an explanation. Finally, in Task 1, a frequently occurring mistake
was that students multiplied instead of divided in currency calculations. This mistake
is related to students’ understanding of the context and mathematical knowledge. In
Task 2, most of the students encountered difficulties with calculating the dancing
space, and in the mathematical core assignment, it appears that they had difficulty
using the metric system.

19.3.2 Results of the Task-Based Interviews

The task-based interviews showed that most of the interviewed students enjoyed
solving the given tasks, but they also found it difficult to make assumptions and
solve the task. In addition, they indicated that they had not performed a similar task
before.

Contrary to our expectations, the data did not show a substantial difference
between the students with a strong language proficiency and those with a weak
language proficiency. The interviews, however, illustrated that for some students,
language was an important obstacle. In those cases, the learners failed to construct
a meaningful representation of the described situation. The transition from reality,
presented by the text, to a conceptual model stopped halfway. In all grades, most of
the students repeatedly re-read the text of themodelling task and learners at each level
encountered difficulties in constructing a meaningful representation of the described
modelling problem, sometimes even failing to understand the problem. These repre-
sentation problems were partially related to language problems. Most of the students
were sufficiently able to restate the problem in their own words. They mostly agreed
that the text did not contain any difficult words or sentences. Nevertheless, they still
had their own interpretations and associations of the context. For example, there were
students who drew a map of a classroom party for Task 2 in which the tables were in
groups in the middle of the classroom instead of creating an empty dance floor. The
following conversation between the researcher and a student shows how the student
construed the meaning of a dance party.

Researcher: Why have you drawn the classroom in this way?
Student: Because it has to be, right?
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Researcher: Have you ever been to a class party?
Student: No, not really a class party.
Researcher: What was it then?
Student: Just to a Christmas dinner in class, but not really a class party.

According to Dewolf et al. (2011) and Galbraith and Stillman (2001), the context
provided in the task exerts an important effect on the interpretation and, thus, also
on the solution. This student associated the context with something he recognized (a
Christmas party). Although his knowledge of mathematics was sufficient, the student
nonetheless failed.

These problemswith students’ interpretationof the context occurred in the concep-
tualization phase. Although some students did not reach a solution, we found that
most of them were sufficiently able to explain what the task asked for. They became
stuck when they had to formulate this concept mathematically. For this group
of students, there seemed to be a barrier between the conceptual model and the
mathematical model.

19.4 Conclusion and Discussion

In this chapter, we examined the performance of Dutch lower secondary students
on context-rich mathematical modelling tasks. We compared their performance with
the performance of Grade 6 (primary school) and Grade 10 (upper secondary school)
students.We found that overall, students did not performwell. InGrade 8, on average,
students earned 57% of the total points for task 1 and 40% of the total points for task
2. Although the taskswere assessed by different teachers, the tasksmay have been too
difficult. Themathematical core assignments showed thatmathematical knowledge is
indispensable for solving modelling tasks. Moreover, these students had not received
any education focused on mathematical modelling or on making assumptions. The
standard deviations indicated substantial variation in student performance. When
introducing mathematical modelling in lower secondary education, it is important
that teachers cater to students’ different learning needs or use collaborative learning
tasks in which students can learn from one another.

Our second research question focused on the problems that students encounter,
particularly during the conceptualization phase. From the data, we found four types
of problems: the inability to simplify, structure and make the problem story more
precise; problems of context; the inability to make correct interpretations; and the
lack of mathematical direction shown by making overly abstract drawings.

Many of the students encountered problems in translating the real problem to
the conceptual model, in the conceptualization phase of the modelling cycle. These
findings are in linewith previous studies showing that students experience difficulties
with reading the problem (Korhonen et al. 2012) and making assumptions (Chan
et al. 2012). In all grades, most of the students repeatedly re-read the text of the
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modelling task, and students encountered difficultieswhen constructing ameaningful
representation of the described modelling problem.

We found that most of the students were able to retell the problem in their own
words but were unable to sufficiently solve the problem. The problem for most
students seemed to arise at the end of the conceptualization phase. The conceptu-
alization phase (Perrenet and Zwaneveld 2012) consists of the first two steps (from
real situation to situation model and then from situation model to real model) of the
modelling cycle of Blum and Leiβ (2005). Understanding the problem is the first
step, and most of the students were successful at that stage. The second step is to
simplify, structure andmake the problemmore precise, which is where most students
became stuck. Assumption making was also a part of this difficulty.

Every student interpreted the given problem in his or her own way. In some cases,
these interpretations, caused by a limited or incorrect understanding of the keywords
in the problem description (e.g. dance party), led to difficulties in making correct
assumptions and affected their solution of the problem. Thinking aloud would be a
good addition to gain more insight into students’ difficulties and interpretations. In
Task 1, all the needed information was given, unlike in Task 2. For Task 2, we found
that Grade 8 students experienced more problems than Grade 6 students, and we also
found differences in their assumption making and drawings. This study supports the
findings for students aged 13–14 years old fromKaiser andMaaβ (2007), that “strong
students choosemore challengingmodels while weaker students prefer simpler ways
to achieve their final solutions” (p. 104). Students from Grades 8 and 10 tended
more towards abstract drawings and models, so they experienced more difficulties in
solving the problems than the Grade 6 students who kept their drawings and models
fairly simple.We found that the transition from reality, presented by the text, towards
a conceptual model often stopped halfway.
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Chapter 20
Investigation of the Mathematics
Modelling Competency of Mathematics
Undergraduate Student Teachers

Yangyu Wang

Abstract This study investigated the mathematical modelling competencies
of junior mathematics student teachers (n = 273) in four universities in Jiangsu,
Zhejiang, and Shanghai in China, using a scoring framework of the mathematical
modelling steps. “Peeling a pineapple” was selected as the item for the modelling
competency test. The study also used a questionnaire on modelling competition
experience. The results show the performance of the student teachers, the differ-
ences between genders and between different types of universities, and revealed the
correlation between the modelling competition experience of student teachers and
their modelling competency.

Keywords Modelling competency ·Modelling steps ·Mathematics student
teachers ·Modelling competition experience ·Mathematical modelling

20.1 Introduction

As one of the core competencies of mathematics (Cai and Xu 2016), mathematical
modelling competency is an important part of mathematics education. The Chinese
version of theGuidelines for Assessment and Instruction inMathematical Modelling
Education has drawn attention from the mathematics education community (Liang
2017), andmathematicalmodellingwill become a compulsory part of the high school
mathematics curriculum in China (YZZ 2017). However, determining how to teach
mathematical modelling remains a challenge for teachers since students from grade 9
to 11 have a relatively weak competency in mathematics modelling (Ludwig and Xu
2010). The competency of the students largely depends on themodelling competency
ofmathematics teachers. It is essential to investigate and understand themathematical
modelling competency of mathematics student teachers and to enhance it, as they
will be teaching mathematics in the future.

Y. Wang (B)
Shanghai Xiangming High School, Shanghai, China
e-mail: 18321531928@163.com

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
F. K. S. Leung et al. (eds.), Mathematical Modelling Education in East and West,
International Perspectives on the Teaching and Learning of Mathematical Modelling,
https://doi.org/10.1007/978-3-030-66996-6_20

239

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66996-6_20&domain=pdf
mailto:18321531928@163.com
https://doi.org/10.1007/978-3-030-66996-6_20


240 Y. Wang

20.2 Theoretical Framework

There are several perspectives from which to evaluate modelling competency world-
wide (Kaiser and Brand 2015). Blum and Leiss (2007) have defined “mathematical
modelling competency”:

as the ability to identify relevant questions, variables, relations or assumptions in a given real
world situation, to translate these into mathematics and to interpret and validate the solution
of the resulting mathematical problem in relation to the given situation, as well as the ability
to analyze or compare given models by investigating the assumptions being made, checking
properties and scope of a given model etc. (p. 12)

Modelling competency is reflected in the modelling process. This study referred
to the steps of mathematical modelling by Garfunkel (2016) and defined the scoring
framework of mathematical modelling steps to determine modelling competency.
The modelling steps for scoring are as follows:

• Step 1: Nothing is written or only a result is presented.
• Step 2: Variable is identified, and an assumption is made, but it is unreasonable.
• Step 3: Variable is identified, and a reasonable assumption is made, but the

mathematical solution is inaccurate.
• Step 4: Variable is identified, an assumption is made, and the mathematical

solution is accurately given, but the model is unverified.
• Step 5: Variable is identified, an assumption is made, the mathematical solution

is performed, and the model is validated.

In step 1, there is no modelling component (before defining the problem), while
step 2 features an unreasonable assumption (defining an unreasonable problem situa-
tion ), both of these are common in the modelling cycle in the real world before being
perfected in the mathematical world (Blum and Leiss 2007). In step 3, a reasonable
situation is defined, but an accurate mathematical solution was not offered. Step 4
defines variables and offers a reasonable assumption as well as an accurate solution,
but the model is not validated. Step 5 validates the model in the modelling cycle. In
this process, steps 3 to 5 are equivalent to the mathematics world in the modelling
cycle.

This theoretical framework was used to study the modelling competency of
mathematics student teachers, and the following research questions arose:

1. What is the status of the modelling steps reached by the student teachers?
2. Are there differences in themathematical modelling competency among students

based on their school and gender?
3. What is the correlation between the modelling competency of student teachers

and their modelling competition experience?
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Fig. 20.1 A pineapple is
being peeled

20.3 Study Design

20.3.1 Task Design

20.3.1.1 Real Situation

This study offered the real situation of “peeling a pineapple” (Ludwig and Xu 2010)
as shown in Fig. 20.1.

Peeling a pineapple
In China, April is pineapple season. When a customer buys a pineapple, the
vendor peels it for them. This is an artistic practice, as the peels leave the fruit
in nice spirals. We probably take this for granted, but as a mathematician or
mathematics teacher, please consider the following: why does the vendor peel
the pineapple in this way? Please explain it mathematically.

20.3.1.2 The Solution to the Real Situation

A possible solution to Peeling a pineapple is as follows:
Suppose the black seeds are connected in a rhombus (Fig. 20.2).
Suppose ∠ABD = θ

(
0 < θ < π

2

)
and AB = a, then BD = 2a cos θ and

AC = 2a sin θ .
For horizontal peeling, there are a total of 2l rows, and each row has a length of

2ah cos θ , so the total length of the peeled fruit is z = 4ahl cos θ .
For longitudinal peeling, there are a total of 2h columns, and each column has a

length of 2ah sin θ , so the total length of the peeled fruit is z = 4ahl sin θ .
For diagonal peeling, there are a total of h diagonal lines, each diagonal line

with length of 2al, so the total length of the peeled fruit is z = 2ahl.
When 0 < θ < π

6 , AC < AB < BD; when π
6 < θ < π

4 , AB < AC < BD;
when π

4 < θ < π
3 , AB < BD < AC ; when π

3 < θ < π
2 , BD < AB < AC .
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Fig. 20.2 Suppose the black
seeds are connected in a
rhombus ABCD

So, AB is at a minimum when π
6 < θ < π

3 , which means that the least pineapple
is removed when being peeled diagonally. (See Ludwig and Xu, 2010, for a fuller
solution.)

20.3.1.3 Questionnaire

The following instruction was given in a questionnaire after introducing the above-
mentioned situation: Please discuss your level of experience with mathematical
modelling competitions. Three options were presented: have not participated, have
participated but have not won, and have participated and won. The modelling
competition could be at the school, provincial, national, or even international level.

20.3.2 Sample

This study selected undergraduate junior mathematics student teachers from four
universities in northern and central Jiangsu, southern Zhejiang, and Shanghai. In
particular, two first-tier universities in Shanghai and Jiangsu and two second-tier
universities in Jiangsu and Zhejiang were involved.

A total of 285 test papers and questionnaires were distributed in the test, of which
273 were valid. Amongst the valid test papers, the sample distribution is as follows
(see Table 20.1).

Table 20.1 Survey sample distribution

School Type Region Boys Girls Total

First-tier University Shanghai 22 48 70 144

Jiangsu 18 56 74

Second-tier University Jiangsu 20 60 80 129

Zhejiang 16 33 49

Total 76 197 273
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20.3.3 Test Analysis

Based on the rating criterion for mathematical modelling competency (see p. 2), the
solutions given by the student teachers were carefully rated and classified.

We encoded 273 solutions based on themodelling steps and their performance. To
improve the reliability of the encoded data, about 15% of the participants’ test papers
from different schools were collected and sampled, and they were independently
coded by two researchers. At the beginning, the coding consistency of the test was
about 80%, so the two researchers had to reach a consensus on inconsistent coding.
This procedure was repeated several times before the coding consistency reached
about 90% in the consistency test.

20.4 Results

20.4.1 Performance of the Student Teachers

A small number of the mathematics student teachers (see Fig. 20.3 in which 40.3%
of the student teachers stopped at step 1 or 2) could not turn real-world models into
mathematical models, whereas a majority of them (see Fig. 20.3 in which 59.7%
of the student teachers reached steps 3, 4 and 5) could transform real-world models
into mathematical models. Once the models were accurately transformed, most of
the student teachers (63.2%, as shown in Fig. 20.3) could solve problems and obtain
accurate mathematics solutions. Step 2 marks a key indicator in evaluating the math-
ematical modelling competency of the student teachers because some of them might
have difficulties turning real-world models into mathematical models.

In addition, most of the mathematics student teachers were unable to reach step
5, which means they could not test the rationality of a solution in the real world or

Fig. 20.3 Percentage of student teachers who reached step x
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in real scenarios. This may be related to the approaches they used for mathematical
solutions.

20.4.2 University and Gender Differences

20.4.2.1 Differences in Terms of Type of University

There was a significant difference in the mathematical modelling competency of
the mathematics undergraduate student teachers from different types of universities
(p < 0.01). Students from first-tier universities completed more steps (3.17 steps,
on average) than students from second-tier universities (2.77 steps, on average).
Furthermore, there was no significant difference (p > 0.05) in the mathematical
modelling competency of students from the same university tier in different regions.
Meanwhile, those who were able to reach modelling step 5 were all from first-tier
universities.

20.4.2.2 Differences in Terms of Gender

There was no significant difference in mathematical modelling competency between
males and females (p > 0.05). It was found that 63.96% of the females reached the
mathematics world, whereas only 48.68% of the males, which was far lower than the
percentage for females who were able to do so. By contrast, more males stayed in
the real world than females (see Fig. 20.4). The data showed that more than half of
the males remained in the real world, indicating that compared with females, males
were less capable of “peeling a pineapple” in a mathematical model.

Fig. 20.4 Percentage of females and males who reached step x
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Table 20.2 Correlation between modelling competition experience and modelling step in terms of
type of university

University N Correlation

First-tier University 144 0.292**

Second-tier University 129 − 0.089

Total 273 0.197**

Table 20.3 Correlation between modelling competition experience and modelling step in terms of
gender

Gender N Correlation

Female 197 0.227**

Male 76 0.123

Total 273 0.197**

20.4.3 Correlation Between Modelling Step
Reached and Modelling Competition Experience

Although there is a difference in the modelling steps reached of student teachers
with different modelling competition experiences (p < 0.01), the correlation is low
(see Table 20.2 or 20.3, in which the correlation is 0.197), which means that student
teachers who had no modelling competition experience still had the potential to
improve their modelling competency. In addition, the correlation between modelling
competition experience and the mathematical modelling step reached of first-tier
university students (see Table 20.2, in which the correlation is 0.292) is higher
than that of second-tier university students (see Table 20.2, in which the correla-
tion is −0.089). The correlation between modelling experience and the mathemat-
ical modelling step of females (see Table 20.3, in which the correlation is 0.227) is
higher than that of males (see Table 20.3, in which the correlation is 0.123), and the
student teachers who could reach mathematical modelling step 5 all had modelling
competition experience.

20.5 Conclusions and Outlook

The results show that the modelling difficulty the student teachers encountered was
the transformation of problems in the real world to mathematical models, which is
consistent with the results of a study on grade 9 to 11 students by Ludwig and Xu
(2010). Theremay be a correlation between students’ weakmathematics competency
and that of their teachers, which will hopefully be the topic of follow-up studies; in
particular, since mathematical modelling is about to be carried out in teaching in the
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high school in China. The promotion of modelling competencies amongst learners
requires qualified teachers (Blum 2015). Therefore, improving the mathematical
modelling competencies of teachers or student teachers is important, which is also a
topic to be studied in the future.

The data also show that the modelling steps have a correlation with modelling
competition experience, supporting the findings of my previous research (Wang
2018). However, the correlation is low, indicating that student teachers without
modelling experience still have the potential to improve their modelling competency.
In addition, modelling experience is positively correlated with the modelling compe-
tencyof student teachers fromfirst-tier universities,whereas it is negatively correlated
with the modelling competency of student teachers from second-tier universities. In
an interview with the student teachers, it was found that those from second-tier
universities won more awards in school or provincial competitions and fewer awards
in national or international competitions. However, student teachers from first-tier
universities had more awards in national or international competitions, which could
have played a role in the results of the test. One of the first-tier universities studied
is, in fact, reforming its mathematical modelling curriculum, providing inspiration
for follow-up studies. Meanwhile, as student teachers from first- and second-tier
universities may have a gap in mathematics knowledge when they enter university,
which could have an impact on their modelling competency, this is also a topic worth
studying in the future.

This study uses and expands the framework by Garfunkel (2016). The framework
is also related to the modelling cycle in the real world and the mathematical world
in Blum’s work (2007). As a combination of the two frameworks, the theoretical
framework of this study needs to be further improved. Meanwhile, the real situation
used is an early test from Ludwig and Xu (2010). Although China still uses this
method to peel pineapples, the manner of peeling pineapples in the real world has
changed substantially. Perhaps a new test can be developed for subsequent studies.
Furthermore, this study only targets universities located in the Yangtze River Delta
of China, a highly developed region in China. Conducting research in the central and
western regions of China in the future would be desirable.
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Chapter 21
Measuring Professional Competence
for the Teaching of Mathematical
Modelling

Raphael Wess, Heiner Klock, Hans-Stefan Siller, and Gilbert Greefrath

Abstract Teaching mathematical modelling is a cognitively challenging activity
for (prospective) teachers. Thus, teacher education requires a detailed analysis of
professional competence for teaching mathematical modelling. To measure this
competence, theoretical models that accurately describe the requirements placed
upon teachers are needed, as well as appropriate evaluation tools that adequately
capture skills and abilities in this field. This is where the present study comes in,
contributing to the teaching of mathematical modelling through the theory-based
development of a structural model and an associated test instrument. In particular,
this chapter discusses to what extent the proposed conceptualisation of the structural
model can be empirically confirmed. To this end, insights into the test instrument are
presented, as well as results of the structural equation analysis of the model.

Keywords Mathematical modelling · Professional competence · Teacher
education ·Model development · Test development · Structural equation analysis
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21.1 Introduction

In recent years, many empirical studies have dealt with the questions of how
modelling can be taught in school (e.g. Blomhøj 2019), howmodelling (sub-) compe-
tencies can be assessed (e.g. Haines and Crouch 2001) or how modelling can be
integrated into university teacher education (e.g. Borromeo Ferri and Blum 2010).
However, some questions in the field of mathematical modelling remain open, for
example:

• To what extent can prospective teachers be prepared by university courses?
• To what extent can selected contents and methods contribute to the promotion of

teachers’ competences?

To answer these and other questions, teacher education requires a detailed anal-
ysis of teacher competences and a detailed analysis of professional competence for
the teaching of mathematical modelling. In this context, we understand competences
as context-specific cognitive dispositions for achievement that relate functionally to
specific situations and demands in specific domains (Klieme et al. 2008). Accord-
ingly, current professionalisation efforts are not only limited to the acquisition of
theoretical knowledge but also include its application in concrete situations.

Now that the global professional competence of (prospective) mathematics
teachers has been comprehensively structured, operationalised and measured in
various large-scale studies (e.g. Baumert and Kunter 2013; Blömeke et al. 2014),
the question arises of a local, purposeful modelling-specific arrangement of these
competences. This chapter presents the theoretical derivation of a structural model
of professional competence for teaching of mathematical modelling. Furthermore,
empirical results on the quality of the model and the selected test instrument are
presented.

21.2 Theoretical Frame

In addition to good modelling tasks, which form the necessary basis for produc-
tive modelling processes, the promotion of modelling competences among learners
requires specific competences of teachers (Blum 2015)—especially given their
important role in the context of teaching-learning processes (Hattie 2009). Building
on Shulman (1986), a distinction in the aspect of teacher professional knowledge is
made between content knowledge, pedagogical content knowledge and pedagogical-
psychological knowledge. In this chapter, the concretisation of a structural model
of professional competence relating to the imparted competence of “mathematical
modelling” is carried out by using the competence model of the COACTIV-Study
(Baumert and Kunter 2013).

In the COACTIV-Model, professional competence is composed of the super-
ordinate aspects of beliefs/values/goals, motivational orientations, self-regulation
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Fig. 21.1 Structural model of professional competence for the teaching of mathematical modelling

and professional knowledge. Professional knowledge is in turn subdivided into
the following domains of competence: content knowledge, pedagogical content
knowledge, pedagogical-psychological knowledge, organisational knowledge and
consulting knowledge.

Regarding the necessary professional competences for the teaching of mathemat-
ical modelling (cf. Fig. 21.1), in addition to beliefs/values/goals and motivational
orientations, the pedagogical content knowledge, as a part of the professional knowl-
edge, in particular is characterised by modelling-specific contents. In contrast, other
aspects and domains like pedagogical-psychological knowledge and self-regulatory
skills tend not to contain any clear modelling-specific aspects and are therefore not
considered more closely.

21.2.1 Professional Knowledge

The interpretation of themodelling-specific pedagogical content knowledge is based
on the four theoretically derived competency dimensions for the promotion of
modelling competences among learners according to Borromeo Ferri and Blum
(2010): the theoretical dimension, the task dimension, the instruction dimension
and the diagnostic dimension. Each of these dimensions is concretised by facets of
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Fig. 21.2 Modelling-specific pedagogical content knowledge

knowledge and abilities, which relate both to declarative and procedural aspects of
the knowledge of (prospective) teachers.

Accordingly, we subdivide the modelling-specific pedagogical content knowl-
edge—following the COACTIV-Model (Baumert and Kunter 2013)—besides the
facets of knowledge about interventions, knowledge about modelling processes
and knowledge about modelling tasks additionally into knowledge about aims and
perspectives of mathematical modelling. These competence facets were developed
with selected aspects of the competency dimensions mentioned above (cf. Fig. 21.2).
All aspects are also mentioned in overview articles on mathematical modelling (e.g.
Blum 2015).

According to Borromeo Ferri and Blum (2010), knowledge about interventions
represents a facet of teaching knowledge that is important for adequate support of
modelling processes. In addition, the teaching of mathematical modelling results
in a different teacher role, which is associated with new demands. With the defi-
nition of adaptive teacher interventions following the principle of minimal help
and a taxonomy of teacher support, characteristics of suitable interventions could
be determined and used to assess assistance in the modelling process (Leiss and
Wiegand 2005). Good interventions in mathematical modelling processes are there-
fore oriented to students’ solution process and are minimal as well as independence
preserving. These interventions are specific to the field of mathematical modelling,
since they are intended to promote independent work by learners and metacognitive
competences. They are determined by the openness of the tasks and the confrontation
with a multitude of different solutions.

Knowledge about modelling processes is characterised by specific diagnostic
knowledge. In particular, teachers need skills to identify and document progress and
difficulties in students’ learning process. In the diagnostics of modelling processes,
for example, the focus is on identifying the modelling phase in which the learners
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are currently working (Borromeo Ferri and Blum 2010). Furthermore, in numerous
studies, difficulties occurring in the modelling process have been assigned to the
modelling phases in which they appear (e.g. Galbraith and Stillman 2006). Thus,
focused diagnostics are made possible in this way, the aim of which is the identi-
fication of opportunities to provide individual support for the learner’s modelling
process. In this context, Brunner et al. (2013) show the high relevance of teachers’
diagnostic skills for the learning process of students.

The knowledge and skills to analyse, process and develop modelling tasks
represent facets of a task-related competence dimension that forms the basis for
productive modelling processes among learners (Borromeo Ferri and Blum 2010).
The comprehensive classification scheme for categorising and analysing modelling
tasks according to Maaß (2010), in conjunction with the explanations on task
design according to Czocher (2017), provides a theoretical foundation for the facets
mentioned here, in particular the criteria-based development of modelling tasks with
focus on reference to reality, relevance, authenticity and openness. These facets
form “the interface between student and teacher activities in the mathematics class-
room” (Neubrand et al. 2013, p. 127) and thus represent an indicator for the teaching
dimension of cognitive activation.

The facet of aims and perspectives consists of selected aspects of theoretical back-
ground knowledge. On the one hand, knowledge about modelling cycles and their
suitability for various purposes is described, for example as a metacognitive strategy
for learners or as a diagnostic tool for teachers. On the other hand, different perspec-
tives of research on mathematical modelling are illustrated (Kaiser and Sriraman
2006), for example modelling as vehicle to learn mathematics and to serve other
curricular needs (Julie and Mudaly 2007). In addition, teachers should be aware of
the corresponding goals of mathematical modelling in teaching and of the varying
relevance of reality references for learners.

21.2.2 Beliefs

The COACTIV-Study defines beliefs as “psychologically held understandings and
assumptions about phenomena or objects of the world that are felt to be true,
have both implicit and explicit aspects, and influence people’s interactions with the
world” (Voss et al. 2013, p. 250). Furthermore, Woolfolk Hoy et al. (2006) distin-
guish between epistemological beliefs and beliefs on teaching and learning math-
ematics. Epistemological beliefs can be operationalised in the following aspects:
the formalism aspect, the application aspect, the process aspect and the schema
aspect (Rösken and Törner 2010). Due to the reality reference of modelling tasks,
a reference to the application aspect appears to be suitable. This aspect describes
the relevance of mathematics in the world, which is why positive beliefs about
mathematical modelling represent perspectives that give modelling a meaning in
everyday life and work. In contrast, beliefs on teaching and learning mathematics
include views on teaching objectives and teaching method preferences as well as
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classroom and group management. They are operationalised by statements that give
mathematical modelling a justified place in mathematics teaching. Both facets of
beliefs can be understood within the framework of the antagonistic epistemology
of behaviourism and constructivism. Transmissive beliefs go hand in hand with the
view that learning is the absorption of knowledge and the reinforcement of posi-
tive behaviour. In contrast, constructivist beliefs see the learner as an active partici-
pant in the learning process who constructs his knowledge individually (Voss et al.
2013). The constructivist beliefs go hand in handwith the self-reliant and cooperative
handling of realistic, authentic and thus situationally connected modelling tasks. For
this reason, constructivist beliefs of teachers are normatively regarded as positive for
high competences in teaching mathematical modelling (Blömeke et al. 2014).

21.2.3 Self-Efficacy

As part of the motivational orientations, the self-efficacy of (prospective) teachers
is regarded as an empirically founded characteristic of professional competence.
Tschannen-Moran and Woolfolk Hoy (2001, p. 783) define the concept of self-
efficacy as follows: “A teachers’ efficacy belief is a judgement of his or her capa-
bilities to bring about desired outcomes of student engagement and learning, even
among those students who may be difficult or unmotivated”. Self-efficacy can be
related to concrete teacher competences and is suitable for recording ideas about
one’s own abilities in the field of teaching mathematical modelling. As already
mentioned, knowledge about modelling processes from a theoretical perspective as
a diagnostic component of modelling-specific pedagogical content knowledge has a
strong influence on students’ learning processes (Brunner et al. 2013). Accordingly,
it forms a decisive facet of competence for teachingmathematical modelling. For this
reason, our structural model operationalises self-efficacy by assessing the (prospec-
tive) teachers’ own ability to diagnose the performance potential of learners in the
modelling process. We assume that the diagnostic requirements for the teacher differ
depending on the modelling phase in which the learners work. Thus, the self-efficacy
of the (prospective) teachers can alsobedifferentiated according to the phase. Further-
more, scaling analyses indicate that a distinction can bemade between phases specific
to the modelling process (simplifying, mathematising, interpreting, validating) and
unspecific ones (working mathematically).

21.3 Empirical Validation of the Structural Model

For an empirical examination of the conceptualised structural model of professional
competence for teaching mathematical modelling, the following research questions
arise:
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1. To what extent can the proposed conceptualisation of the structure of profes-
sional competence for the teaching of mathematical modelling be empirically
confirmed?

2. To what extent are there connections between beliefs, motivational orientations,
and modelling-specific pedagogical content knowledge?

To answer these questions, the described structural model was evaluated on the
basis of data from 349 prospective teachers for secondary schools at the German
universities of Münster, Koblenz-Landau and Duisburg-Essen. In this context, a test
instrument was developed (Klock and Wess 2018) that operationalises the described
four facets of the modelling-specific pedagogical content knowledge over a total
of 64 dichotomous test items in multiple and combined single-choice formats. The
items in the facets of knowledge about modelling processes and knowledge about
interventions relate to modelling tasks, which are supplemented by text vignettes on
the concrete modelling processes of learners (cf. Fig. 21.3).

The items of beliefs (16 items) and self-efficacy (19 items) for mathematical
modellingwere collected using afive-pointLikert scale (from1= “strongly disagree”

Fig. 21.3 Test item assessing knowledge about modelling processes on the basis of the traffic jam
task (cf. Maaß and Gurlitt 2010)
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Table 21.1 Characteristics for belief and self-efficacy scales

Construct Scale Number of Items Cronbach’s Alpha

Beliefs Constructivist Orientations 12 0.83

Transmissive Orientations 4 0.65

Self-Efficacy Modelling 11 0.88

Working Mathematically 8 0.84

Table 21.2 Dichotomous Rasch models for knowledge scales

Scale Number of Items EAP Reliability Andersen Test Pt.-Bis. Corr

Interventions 19 0.71 0.061 > 0.30

Modelling Processes 18 0.74 0.072

Modelling Tasks 17 0.81 0.086

Aims and Perspectives 10 0.70 0.058

to 5 = “strongly agree”). These scales were checked on the basis of a confirmatory
factor analysis and show a Cronbach’s α of at least 0.65 (see Table 21.1), which can
still be described as acceptable.

The dichotomous items were scaled using Rasch models and the scales in this
context were checked for sufficiency. Using the eRm package (Mair and Hatzinger
2007) of the software R, item difficulties were estimated on the basis of the solutions
of the tasks, and person ability parameters were estimated on the basis of the perfor-
mance of the interviewees. Various scale characteristics were calculated to assess the
scalability (see Table 21.2). The EAP reliabilities (comparable to Cronbach’s α) are
above 0.70 and are therefore acceptable. The Andersen tests for assessing the model
fit are all not significant and therefore point to a fit of the Raschmodels. Furthermore,
the point-biserial correlations of the items are all greater than 0.30 and thus also of
acceptable quality.

21.4 Results

The conceptualised model was verified by structural equation analysis using the
SPSS extension AMOS. Since it was not possible to load the items directly onto
the latent variables due to the small sample size (N = 349), the standardised sum
scores or the person ability parameters were used. In view of the fit indices (cf.
Figure 21.4), the model specified in this way has a very good global fit with the data
set (Hu and Bentler 1998). Empirically, significant correlations of medium practical
relevance between self-efficacy and beliefs in mathematical modelling (r = 0.57, p <
0.01), as well as between self-efficacy and scores in modelling-specific pedagogical
content knowledge (r = 0.53, p < 0.01), can be demonstrated. Also, a significant
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Fig. 21.4 Structural equation analysis of the model

correlation of medium-to-high practical relevance between beliefs and pedagogical
content knowledge can be identified (r = 0.78, p < 0.01). In addition, all scales show
significant loadings with high effect sizes.

21.5 Discussion

The results of the empirical validation confirm the basic structure of the model of
professional competence for the teaching of mathematical modelling in the theo-
retically conceptualised form. In particular, the high correlation between the beliefs
and the facets of the modelling-specific professional knowledge is in line with the
findings of expertise research (Baumert and Kunter 2013). However, the scale of
transmissive beliefs in mathematical modelling showed little reliability. One reason
for this could be the low number of items. In follow-up studies, it would there-
fore be desirable to increase this number. The quantitative research approach also
reveals further limitations. In particular, the use of dichotomous test items in the
Rasch model leads in a way to a normative setting of true and false statements.
Especially with modelling problems this is a challenge, which leads to the fact that
many interesting examples could not be used because they could not be clearly clas-
sified into true and false. However, more sophisticated scales, such as Likert scales,
are not suitable for measuring knowledge, so this limitation must be dealt with. For
this reason, qualitative additions, such as the analysis of modelling tasks created by
(prospective) teachers in vivo, represent a necessary and vital starting point for future
studies. Furthermore, due to the unavailability of comparative tests, the discrimina-
tory and convergent validity cannot be conclusively assessed. However, the good



258 R. Wess et al.

model fit indicates structural validity. In this context, it should be borne in mind that
the results of the study merely represent an empirical foundation of the structures
under consideration for prospective teachers at the participatingGerman universities.
Thus, further work on the examination for practising teachers on the one hand and
in international contexts on the other is still outstanding—perhaps there is a German
tradition of teaching modelling that cannot be generalised. Furthermore, the theo-
retically derived and empirically verified structural model does not fully describe
the professional competence for the teaching of mathematical modelling but only
modelling-specific aspects. In addition to pedagogical content knowledge, the teacher
must have well-founded pedagogical-psychological knowledge, for example about
organising and monitoring group work, as well as content knowledge in order to be
able to adequately carry out modelling processes. It would therefore be necessary to
capture facets of pedagogical-psychological knowledge and the modelling compe-
tence of (prospective) teachers with suitable instruments in order to comprehensively
describe professional competence for teaching mathematical modelling. However,
this would have led to a considerable increase in the test period, so the additional
survey of these domains was initially dispensed with.

21.6 Conclusion and Outlook

Using the example of teachingmathematicalmodelling, it could be shown that profes-
sional competences of teachers can be concretised in order to evaluate the associated
knowledge and skill facets. The finding that the conceptualised, modelling-specific
competences can be recorded in an empirical and structurally valid manner indi-
cates added value for further research on teaching mathematical modelling, since,
for example, a wide variety of university courses can be evaluated more precisely
and thus given a more differentiated assessment. It also seems sensible to apply this
approach to other competences (e.g. problem-solving), because the exact descrip-
tion of such specific professional competences is what enables them to be system-
atically promoted within the framework of university courses and practical teacher
training. Modelling competency as modelling-specific content knowledge was not
captured in the context of this study. Against the background of general profes-
sional competence, especially for secondary school teachers, the COACTIV-Study
demonstrates a close connectionbetween content knowledge andpedagogical content
knowledge. Whether this connection can also be reproduced in the field of profes-
sional competence for the teaching ofmathematical modelling is a question for future
studies.
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Part V
Teaching Practice



Chapter 22
Attending to Quantities Through
the Modelling Space

Jennifer A. Czocher and Hamilton L. Hardison

Abstract Understanding students’ modelling processes is critical for informing
facilitator interventions. More specifically, it is important for facilitators to under-
stand the situation-specific attributes students find relevant in modelling tasks, if and
how these are manifested in their inscriptions, and when students’ situation-specific
meanings for inscriptions change while engaged in modelling. In this chapter, we
present a theoretically coherent methodological approach for attending to the afore-
mentioned features. Our approach foregrounds the quantities projected by students
when engaged in modelling, as well as attends to the situation-specific quantitative
referents for their mathematical inscriptions. We illustrate the utility of this approach
by analysing themodelling activities of a purposefully selected undergraduate student
and consider implications for future research.

Keywords Qualitative · Quantities · Post-secondary ·Modelling space ·
Facilitator intervention · Cognition · Representations

22.1 Introduction

Mathematicalmodellingpedagogies obtain optimal learningoutcomeswhen students
work out their own solutions (Kaiser 2017), which means that students need help not
only in identifying that their models may be inadequate, but also support in revising
them appropriately. Model revision is an under explored and under conceptualised
topic. This is partly due to themyriadmethodological questions that surround system-
atic inquiry into how and why students choose to revise their models (or to take up
or ignore facilitators’ suggestions, e.g. Stender and Kaiser 2015). Important ques-
tions remain like: What changes does (or might) a student make to her model? Why?
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Do the changes she makes meet her goals? Under what conditions do facilitator
interventions occasion model changes? And ultimately, what qualifies as a change
anyway? It is only by addressing this last question that we can uncover ways to help
students make meaningful changes, culminating in student-centred teacher training
on facilitating mathematical modelling tasks.

Our broad research objective is to produce a theoretically and methodologically
coherent means for documenting changes to a model—changes both to external
presentations and to the student-specific meanings they may carry. In this chapter,
we adopt a semiotic perspective (Kehle and Lester 2003) to argue that tracing model
evolution entails attending to the quantities a student projects onto a situation, the
relationships conceived among these quantities, the inscriptions produced along with
their quantitative referents, as well as the modifications in these aforementioned
elements. We illustrate our argument using a detailed case study approach (Ragin
2004) to explore interactions between inscriptions and quantitative reasoning. Our
contribution is theoretical and methodological: we document our methodological
approach and report on some insights regarding facilitating students’ revisions to
their models as they work on modelling tasks.

22.2 Relevant Theoretical Constructs

We view mathematical modelling as a cognitive and iterative process. Often, the
process is conceptualised as a series of phases of cognitive activity (Kaiser 2017;
Maaß 2006) where student decisions made during each phase contribute to the
dynamic evolution of the model. In essence, we elaborate on the systematising and
mathematising phases through a semiotic lens to garner insight into the ways models
could change. FollowingKehle and Lester’s (2003) application of Peircean semiotics
to mathematical modelling, modelling can be seen as a process of unification among
a sign, a referent (the object the sign stands for), and an interpretant. Thus, math-
ematising a situation involves generating mathematical expressions and assigning
situationally relevant meanings compatible with the modeller’s physical theory. In
this view, the meanings of symbols within an equation are not inherent, but must
be constructed by the modeller and inferred by an observer (e.g. a facilitator or
interviewer). The mathematising phase depends on how the modeller coordinates
knowledge about the real-world entities and relationships in the scenario she iden-
tifies as relevant (or not) with her anticipation of the mathematical concepts and
signs that will appropriately signify them. Scholars from physics education have
conceptualised the coordination as follows. Systematising occurs through coordina-
tion of physical theory, which is a “representational system in which two sets of signs
coexist: the mathematical signs and the linguistic ones” (Greca and Moreira 2002,
p. 107), with a mathematical model, taken to be a deductively articulated axiomatic
system and attendant mathematical concepts. Statements of physical theories are
about simplified and idealised physical systems, termed physical models, not the
real-world scenario itself. We use the term representation to refer to an outward
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expression of an individual’s mathematical model and inscription to refer specif-
ically to the expression’s written form. These distinctions allow for precision in
talking about how components of a mathematical model (a mathematical conceptual
system with cognitive links to a real-world system) may change independently (or
in coordination) with one another.

Attending to meaning-making processes merits elaborating the role of quantities
as interpretants. According to Thompson (2011), quantities are mental constructs,
not characteristics of objects in the world. Individuals conceive of quantities via a
quantification, which is “the process of conceptualizing an object and an attribute
of it so that the attribute has a unit of measure, and the attribute’s measure entails a
proportional relationship (linear, bilinear, or multi-linear) with its unit” (Thompson
2011, p. 37). One can conceive of various instantiations of the object, with each
instantiation manifesting different extents of the relevant attribute, and coordinate
these instantiations with a value. We operationalise quantification as the set of opera-
tions an individual can enact on a particular attribute (Hardison 2019). These mental
acts may become quite familiar or nearly automatic if one has much experience in
the context; however, the quantification process is generally nontrivial (Thompson
2012). An attribute’s quantification is idiosyncratic because two individuals may
not enact the same mental operations on a given attribute; thus, they may conceive
of a specified quantity differently (Steffe and Olive 2010). Thus, quantities are not
synonymous with variables nor with the objects they quantify. And, returning to
mathematising, it can now be operationalised as conceiving and representing the
relationships among the quantities involved. We leverage Sherin’s (2001) theory of
symbolic forms to explain how both mathematical and quantitative meaning can be
associated with equations. A symbolic form consists of a template and an idea to be
expressed in the equation. For example, � + � = � expresses a “parts-of-a-whole”
relationship, where each box is a placeholder for a (potentially different) quantity.
Familiarity with symbolic forms helps individuals “know” which equations to use in
a given situation.

22.3 Methodology

The theoretical perspectives outlined above distinguish among the quantities an indi-
vidual projects onto a situation, operations (quantitative or numerical) enacted on
these quantities or their values, and the representations (inscriptions as well as utter-
ances) she uses. The distinction is necessary in order to increase understanding of,
and respond to, a student’s evolving conceptual system. Quantities and operations
are conceptual entities, whereas inscriptions and utterances are observables. From
the researcher perspective, quantities and operations can only be inferred through the
observables generated by a student. Given the quantities that a student projects into
a particular situation and the operations available to the student, we refer to the set of
(conceptual) mathematical models a student might generate within a givenmodelling
task as the modelling space. We view the modelling space as the set of mathematical
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relationships that act via composition on the situationally relevant quantities available
to the student. For example, suppose that during a modelling task about a projectile
subject only to gravity, we are able to infer that a modeller has introduced the quan-
tities initial height above ground, time elapsed, current height above ground, mass
of the object, and initial velocity. We represent the modeller’s available quantities
as the sequence (time, hti, ht, mass, vi). His modelling space would be all of the
mathematical combinations of those quantities meaningful to him. For example, his
modelling space may contain h = h0− v0 · t to relate ht to time, where the symbols
correspond to experts’ conventions. However, his modelling space would not (yet)
contain the element h = h0 − v0t − 1

2gt
2 because he had not yet introduced gravity

as a situationally relevant quantity.
In our analysis, we sought a means to trace changes to models relevant to system-

atising and mathematising, namely: (1) introduction or modification of inscrip-
tions, (2) introduction of quantities, and (3) shifts in meaning of inscriptions due
to shifts in the roles of quantities. Therefore, we developed procedures attending
to these three phenomena through retrospective analyses of task-based interviews
(described below). For a given student working on a given task, we first catalogued
all inscriptions that he introduced and documented anymodifications hemade to them
throughout the session. We did so by attending to the spatial and temporal organ-
isation of inscriptions on his paper. We judged his mathematical representation to
have changed if either the system of signs comprising the representation changed
(e.g. introducing a symbolic equation for a quadratic relationship after working with
a graph) or a new inscription was created in a different location on the page (Czocher
andHardison 2019). To identify substantive changes to themeaning for a given repre-
sentation, we considered (a) whether there was evidence to infer that information or
meaning was distributed to the representation or removed from it, (b) whether the
student modified an inscription, or (c) whether he modified an inscription in a way
suggestive of transporting meaning to, or from, another representation. Second, we
sought to identify the quantities the student projected onto the scenario. We anal-
ysed records of the interviews and identified situational attributes towhich the student
attended during the course of the session. By situational attributes, wemeanwewere
able to infer a situational referent for the attribute within the scenario (e.g. a tree’s
height). Generic attributes forwhichwewere unable to infer situational referents (e.g.
height, without indicating height of what) were not considered situational attributes.
Additionally, we searched for evidence of the student engaging in mental operations
suggestive of a conceived measurement process for each attribute. Through induc-
tive and iterative analysis, we obtained a set of 8 observable criteria (see Table 22.1)
to use as indicators of a student projecting situationally relevant quantities onto a
scenario. The criteria are not mutually exclusive. For example, specifying a unit of
measure (QC6) may co-occur with observing variation in an attribute (QC1). Three
independent coders systematically applied these criteria via constant comparison to
the interview records. Disagreements among coders were resolved through seeking
consensus as to whether there was evidence that at least one of the criteria was met
for a quantity. The result was a list of quantities we could infer the student projected
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Table 22.1 Descriptions of quantification criteria (QC)

QC Description Example

1 Discussing variation of a situational
attribute

“The horizontal distance in terms of how far
he is from the monkey, that’s the one
variable that I am ultimately gonna have.”

2 Substituting, assuming, or deducing a
numerical value for a symbol with a
situational referent

“You are going to be taking away gravity
which is 9.8 metres per second squared.”
“Say he’s standing 30 ft away.”

3 Expressing a desire to measure a situational
attribute (e.g. “if I knew”)

“I need to know the angle he’s going to fire
at.”

4 Interpreting the value in context “In this particular case it would be 40 ft.”
“… it’s going to be moving upward at a
linear rate, it’s going to be moving down at
10 m/s2 so that effect is going to cause a
parabola …”

5 Specifying a situational reference object
(e.g. line or point from which to measure;
situational 0)

“Anytime you know how far away he is
from the monkey … so all that matters is
how far he goes away …”

6 Specifying a (potentially non-standard) unit
of measure for a situational attribute

“Yeah, so it’s still going to be negative 10
for every metres per second squared.”

7 Explicitly expressing a quantitative
relationship, a dependence or causal
relationship among already-introduced
quantities, describing one quantity in terms
of other quantities

“So if you can have those two as variables
(height and distance) in a system to get
from there to whatever angle he needs”

8 Nominalising an attribute via verbally
labelling, symbolically labelling/indicating,
implicitly describing its relation to other
quantities

[Draws the tree diagram and labels the
horizontal distance between the vet and the
dart as x and the height of the tree as y and
the angle the vet makes with the top of the
tree as 8]

while modelling (Table 22.2). The quantities projected onto the situation formed the
basis for our conception of the student’s modelling space on that task.

Finally, we used the quantities to conceptualise the student’s modelling space
and trace the evolution of her model. For this analysis, we considered two sets of
instances: those inwhichwe could infer quantitative situational referents for symbols
constituting the inscriptions and instances in which we were unable to do so.We next
sought instances inwhich the student’s activities indicated the quantitative situational
referent of a given inscription changed during the interview. We used these three
categories of instances to develop conjectures about the student’s quantification of
some situational attributes which (from our perspective) supported or constrained
her modelling process.
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Table 22.2 Potential quantities projected by Merik

Quantity Type Time Description

angstr Angle 2:08 Measure of angle gun is aimed relative to the horizontal, for
straight path

distvet/tree Length 2:09 Horizontal distance from vet to the tree/under the monkey

htmky/gun Length 2:10 Height of the monkey relative to the vet’s gun

vveldart- i Rate 2:47 Initial vertical velocity of the dart

accdart Rate 3:20 (Vertical) acceleration of dart

htgun/grd Length 3:35 Height of gun (or vet) relative to ground

httree/grd Length 4:13 Height of the tree

distvet/mky Length 4:36 Length of the straight path from the vet’s gun to the monkey

angpar Angle 6:04 Measure of angle gun is aimed relative to the horizontal, for
parabolic path

iveldart Rate 11:37 Initial linear velocity of the dart

htdart Length 15:35 Height of the dart

time Time 16:08 Elapsed time

angvet,3d Angle 24:38 Measure of the plane angle formed by a designated axis and the
line through the tree and veterinarian in 3-space

hveldart- i Rate 25.42 Initial horizontal velocity of the dart

22.4 Theory-Building Case Presentation and Analysis

Weconducted a series of task-based interviewswith participants ranging frommiddle
grades to advanced undergraduates. The tasks ranged from simple word problems to
applications to more complex problems where participants needed to make simpli-
fying assumptions about the scenario. The purpose of our retrospective analysis
of these data was methodological, specifically, developing a theoretically coherent
procedure for tracing the evolution of a student’s model throughout an interview.
Here, we share the work of Merik, who was a non-traditional student. He returned
to university after working in concrete industry management and in the automotive
industry to pursue a mathematics degree with an education minor. He had completed
courses through Integral Calculus and was taking Vector Calculus. Merik was asked
to think aloud as he addressed the Shoot The Monkey Task in any manner that would
be satisfying to him:

Shoot The Monkey Task
A wildlife veterinarian is trying to hit a monkey in a tree with a tranquil-
lising dart. The monkey and the veterinarian can change their positions. Create
scenarios where the veterinarian aims the tranquillising dart to shoot the
monkey.
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We assumed that Merik’s interpretations of the task and his work could differ
from ours. We provisionally accepted his work, without actively teaching, leading,
or removing ambiguity (Goldin 2000). Follow-up questions and interventions aimed
to clarify or document his thinking. We purposefully selected Merik to illustrate
the need to explicitly analyse the role of quantification in mathematical modelling
exactly because his work on the Shoot The Monkey Task embodies the phenomenon
of interest “operating in a microcosm” (Walton 1992, p. 122). Because Merik was
articulate and a capable mathematics student, his work is ideal as an illustrative case.
He described his mathematical thinking and introduced many different inscriptions,
quantities, and mathematical representations indicating that it would be possible to
closely examine changes in his mathematical and contextual knowledge about the
situation. We see his work on the task as a “meaningful but complex configuration”
of the theories we elaborated above, “not as homogeneous observations drawn at
random from a pool of equally plausible selections” (Ragin 2004, p. 125).

Merik created a total of 11 distinct representations. From Table 22.2, we observe
that he rapidly introduced quantities, projectingmore than half of the quantities of his
cumulative modelling space in the first six minutes. This is consistent with previous
research positing that identification of (ir)relevant quantities and variables occurs
early in the modelling process (e.g., Blum and Leiss 2007). Many were not necessary
to achieve a normative solution but provide evidence of the richness of his concep-
tions of the scenario. We infer that for Merik, introducing one quantity supported the
projection of related quantities, perhaps due to prior scholastic experiences, such as
when he introduced ang1gun, distvet and htmky by projecting them onto an inscrip-
tion representing a right triangle. Therewas not a one-to-one correspondence between
symbols and quantities, because we could not infer situation-specific quantities for
some symbols.

In the following, we offer an illustration of how attending to quantities, inscrip-
tions, and situational referents enabled a detailed characterization of the evolution of
Merik’s modelling process and provide insight into why attending to these aspects
inter-dependently is necessary.At around9mins 30 s into the session,Merik indicated
he was seeking a quadratic equation. He explained his goal was to generate the equa-
tion such that the monkey would be located along the path that the dart would travel.
Although Merik had not yet produced inscriptions resembling a quadratic equation,
we interpret Merik’s goal as indicating an implicit symbolic form. To gain insights
into the situation-specific meanings Merik might hold for this quadratic symbolic
form, the interviewer asked, “What variables and parameterswould be present in your
equation?” Merik immediately inscribed f (x) = Ax2 + Bx +C . In Sherin’s (2001)
notation, Merik’s inscription fits the template: � = � · �2 + � · � + �. Although a
quadratic functionwas relevant forMerik,wewere initially unable to infer that he had
imbued the symbolic form with situation-specific meaning to the task at hand. Later,
Merik began to describe his meaning for the symbols in f (x), “I know that my A is
-10,” indicating attention to gravity. Then, he indicated thatB “would be whatever the
initial velocity is, which I don’t have.” Merik later substituted particular values for
f (x) and x , representing specific instantiations of htmky and distvet, respectively.
AlthoughMerik indicatedC = 0, he did not indicate a situation-specific quantitative
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referent for C. Having substituted particular values for x , f (x), and A, Merik solved
the equation obtaining a particular value for B, which he indicated was the initial
velocity of the dart.At this point,we inferMerik’smeaning for the quadratic symbolic
form shifted from an inscription absent any situation-specific meaning to an inscrip-
tionwith situation-specific quantitative referents.We symbolise the situation-specific
quantitative meaning we infer Merik attributed to f (x) as: htmky = acceldart ·
(distvet)2 + iveldart · distvet + �. Merik treated Ax2 as a placeholder for the
effects of gravity and Bx as a placeholder for effects of the initial velocity of the dart.
BecauseMerik indicated x referred todistvet, we hypothesise that at this point during
the interviewMerik intended the quadratic equation to represent the flight path of the
dart. However, from our perspective, Merik’s quantitative referents for A and B were
suggestive of a parabola with a temporal component (i.e. x referred to elapsed time).

Later in the interview, we inferred Merik’s quantitative referent for x shifted. At
times, the symbol x explicitly referred to the veterinarian’s distance from the tree;
at other times x implicitly referred to elapsed conceptual time. Although we viewed
Merik’s quadratic template as a viable foundation for a mathematical model of the
situation, we see evidence of competing meanings for the constituent inscriptions.
For Merik, the quadratic equation referred to, at different times, a purely spatial
parabola (i.e., the flight path of the dart) and a parabola with a temporal component.
We hypothesise these competing meanings are one factor that may have prevented
Merik from using the symbolic form to achieve a satisfactory conclusion, from his
perspective and from ours, to the modelling task. A second factor that may have
impeded Merik’s progress in The Shoot The Monkey Task is related to attributes
that did not satisfy any of the quantification criteria in Table 22.1. We did not find
evidence that Merik attended to some quantities useful for achieving a normative
quadratic solution. Although Merik conceived the dart’s initial velocity with a hori-
zontal component, we found no indication during the interview thatMerik considered
the dart’s horizontal distance travelled at arbitrary moments in elapsed conceptual
time. Merik considered the parabolic path the dart would travel, yet he did not indi-
cate conceiving of the vertical and horizontal distances travelled co-variationally
(see Carlson et al. 2002). Had Merik considered elapsed time and conceived the
parabolic path in a covariational sense, we hypothesise he may have made greater
progress towards a satisfactory solution.

22.5 Implications

Our theoretical and methodological considerations have resulted in three types of
changes to models that should be considered: to meanings, to inscriptions, and
to quantitative referents. Through our analysis of Merik’s modelling activities, we
identified two factors that may have impeded his progress in solving The Shoot
The Monkey Task. First, there were competing mathematical and kinematic mean-
ings for Merik’s quadratic symbolic form. A single inscription (e.g. x) could refer
to different quantitative referents (e.g. the veterinarian’s distance from the tree or
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elapsed conceptual time). Although Merik’s template choice and inscription were
normatively correct, his meanings for these representations were not always compat-
ible with expert conventions or consistent. Understanding students’ meanings for
inscriptions should be an ongoing pursuit through probing for situationally specific
referents for students’ representations. Second, some quantities relevant to achieving
a normative solution were absent (from our perspective). To interpret significance of
the second observation, we employ the modelling space construct. The set of models
a student might produce in a givenmodelling task is dependent upon, and constrained
by, the quantities a student introduces into the situation at hand. Merik may not have
achieved a satisfactory solution precisely because his modelling space during the
interview did not contain a quantity associated with the dart’s horizontal distance
travelled. To be clear, we are not asserting that a variable was missing from Merik’s
equation. Rather, Merik may not have been able to take up the facilitators’ sugges-
tions about how to resolve the competing meanings for his symbolic form because
this quantity—which could have played a supporting role establishing a covaria-
tional relationship—was missing. If a facilitator thinks that a satisfactory solution is
outside the student’s modelling space, she can intervene in ways to engender consid-
eration of the missing quantity. Had the interviewer drawn Merik’s attention to the
dart’s horizontal distance travelled at intermediate times, Merik may have projected
the quantity into the situation; in turn, his modelling space would have expanded to
perhaps include a satisfactory solution.

Understanding meanings for students’ inscriptions should be an ongoing pursuit
from the facilitator’s perspective. Facilitators could ask probing questions to elicit the
situationally specific referents for students’ representations, rather than assuming that
the student has quantified an attribute in the same way as the facilitator. By carefully
attending to the quantities students project into situations, facilitators can imagine the
models a student is capable of producing and whether a satisfactory model might be
among them. If a facilitator thinks that a satisfactory solution is outside the student’s
modelling space, she can intervene in ways to engender consideration of the missing
quantity. In some cases, it may be necessary to support the student in quantifica-
tion of the situational attribute within the specific task context, rather than asking
directly about a missing variable. Future research is needed to understand how these
implications might be adapted for teachers of modelling in whole-class settings.

There is immense generative potential to the methodology proposed here and the
modelling space construct. They move the field closer to being able to systematically
trace changes in amathematicalmodel—how they are precipitated,ways they change,
and documenting how students may potentially respond to scaffolding. Attending to
these issues is incremental but paves the way tomaking recommendations to teachers
that are grounded in students’ conceptual systems.
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Chapter 23
Characteristic Elements Influencing
the Practices of Mathematics Teachers
Developing the Modelling Process
in Ninth Grade

Blanca Cecilia Fulano Vargas and Nelson Enrique Barrios Jara

Abstract The goal of this study is to identify the implicit and explicit features in
the practices of teachers of mathematical modelling. Specifically, we investigate the
characteristic aspects affecting the practices of teachers in public schools in Bogotá,
Colombia, developing modelling in the ninth grade. To do this, a questionnaire was
designed, considering two categories, which emerged from a theoretical analysis
using an onto-semiotic approach: epistemic and didactic. The study was carried out
with thirty mathematics teachers who had extensive experience in teaching mathe-
matical modelling in ninth grade. The data were collected using the Google Docs
platform and analysed in relation to the theoretical framework.

Keywords Mathematical modelling practices · Epistemic aspects · Didactic
suitability · Onto-semiotic approach · Teachers

23.1 Introduction

This chapter presents an exploratory study to determine the elements that charac-
terize the mathematical modelling practices of teachers who teach mathematics in
the ninth grade of compulsory secondary education in Colombia. According to Frejd
(2014), mathematical modelling “is … considered as a bridge between the mathe-
matics learned and taught in schools and the mathematics used at the workplace as
well as in society” (p. 5). Furthermore, Biembengut and Hein (1999) recognize the
leading role of the teacher in students’ experiences ofmodelling. Teachers, according
to their knowledge, thematic contents and their institutional reality, choose contexts
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or phenomena that give meaning to the teaching of mathematical modelling; there-
fore, the teacher is responsible for choosing what type of mathematical modelling
experiences are promoted in his/her practice. In this regard, the problem is to estab-
lish what are the characteristic elements that influence the practices of mathematics
teachers when developing the modelling process in the ninth grade. The goal that
guides the study is to identify the characteristic elements that affect the practices of
mathematics teachers when developing modelling in the ninth grade in the district
schools of Bogotá.

In this chapter, to fulfil our goal, the theoretical references from the onto-semiotic
approach will be presented initially followed by epistemic aspects of mathematical
modelling and the different elements of didactic suitability (Godino et al. 2016). The
method used in the study to establish the elements that influence the practices of
mathematics teachers in the city of Bogotá is then outlined. Finally, the analysis and
discussion of results are presented.

23.2 Onto-Semiotic Approach: Didactic Suitability

According to Godino et al. (2016, p. 2), the notion of didactic suitability of an
instructional process is defined as the coherent and systemic process articulated in
six facets/aspects of didactical knowledge: epistemic, cognitive, affective, interac-
tional, mediational and ecological. Figure 23.1 shows the suitability facets, their
components (e.g. attitudes, affects, motivations, beliefs and values for the affective
facet) and basic didactic suitability criteria (e.g. implication for the affective facet–
student involvement in the study process). The model shown describes the implicit

Fig. 23.1 Facets, components and basic didactical suitability criteria (Godino et al. 2016, p. 3)
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aspects of the teacher in the face of decision-making in his/her teaching practices.
This is how the cognitive aspect is related to the ways students learn, previous knowl-
edge, and class objectives. The affective aspect is related to the motivational factors
that it anticipates are mobilized in the classroom. The interactional aspect recognizes
the student as the centre of learning, which leads the teacher to countless interre-
lations within the classroom among all subjects. The mediation aspect implies the
use of technical human resources, technological elements and time. The ecological
aspect encourages the interrelationships between society, curriculum and school.
The epistemological aspect is didactic-mathematical knowledge about mathematical
modelling. All these aspects are not isolated but are interrelated and are relevant to
assess the teacher’s instructional process.

Following this theoretical framework, we will analyse and synthesize epistemic
aspects of mathematical modelling in Sect. 23.2.1 and didactical suitability criteria
for mathematical modelling in Sect. 23.2.2 in the light of relevant literature.

23.2.1 Epistemic Aspects of Mathematical Modelling

In the first instance, epistemic suitability is related to mathematical modelling
constructs, in this sense, authors such as Blomhøj (2019), Borromeo Ferri (2006),
Kaiser and Sriraman (2006) and Stillman and Brown (2014), among others, present
the theoretical considerations regarding: what is mathematical modelling, what is
a model, what the modelling cycle consists of, and what are the contexts and
representations.

The mathematical modelling process (MM), in the second instance, is considered
as the scientific activity in mathematics, which involves obtaining models of the
sciences (Biembengut andHein 2004).On the other hand, it is considered as a didactic
strategy. According to Villa et al. (2008), “MM is the production of a mathematical
model based on a problem or phenomenon in the real world, it demands a period of
time on the part of the model and requires some mathematical knowledge” (p. 2). In
this sense, it could be said that mathematical modelling implies research from two
focuses: from sciences other than mathematics and from education.

Regarding what is a mathematical model, Biembengut and Hein (1999) recog-
nize that a mathematical model is a phenomenon or problem situation which “is
a set of symbols and mathematical relationships that represents, in some way, the
phenomenon in question” (p. 106). Blum and Niss (1991) consider that the math-
ematical model is “a triple (S, M, R), consisting of a real problem situation (S), a
collection of mathematical entities (M) and a relation (R) between the objects and
relations of S and objects and relations of M” (p. 39). These two concepts are closely
related to scientific practice.

Faced with the epistemic concept of mathematical modelling, Biembengut and
Hein (2004, p. 108) recognize that a teacher is able to implement mathematical
modelling in two ways: the first, allows developing programmatic content from
mathematical models applied to the various areas of knowledge and the second
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guides students to do modelling work. In contrast, Skovsmose (1994) affirms that
“the mathematics put into social life, in the classroom, includes communication
for the development of democratic discussions” (p. 19). Mathematical modelling
becomes a strategy that enables the understanding of a mathematical concept from
relationships and meanings. At the same time, Blomhøj (2019, p. 38) recognizes that
the modelling process involves solving mathematical problems, immersed in a real
context and includes problems of an extra-mathematical nature. Therefore, when
talking about mathematical modelling, contexts make sense.

According to Kaiser and Schwarz (2006), “students acquire competencies that
enable them to solve real mathematics problems including problems in everyday life,
in our environment and in the sciences” (p. 196). From their theoretical framework,
the OECD (2017) recognizes different contexts “relating to the self, family and peer
groups (personal), to the community (local and national), and to life across the world
(global) and applications are: health and disease, natural resources, environmental
quality, hazards, and the frontiers of science and technology” (p. 80). It can be
concluded that the variety of intra-mathematical and extra-mathematical contexts are
inherent and are put into play when making decisions by the teacher when designing
their teaching strategies.

On the other hand, authors such as Pollak (1979), Berry and Davies (1996),
Geiger (2011), and Blum (2015) consider that the modelling process is cyclical. For
the present study, the seven modelling stages by Blum (2015, p. 76) are consid-
ered: 1. Constructing, 2. Simplifying/structuring, 3. Mathematizing, 4. Working
mathematically, 5. Interpreting, 6. Validating, and 7. Exposing.

Finally, Dan and Xie (2011. p. 460) recognize that the objective of the modelling
work is aimed at strengthening creative thinking on the part of themodeller, by estab-
lishing existing relationships between the parts of the object, manipulating those rela-
tionships and creating new mathematical objects. This objective allows expanding
the use of tools, signs, symbols and representations in the face of cognitive exercise
in the construction of new schemes. According to D’Amore (1999), “semiotic repre-
sentations can be discursive (natural language, in formal language) or non-discursive
(figures, graphs, diagrams, tables)” (p. 273).

23.2.2 Didactical Suitability Criteria for Mathematical
Modelling

Secondly, in the theoretical framework, from the onto-semiotic approach, an impor-
tant role is the treating of the suitability criteria of an instructional process such
as mathematical modelling for cognitive, affective, interactive, mediational and
ecological facets of didactical knowledge.

The cognitive suitability corresponds to the degree of adequacy of the objectives.
Breda et al. (2017) assert that the tasksmust present a high cognitive demand (through
generalization, intra-mathematical connections, conjectures, etc.), which implies in
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the practice decision-making taking into account the possibilities of identifying
conflicts and negotiating meanings.

About the affective suitability, Beltrán-Pellicer and Godino (2020) recognize that
this refers to the degree of involvement of students in the class; therefore, interest
and motivation have a major role in the teaching-learning process. This suitability
criterion is regulated by the emotional component, interest, personal commitment,
tolerance of failure, feelings of self-esteem and aversion. These are fundamental for
the development of mathematical modelling.

Regarding the interactive suitability, Perrin (1999) recognizes that the teacher’s
tasks are linked to the management of the interaction between the students and the
mathematical knowledge that underlies the mathematical problem, that is, that the
teacher when building a didactical proposal takes into account the different inter-
actions and the analysis of these allows decision-making to develop mathematical
modelling.

Mediational suitability is evidenced in terms of both operational and discursive
practice and they take place in the configuration and selection of the means and
resources with meaning necessary for the development of the activity and its instruc-
tional complements. According to UNESCO (2015), for “any educational resource
including curriculum maps, course materials, study books, streaming videos, multi-
media applications, podcasts and any material that has been designed for teaching
and learning” (p. 5), it is important to have in mind the teaching-learning process
since it allows the development of the modelling process.

With respect to ecological suitability, Font et al. (2010, p. 9) point out that
the teacher must propose possibilities, be able to recognize internal and external
elements, social relations with mathematics and establish links with other disciplines
and with the daily life of the students. Ecological suitability implies that the teacher
recognizes the curriculum both from the exogenous elements given by academic
organizations of a global nature, the Ministry of National Education of Colombia
and the territorial entities; and the endogenous elements given by the guidelines of the
Institutional Educational Project, the area plans and the dynamics that are generated
inside the school.

23.3 The Study

Thirty mathematics teachers (20 female and 10 male) teaching in ninth grade from
public schools in Fontibón-Bogotá, Colombia, participated in the study presented
in this chapter. All teachers had more than eight years’ teaching experience; 21
(69.93%)were graduates inmathematics and 9 (29.97%)were engineers. In addition,
5 (16.65%) had a specialization and the other 25 (83.35%) had a master’s degree.
Finally, all teachers had knowledge about theories and experience in the area of
teaching mathematical modelling in ninth grade.

To achieve the goal of the study, namely, to identify the characteristic elements that
affect the practices of mathematics teachers when developing modelling in the ninth
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Table 23.1 Categories, operative definition and number of statements in questionnaire

Category Operative definition No. of statements

Epistemic Teacher’s conceptions: mathematical model, mathematical
modelling, modelling cycle, use of the representations and
contexts

9

Didactic Contents organizations, objectives, motivation, sources and
classroom interactions

33

grade in the district schools of Bogotá. A questionnaire was prepared consisting of 42
statements using Likert scales, with five grading levels to identify the degree of agree-
ment or disagreement with each statement. Structurally, the questionnaire provided
demographic data and aspects related to mathematical modelling. The questionnaire
was validated by two research experts in the area of mathematical modelling at the
international level: Martha Isabel Fandiño Pinilla, a mathematician researching in
mathematics education and Tulio R. Amaya de Armas, a researcher in innovation
and didactics.

The questionnaire was consolidated into a Google Docs form and subsequently
sent to each teacher by email. Each time a teacher answered the questionnaire, it
automatically recorded his/her responses, which facilitated data analysis. The instru-
ment is divided into two categories that emerged from the analysis and synthesis of
the theoretical framework: the epistemic and didactic categories (see Sect. 23.2).
Table 23.1 shows the description of each category.

23.4 Analysis and Discussion of Responses

The analysis of results was carried out by means of a descriptive scope, interpreting
each statement according to the teachers’ responses, which allowed consolidating the
information for each category, and then contrasting it with the theoretical references.
The results are demonstrative of the implicit and explicit elements in themathematical
modelling practices carried out by teachers of public schools in Bogotá, Colombia.

23.4.1 Epistemic Category

Related to the teachers’ positions on mathematical modelling, 53.28% (16 out of
30) considered that mathematical modelling is inherent to scientific activity. Of this
percentage, 60% (10) corresponds to teachers with a master’s degree, while being
consistent with the results obtained regarding the conception of mathematical model.

As for what is a mathematical model, it was evident that 86.66% (26 out of 30)
of the teachers conceived of a model as a relationship between certain mathematical
objects with a situation or phenomenon of a non-mathematical nature. The other
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13.33% (4) of the teachers acknowledged that themodelwas associatedwith different
representation systems. It was observed that 35% (9) of the teachers with master’s
degrees and more experience took the first perspective, while in the case of teachers
with specialization only one had this conception that relates to the concept of Blum
and Niss’s (1991) mathematical model.

When asked: What is mathematical modelling? 26.64% (8) of the teachers took
into account that mathematics is a tool that helps solve real problems, while 39.96%
(12) acknowledged that mathematical modelling is similar to a scientific practice.
One-third of the teachers did not recognize mathematical modelling as a didactic
strategy that helps organize the teaching-learning process. In this sense, this finding
is related to the position of Biembengut and Hein (2004) who point out that teachers
develop programmatic content frommathematicalmodels applying it to various areas
of knowledge.

Regarding the conception of themodelling cycle, teachers prioritized three stages,
simplifying, interpreting and validating, which gave didactic organization to their
practices, aimed at the development of these skills in students. In this sense, 100%
(30) of the teachers recognized validation more frequently, which corresponds to the
sixth stage proposed by Blum (2015) for the modelling cycle.

About the representations, 46.62% (14) of the teachers prioritized symbolic repre-
sentations, followed by dynamic representations (33.33%), since they implemented
the use of GeoGebra and Excel. On the other hand, 13.33% (4) preferred that students
useCartesian representations and lastly, 6.66% (2) prioritized the use of tabular repre-
sentation. This confirms the epistemic coherence of the teacher by recognizing the
modelling process from a scientific and eminently symbolic position.

Concerning contexts, 86.58% (28) of teachers agreed with using intra-
mathematical contexts, for example, the contexts that come from algebra and geom-
etry. The rest used extra-mathematical contexts, for example, experiments.According
to what was proposed by Kaiser and Sriraman (2006), teachers can be considered
to relate the modelling process to different types of situations. All teachers with a
master’s degree applied mathematical modelling into intra-mathematical contexts,
which is consistentwith the epistemic stance on the scientific nature of amathematical
model.

Regarding the use of representation systems, two-thirds of the teachers used
discursive representations, that is, symbolic and those corresponding to computa-
tional dynamics, while the other third used non-discursive representations, such as
figures, graphs, diagrams and tables.

23.4.2 Didactic Category

Concerning the didactic category, the most important findings are related to the
cognitive, affective, interactional, mediational and ecological suitability.
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Analysing the cognitive suitability, it was found that the objectives set by 39.96%
(12) of the teachers were directed at developing abilities for identification of regular-
ities and patterns in the students. Regarding the validation of the model, one-third of
the teachers prioritized this objective, requiring students to check values that relate
the variables. Lastly, 26.64% (8) of the teachers intended for the student to carry
out prediction processes based on the proposed model, in order to estimate different
behaviours of the problem.

About emotional suitability, all teachers promoted values such as responsibility,
discipline and perseverance in their classroom, seeking that students recognize the
usefulness of models in everyday life and strengthen positive attitudes towards
working with mathematical models that arouse interest and challenge. Such prac-
tices are consistent with the approach of Beltrán-Pellicer and Godino (2020) since
teachers take into account in their teaching strategies for the promotion of interest
and motivation in the mathematical modelling process.

Regarding the suitability of interaction, the teachers confirmed that they ques-
tioned students and promoted group work establishing different types of interrela-
tion. However, the teachers acknowledged that, due to the high number of students
in the classroom (on average 40), they could not guarantee the participation of all
students. In this sense, the teacher’s tasks are due to the interaction between students
and mathematical knowledge, as suggested by Perrin (1999). Of the 30 teachers in
the study, 19 (63.27%) prioritized interaction between students and 11 (36.73%)
prioritized teacher-student interaction.

In relation to mediational suitability, according to UNESCO (2015), teachers
consider in their didactic organization the use of technologies. With respect to this,
26.64% (8) of the teachers usedGeoGebra, 19.98% (6) used Excel; on the other hand,
26.64% (8) used school texts, given that the educational authorities provide some
schools with guide books. Concrete material was used by 16.65% (5) of teachers
when proposing models to students in the development of geometry and only 9.99%
(3) of the teachers carried out experiments to develop mathematical modelling in the
classroom.

With reference to ecological suitability, all teachers developed the curriculum
corresponding to ninth grade algebra, according to the guidelines and standards
proposed by the Ministry of National Education of Colombia (MEN 2006), prior-
itizing linear, quadratic and cubic models. This finding confirms the position of
Biembengut and Hein (1999), who point out that teachers develop content from
mathematical models applying it to various areas of knowledge.

23.5 Conclusion

When analysing the epistemic suitability of teaching practices in mathematical
modelling at Grade 9 level in Colombia, we found a model conception framed within
a predominantly scientific practice. This is in accordance with the use of symbolic
representations. These two elements make the teacher’s didactics go in the line of
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monitoring the programmatic content and there is little assumption of creative and
challenging postures. This conception greatly influences decision-making regarding
the ecological suitability of mathematical modelling practices since teachers adhere
to curricular guidelines and standards in teaching linear, quadratic, and exponen-
tial mathematical models. It is important to emphasize that a small percentage of
teachers recognizemathematical modelling as a didactic strategy that allows students
to create their models based on their real-world situations that have to do with
extra-mathematical contexts.

As an implication of the previous results, it is advocated that the teachers consider
the didactic references that involve the suitability of epistemic, cognitive, affective,
interactional, mediational and ecological aspects for the teaching of mathematical
modelling, which allows students to develop the modelling process. However, it
is necessary for teachers to delve into the design of practices that strengthen the
interrelation of suitability criteria.

It is important to consider the feedback of the teachers’ practices, for which
the creation of accompanying strategies and collaborative work among peers and
between teachers with greater training is suggested, since these processes allow
innovative practices and contributions that enhance and enrich extra-mathematical
contexts. Likewise, the need to establish a mathematical modelling teaching network
in Bogotá is determined, which allows feedback on thewaymodelling is being taught
and conducting research processes in the classroom as well as serving as an organ to
innovate inmodelling practices. Such implications could be piloted in other countries
where a similar state of affairs with respect to the teaching ofmathematicalmodelling
in secondary schooling is evident.
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Chapter 24
Pre-service Teachers’ Facilitations
for Pupils’ Independency in Modelling
Processes

Ragnhild Hansen

Abstract Recently modelling and applications were included in the revised mathe-
matics curriculum for the Norwegian grade levels 1–10. The focus on mathematical
modelling in primary grade education is a challenge, because of limited experi-
ence with modelling at this educational level. This chapter is based on the study of
documents written by primary grade pre-service teachers, containing their reflec-
tions on modelling activities they had implemented during a practice period. From
this content, we studied what procedural choices and assessments the pre-service
teachers let the pupils make and how they facilitated their critical thinking. We
found that pre-service teachers often emphasised mathematical exploration, but that
they tended to offer specific tasks to assist pupils with this. Pupils were not often
given the opportunity to narrow the modelling problem and decide how to collect
and represent data.

Keywords Independent modelling processes · Critical thinking · Pupils’
inquiries · Pre-service teachers’ scaffoldings · Primary grade · Document analysis

24.1 Introduction

Educational research involving critical perspectives on modelling often focuses on
model applications in society, but the complexity of these models causes them
to be difficult to introduce at lower grade levels. In the perspective referred to
as critical mathematics inquiry (CMI) proposed by Greenstein and Russo (2019),
mathematical learning situations are perceived to contribute to critical mathematics
education as long as the pedagogy is considered democratic. Democratic pedagogy
is understood as inviting students to think mathematically in equitable classroom
discussions, where students’ inquiries are pursued and valued. As such, the CMI-
perspective implies that the societal fruitfulness of educational modelling mostly
depends on the pedagogical process and that models to be critically examined can
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be based on situations inside a classroom, as well as outside a school commu-
nity. Critical thinking is central in the CMI-perspective and is also a prerequi-
site for well-founded judgements when operating stages in modelling processes.
Considering collective work with models as communities of inquiry (Lipman 2003)
supports the assertion that critical thinking can be fostered through educational
modelling. According to Lipman (2003), a pedagogical goal of critical thinking
is to equip students to think for themselves, and self-regulated modellers are consid-
ered central in promoting modelling competency (Kaiser and Brand 2015). Particu-
larly for the lower school levels, we have found little research on how teachers can
support pupils’ independency and critical thinking in modelling processes. Based
on this background, we have formulated the following research question: How do
pre-service teachers support primary grade pupils to make their own choices and
judgements, and raise inquiries, during modelling processes?Results fromour inves-
tigation of this question are discussed with reference to the CMI-perspective, at end
of the chapter.

Our study was included in the first cycle of an extensive research project based on
Educational Design Research (EDR) (Akker et al. 2006). In EDR, researchers and
practitioners continually can change conditions of the research process, with the aim
to improve upcoming research cycles. By constructing interventions of increasing
workability and effectiveness, EDR can contribute to the relevance of educational
research and improve educational practice (Akker et al. 2006). Therefore, EDR could
be effective to support implementations of new themes from curriculums, such as
introducing modelling in compulsory education.

24.2 Literature Review and Theoretical Framework

It is not obvious what skills primary grade teachers should possess to complete
productive modelling lessons, nor how to provide them with such capabilities. When
introducing modelling to Grade 3 pupils and their teachers, English and Watters
(2005) recommended the teachersmake the children familiar with reading data tables
and working collaboratively before starting the modelling process. They found that
pupils’ ability to distinguish between practical knowledge of the modelling context
and scientific input data was important to work successfully with problems. This
also enabled pupils to make predictions based on patterns in the data. Paolucci
and Wessels’ (2017) study of pre-service teachers’ abilities to design appropriate
modelling problems for Grades 1–3 showed that the pre-service teachers struggled
with how to let pupils represent the problem contextmathematically, aswell as asking
strategic questions to assist pupils in progressing towards solutions. In contrast, the
pre-service teachers were proficient at creating modelling problems that contained
contexts relevant to the pupils, and they often created problems which had feasible
solution methods (p. 337). Ng (2018), who studied how experienced secondary
mathematics teachers designed, promoted and assessed pupils’ modelling processes,
found one challenge to be how teachers intervened in the process and wanted to
steer modellers towards specific mathematical outcomes instead of listening to their
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discussion (p. 295). The teachers also tended towards selecting a mathematical
learning outcome from the curriculum as the starting point for the modelling process,
for then to adapt a real-world context to this outcome. A positive feature was that in
designing the tasks, the teachers referred to real-world contexts that were meaningful
and relevant to the pupils, but generally they struggled to help pupils to progress on
different steps of the modelling process.

Raising inquiries is a substantial part of critical thinking (Lipman 2003). Lind-
fors (1999) characterises inquiries as “language acts”, through which they can be
recognised. In inquiry acts, one attempts to engage another to help him go beyond
his present understanding (p. 4). She distinguished between information seeking and
wondering inquiry acts, the latter as open and playful, involving engagement in a
process for its own sake, dealing with the imagined, uncertain or ambiguous (p. 40).
A type of discourse, that has been demonstrated particularly to influencemathematics
classrooms, is IRF-structured communication (e.g. Attard et al. 2018). In its proto-
typical form, it consists of an initiation (I) (usually a question or test put forward by
the teacher) a response (R) to this initiation by the pupils, and evaluative feedback
(F) from the teacher. This communication form has been associated with the “exer-
cise paradigm” in mathematics (Mellin-Olsen 1996). Studying pre-service teachers’
modelling processes, Barbosa (2007) detected two teacher discourses; directive,
where teachers respond readily to questions, correct errors and provide direction
for students’ work, and open, where teachers attempt to provoke a reactive pattern
by forming questions based on students’ utterances. He claimed that the first type of
discourse was not fitting for “authentic” modelling experiences (p. 239).

24.3 Method

Data for investigating the research question was the content of 14 documents written
by groups of second-year pre-service teachers preparing to teach at Grades 1–7
in Norwegian compulsory school. In the documents, the pre-service teachers had
reflected on the accomplishment of an assignment which asked them to imple-
ment modelling during two weeks of practice teaching. The modelling assignment
and practice teaching were both part of a university college mathematics didactics
course of 15 ECTS. Altogether there were 47 students divided between two separate
college classes. Each document was written by 3–4 pre-service teachers from the
same college class who conducted their practice at the same primary school. Before
practicum, the classes had received three lectures on educational modelling, and the
pre-service teachers had reflected on modelling literature before performing self-
selected modelling activities in randomly selected groups. In an earlier course at the
college, they had been taught basic statistics.

In accordance with EDR (Akkers et al. 2006), course teachers and researchers
cooperated on including pedagogical guidelines into the compulsory assignment.
This was to assist the pre-service teachers with facilitating pupils’ independency and
critical thinking in the modelling processes the pre-service teachers were supposed
to implement. As a result, the pre-service teachers were encouraged to reflect on how
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they could act according to pupils’ participation in (1) choosing the context for the
modelling problem, (2) limiting it (making it approachable) and (3) collecting data to
solve it. They were also supposed to reflect on (4) what solution methods one could
expect pupils to use, (5) how they would encourage them to use their own formal
or informal representations and (6) how they expected pupils to argue concerning
model parameters. Further, they were supported to think about (7) how pupils could
compare and verify their model results, (8) relate to error sources and (9) present
their results (poster, group presentation, etc.). The pre-service teachers were also
asked to reflect on how they had (10a) supervised the pupils and (10b) facilitated
communication in the modelling process. The idea was to investigate the first part
of the research question by studying how the pre-service teachers supported pupils’
modelling processes according to these guidelines. This approach is further explained
in Sect. 24.3.1.

To operationalise the second part of the research question, how the pupils were
supported when raising inquiries, we analysed one of the documents using theories
on classroom discourse from Attard et al. (2018), Lindfors (1999), Mellin-Olsen
(1996) and Barbosa’s (2007) studies of discourses detected in pre-service teachers’
supervision of modelling processes. Document excerpts were selected strategically,
according to whether they contained information relevant to investigate the research
question.

24.3.1 Analytical Framework

A review of the 14 documents revealed that the students had followed the pedagogical
guidelines only to some extent. We therefore introduced an analytical framework
(Fig. 24.1) based on a grounded theory approach to investigate pupil involvement
during the modelling processes. From a randomly selected subset of the documents,
we created 10 hypotheses to be used as a basis for later interpretation of the remaining
documents. These hypotheses were inspired by the pedagogical guidelines (1)–(10)
and the literature in Sect. 24.2. In particular, we wanted to examine pre-service
teachers’ skills in selecting contexts for the modelling problems, how they facilitated
pupils to represent contexts and if they tried to steer the processes. The findings were
to be compared with corresponding results fromNg (2018) and Paolucci andWessels
(2017). ItemsH9–H10were considered useful to discuss whether critical discussions
of model results were emphasised (Barbosa 2009). We also wanted to investigate the
applicability of the pedagogy accompanying the CMI-perspective. This approach
resulted in the hypotheses in Fig. 24.1. The corresponding findings are analysed in
Sect. 24.4.

To give more detailed information on how the analytical framework in Fig. 24.1
was induced, we present excerpts from two pre-service teachers’ documents:

The first thing we did, was to find out what the pupils’ interests were. To find out of this, we
had a conversation with the pupils, where everybody got the opportunity to say something
they could imagine working with. In this conversation, it appeared that one pupil had got a
new school bag and was very interested in talking about this. This [the school bag theme]
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H1. Pupils participated in selecting a context from the real world that could serve as starting 
point for designing a modelling problem

H2. Pupils participated in discussing how to limit a context to a modelling problem that was
possible to investigate

H3. Pupils had the main responsibility to collect data to investigate the modelling problem
H4. When collecting the data, pupils decided how to represent them 
H5. Student teachers offered the pupils mathematical tasks that were meant to assist them in 

performing the modelling activity
H6. The student teachers emphasized correct calculations by use of methods or algorithms 

already known
H7. One of the aims with the mathematization (modelling process) was to explore a

mathematical or statistical concept, strategy or idea
H8. Pupils were encouraged to discuss different mathematical solution methods for the problem
H9. Pupils were encouraged to discuss error sources that could have been present in the 

modelling process 
H10. The document explicitly describes that pupils were encouraged to present and discuss their 

modelling results in class

Fig. 24.1 Framework to trace how pre-service teachers facilitated pupils’ independency in
modelling processes

was also engaging the whole class. We quickly found that this was what we should work
with, since we wanted the pupils to participate in designing the teaching program. After
many suggestions, we agreed with the pupils that we should weigh their school bags every
day and find differences and similarities from day to day. This was the start of our modelling
project. (Grade 3)

The tasks that were given to the pupils was to make a cardboard miniature version of the
school using scaling. […] The pupils got a review of the concept “scaling” on a PowerPoint
before they went out to carry out measurements. (Grade 7)

The first excerpt indicates that the pupils, to a large extent, had participated in
choosing a real-world context (weight of school bags) that could serve as the starting
point for designing a modelling problem. This seems not to have been the case for
the context with the cardboard model in the second excerpt. From investigations like
this, we developed H1 as one category. Similar interpretations were accomplished
for the other categories in Fig. 24.1.

The 14 documents were then coded according to the framework in Fig. 24.1
by answering either “yes” or “no” to each hypothesis (for countability we used
the number “1” if the answer was yes and “0” if it was no). This analysis relates
to two interpretation levels; pre-service teachers’ interpretations of the classroom-
situations, and our interpretations of the replications and reflections described by
the pre-service teachers. The pre-service teachers addressed pupils’ performance of
the modelling tasks, as well as their own supervision of the pupils. To exemplify,
they often reproduced excerpts from classroom dialogues that had taken place. After
having coded the documents we collected the results in tables.

The general potential of the analytical framework in Fig. 24.1 should be further
analysed. For this study, it contributed to an overview of the documented modelling
processes, so that the first part of the research question could be answered.
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24.4 Findings and Analysis

Table 24.1 describes the activities that were implemented in practice teaching by the
seven pre-service teacher groups that constituted one of the two college classes.

The students described theworkwith these activities as “mathematicalmodelling”
or “modelling”. Table 24.1 shows that all the pre-service teacher groups generated
modelling contexts from pupils’ nearby communities (weighing of bags, represen-
tations of birthdays, etc.). This finding is consistent with the findings by Ng (2018)
and Paolucci andWessels (2017) concerning teachers’ proficiency in choosing pupil-
relevant contexts for modelling problems. Applying the framework in Fig. 24.1 to
the content of the documents describing the students’ reflections, after they had
implemented the activities in Table 24.1, gave the results in Table 24.2. This table is
an overview of pupils’ opportunities to make their own choices and judgements at
different stages of the seven modelling processes. According to this table, H1 is zero
for most of the activities. This shows that even if the societal contexts in Table 24.1
can be considered as relevant to the pupils, the pre-service teachers often ignored
pupils’ contributions in selecting them. From Table 24.2, we further notice that in
many cases where H3 equals one, the value of H2 or H4 (or both) is zero. That
H3 equals one, means that the pupils often were given the main responsibility to
practically collect data. Despite that the pupils often were assigned the role as data-
collectors, they achieved limited experience with making the modelling problem
approachable (H2 often zero) and deciding how one could register or represent the
collected data (H4 often zero). We came to this conclusion because many docu-
ments contained attachments presented as empty tables or diagrams the pupils were
supposed to complete when collecting data. This finding can be compared to Paolucci
and Wessels (2017) reporting that PSTs had difficulties with developing problems
which required students to create a mathematical representation of the context. In

Table 24.1 Modelling activities implemented by seven groups of student teachers during a practice
period

Modelling activities Grade

1 Distribution and representation of pupils’ birthdays in different ways on the yearly
quarters

1

2 Registration of colours of pupils’ sweaters. Use of this information to discuss what
colours to expect on the sweaters next week

2

3 Weighing of school bags every day during a week. Use of this information to predict
weight of school bags for next week

3

4 Measurements of height differences on earth. (Pupils decided to measure the highest
and lowest points and calculated the vertical difference between these points.)

4

5 Competition on shortest time spent for collecting most garbage over given distance.
Questions about how much to collect to win other distances

5

6 Dropping of ball from various heights. Use of this information to make a model for
bouncing height as function of drop height

5

7 Creation of cardboard model of the school 7
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Table 24.2 Results from applying the analytical framework in Fig. 24.1 on the documents
describing the seven modelling processes in Table 24.1

Activity 1 2 3 4 5 6 7

H1 0 0 1 0 0 (b) 0

H2 0 0 1 1 0 0 0

H3 0 1 1 1 1 1 1

H4 0 0 0 (a) 0 1 (a)

H5 1 0 0 1 1 1 0

H6 0 0 0 0 0 1 0

H7 1 1 1 1 0 1 1

H8 1 0 0 1 0 0 0

H9 0 0 0 0 1 0 0

H10 0 1 0 0 0 0 0

Numbering 1: the answer to the hypothesis was “yes”, 0: the answer was “no”, (a) not discussed in
document, (b) hypothesis not relevant

cases where the pre-service teachers had decided how to perform the data collection,
some groups reflected critically in the document on this in retrospect. An example
can be found in the document describing activity number seven in Table 24.1. Here
the pre-service teachers had equipped the pupils with a measuring wheel to map the
circumference of the school. At the end of the document, they wrote, “The pupils
should have gained more possibilities to find their own solution methods to the task,
instead of, for example, us, deciding that they should walk outside and measure [the
circumference with a measuring wheel]”. Here, the pre-service teachers reflect on
not having supported the pupils tomake independent decisions about what they could
have measured at school, and what measurement techniques they could have used.
The pre-service teachers were aware of having addressed these stages (which can be
associated with H2 and H5) by prescribing a procedure.

In about half of the activities, the pupils had to answer some sort of mathematical
task (H5 equals one in four out of seven cases). According to Barbosa (2007), this
can be interpreted as directive instructions. It can also be interpreted as mathematical
steering of the modelling process (Ng 2018, p. 295) . Despite this administration,
the pre-service teachers did not necessarily emphasise correct calculations or known
algorithms (H6 is mostly zero). Instead, the aim with the modelling task was to
explore a mathematical concept, algorithm or idea (H7 is often one). For example,
in the sixth modelling problem, pupils were to use Excel to create a bar graph and
compare median heights found by different groups to explore this concept. The
content of many documents showed that the pre-service teachers were aware of
the importance of letting pupils experience different solution methods. In our view,
a few groups succeeded with this (H8). Critical reflections on error sources like
measurement uncertainties were not present in many documents (H9 is often zero).
Finally, few documents explicitly indicated that the pupils presented and discussed
their modelling results in class (H10) which, according to Barbosa (2009), is central
for reflexive discussions to appear.We applied the framework in Fig. 24.1 to the other
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college class, also consisting of seven pre-service teacher groups. The tendency that
pupils were given the main responsibility to practically collect data persisted. As
for the first class, pupils were left little independence in how to register data, find
contexts for themodelling problem, limiting it and presenting results in class, but they
continued to be afforded several opportunities to explore mathematical concepts. A
little more often than for the first class, small tasks, known algorithms and different
mathematical solution methods were offered, and the pre-service teachers were a
little more attentive to error sources.

To investigate the second part of the research question, we arbitrarily selected
the document describing the third activity in Table 24.1 to study the quality of the
discourse in classroom dialogues, which the pre-service teachers had referred. To
illustrate, we present an excerpt where they refer to communication that had taken
place in the period after the pupils had registered the weights of their bags:

The student [a student from the practice teaching group] then asked what days the bags
had been the heaviest and the lightest, and what pupils thought could be the reason for
this. A pupil answered that “the bag perhaps was heaviest on Monday, because then we got
homework books and we brought swimsuits” […students here describe similar utterings
from the pupils…] Another pupil thought that “my bag perhaps was lighter on Wednesday,
because I had eaten my lunch when we weighed the bag”. Then the pupils worked two and
two together and answered the tasks on the last page of the questioning-scheme they were
working with (see att. 3). Finally, the student had a summary of what the pupils had answered
on the various questions.

The question raised in the first line can be interpreted as inviting the pupils to
explore a situation, in this case, why the bags were heavier or lighter on some days.
Because the pre-service teacher is requesting the pupils to think about reasons for
what they explore, the question canbe comprehended as inviting critical thinking. The
pre-service teachers recount that the pupils used the wording “the bag perhaps was
heaviest…” and “my bag perhaps was lighter…” when responding to the question.
The inclusion of the word “perhaps” indicates that the pupils expressed uncertainty.
One possible interpretation of this is that these expressions were wondering inquiry
acts (Lindfors 1999), suggesting that pupils wished to explore the situation with the
weight of the bags more carefully. The following lines of this transcript (the last
three lines) do not indicate that the pre-service teachers at this moment went into
explorative dialogues with the pupils. Instead, they reported that the pupils started to
work in pairs with a questioning-scheme followed by a summary led by themselves.
By reading the scheme, we found the questions referred to which days the bags
were heavier and lighter, what things were in the bag on these days, and if the
pupils could detect a connection between the number of things in the bag and its
weight. This situation can be related to the findings of Paolucci and Wessels (2017)
who reported that pre-service teachers had difficulties with generating appropriate
sequential scaffolding for modelling processes, and it can be compared to directive
discourse approaches (Barbosa 2007). Further reading of the document revealed that
later in the process the pre-service teachers represented pupils’ data in a weight
versus day Excel-diagram and performed a class-discussion about why the weights
had varied during the week. According to the pre-service teachers’ document, not
all pupils could interpret a bar graph, and this was one goal with the activity. We
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notice that, even if the pupils were encouraged to independently collect the data
(detect the weight of their bag every day), the pre-service teachers decided how to
finally represent them (the Excel-diagram). This shows that the pre-service teachers
struggled with how they could support pupils to make a mathematical representation
of the context themselves (Paolucci and Wessels 2017). Instead, they steered the
process (Ng 2018) towards the interpretation of the Excel-diagram.

The beginning five lines of the above excerpt can be characterised as an IRF-
structured dialogue (the pre-service teacher asks a question, to which the pupils
respond). Pupils aremostly justifying (“…because thenwegot homework books…”).
In analysing the 14 documents, we often detected similar examples, containing a
mixture of open-ended questions in the frame of an IRF-structured dialogue. This
could have been due to pre-service teachers’ earlier experiences with the exercise
paradigm (Mellin-Olsen 1996) and typical discourses they had experienced in their
own mathematics classrooms (Attard et al. 2018; Lindfors 1999).

We now consider what the pre-service teachers appraised to be the critical aspect
of this modelling process:

The pupils were critical to the model. When we asked them if they believed that the results
would be the same for the next week, the pupils answered, as mentioned, “no” and argued
about why they thought that the weight would be different next week. We interpret their
answers as they had reflected on the results and found connections between the weight and
the content of the school bags.

By questioning the results for the next week, the first lines of this transcript
show that these pre-service teachers considered model critique to be connected to
predictions. The last sentence shows that their interpretation of the quality of pupils’
predictions was related to the context (the weights) not patterns in the data (English
and Watters 2005). They did not reflect on this experiment as being theoretically
ill-defined for making prognoses. A similar situation was detected for the second
modelling activity in Table 24.1. Here the pre-service teachers asked the pupils about
what possible sweater colour combinations they could wear next week. This problem
would require logging the colours of all sweaters of the pupils. By reviewing the rest
of the documents, we did not find evidence that any of the pre-service teacher groups
in some way theoretically considered the validity of prognoses based on statistical
data.

24.5 Discussion and Conclusion

This study was the first of several cycles in an EDR project directed towards imple-
mentation of modelling in primary grades. The student teachers were novices to
mathematical modelling, and to some degree unfamiliar with college mathematics.
Still, they were asked to experiment with modelling in a practicum period. They
succeeded in finding modelling contexts that were familiar to the pupils, but often
without including the pupils in this activity. In light of the CMI-perspective, famil-
iarity of the modelling contexts is important at lower grade levels, because this facil-
itates democratic discussions. The democratic aspect could have been increased by
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including pupils in the process of selecting the contexts. Other efforts that could
have supported the CMI-perspective would have been to more actively include
pupils in limiting modelling contexts to become applicable problems, judge what
data one could collect, and how to represent these mathematically, and emphasise
critical reflections towards different solution methods. Since many of the pre-service
teachers’ questions were characterised as open, they supported the inquiry part of
CMI, but the IRF structure appeared to have dominated the discourse. We found that
even if students’ supervision often was directive and teacher-centred, the modelling
activity was still centred around exploration of a mathematical or statistical concept
or method. This is inspiring and shows the importance of letting novice teacher
education students gain experience with how to facilitate for explorative dialogues
in modelling processes. For the forthcoming cycle of EDR, researchers and practi-
tioners need to discuss how to support pre-service teachers to become more flexible
in progressing pupils’ modelling processes.
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Chapter 25
Investigating Pre-service Teachers’
Experiences with the “A4 Paper Format”
Modelling Task

Toshikazu Ikeda and Max Stephens

Abstract Our research question asks what kinds of educational effects are gained
for a group of pre-service mathematics teachers when we address the A4 paper
format task from the perspective that mathematical modelling can be used to enrich
students’ knowledge both in the real world and in mathematics. Around 60% of the
pre-service teachers perceived that they could enrich their knowledge both in the real
world and in mathematics, while around 30% were able to anticipate connections
to their actual teaching in future. This suggests that pre-service teachers are able
to appreciate these dual aims of modelling, that is, modelling can not only enrich
students’ ability to solve real-world problems but also deepen their ability to develop
further mathematics.

Keywords Mathematical modelling · Pre-service education · Paper (DIN)
formats · Mathematical knowledge · Prescriptive modelling · Descriptive
modelling

25.1 Aim and Research Question

Teacher education concerning modelling has been an important issue at the interna-
tional level (Borromeo Ferri 2018; Stillman and Brown 2019). This study focused
on a group of second-year pre-service mathematics teachers in a Japanese education
university who were taking a first course in mathematics education. The A4 paper
format task, illustrated as one of the prescriptive modelling tasks (Niss 2015), was
treated from the perspective that mathematical modelling may also be effective to
point to new mathematical knowledge (Blum and Niss 1991; Ikeda and Stephens
2020).
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This study aims to understand pre-service teachers’ views on mathematical
modelling teaching. Instead of using direct questionnaires or individual interviews,
we first allowed a group of pre-service teachers to participate in mathematical
modelling activities and then analysed their evaluations and reflections. Our study
design might provide a more objective insight into the true views of pre-service
teachers. Our research question was: What kinds of educational effects are gained
for these pre-service mathematics teachers when we treat the task, A4 paper format,
from a perspective that mathematical modelling can be used to enrich students’
knowledge both in a real world and in mathematics? We analysed the value pre-
service teachers derived from this task and have drawn some conclusions about how
the same task might be used with regular high school students.

25.2 Perspective of Teaching Modelling

Constructing mathematical knowledge starting from modelling has been discussed
as one of the perspectives of teaching modelling. In the international classification of
modelling perspectives byBlumandNiss (1991), “Prompting amathematics learning
argument”was identified.Under this perspective, our framework comes into linewith
Gravemeijer’s idea (1999) presenting a “model-of/model-for shift” where both the
model and the modelling facilitate reflection. However, in this framework, math-
ematization is restricted to two types: horizontal and vertical. Our framework treats
multiple mathematizations (in our terminology, translations) from one world into
anotherworld and focuses on the comparisons and contradictions between competing
perspectives among plural worlds (Ikeda and Stephens 2017). The principle that
underpins our framework is thatmathematics can be abstracted or concretized repeat-
edly from one world to another. Further, our focus is on comparisons and contra-
dictions between competing perspectives that will promote the enrichment of both
mathematical knowledge and modelling. The intention is to deepen students’ knowl-
edge both in the real world and in mathematics by connecting and integrating the
outcomes constructed in each world.

25.3 Explanation and Justification of the A4 Paper Format
Task

The A-paper (DIN) format is in widespread use in our world. Almost everyone is
familiar with the common paper sizes (A3 and A4) used in current office photo-
copiers. However, people may be unaware of their exact measurements and may
even be surprised to see how some measurements are replicated in the next size up or
down, as shown inFig. 25.1,which displays themeasurements inmillimetres for three
common A-formats. Some would also be familiar with the enlargement/reduction
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Fig. 25.1 Measurements for
three A-paper formats

capabilities of modern photocopiers linking A3, A4, and A5 formats in which each
can be enlarged or reduced onto the next size without any cut-offs or margins. This
feature is a defining property of the family of A-paper (DIN) formats.

As Niss (2015) reminds us, the A-paper (DIN) formats system is composed of the
following three properties: (P1) each sheet of paper is rectangular, (P2) the area of
the largest sheet in the system is 1 m2, and (P3) if any sheet of paper in the system is
bisected across a mid-point transversal between the two longest sides, each half sheet
is also in the system and is similar to the original one, that is, its side proportions
remain the same. Properties (P1) and (P3) are fundamental, for example, to explain
why an A4 sheet can be enlarged without margins to an A3 format simply by using
the 141% A4 → A3 command.

These mathematical/geometrical features are fundamental to the experimental
teaching episode described in this paper. What makes the A4 paper format task espe-
cially interesting is the opportunity it provides for students to access four different
worlds. The first is a real world; the second is a concrete operational world where
students are to fold the A4 paper; the third is a geometric operational world, which
allows them to draw/investigate the geometrical figure; the fourth is a symbolic oper-
ational world which represents the phenomena by a numerical/algebraic formula.
An important goal is to make students understand that, for all A formats, the ratio
of the sides of rectangle has to be 1 to

√
2, namely “a silver ratio.” By checking the

actual measurements of an A4 paper format, they will confront questions such as
“Why are the length and width of the A4 paper format 210 mm and 297 mm, respec-
tively, and how does this relate to the ratio 1 to

√
2?” This contradiction between

the actual data in the real world and the ideal value in a symbolic operational world
requires them to develop further mathematics. Concrete and geometric operational
methods in addition to the symbolic operational method are introduced to explain
that

√
2 cannot be represented in a fractional notation. The second question is how to

represent the irrational number by a sequence of rational number approximations. A
rational sequence that converges to

√
2 is 3/2, 7/5, 17/12, 41/29, 99/70,…, which can

be introduced by investigating the concrete operational and geometric operational
methods to connect with the actual A4 format of 210 mm× 297mm. Three times the
numerator and denominator of the fifth term 99/70 is 297/210, which corresponds to
the actual measurements of an A4 format. This interpretation is somewhat different
from the method of A-paper (DIN) format as explained by Niss (2015).
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25.4 Experimental Teaching Design

25.4.1 Settings on the Teaching of Modelling for Pre-service
Teachers

One author, who was the classroom researcher, conducted a case study with 37
pre-service teachers of mathematics in the second year of a Japanese education
university. Pre-service teachers first participate in completing a A4 Paper format
modelling activity. Organized experimental teaching was conducted for 90 min by
having pre-service teachers engage with this task on December 4, 2018. We assumed
that pre-service teachers were already familiar with; (1)

√
2 as an irrational number,

which is considered in secondary school using reductio ad absurdum and (2) how
to execute the Euclidean algorithm by using numerical and geometrical methods.
However, we did not assume that pre-service teachers knew that the irrationality of√
2 can be explained with concrete operational and geometric operational methods

and that a rational number sequence (Euclid’s algorithm) converging to
√
2 can

be developed by investigating the concrete operational and geometric operational
methods. These features were integral to the design of the experimental teaching.

25.4.2 Task Design and Time Sequence in Experimental
Teaching

The design and time sequence of the experimental teaching are shown in Table 25.1.
In Parts 1–3 of the experimental teaching, A4 paper was shown to the pre-service
teachers who were asked to investigate the ratio between the lengths of the shorter
and longer sides. The essential property of the A4 paper format (and other associated
A formats) is: if the paper is bisected across a mid-point transversal between the two
longer sides, each half sheet is similar to the original one. This allowed pre-service
teachers to set a formula such as 1:x = x/2:1, to show that the ratio of the sides is
1:

√
2. By asking how this property of a paper system is applied in the real world,

pre-service teachers could consider and clarify the unique utility of the A4 paper
system.

Using the actual lengths of the shorter and longer sides of A4 paper as 210 and
297 mm, an important outcome of Part 3 was to show using a calculator that the
ratio 1.414285714… is close to the value of

√
2. But is it possible to relate the actual

dimensions of the shorter and longer sides of the A4 paper format as 210 and 297mm
more meaningfully to the ideal value of

√
2 in a symbolic operational world? This

is the question to be investigated in Parts 4–6 of the experimental lesson.
In Part 4 of the lesson, pre-service teachers carried out a geometric investigation

on a representation of a generalized A-format sheet (i.e. the so-called “silver-ratio
rectangle”) to show that, by covering the rectangle with the different kinds of squares
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Table 25.1 Task design and time sequence

Time Activities What pre-service teachers are
doing

What the classroom researcher
is doing

15 min (1) Solving the
original problem

Analysing the properties of
A4 paper

Asking what is the ratio
between the lengths of the
shorter and longer sides to
clarify the properties of A4
paper

8 min (2) Appreciating the
solution

Appreciating the utility of
A4 paper

Asking why the A4 paper
system is applied in the real
world and sharing ideas among
pre-service teachers

7 min (3) Sharing the
contradiction

Sharing contradictions
between the modelling
results and the real situation

Setting the situation so that
pre-service teachers can realize
that the real ratio of the actual
two lengths of A4 paper is very
close but not equal to the value
of

√
2

10 min (4) Clarifying the
additional
problem

Understanding that the
problem is to show the
similarity between two
rectangles

Introducing the geometric
interpretation of the fact that√
2 is an irrational number and

focusing on the problem that
pre-service teachers need to
tackle

25 min (5) Solving and
explaining the
problem

Explaining that
√
2 is not

represented in a fractional
notation

Asking pre-service teachers
how to explain the similarity
between two rectangles and
letting share the ideas among
them

15 min (6) Elucidating the
nature of the
contradiction

Investigating the rational
number sequence converging
to

√
2

Guiding pre-service teachers to
investigate how to make
successive approximations to an
irrational number by a rational
number

10 min (7) Reflection Pre-service teachers writing
what they learned from the
lesson

Confirming two points of views:
first, what pre-service teachers
have learned from today’s
teaching and second, where and
what can they apply of this in
the future

iterated forever as shown in Fig. 25.2,
√
2 must be an irrational number. Group

activities were used in this stage. By confirming inductively that the number of same
sized squares is sequenced in a particular pattern, such as in “1, 2, 2, 2,….,” students’
focus was directed to how to explain this fact in a geometric operational world. By
discussing the similarity of several rectangles in Fig. 25.2, it was concluded for pre-
service teachers that it is enough to show the similarity between rectangle ABCD
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Fig. 25.2 Iterated geometric pattern

and rectangle EFGC in Fig. 25.3. These concrete and geometric operational methods
were used to explain that

√
2 cannot be represented in fractional form.

In Part 5 of the lesson, the results from the iterated geometric figures in Fig. 25.2
were further extended by asking pre-service teachers: “Is it possible to make rect-
angles so that the ratio between the shorter and longer sides can be expressed in a
fractional notation closer to

√
2?” Several rectangles were derived by the pre-service

teachers and a sequence of rectangles was constructed that converge to the silver ratio
rectangle as shown in Fig. 25.4. This question was intended to show students how to
make successive approximations to an irrational number by a rational number. From
the first four rectangles shown in Fig. 25.4, a series of ratios was derived as “3/2,
7/5, 17/12, 41/29.”

Fig. 25.3 Similarity of two rectangles
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Fig. 25.4 A series of rectangles that converge to the silver ratio rectangle

Given the difficulty of further investigating these ratios visually, students were
asked to consider the rule inductively. This is the focus of Part 6 of the lesson,
where a rational number sequence can be developed, which in fact conforms to
Euclid’s method. The generating rule of the sequence was explained by one of the
pre-service teachers as follows: “The next denominator is equal to the sum of the
previous numerator and the previous denominator, and the next numerator is equal
to the sum of the previous denominator and the next denominator.” Only one student
successfully explained the generating rule, and this allowed all pre-service teachers
to consider the sequence “3/2, 7/5, 17/12, 41/29, 99/70, ….” At this point, one of
the pre-service teachers observed that three times the numerator and denominator of
the fifth term “99/70” is “297/210,” which exactly matches the lengths of the longer
and shorter sides of an A4 paper format. This was the critical finding of Part 6,
illustrating the mathematical significance of the actual dimensions of the A4 paper
format. (Notice that 297/210 is not as close an approximation to the value of

√
2

as the sixth term of Euclid’s sequence, which is 239/169.) Part 6 of the lesson built
on the concrete and geometric operational methods explored earlier in the lesson,
and would not have made sense without those preceding explorations. Part 6 linked
together the previous investigations involving four different worlds.

25.4.3 Comparing This Approach to A4 Paper Format
with Niss (2015)

Niss (2015) presented an A-Paper (DIN) formats task as an example of prescriptive
modelling, which contrasts with descriptive modelling. For Niss, the general term
is directed under the properties (P1), (P2), and (P3) by using a numerical method,
such as recursion and induction, as follows; “Ln = 100/[2ˆ{(2n − 1)/4}] cm, Sn =
100/[2ˆ{(2n + 1)/4}] cm; Ln means the longer side of nth sheet and Sn means the
shorter side of nth sheet.” As a result, A4 paper is calculated as L4: 29.73 cm and S4:
21.02 cm. In this paper, the following three points are different from the approach by
Niss; (1) not presenting the property (P2) “the area of the largest sheet in the system
is 1 m2,” (2) focusing on the sequence of rectangles which converge to the silver ratio
rectangle, and (3) using concrete operational and geometric operational methods in
addition to symbolic operational methods.
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25.5 Analysis of Pre-service Teachers’ Reflections

25.5.1 Design of a New Analytical Tool to Assess Pre-service
Teachers’ Reflections

Pre-service teachers were asked to reflect and write down what kinds of educational
effects they gained from the lesson. In Part 7 of the lesson, the following ques-
tions were used: firstly, what did you learn from today’s lesson? secondly, what can
you apply from what you learned today and where would you apply it?

Two coding categories were developed to identify the differences among pre-
service teachers’ writings about what they have learned from the experimental
teaching. The first category was concerned with pre-service teachers’ perceptions
of modelling. Did pre-service teachers perceive the mathematical analysis involved
in their modelling as enriching their knowledge in the real world or did they perceive
modelling as enriching their knowledge in mathematics as a result of solving a real-
world problem? If the pre-service teacher’s writing was concerned with both view-
points, it was assumed that this pre-service teacher could enrich his or her knowledge
both in the real world and in mathematics, that is, in plural worlds. When assessing
pre-service teachers’ writings, we applied these two different but not mutually exclu-
sive points of view. The second category was concerned with identifying whether
students could anticipate connections to a high-school mathematics lesson. For this
viewpoint, an assessment was made about how pre-service teachers were prepared
to explore this kind of activity in their future teaching. Further, we recorded whether
students added any consequent notes for a lesson. Table 25.2 shows the types of
category criteria and sample comments from students. One author and a Japanese
associate performed this coding. The pre-service teachers’ responses were coded
individually by the two coders and then discussed to resolve any discrepancies in the
coding. The percentage of inter-coder agreement was 81.1%.

Written responses in Part 7 of the lesson were coded in two categories: The
first concerns their perceptions of modelling, while the second concerns their antici-
pated connections to a school mathematics lesson. Examples of pre-service teachers’
writings for two categories are as follows. Coding comments are given in italics.

Student S: I was surprised to notice that it is possible to consider the device hidden in A4
papers and the problem of rational and irrational numbers by applying the contents learned
in junior high school mathematics, such as geometric similarity and square roots. I was
unsure whether or not we could apply mathematics contents such as geometric similarity
in a real world. However, I understand mathematics can be applied in the real world from
this kind of application. I think it is good for junior high school students to learn this kind
of application and realize the fun of mathematics, as well as to develop various ways of
mathematical thinking. [Enriching knowledge both in the real world and in mathematics as
well as the willingness to treat this activity at school are evident, but there is no description
about interaction among plural worlds.]

Student F: I learned with interest because it is easy to understand the essence of
√
2 by using

things in the real world. It is hard to concretize irrational numbers such as
√
2; however, it
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Table 25.2 Categories of pre-service students’ writings about their experimental teaching

Type of category criterion Sample comment

Category 1: Generated perceptions of
modelling
1-1: Enriching real-world knowledge
1-2: Enriching mathematical knowledge
1-3: Interactions among plural worlds
Category 2: Connection to a school
mathematics lesson
2-1: Willingness to treat this activity
2-2: Notes in a lesson

1-1: Mathematics is used in everyday life, as in A4
papers
1-2: Further mathematics is developed in ways
such as proving why

√
2 is unrepresentable in

fractional notation by using the concrete
operational method or the geometric operational
method
1-3: I think it is important to consider
multi-directionally, as we experienced that the
irrationality of

√
2 can be explained by the

concrete, the geometric, and the symbolic
operational methods
2-1: I would like to address this problem with high
school students because I had a meaningful
experience that revealed to me that mathematical
knowledge can be greatly enriched by using A4
papers
2-2: If I approach this activity in junior high
school, I will need to pay attention to how to deal
with the idea of contra-position, because students
have not yet studied it

becomes possible to deepen our mathematical knowledge by using the material in the real
world [Here only enriching knowledge in mathematics is evident].

25.5.2 Generated Perceptions of Modelling

First, pre-service teachers’ writings were assigned to Category 1: generated percep-
tions ofmodelling. The number and percentage of pre-service teachers who belong to
each sub-category are shown in Table 25.3. Here, 1-1 means “enriching their knowl-
edge in the real world,” 1-2 means “enriching their knowledge in mathematics,” and
1-3 means “describing the interactions among plural worlds.” Thirty-six pre-service
teachers (97.3%) wrote that they could enrich their knowledge in mathematics by
tackling the A4 format task. On the other hand, 22 pre-service teachers (59.5%)
wrote that they could enrich their knowledge in the real world by tackling the A4
format task. Further, only 15 pre-service teachers (40.5%) pointed to the interac-
tions among plural worlds as meaningful. Next, in Table 25.4 we analysed the rela-
tions between 1-1, 1-2, and 1-3. No pre-service teacher wrote only 1-1, whereas

Table 25.3 Result of generated perceptions of modelling

1-1 1-2 1-3

Number of pre-service teachers 22 (59.5%) 36 (97.3%) 15 (40.5%)



302 T. Ikeda and M. Stephens

Table 25.4 Detailed result of generated perceptions of modelling

1-1 and 1-2 1-1 and 1-2
and 1-3

1-1 not 1-2 1-2 not 1-1 1-1 and 1-3
not 1-2

1-2 and 1-3
not 1-1

Number (%) 22 (59.5%) 8 (21.6%) 0 (0%) 14 (37.8%) 0 (0%) 7 (18.9%)

14 (37.8%) of the pre-service teachers wrote only 1-2. These pre-service teachers
tended to value mathematical knowledge rather than knowledge in the real world.
However, 22 (59.5%) pre-service teachers wrote 1-1 and 1-2. Around 60% of the
pre-service teachers appreciated mathematics can be enriched thanks to real-world
problem solving; and a real world can be enriched by mathematics. Only eight pre-
service teachers wrote 1-1, 1-2, and 1-3 (21.6%), showing that it is difficult for
pre-service teachers to reflect and write that modelling enriches their knowledge
both in mathematics and in the real world by pointing to meaningful interactions
among plural worlds. The following student’s writing included 1-1, 1-2, and 1-3:

Student K: In the real world, irrational numbers such as
√
2 are not used because it is

impossible to measure them. However, the idea of
√
2 is applied in systems of paper formats,

such as A4 paper. Although the relation between the A4 paper format and the irrational
number is not found at a glance, the relation between them is gradually found out by using the
EuclidianAlgorithm, the geometric operation, and so on. From this result, we can understand
that a phenomenon can be interpreted in a variety of ways, so our mathematical knowledge
is also expanded … Today’s teaching begun from a question about one thing, and then …
further questioning this answer. I think that our knowledge will grow by considering “why.”
[Enriching knowledge both in the real world and in mathematics, interaction among plural
worlds, but no anticipated connection to a school mathematics lesson.]

25.5.3 Anticipated Connections to Future Teaching

Thirty-seven pre-service teachers’ writings were assigned to Category 2: anticipated
connection to a schoolmathematics lesson.Thenumber andpercentage of pre-service
teachers who belong to each sub-category is shown in Table 25.5, where 2-1 means
“willingness to treat this activity” and 2-2 means “additional notes in a lesson.”
Twenty pre-service teachers (54.1%) wrote down that they wanted to use this type
of activity in the classroom, and 15 pre-service teachers (40.5%) wrote that it is
necessary to pay attention to anticipated students’ difficulties in a practical teaching
situation. Next, in Table 25.6, we analysed the relations between 2-1 and 2-2.

Nine pre-service teachers wrote only 2-1 (24.3%), whereas four pre-service
teachers wrote only 2-2 (10.8%). Eleven pre-service teachers wrote both 2-1 and

Table 25.5 Result of connections to a school mathematics lesson

2-1 2-2

Number of pre-service teachers 20 (54.1%) 15 (40.5%)
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Table 25.6 Possible connections to a school mathematics lesson

2-1 and 2-2 2-1 not 2-2 2-2 not 2-1

Number (%) 11 (29.7%) 9 (24.3%) 4 (10.8%)

2-2 (29.7%). There were four pre-service teachers who wrote 2-1 and 2-2 in addition
to 1-1, 1-2 and 1-3. Here is one example:

Student N: It is amazing for me that A4 paper is interpreted not only as the outcome using
the idea of geometric similarity, but also as the means to examine the irrationality of

√
2.

The format of A4 paper is ideally made up as 1:
√
2. However, it is impossible to make

an accurate value in a real world. I had goose bumps to get the actual data of A4 paper as
the rational sequence converged to

√
2. It is interesting to consider the irrationality of

√
2

using concrete operational and geometric operational methods, not simply relying on the
numerical method called reductio ad absurdum commonly taught at high school…… It is
new for me to be able to prove the irrationality of

√
2 visually by using the similarity of

geometric figures. I want to do teaching like this so that students can apply a variety of their
ideas.

Student N’s comment demonstrates interaction among plural worlds, showing
how this student’s knowledge has been enriched both in the real world and in math-
ematics. Also evident is this student’s ability to make a clear connection to a school
mathematics lesson.

25.6 Discussion and Conclusions

All pre-service teachers perceived that they could enrich their knowledge in mathe-
matics through this activity. Nearly 60% of pre-service teachers perceived that they
could enrich their knowledge both in the real world and in mathematics. However,
this paper does not examine how pre-service teachers shifted their perceptions of
modelling as a result of the experimental lesson. This should be examined in future.
Further, pre-service teachers were motivated to apply their experiences of math-
ematical modelling in a classroom in the next mathematics education course. In
addition, the A4 Paper format mathematical modelling task illustrates very clearly
how teachers can build on contradictions between the modelling results and the real
situation.

Finally, the categories of pre-service students’ reflections on the experimental
teaching episode provide some inspiration for future research, such as how pre-
service teachers’ perceptions of the value of, and relevance of, mathematical
modelling to their future teaching change over time. Experimental teaching activ-
ities, such as those reported in this study, which are designed from a modelling
and mathematical perspective, enable students to bridge between a concrete oper-
ational world and a mathematical (symbolic and geometrical) world. We envisage
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that, having participated in this experimental session, no pre-service teacher could
in future observe the 141% A4 → A3 command and simply think that 141% was an
arbitrary ratio, unrelated to all other A-paper formats.

References

Blum,W., & Niss, M. (1991). Applied mathematical problem solving: Modelling, applications, and
links to other subjects. Educational Studies in Mathematics, 22, 37–68.

Borromeo Ferri, R. (2018). Learning how to teach mathematical modeling in school and teacher
education. New York: Springer.

Gravemeijer, K. (1999). How emergent models may foster the constitution of formal mathematics.
Mathematical Thinking and Learning, 1, 155–177.

Ikeda,T.,&Stephens,M. (2017).Modelling as interactive translations amongpluralworlds—Exper-
imental teaching using the night time problem. In G. A. Stillman, W. Blum, & G. Kaiser (Eds.),
Mathematicalmodelling and applications—Crossing and researching boundaries inmathematics
education (pp. 349–358). Cham: Springer.

Ikeda, T., & Stephens, M. (2020). Using a mathematical modelling activity to assist students to
make sense of a limit theorem in trigonometry. In G. A. Stillman, G. Kaiser, & E. Lampen (Eds.),
Mathematical modelling education and sense making (pp. 287–298). Cham: Springer.

Niss, M. (2015). Prescriptive modelling—Challenges and opportunities. In G. A. Stillman, W.
Blum, & M. S. Biembengut (Eds.),Mathematical modelling in education research and practice:
Cultural, social and cognitive influences (pp. 67–79). Cham: Springer.

Stillman, G., & Brown, J. (Eds.). (2019). Lines of inquiry in mathematical modelling research in
education. Cham: Springer.



Chapter 26
Didactical Adaptation of Professional
Practice of Modelling: A Case Study

Sonia Yvain-Prébiski

Abstract In this chapter, the aim is to study the possibilities of giving to students
the responsibility for mathematical work that makes it possible to make an extra-
mathematical situation accessible through mathematical treatment. I briefly present
the elements of a first epistemological study of researchers’ modelling practices. I
show how I used it to design, implement and analyse a situation for teaching and
learningmathematical modelling, based on an adaptation of a professional modelling
problem on tree growth prediction.

Keywords Mathematization ·Modelling cycle ·Modelling practices ·
Problem-solving · Transposition · Horizontal mathematization · Phase of questions
and answers

26.1 Introduction

Research, especially at ICTMA (Blum 2015), shows the importance of the learning
and teaching of mathematical modelling development in secondary school but also
highlights hindrances concerning mainly the conception and implementation of
modelling activities in classrooms. In France, the modelling of extra-mathematical
situations has been part of the curriculum since 2016 (Ministère 2015). But in most
cases, the choices necessary for the mathematical treatment of such a situation are
not the responsibility of the students. The research question under consideration is
how to make the devolution (Brousseau and Warfield 2014) to secondary students
(11–18 years old) of mathematization work necessary to make a situation rooted in
reality accessible to a mathematical treatment. Following the French tradition on the
roles of epistemology in didactics (Artigue et al. 2019), I assume that an epistemo-
logical study of researchers’ modelling practices can enrich this didactic work. After
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specifying the theoretical framework of the research, I briefly present the results of
the epistemological study (Yvain-Prébiski 2018). I then show how I have used them
to provide elements of an answer to the research question posed in this chapter.

26.2 Theoretical Background

I focus on the teaching and learning of mathematical modelling based on extra-
mathematical situations with a specific interest in the devolution to secondary
students (11–18 years old) of the work of mathematization necessary to make a
situation rooted in reality accessible to mathematical treatment. Thus, within the
theoretical framework of Realistic Mathematics Education (RME), I consider the
distinction introduced by Treffers (1978) and Freudenthal (1991) between horizontal
mathematization which “leads from the world of life to the world of symbols” and
vertical mathematization, as work within the mathematical system itself.

Treffers, in his thesis of 1978, distinguished horizontal and vertical mathematising […]:
Horizontal mathematising, which makes a problem field accessible to mathematical treat-
ment (mathematical in the narrow formal sense) versus vertical mathematising, which effects
the more or less sophisticated mathematical processing. (Freudenthal 1991, p. 40)

In the line of the French didactic tradition inmathematics (Artigue et al. 2019), the
research methodology used for the didactic analyses is didactic engineering (Artigue
2015), an essential characteristic of which is based on the comparison between a
priori and a posteriori analyses of the didactic situations concerned.

26.3 Epistemological Considerations

The specificity of this research is to support a didactic work on an epistemological
study of the contemporary practices of researchers using mathematics in modelling
work. The objective is to identify in the discourse of interviewees some invariant
practices allowing the construction of indicators likely to attest that a horizontal
mathematization is at stake. In this section, I report on elements that emerge from
this epistemological study, on the one hand from the literature, and on the other hand
from a study of researchers’ actual modelling practices.

26.3.1 Evidence from the Literature Review

I followed Israel (1996), who defines a mathematical model as “a piece of math-
ematics applied to a piece of reality” and specifies that “a single model not only
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describes different real situations, but this same piece of reality can also be repre-
sented by different models” (p. 11). By crossing this point of view with RME, hori-
zontal mathematization seems relevant to explore educational issues related to the
research question. It led me to define different forms of horizontal mathematiza-
tion that seem relevant to characterize this type of work, namely: choosing a piece
of reality to question in order to answer the problem; identifying and choosing the
relevant aspects of the piece of reality (context elements, attributes); and relating
together the chosen aspects in order to construct a mathematical model. In addition,
following Chabot and Roux (2011), I added another form of horizontal mathema-
tization: quantification which refers to the association of some aspects of reality to
quantities (essentially consisting in measuring).

26.3.2 Main Findings of the Study of Researchers’ Modelling
Practices

In the educational perspective of studying what can be transposed from researchers’
actual modelling practices, I led a study of researchers’ modelling practices. I
conducted, transcribed and analysed interviews with researchers using mathemat-
ical modelling in the context of life sciences (Yvain 2017). The main findings are
the identification of three invariant features in the practices of researchers which
contribute to the transformation of reality to mathematical solvable problems: (a)
simplifying the problem and selecting a piece of reality; it supposes to identify rele-
vant variables and choose relevant relations between the selected variables by antic-
ipating the mathematical treatment that these choices induce; (b) choosing a model
among those known by the researcher in order to initiate vertical mathematization,
at the risk of having to refine or reject the initial model later; and (c) quantifying
in order to compare the “real data” with the results obtained within the model.
This contemporary epistemological study has helped me to better identify the form
and role of horizontal mathematization in a mathematical modelling activity. It also
allowed me to develop a diagram of the modelling cycle including the dialectical
relationships between horizontal and vertical mathematization, which I will detail in
the next section.

26.4 Towards an Enriched Modelling Diagram

The work of Maaß (2006) underlines on the one hand the diversity of schema
proposals to illustrate the modelling process in the literature, and on the other hand
that this diversity of proposals is essentially correlated to the learning objectives and
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Fig. 26.1 Diagram describing the modelling process. Adapted from Blum and Leiss (2007)

the choice of skills to be developed /targeted by the authors. Taking this into consid-
eration, I conducted a study to develop a diagram of the modelling cycle including
the dialectical relationships between horizontal and vertical mathematization.

To do this, I relied on the classification work of Borromeo Ferri (2006) included in
Rodriguez’s thesis work (2007) and on the work of Blum and Leiss (2007). From this
study and the results of the previous epistemological study (Yvain-Prébiski 2018), I
developed a diagram describing the modelling process (based on the modelling cycle
of Blum and Leiss 2007) taking into account the two aspects of mathematization and
the invariant elements identified in the research modellers’ practices (Yvain 2017).
This diagram (see Fig. 26.1) begins with an adaptation of a professional modelling
problematic which leads to a statement rooted in reality. To address this problem,
the students need to choose a fragment of reality and the relevant aspects. This
issue becomes a problem accessible to mathematical treatment, and students have
to establish relations between the selected aspects to make this as a mathematical
problem and then to build a mathematical model. I use two line segments with
arrowheads on either end showing that students can begin the solving by choosing a
known mathematical model and then testing it. That highlights the dialectic relation
between the horizontal and vertical mathematizations. In this chapter, I focus my
analysis on the part of the diagram which can highlight what happens between steps
2 and 3 of the Blum and Leiss diagram (2007) (see Fig. 26.2).

26.5 Design of the Modelling Situation

Based on the results presented in Sects. 26.3 and 26.4, I have developed a method-
ology to design, implement and analyse a teaching and learning situation for mathe-
matical modelling. The objective is to foster the devolution of horizontal mathema-
tization to students. I have characterized the problems likely to promote the learning
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Fig. 26.2 Part of the diagram used for the analyses

of this mathematization. I call such situations “Realistic Fictions conceived as Adap-
tations of a Professional Modelling Problem” (FRAPPM). They should lead students
to reflect on the system to be modelled and to bring them to become conscious of (a)
the necessity to develop amodel to solve a problem, (b) the necessity tomake choices
to mathematically address the problem, (c) the importance of the question set to them
during the development of the model and (d) that the work behind the development
of the model requires mathematical thinking within the model chosen to answer
the questions. I have chosen to adapt a historically and epistemologically important
modelling problem in life sciences: plant growth modelling (Varenne 2007). It is
about predicting the growth of a tree based on information about its first years of
growth given by diagrams:

The Tree Botanists from a Botanical Garden have discovered an exotic tree.
To study this new species, the botanists have sketched the tree every year since
2013. The botanists want to build a greenhouse to protect it. They believe it
will have reached its full size by 2023.
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To help them predict how the tree will be in 2023.

I have chosen didactic variables and their values in order to promote the devolution
of horizontal mathematization to students:V1: 2D versus 3D diagrams: I have chosen
2D diagrams to provide a sufficiently realistic frameworkwhile allowing amodelling
activity from the 6th to the 12th grade, V2: The number of diagrams: I have proposed
three of them. This number is sufficient to allow students to make choices about
the growth rules of the different elements of the tree, V3: The shape of the tree
(symmetrical versus asymmetrical): I have chosen asymmetrical growth to encourage
students to question the forecasting of the tree’s growth. The shape chosen does not
resemble that of a known (or easily recognizable) tree to avoid a possible search
on a search engine (or other) on the growth of the potentially recognized tree, V4:
The number of new branches appearing each year: I have chosen to make two or
three new branches appear to quickly encourage students to make choices about
the tree’s growth, V5: The lengths of the trunks and branches: they were chosen to
question a possible choice of a regular growth model and V6: To give a scale or not:
I have chosen to give a scale to allow measurements and instrumented information
to be taken from the drawings. With these choices, simplifying assumptions and
identification of relevant variables that influence the actual situation are necessary
to consider a mathematical treatment of the given problem. The choice of an initial
growth model can be a known mathematical model (e.g. proportionality) that can
allow students to work on vertical mathematization in order to shed light on the
problem even if it means refining or rejecting the chosen model by reconsidering
their first choices. Providing a scale and allowing students to take instrumented
information could encourage students to choose amodel and then compare the results
in the model to their knowledge of how trees grow in the real world.

26.6 Implementation of the Modelling Situation

To help teachers implement in their classrooms the situation of The Tree presented
in Sect. 26.5, I worked with a group of teachers in a professional development
programme on mathematical modelling. This programme called ResCo (collabora-
tive problem-solving) is proposed by a group of the IREM of Montpellier (Research
Institute for Teaching of Mathematics). In this group (existing for more than ten
years) some researchers and teachers work collaboratively. Each school year, this
programme offers a collaborative project for volunteer teachers with their classes
from grade 6 to the end of high school. The scenario includes five sessions (one
hour per week). Groups of three classes are formed and all classes interact using
an online forum regulated by the ResCo group (see Modeste and Yvain 2018 for
further details of the programme). One of its particularities is a question-and-answer
session designed to begin the resolution of the problem. This first step of the scenario
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requires teachers to devote the first session to getting students to ask questions about
the problem, to send them to the two other classes in their group, via the ResCo
online forum, and then to devote the second session to trying to answer questions
from other classes. The aim is to have the students ask themselves questions about
the different possible choices that would allow them to deal with the problem math-
ematically. It is during this phase of questions and answers that, on the one hand,
the relevant questions for solving the problem will emerge and, on the other hand,
different possible modelling choices will appear. The questions received lead to
discussions that allow students to become aware of the need to make choices to deal
mathematically with the problem, particularly around the identification of relevant
magnitudes. In the third session, the students discover and discuss the answers to
the other classes. Between the second and third sessions, based on the questions and
answers submitted on the forum, the ResCo group develops a “relaunched realistic
fiction”. It is addressed to all classes during this third session, in order to setmodelling
choices to allow further collaboration in solving a common mathematical problem.
The intentions of the group are to make visible to students the need to make choices
to solve the problem. During the fourth session, the students continue the research
of this same mathematical problem, resulting from the modelling choices set by the
“relaunched realistic fiction”. During the last session, teachers are invited to carry
out an assessment with their students to close the session. The ResCo group uses all
student productions posted on the forum to produce an assessment of the concepts,
mathematical skills and heuristic skills that the problem has implemented as well as
elements of a mathematical solution to the problem. In this chapter, I will focus my
analyses during the phase of questions and answers which contributes to making the
situation accessible to mathematical treatment.

26.7 A Priori Categorization for Analyses

To analyse the horizontal mathematical work, I am interested in the question–answer
pairs produced by the students. To do this, I define a priori categorization for the
questions and another one for the answers.

26.7.1 A Priori Categorization of Questions

I categorize a priori the students’ questions by using three indicators based on the
forms of horizontal mathematization. The first one Qmod concerns question showing
the search for a model to address the proposed situation. It could highlight a work of
horizontal mathematization insofar as the research of the model induces the student
to make preliminary choices of one or more fragments of reality and some of their
aspects. This indicator essentially reflects the interconnection between horizontal
and vertical mathematizations when moving from the extra-mathematical situation
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to mathematical model, represented by the double arrows on the diagram of the
modelling process (Fig. 26.1). The second indicator Qmag concerns questions about
identification of magnitudes relevant to consider mathematical processing in order
to develop a mathematical model. The third Qcont concerns questions relating to the
choice of context elements to be taken into account for mathematical processing. The
Qmag and Qcont indicators highlight the horizontal mathematical work represented
on the first horizontal axis of the modelling process diagram (see Fig. 26.1). The
Qcont indicator raises questions about the relevance of the chosen fragment of reality
in relation to the choices of context elements to be taken into account. The Qmag

indicator concerns the identification of relevant magnitudes when moving from “the
real situation” to a problem accessible to a mathematical treatment (“PSMT”) and
the relationship between the selected magnitudes (moving from the “PSMT” to the
mathematical problem).

26.7.2 A Priori Categorization of Answers

The characteristics of the FRAPPM (see Sect. 26.5) allow students to make choices
either from reality, or frommathematical processing associated with takingmeasure-
ments or from their knowledge of existing models that they plan to test. Therefore,
I defined three indicators: the first one R“Real” for the choice of a model or relevant
magnitudes based on considerations rooted in the real context of realistic fiction.
The second one R“A priori” for choices based on a model known to the student for the
purpose of testing it or for choices of a magnitude, made without considering the
real context and without further justification. And the last one R“Math” for choices of
a model or relevant quantities made from mathematical work or based on consider-
ations made on the statement’s diagrams. These kinds of answers would show that
from the work of horizontal mathematization (production of the question) students
can enter into vertical mathematization work (that would highlight the back and
forth between the two aspects of mathematization) (see Fig. 26.1). A response of
this type bears traces of the transposition of an expert’s practice insofar as it can
highlight that either the horizontal mathematization work triggers a vertical math-
ematization work, or that the work of horizontal mathematization is interconnected
with that of vertical mathematization in the sense that the choices are made in antic-
ipation of the feasibility or complexity of the mathematical processing that would
result. These indicators for the response development phase should make it possible
to: better understand how realistic fiction and the response phase lead students to
make choices when considering mathematical treatment of the problem, highlight
a possible transposition of the expert practices previously defined and highlight a
possible devolution of horizontal mathematization to students.
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26.8 Results

About 2000 students participated in the experiment. Questions and answers were
collected and analysed qualitatively (using language markers) and quantitatively in
relation to the above-mentioned indicators. Of the questions, 36% were in category
Qmod, 39% in category Qmag and 25% in category Qcont. For each category of ques-
tions, the results for the answers are shown in Table 26.1 and some examples of
question–answer pairs are given in Table 26.2.

The analysis showed that studentsmade simplifying hypotheses about elements of
reality to consider a mathematical treatment, by selecting one or more fragments of
reality by focusing onbranches, greenhouse, leaves, et cetera. They identified relevant
variables that influence the real situation (e.g. number of branches) aswell as variables
or context elements that are not relevant to the problem to be solved (e.g. fertilizer,
leaf, tree height) and chose relevant relationships between the selected variables
by using mathematical frameworks (e.g. functional, proportional, geometric). The
choice of didactic variables (the diagrams of the tree, the asymmetrical shape of the
tree, the number of new branches, the lengths of the trunk and branches, the scale)
allowed students to ask authentic questions about the magnitudes to identify and
relate in order to consider a mathematical treatment of the problem. The sufficiently
realistic framework of the fiction encouraged reflection on the contextual elements to

Table 26.1 Results for the answers for each category of questions

R“Real” (%) R“A priori” (%) R“Maths” (%)

Qmod 26 35 39

Qmag 27 36 37

Qcont 70 27 3

Table 26.2 Examples of question–answer pairs

Question–answer pair Example

Qmod R“Maths” Is there proportionality between years and tree size? Size of the trunk,
height, width of the branch, number of branches? (Qmod): Using the
3 cm scale on the drawing = 1 m in reality, we can measure the tree each
year, and we see that the coefficient to move from one year to another is
not constant, so there is no proportionality (R“Maths”)

Qmod R“Real” Do trees evolve in a proportional way? (Qmod): Given the natural
context, trees do not evolve in a proportional way, but for the resolution
we will consider that they do (R“Real”)

Qmag R“Real” Should we only consider the height or also the width? (Qmag): Both must
be taken into account, as the greenhouse will have to have a roof (height)
and walls (width) (R“Real”)

Qcont R“A priori” Does exposure to the sun or watering have anything to do with tree size?
(Qcont): We think not, otherwise the statement would contain more
information on this subject (R“A priori”)
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be taken into account, leading students to realize that some information about the real
context was not necessarily useful in solving the problem or that it was preferable
to neglect it in order not to make more complex the construction of the model. The
majority of students tried to test a known model, the proportionality model, which
they sometimes rejected by comparing the results obtained in this model with what
they knowabout tree growth in the realworld, leading them to reconsider their choice.
The scale opened up the possibility of carrying out instrumented measurements,
allowing students to quantify certain quantities and compare them with real data.

26.9 Discussions and Outlook

The main results highlight that the characteristics of a “FRAPPM” with an initial
phase of questions-answers betweenpeers have encouraged the devolution to students
of the horizontal mathematization work. Analyses of the question–answer pairs show
traces of this devolution. These analyses show that students make choices to make
the extra-mathematical situation accessible for mathematical treatment. Through the
indicators developed for the analyses, based on the main findings of the study of
researchers’ modelling practices (Yvain 2017), we can understand how students
make these choices: by simplifying hypotheses about elements of reality to consider
mathematical processing, by identifying relevant magnitudes and by questioning the
influence of external parameters. Or, they made explicitly choices based on mathe-
maticalwork, essentially based onmeasurements to verify after calculations, whether
a model can be chosen. They also tried to test this model by comparing the results
obtained in this model with real data. The back and forth between the horizontal
and vertical aspects of mathematization, pointed out several times in the analyses,
support the claim that horizontal and vertical mathematizations are interconnected
in a mathematical modelling activity of this type in the classroom (for more details,
see Yvain-Prébiski 2018). The question-and-answer phase makes it possible to bring
to life in class the horizontal axis of the diagram of the modelling process developed
for the study. However, what still remains open for future research is to consider the
impact of this initial phase (question–answer) to the whole process of modelling and
to study how students’ responsibility was really involved in these activities and to
what extent this issue was identified by teachers in a way that allows a full devolution
of the learning issue (Yvain-Prébiski and Chesnais 2019).
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Chapter 27
An Opportunity for Noticing by Students
and Teachers

Jill P. Brown

Abstract Mathematical modelling allows teachers to teach in engaging ways and
students to become increasingly confident in workingwith challengingmathematical
tasks, yet it remains less common in the primary years of schooling. To achieve
success in solving real-world tasks, students must notice what is relevant, and decide
how to act on this to progress their solution. Teachers must also discern what is
relevant and nurture student capacity to notice. This chapter investigates teacher
noticing and novice modellers’ developing conceptions of noticing during a primary
school modelling task. In the study, 62-Year 3/4 students attempted The Packing
Task, observed by 13 teachers.

Keywords Challenging tasks ·Mathematisation · Pre-mathematisation ·
Productive noticing · Primary school · Real-world

27.1 Modelling in Primary Schooling

In mathematical modelling, sense-making opportunities abound (see e.g. Brown
2017) as complex problems are presented to learners who then engage in deci-
sion making. Learner choice is important in mathematical sense-making. “Sense-
making in mathematics classrooms is enhanced through less teacher structuring and
learners using their own informal methods” (Biccard 2018, p. 8). With regard to
modelling in primary school, more research is needed (English 2003; Stohlmann and
Albarricín 2016). Also, English (2010) advocated modelling problems being inte-
grated throughout the primary years. Concurring with this view to increase research
and modelling activity, Stohlmann and Albarricín note, “mathematical modelling
has mainly been emphasised at the secondary level, but for students to become more
adept modellers the elementary grades need to be given more attention” (p. 1).
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English (2003) has long championed the use of mathematical modelling activities
in primary school (and beyond) if “we intend our students to make modelling a way
of life” (Brown and Stillman 2017, p. 354). English argues that evidence from her
extensive research with primary school students, shows that modelling tasks are not
too challenging, and students can successfully engage with such tasks regardless of
their current mathematical capabilities (English 2003). More recently English noted,
“introducing young children to mathematical modelling where they are challenged
to mathematise problematic [real] situations … can cultivate their mathematical
capacities” (English 2015, p. 104).An empirical study of threeYear 6 classes utilising
two different tasks, highlighted the importance of task design impacting on whether
students saw the task as realistic (Brown 2013). Brown concluded that “tasks that
required students to reflect … and make their thinking explicit can contribute to
… students perceiving themselves as playing an important role in interpreting the
real-world problem situation and relating it to the world of mathematics” (p. 304).

27.2 Productive Noticing in Modelling

Arcavi’s (2003) ideas of students focussing on irrelevancies have been integral in the
project, this study is part of, in encouraging students and teachers to articulate every-
thing they notice in a particular image, task et cetera and then attending to which of
these are mathematical and or relevant to the task being considered. Galbraith et al.
(2017) note the importance of skilled ‘noticing’. Choy’s (2013) notion of produc-
tive mathematical noticing was extended to modellers, including student modellers,
by Galbraith et al. (2017) as productive Modelling Orientated Noticing (pMON).
Following Wenger and Wenger (2015), pMON needs to be nurtured in novices,
and displayed by experts in mathematical modelling. Galbraith et al. argue that to
develop as modellers, novice modellers must engage with modelling activities. Only
through this activity will they develop conceptions of discerning ‘noticing’ as they
select, develop, and communicate their modelling appropriately. From a pedagogical
perspective, productive Modelling Orientated Noticing includes when the teacher is
“monitoring and observing student decision making during modelling activity.…
[and goes beyond noticing to include the essential] discernment of the relevance of
what is noticed” (p. 74). From a modelling perspective, for the student modeller,
productive noticing involves noticing what is relevant and what is not in a productive
manner by acting on what has been discerned as relevant and rejecting or ignoring
what is irrelevant.

To begin to model, novice modellers must become proficient in two processes,
mathematisation and pre-mathematisation. Jankvist and Niss (2020) describe as pre-
mathematisation, the processes of specification and idealisation, where modellers
reduce the complexity of the messy real-world situation. This involves “making
choices and assumptions concerning the features deemed significant to themodelling
enterprise, thus reducing its complexity so as tomake it tractable” (p. 469) to solution.
Pre-mathematisation is critical to successful mathematisation. Hence, pMON plays
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a critical role as decision making regarding identification of significant features and
making assumptions requires productive noticing. Mathematisation occurs when the
modeller translates the idealised real-world problem into the mathematical world.

27.3 The Study

The research reported here is part of a four-yearTeacher as LearnerResearch (TALR)
project with one primary school in Australia. It focused on the development ofmath-
ematical content knowledge and pedagogical content knowledge by the teachers,
and hence classroom practices to enhance student learning through teacher and
student noticing. Key aspects of the project include productive teacher noticing and
reflection, with an emphasis on students’ mathematical reasoning and their collab-
oration to solve challenging tasks. This task reported here occurred in the fourth
year of the project; hence, teachers had participated in many such demonstration
lessons previously. The following research questions, related to the implementation
of a modelling task, were the focus of the study reported here. RQ1: What devel-
oping conceptions of teacher noticing did this professional learning elicit? RQ2:
What developing conceptions of modeller noticing did the modelling activity elicit
in novice modellers?

27.3.1 Participants and Procedures

Sixty-twoYear 3/4 students, aged 7–9 years old,worked on amodelling task observed
by 13 teachers. The Packing Task was implemented during a 1-h class taught by the
researcher. Students were asked to work with a partner, make a plan, then solve the
task, and to keep a record of their mathematical thinking. To support teacher noticing
during lesson observations, teachers used a researcher-designed recording sheet to
focus on key mathematical ideas and language and what the students did and what
the teacher (i.e. researcher) did. To focus on particular student pairs, the back of
the recording sheet asked teachers to pay particular attention to the progress of three
pairs throughout the lesson. Teachers were encouraged to ask students to clarify their
thinking or approach to the task.
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The Packing Task

How many rolls of
paper are in one
layer/box?

How many rolls of toilet
paper are in the boxes?

The boxes are transported in this truck

How many boxes will fit in the truck?
How many rolls of toilet paper is this?

When the task was implemented, students had limited formal school mathematics
experiences with area and volume. They had some notions of area as covering, filling
space, and hadworkedwith arrays extensively. Studentsworked in self-selected pairs.
Year 4 studentswere expected to havemoremathematical knowledge and experiences
of the notion of packing than Year 3 students, although still limited. The task was
designed to include in-task scaffolding. Specifically, the parts focused on a single
layer, the box, a vertical layer of boxes, and contents of the truck. The first step is to
understand the situation, that is, that rolls and boxes are arranged in equal rows and
in layers. The main requirement of the task is to translate between the mathematical
world and the real world, specifically to determine how many boxes can fit in the
truck. The dimensions of the boxes and the way they were packed relative to the
dimensions of the truck had to be noticed and accounted for.

27.3.2 Data Sources and Analysis

Students’ approaches to solving The Packing Task and teacher written reflections
on these (both in-the-moment and at end of the day) were analysed. Data used to
inform the qualitative analysis include student scripts, teacher observations during
the lesson, reflection following post lesson discussion involving all teachers and the
researcher, photographs of student scripts taken over the duration of task solution
and the researcher’s field notes. Thematic analysis (Guest et al. 2012) was conducted
following coding of data to focus on what teachers and students noticed and acted
on.
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27.4 Findings

27.4.1 Teacher Noticing and Irrelevancies

Four themes emerged in the teacher observations. These related to teacher noticing
with respect to irrelevancies, pre-mathematisation, mathematisation, and diagram
use.

Noticing Irrelevancies. Irrelevancies such as colour or patterns on the wrapping
paper need to be filtered out. Some pairs noticed and captured realistic aspects of the
wrapped toilet roll pictorially (e.g. wrapping paper pushed into central cylinder and
extending beyond the roll, see Fig. 27.1a). This did not necessarily hinder subsequent
idealisation and mathematisation, but tended to be time consuming, thus reducing
time to focus on task solution. Pair 25 used a careful pictorial representation to
represent the initial situation recording irrelevancies and the truck (Fig. 27.1b, c),
leaving no time for them to complete the last part of the task.

In thefirst part of the task, several teachers noticed students recording or discussing
irrelevancies, for example, Teacher 12’s [T12] observation of Pair 20 included, ‘I see
rows’ and ‘noticing patterns in colours etc.’. These students clearly saw the former
as essential (they identified three rolls under the flap) and dismissed the latter as
irrelevant but did not record this noticing. Teacher 17 noted that Pair 13 initially
attended to colour, and Teacher 18 noticed Pair 23 suggested it was ice-cream in
the box as well as attended to colour. When Pair 13 was trying to determine what
proportion of the rolls the flap covered, T17 noticed this and recorded, ‘students need
hands onmaterial to challenge ideas’ however, she did not draw the students’ attention
to any of the available materials nearby. In contrast, Teacher 8 distinguished between
essential aspects and irrelevancies, recording her general observations, ‘Noticing the
patterns on the paper – irrelevant. Some noticed a hidden roll.’ Teacher 8 noticed
that Pair 1, ‘thought there could be 0 or 3 behind the cardboard flap’ which clearly
related to their assumption the box was full. She also noticed this pair’s unrealistic
consideration ofmini-rolls under theflap. Furthermore, she noted that Pair 8, although
not initially recognising the objects in the box, could visualise there were 12.

Noticing with respect to Pre-mathematisation. When Teacher 16 noticed Pair 6
struggling with pre-mathematisation when trying to identify the number of rolls in
the box, specifically the importance of the number of layers, she acted. ‘They weren’t

cba

Fig. 27.1 Student focus on irrelevancies, a the roll, b the box, c the truck
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drawing so I suggested they use unifix’. After seeing them create two layers of nine,
she directed them to the photograph of the box to see ‘if [their construction of unifix]
looked like the picture’. In fact, one of the pair then closely observed the actual
closed box that was in the room. Although Teacher 16 clearly noticed the students
had not recognised the significant feature that all layers had the same number of rolls,
it is unclear if her approach explicitly drew their attention to the lack of connection
between their identification of 12 rolls in the top layers and their concrete model with
nine. Similarly, when Teacher 17 noticed that Pair 13 had identified the number of
layers of rolls in the box as being significant, but were unable to determine what this
number was, she suggested they ‘go to the box’ which they did and returned having
identified there were four layers. Teacher 12 noticed Pair 20 also initially did not
recognise this essential element. There is no evidence of her acting on this, although
the pair did ‘re-establish 12 as important’ according to her notes.

When the focuswas onpacking the truck, Teacher 2 noticed that Pair 10 partitioned
both side and back view of the truck into a four by four array, ‘with no discussion
as to why they did this’ and furthermore ‘added 16 + 16 to get 32’ boxes in the
truck. There is no evidence, this teacher probed or challenged the pairs’ noticing.
Teacher 16 noticed Pair 30 ‘working out the width and height of the toilet paper and
trying to relate this to the size of the truck’. They recorded ‘toilet paper = 12 cm
long, 10 cm tall. Box = 36 cm width 40 cm tall’. Clearly, the pair was incorrectly
assuming the rolls were oriented sideways, which conflicts with the photographs.
Based on this, they identified two dimensions of the box. They later recorded 48
but there is no evidence where this came from or what it represented. Had Teacher
16 questioned their pre-mathematisation, they would have had an opportunity to
recognise the diameter of the roll determined two dimensions of the box. This may
have also led to their recognising their incorrect orientation of the rolls. Teacher 5
recorded his noticing of their inability to determine dimensions of the box based on
the roll but no actions of his own to intervene to support resolving this.

Noticing with respect to Mathematisation. Other teachers noticed other difficul-
ties as students mathematised the situation related to filling the box. Teacher 7, for
example, noticed that although Pair 14 had identified ‘the top layer had 12…and
decided 4 rolls would fit vertically [the] total rolls would be 16’. She noted, ‘when
probed he said it was by counting by 4s’. Teacher 14 also noticed their mathemati-
sation was actually of ‘4 toilet rolls vertical and 4 going across so he did 4 × 4 =
16, 16 rolls.’ Neither teacher intervened sufficiently for the pair to recognise their
mathematisation was flawed.

Noticing with respect to Diagrams. Several teachers noticed student difficulties
with drawing diagrams, or not considering a diagram would be helpful to represent
and / or solve the problem. Teacher 16 noted Pair 2 were ‘struggling to draw what’s
under’, that is to represent the 3D box of rolls. When she noticed Pair 6 not drawing,
she recommended the use of concrete materials. There is no evidence she made the
same suggestion, or any other, to Pair 6. Teacher 12 noticed that this pair ‘did not
understand that diagrams do not have to be the exact labelled measurements’. There
was no evidence that any teacher supported student noticing that a diagram may be
helpful in representing or solving the task.
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a b

Fig. 27.2 Challenges representing the 3D situation a attempted 3D representation, b separate layers

Teacher 2 noticed Pair 10 struggled to represent the 3D box containing the rolls.
In this instance, the students also noticed this and recorded their error, ‘First, I did
4 layers then I started doing five layers’ (Fig. 27.2a). Pair 10 did not continue their
diagram but were successful in identifying 48 rolls in the box. There is no evidence of
interaction betweenTeacher 2 and this pair. Pair 7 [no teacher observations] overcame
the same challenge by representing the four layers side-by-side (Fig. 27.2b).

In conclusion, the four themes in the teacher observations are related to noticing
with respect to irrelevancies, pre-mathematisation, mathematisation, and diagram
use. Articulating observations can be an important part for a learner then recog-
nising they are irrelevant. It is only when such articulations are time consuming and
distracting students from the task at hand that a teacher should intervene—however
this requires the teacher to also recognise the irrelevancies. When noticing that,
for example, available concrete materials, or drawing a diagram, would support a
particular student approach, teachers need to act to encourage students to notice and
utilise such support. Furthermore, teachers should notice that somematerials aremore
helpful than others. Similarly, teachers should challenge student thinking when unre-
alistic ideas are proposed, or there is a disconnect between student representations
(concrete or diagrammatic) and reality.

27.4.2 Student Noticing

27.4.2.1 Number of Rolls Per Layer

When considering how many rolls in the top layer, only Pair 1 recorded evidence of
making assumptions as they discussed and recorded ‘0 or 3’ hidden and so ‘maybe
9’ or ‘maybe 12’ in the top layer. Eventually they decided on 12 having explicitly
considered and then assumed the box was full. The remaining pairs just took it for
granted the box, and hence top layer was full (e.g. Pair 5: ‘if we open it [the flap]
we will see three more’) and there was space for one additional row (e.g. Pair 21: ‘it
would only fit 1 more row’).
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All except Pair 3 recognised—not necessarily immediately—the essential feature
that there must be the same number of rolls in each row (Pair 2: ‘It’s going by 3’s’),
and hence a total of 12 in the layer. Pair 3, whilst considering some rolls were hidden,
could not agree if there were two or four hidden, failing to notice that each row had
the same number of rolls.

When identifying the number of rolls in the top layer, there was little written
recording of mathematisations. Only six pairs explicitly recorded their mathemati-
sation, with two of these recording two alternative mathematisations using multipli-
cation (Pair 31: 3 × 4 = 12, 4 × 3 = 12) and repeated addition (Pair 21: 3 + 3 +
3 + 3 = 12, 4 + 4 + 4 = 12). A third approach was repeated doubling (i.e. 3 +
3 = 6, 6 + 6 = 12). Another five pairs recorded a counting strategy (counting by
threes or fours, counting on from nine, or counting all). Eighteen pairs recorded no
mathematisation, clearly some of these ‘saw 12’ and had no need for mathematising.

27.4.2.2 The Box

Pair 26, for example, explicitly considered if the boxwas full or not, and then assumed
it was full. They recorded, ‘I counted by 12. So, if I was to fill the whole box it will
be 48’. Of the 28 pairs who correctly identified 48 rolls in the box, 17 recorded their
mathematisation. Fifteen of these focused on four layers of 12 although six of these
used a doubling approach focusing on two layers and then four. The remaining two
pairs mathematised beginning with the rolls in the additional three layers (3× 12=
36, 12 + 36 = 48). All of these 28 pairs noticed the need to ascertain the number of
layers, and that each layer held the same number of rolls. The remaining three pairs
did not notice the importance of the number of layers.

27.4.2.3 The Stack

When considering the stack of boxes, several pairs explicitly considered if there were
hidden vertical layers behind the clearly visible one. For example, Pair 13 made
the assumption, ‘there are no boxes behind’. Two pairs made general statements
indicating they considered the possibility, with Pair 2 noting, ‘there might be more
behind’ and Pair 4, ‘maybe there’s more behind’. Teacher observation indicated at
least three other pairs also considered if there were hidden boxes (pairs 11, 21, 26).
Teacher 3 recorded Pair 11 as saying, ‘there might be more than 12 [boxes]. Can’t see
behind’. Only one pair explicitly recorded their assumption of four vertical layers,
noting ‘behind there are three layers’ (Pair 22).

From either themathematisation or the result, four pairs proceeded on the assump-
tion of multiple vertical layers. Three pairs correctly identified there would be 2304
rolls if there were four vertical layers of boxes. Pair 11, reported to Teacher 3, ‘we
did 48 rolls× 48 boxes’ however, Pair 11 later erased their result of 2304 and wrote
576, in neither instance recording their mathematisation. Only Pair 22 recorded their
mathematisation, ‘48× 48= 2304’. Pair 16 assumed there were two vertical layers,
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as evident from their mathematisation, ‘we added 48, 24 times’ although their result
for this mathematisation of 1152, was incorrect.

Of the 19 pairs assuming a single vertical layer, 13 successfully noted 576 rolls as
being in the 12 boxes. Only eight of these correctly recorded their mathematisation
(e.g. 12 × 48 = 576). A further four pairs correctly mathematised the problem but
were unsuccessful in their calculation. The other two pairs incorrectly mathema-
tised the problem. Seven pairs provided no evidence of a calculation and two others
recorded unclear calculations.

27.4.2.4 Packing the Truck

When considering packing the truck, pre-mathematisation was problematic. Ten
pairs focused on the dimensions of one or more of the roll, box, and truck. Pair 18
recognised the need to coordinate these but was unsuccessful in doing so. They did
not recognise all three dimensions of the box were essential, not just the height of
40 cmwhich they used in their mathematisation to identify five layers of boxes, seven
high, nor did they notice that the packing was 3D. Four pairs attempted to coordinate
the dimensions of the roll and box, but only Pair 26 successfully mathematised all
three dimensions of the box. Pairs 1 and 20 successfullymathematised one dimension
of the box. Whilst Pair 30 appeared to consider all three dimensions, they failed to
notice the orientation of the roll relative to the box. Three pairs merely focused on the
roll and two others just on the truck. Pair 21 ignored the box as they unsuccessfully
attempted to coordinate the roll dimensions with the truck.

Eight pairs focussed directly on packing the truck, ignoring the importance of the
dimensions of any elements.1 Four of these recognised the 3D nature of the packing
and attended to both side and back views. Twopairs partitioned the truck as having the
same number of layers left and back view and had the correct orientation of the box.
Pair 10 (Fig. 27.3a) drew on the truck (picture supplied) showing four layers of boxes
whilst Pair 16 had three layers and added ‘48’ to each box. Although recognising
the number of layers must remain the same, irrespective of the view, neither showed
any other measurement sense or other evidence in determining the number of layers.
Both pairs stated the number of boxes as being those visible not recognising the need

a b

Fig. 27.3 Packing the truck with boxes a layers coordinated, b layers not coordinated

1Given roll dimensions, reasonable dimensions for a box were 36 by 48 by 40 cm high, for tight
packing. Truck held 5 layers each layer 9 by 8 or 12 by 6 depending on box orientation.
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to account for hidden boxes. The other two pairs were unable to coordinate the back
and side views of the truck. Pair 8 (Fig. 27.3b) represented the left view having three
layers, whilst the back view has four layers. Similarly, Pair 28 represented the left
view having three layers (of 7), and the back view as five layers (of 4). Neither of
these pairs recorded a result, or any calculation, for the total number of boxes. Three
other pairs only accounted for one viewwhen packing the truck. Pair 27, ignoring the
boxes, attempted to determine directly how many rolls would pack into the truck. Of
the remaining pairs, two focussed on irrelevancies, with Pair 11 drawing the roll and
Pair 25 the truck, four pairs reported a number (24, 192, or 216) with no reasoning
or mathematisation recorded. Eight pairs did not respond to the problem.

27.5 Discussion and Conclusion

In this study, some teachers did carefully draw some students’ attention to their
lack of productive noticing, but in many situations, this did not occur. Teachers
need to notice when students are having difficulties mathematising and intervene,
for example, asking students to specify what the problem they are attempting is,
or how they anticipate their current actions will allow progress towards a solution.
Importantly, teachers should be “monitoring and observing student decision making
during modelling” (Galbraith et al. 2017, p. 85) discerning the relevance of what
has been noticed. When significant features, for example, had not been noticed,
teachers should ask students what they noticed, question if these were relevant, and,
if relevant, if essential, that is, significant to what is being solved. These questions
are appropriate across myriad tasks.

Post-task discussion allowed teacher observations to be shared and discussed.
This appeared invaluable, in-the-moment. In a non-research situation, the value of
teachers first solving such tasks cannot be underestimated, as this provides addi-
tional opportunities for productive Modelling Orientated Noticing (Galbraith et al.
2017) to focus on identifying assumptions, recognising key features, and opportuni-
ties for decision making (Jankvist and Niss 2020) in both pre-mathematisation and
mathematisation. Cooperative planning provides critical opportunities for teachers
to notice essential features themselves and plan appropriate teacher responses to
instances where students do not attend to these (Stender and Kaiser 2015).

With regard to the students’ developing conceptions of noticing, all students recog-
nised that modelling involves decision making. Furthermore, they appreciated the
necessity to make sense of the real-world context. In each part of The Packing Task,
at least some pairs identified all the significant features. In the early parts of the task,
almost all pairs did so. In the final, most challenging part of the task, student identifi-
cation of all significant features was lower with most noticing only some significant
features. Students who identified all significant features were unable to coordinate
these in-the-moment to solve the task. Few students were identified as having explic-
itly made assumptions, although it can be inferred from scripts or observations that
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other pairs had done so, but this was not deemed as important enough by the students
to record. Most pairs took it for granted the boxes and truck were full.

Clearly tasks such asThePacking Task address three of the “five overarching peda-
gogical meta-practices [for the primary years, namely] development of a productive
disposition, emphasis on mathematical modelling, use of cognitively challenging
tasks” (Dooley 2019, p. 3). The task addressed the call of English (2010, p. 295) to
allow primary students to deal with a complex situation and allowed “for a diver-
sity of solution approaches and enable[d] [all students] to participate in, and benefit
from [the] experience”. With experience, students’ conceptions of modeller noticing
will continue to evolve. The role of the teacher in developing these conceptions is
critical. In order for student modellers to recognise the importance of assumptions,
their teachers must also do so. As teacher noticing develops, teachers are better able
to support student noticing, as teacher questioning is more likely to draw students’
attention to productive noticing of what the teacher has also noticed.
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Chapter 28
Modelling and Mobile Learning
with Math Trails

Nils Buchholtz

Abstract The chapter provides an orientation on the concept of mobile learning and
how it can be pursued with mobile math trails. Math trails contain tasks that promote
essential elements of mathematical modelling, such as mathematising. Research
shows that, nowadays, math trails are more andmore supported by digital media, and
that this affects students’ motivation and achievements. The chapter collects existing
findings on mobile learning with math trails and expands the findings with the results
of a study on digital support of the modelling processes of 11th graders when doing
math trails.

Keywords Math trails ·Mobile learning · Itinerary method ·Mathematisation ·
Math & The City · Actionbound

28.1 Introduction

Math trails emphasise an extracurricular and playful approach to learning essential
aspects of mathematical modelling, especially mathematising (Buchholtz 2017). In
a math trail or a mathematical city walk, students work collaboratively on modelling
tasks related to real objects in the school’s or city’s surroundings, moving outdoors
from site to site, like in a rally (Blane and Clarke 1984; Shoaf et al. 2004). The tasks
in math trails include estimating and measuring variables, setting relevant sizes up
in mathematical models, and calculating and comparing sizes, areas, and volumes
(Buchholtz 2017).

Math trails, in this form, have existed since the 1980s as an out-of-school leisure
activity for families and persons interested in mathematics (Blane and Clarke 1984;
Kaur 1990). The mathematical content in math trails can range from primary to
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secondary level mathematics, as can the complexity and difficulty of the selected
tasks. Although not a new idea, math trails have recently gained more attention
in mathematics education research. Nowadays, math trails are included in school
curricula and can be enhanced by the use ofmobile technologies, such as smartphones
and tablet PCs (Cahyono 2018; Fessakis et al. 2018; Ludwig and Jesberg 2015;Wijers
et al. 2010). Digital tools, such as geolocation apps, response systems, sensors,
dynamic geometry systems, and augmented reality applications, can be used on
math trails to support the task-solving process (Buchholtz et al. 2019; Bokhove et al.
2018; Roschelle 2003). An additional advantage lies in the ability to adapt the trails
to the students’ learning requirements (e.g. including support videos or additional
information) (Buchholtz et al. 2019).

In recent discussions on the use of digital media in education, these functions are
often associated with mobile learning (Frohberg et al. 2009), a special form of e-
learning that places emphasis on extra-curricular and informal learning with mobile
devices, such as the type of learning facilitated by math trails (see Sect. 28.2.1). The
question arises: towhat extent canmath trails enhancemobile learning, andwhat does
mobile learning with math trails look like? Research findings on students’ learning
outcomes with regard to math trails are scarce, partially because math trails were
originally invented as a leisure activity for people interested in mathematics (Shoaf
et al. 2004) and have not yet been the subject of systematic mathematics education
research. This chapter intends to contribute to filling this research gap by providing
a collection of research findings on the use of mobile devices in math trails and by
presenting findings from the projectMath & The City (Buchholtz 2020), where math
trails are used to give students their first experiences with modelling. It is, therefore,
particularly interesting to see how digital devices are used by students to process the
tasks.

28.2 Mobile Learning with Math Trails

28.2.1 Mobile Learning

Mobile learning is a comparatively young field in educational research. Earlier defi-
nitions of mobile learning included the involvement of mobile devices in the learning
process and the physical mobility of the learners as central and necessary charac-
teristics of this educational concept (O’Malley et al. 2005). More recent definitions
of mobile learning highlight the importance of the personalisation of the learning
content and its context-relatedness (de Witt 2013; Frohberg 2008; Frohberg et al.
2009). Thus, the notion ofmobile learning is increasingly overcoming the boundaries
between formal and informal learning contexts. Context-relatedness here means that
the place and the situation in which the learning takes place, as well as the people
with whom the learner studies (context of being), are utilized and have a signif-
icant relevance to the learning environment (context of learning) (Frohberg et al.
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2009). Examples include digital museum guides or digitally enhanced expeditions
in nature, such as app-based birdwatching. Math trails are well suited as prototypes
of educational settings for mobile learning.

The context-relatedness can be acknowledged in both ways. The physical context
of the learning environment has a clear relation to the learning content and co-
determines it (Frohberg 2008). To solve the given modelling problems, the students
need to explore the real objects and their characteristics on themath trail and take rele-
vant measures or use mathematics to determine sizes that are not directly accessible
(e.g. for tall buildings). In addition, the social context can be acknowledged by the
collaborative learning element, in which situations, relationships and emotions can
be linked with the learning experience in the environment (Frohberg 2008). Mobile
end devices, with their location-independence, are ideal for extra-curricular learning
environments and mediate between the physical and the social context, for example,
when multimedia and interactive apps are used (Buchholtz et al. 2019). Math trails
that are supported by digital media can contain elements of participation and gamifi-
cation (Gurjanow and Ludwig 2017), meaning that the students take an active role in
the learning process while working with the digital device. Furthermore, the learning
is supported by technology in such a way that students get immediate feedback on
their calculations after entering their results in the mobile device. Different apps
can be used for designing math trails (e.g. www.actionbound.com, www.mathcitym
ap.eu or www.google.com/maps). Actionbound, which is used in the Math & The
City project, is an app developed specifically for the field of media education for the
creation of digital learning paths.

28.2.2 Mobile Math Trails

If an app-based learning path sequences several mathematical tasks, and geo-
coordinates link them to different locations, we consider this a mobile math trail.
Mobile math trails consist of tasks with respective sub-tasks composed of different
mathematical concepts or different steps in the modelling process. The tasks are
designed to ensure that the students have to carry out concrete measurements and
identify required quantities of the real objects autonomously in groups (Fessakis et al.
2018; Ludwig and Jesberg 2015). The tasks vary in the degree to which assumptions
must be made and are therefore particularly suitable for learning individual elements
of the modelling process. They process mathematising by a meaningful assignment
of determined or estimated variables into a mathematical model (Buchholtz 2017).
All solutions to the tasks must be entered in the app, which provides immediate feed-
back on whether the solution was correct or incorrect. Figure 28.1 shows an example
of a task that is part of an Actionbound-based math trail in Oslo.

The task requires the calculation of the volume of the water in a well-known Oslo
fountain. It is embedded in the context that the fountain has to be filled with water
every spring, because winters in Oslo are very long and have very low temperatures.
Therefore, the city council needs to know the volume of water to be filled. The

http://www.actionbound.com
http://www.mathcitymap.eu
http://www.google.com/maps
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Fig. 28.1 The Påfugl fountain task on volume calculation

students have to consider how to determine the volume of water in the cylindrical
fountain, as the diameter of the basin (7.6m) is not accessible and therefore cannot be
measured. As such, it must be determined by means of an appropriate mathematisa-
tion using the circumference of the fountain (24 m). For example, students could use
footsteps as a non-standard unit and walk around the fountain, counting the number
of steps, and afterwards multiply the length of a footstep accordingly. An additional
sub-task in which the necessary steps of mathematisation have to be arranged to get
from the circumference to the surface area serves as a scaffold in the digital medium,
providing aid for the necessary steps in solving the task (Fig. 28.1, right side). Care
must be taken to measure the stones on the inner edge of the fountain; otherwise,
the results will vary considerably. With the corresponding water level of the fountain
(0.36 m), the approximate volume of the water (16.5 m3) can then be determined.

When creating a mobile math trail, the geo-coordinates of the tasks must be fixed
so that the app can guide the students via the geo-localisation of the mobile device.
In Actionbound, not only can tasks be displayed in text form, but the integration of
external links, images, videos and audio recordings is also supported. It is easy to
add explanatory videos, an interesting article or a mathematical sketch with relevant
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sizes, depending on which degree of difficulty is chosen for the modelling tasks and
which forms of support are to be offered. In this manner, the tasks in the mobile
math trails can be adjusted to the respective needs of the learning group, which
creates added value over merely presenting the tasks in the paper and pencil format
(Buchholtz et al. 2019).

28.2.3 Recent Research Findings on Mobile Math Trails

The research group aroundMatthias Ludwig develops a network ofmath trails around
the world using the app MathCityMap (Ludwig and Jesberg 2015). Gurjanow and
Ludwig (2017) investigated the influence of gamification elements on the motiva-
tion of German students. They examined whether the implementation of a reward
system and a ranking in the mobile math trails positively influenced the intrinsic
motivation of 25 participating students. They found that the reward system had no
influence on the intrinsic motivation of the students, whereas the ranking system had
a positive influence on intrinsic motivation, especially among male students. Other
studies found effects of mobile math trails on students’ achievement as well. In an
explorative case study of four students in Greece, Fessakis et al. (2018) revealed that
the digital map they used in their study (Google Maps) provided easier navigation
and information on the communication and cooperation between different groups
of students (Fessakis et al. 2018). In most cases, research on mobile math trails is
concerned with their impact on student motivation or achievement, not so much with
students’ mobile learning while doing the math trail.

28.3 Findings from the Project Math & The City

28.3.1 Research Design and Approach

To analyse student’s mobile learning on math trails, what happens during the trail,
and how the mobile device is involved in the modelling process are of foremost
interest. In this case, this means observing the students’ interactions with the real
objects connected to the different tasks on the trail, their use of the mobile device
during the math trail, and their contextual modelling processes and strategies when
estimating and taking measures.

Exploratory qualitative research methods are used in the Math & The City
project to analyse students’ mobile learning. The method of itinerary (Méthode des
Itinéraires) was originally invented in sociology to collect and describe the subjec-
tive views of pedestrians in order to draw conclusions about city planning (Miaux
et al. 2010; Petiteau and Pasquier 2001). Central to this method are city walks during
which the researcher takes a passive role, guided by the participants, and interviews
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and records audio of the participants while a photographer walks behind and takes
pictures at each change in direction or emotional change. The method is adapted
here for the mobile math trails in order to gather information about the subjective
use of mobile devices when working with tasks, which is a good indicator for mobile
learning. Central to this adaptation is the video-recording produced by an action
camera that the students wear on their body. In this way, the observation remains
minimally invasive (for further details: Buchholtz 2020).

For the project, two math trails were developed in downtown Oslo. One math trail
consists of five tasks on the topic of circle calculation (among them, the task from
Fig. 28.1); another focuses on the topic of linear functions. After piloting the trails in
summer 2019 (Buchholtz 2020), the trails were carried out with two school classes
(11th grade) and their mathematics teachers in autumn 2019. For each math trail,
five groups of three students were equipped with action cameras, a tape measure and
an iPad on which the app was installed. In addition, the students were allowed to use
their own smartphones, and they were responsible for recording the process at the
individual stations of the math trail. All the necessary declarations of consent were
obtained before the data collection, and the study was approved by the Norwegian
data protection authority (NSD). The data evaluation is based on the qualitative
content analysis (Mayring 2014). The data are still subject to evaluation, but in this
chapter, the first results from the video recordings are presented.

28.3.2 Findings on Students’ Mobile Learning When
Modelling

In the recordings, we identified different phases of the modelling processes where
the mobile device supported or scaffolded the activities of the students.

When following the math trail, the app guided the path from task to task. The app
presented the tasks as soon as a location had been found. The students then had to
understand the tasks on the iPad. The quantities that were relevant for the tasks were
localised in the real object by shifting the attention between the digital presentation
of the task (e.g. photo, sketch, text or video) and the respective object properties (see
Fig. 28.2), often associated with deictic gestures. The students then made context-
related assumptions about or simplifications of the real model (for example, if the
form of the real objects differed from ideal mathematical forms that were presented).
When working with the Påfugl fountain task, they discussed where and how to take
the relevant measurements. Then, suitable methods of data retrieval were found (see
Fig. 28.3). When mathematising, the students used their smartphones to take notes
or look up relevant formulas (see Fig. 28.4).

The students also processed the task using their smartphones as calculators
(Fig. 28.5). It was also possible for students to take a photo of the object or make an
audio recording with their iPads and then upload the work in the app; for example,
parts of the real objects that were relevant for the calculation or that had to be
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Fig. 28.2 Students try to locate the task in the properties of the fountain

Fig. 28.3 Students take measures of the water height with the measuring tape

Fig. 28.4 Students looked up a formula to calculate the radius from the circumference
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Fig. 28.5 Students used their smartphones as calculators and entered results into the app

compared in the tasks could be documented. The students could also upload sketches
and calculations that they made on paper or on their smartphones as they worked
with the tasks.

The entered results were automatically validated by the appwith solution intervals
or programmed correct responses so that the mobile device could give immediate
automated feedback. The app then provided pre-programmed assistance in case of
incorrect answers, and the students could use the feedback to look for errors in their
solution strategy, their estimates or their measurements. If the solution was entered
correctly, the app rated the result with points and sent the students to the next task.

28.4 Discussion

In contrast to regular modelling tasks in class, the contextualisation offered by the
real objects seems to play a special role on math trails. In order to accomplish the
tasks, students had to measure, scale, count, or estimate quantities and place them
into a correct mathematical relation or reconstruct or calculate relevant but inacces-
sible quantities from measured quantities—the actual mathematising. Perhaps most
importantly, the groupswere able to directly validate themathematical results against
the real objects. Overall, we could identify three important areas where the mobile
device supported the students’ modelling processes: first, in task presentation and
contextual support (variety of approaches to the task); second, as a technical aid
in task processing and mathematisation (research tool and computer function); and
third, in providing immediate feedback that motivated the students to find errors and
validate their solutions. These findings show first insights into the use of mobile
devices for modelling and math trails in general. A more systematic review of scien-
tific findings on this topic should take place in the next few years because there is
great potential for the use of mobile devices.
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Mobile math trails enable educators to combine texts, images and animations, as
well as audio recordings, construction plans, floor plans, or even technical drawings
when designing modelling tasks, thus offering the students a differentiated access
to mathematical concepts and an opportunity to relate the mathematics involved to
different realistic contexts. Using different (and even dynamic) representations in
task formulations can strengthen the networking between mathematical concepts.
The possibility of additional “augmented reality” content—for example, in addi-
tional explanation videos—opens up possibilities of variation in task access and
simultaneity of representations, thus linking the different levels of representations
together.
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Chapter 29
Modelling in School Mathematics: Past
Achievements—Current Challenges

Hugh Burkhardt

Abstract This chapter describes my 55 years of learning about teaching modelling,
from initial explorations through a sequence ofmodelling projects at the Shell Centre.
After introducing some core concepts, the chapter focuses on the design strategies and
tactics that were learned in each project, including roles for technology. A discussion
of specific design issues in teaching modelling leads into asking why improvements
are so difficult to achieve on a large scale. Elements of a way forward are outlined.

Keywords Modelling · Tasks · Roles ·Microworlds · Change · Assessment

29.1 Introduction

TheShell Centre forMathematical Educationwas created in 1967 by themathematics
professors at the University of Nottingham, Heini Halberstam and George Hall—
himself a pioneer in teaching modelling. Initially, a professional development centre,
when I joined as director in 1976 we decided it should focus on research-linked
development of materials to improve the teaching and learning of mathematics. This
chapter describes this ‘engineering research’ (Burkhardt 2006) approach to teaching
modelling at the Shell Centre since then.

To begin, I will clarify some assumptions that run throughout the chapter.

29.1.1 Models and Modelling

First the distinction in Fig. 29.1 between learned models, illustrating how mathe-
matics has been used to understand real world situations and active modelling by
students.
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Illustrative applications Active modelling

Reinforce a topic through applications Choose and use your mathematical tools

Mathematical 
topic focus

Real situation 
focus

Fig. 29.1 Different purposes with different priorities

These activities are complementary—a knowledge of existing models of a wide
range of practical situations is essential for creating models of situations that seem
in some way similar. But it is far from enough to enable active modelling. Here, I
shall be concentrate on active modelling by students of all ages, choosing and using
tools from their mathematical toolkit to better understand practical situations, and
how we can develop these capabilities in mathematics classrooms.

29.1.2 The Central Role of the Task

We believe that the tasks that students work on should provide opportunities for:

1. Using good mathematics, however simple.
2. Cognitive demand that requires ‘productive struggle’—thinking not just

imitating.
3. Equity so that all students should be able to engage with the task.
4. Agency—for students to feel the solution is their own, not the teacher’s.
5. Feedback in the classroom—formative assessment that forwards learning.

More broadly, these are the five features of powerful classrooms (TRU) set out by
Alan Schoenfeld, based on a series of research and development studies (Schoenfeld
et al. 2016).

Figure 29.2 shows two modelling tasks that potentially have all these attributes
and work well in classrooms. Airplane turn-round is a simple task that can be used
to show students (and adults) what modelling is about. Presented with this problem
in a mathematics classroom, students just add the numbers—“that’s what you do
in maths”. When the teacher then asks “Is there any way you could do the turn-
round more quickly?” students recognize that this is a different game where their life
experience, common sense and imagination are needed.

Cats and Kittens is a richer and more complex task where strategy is the main
challenge.
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Fig. 29.2 Two modelling tasks

29.1.2.1 Types of Task

We have found it useful (Burkhardt and Swan 2017) to introduce students to a variety
of types of modelling task, notably those which ask students to:

• Plan and organize Find a good solution, subject to constraints.
• Design and make Design an artefact or procedure and test it.
• Model and explain Invent models to explain the situation, make reasoned

estimates.
• Explore and discover Find relationships, make predictions.
• Interpret and translate Deduce insights, translate representations.
• Evaluate and improve an argument, a plan or an artefact.

Since all these can make you more effective in facing life’s challenges, a rich
modelling curriculum should bring all of them in from time to time.

29.1.2.2 How Realistic Should the Tasks Be?

It is clear that few tasks that are presented in the classroom by the teacher are
entirely realistic for the students’ life in the real world. I devised (Burkhardt 1981)
the following semi-serious classification:

A. Action problems affect students’ own lives—e.g. situations involving money
(What apps can I afford?) and risk (Should I worry about being killed by a
terrorist?).

B. Believable problems are those that might arise in the future and do concern
others—finance, risk, design, planning all come in here.

C. Curious problems are simply intriguing—Cats and Kittens, or the “Birthday
Party Problem”—with 22 people at a party it is likely that two have the same
birthday.
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D. Dubious problems are just there to practice maths—the real world situation is
purely cosmetic. “If it takes 5 men 7 hours to paint a fence, …”

E. Educational problems are fundamentally dubious but mathematically irre-
sistible—real world examples of exponential growth, Fibonacci series and the
Golden Ratio.

So to develop modelling capability in a way that is most valuable in later years,
we have found it appropriate in developing materials to focus largely on Believable
problems, with a sprinkling of the other types.

29.1.2.3 Task Difficulty

...is multi-dimensional. The difficulty of a task depends on various factors, notably
its complexity, unfamiliarity, technical demand and the length of the chain of
autonomous reasoning expected of the student.Wehave found it useful to distinguish:

• Expert tasks come in a form in which they might naturally arise; they involve
all four aspects, so must not be technically demanding—there is a “few year
gap” between the mathematical techniques that students can manage in imitative
exercises and those they can choose and use in tackling non-routine complex
problems. For problem solving, mathematical concepts and skills must be well
absorbed and connected to other concepts and other applications so their relevance
to the new context can be perceived.

• Apprentice tasks are expert tasks with scaffolding added. This reduces the
complexity and the student autonomy. Apprentice tasks provide an important
element in developing modelling skills—like climbing a mountain with a guide
to develop mountaineering skills.

• Novice tasks are short items with mainly technical demand, so can be “up to
grade”, including concepts and skills that have been taught and practised recently.

Thus each type of task has a different balance of sources of difficulty. This must be
taken into account in choosing tasks that provide ‘productive struggle’ for all students.
Thus, Airplane turn-round, where the technical demand is only simple addition, is
challenging to students through its strategic demand: deciding how to organize an
approach. Cats and Kittens requires students to devise a representation and a strategy
that will handle the inherent geometric growth, summed over successive generations.

29.1.3 55 Years of Learning How to Teach Modelling

I will begin the story of how we and others have gradually learned more about
teaching modelling with a very brief historical account, before turning to specific
design issues.
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29.1.4 Early Explorations—the 1960s

The unexpected launch by the Soviet Union of the first satellite led to soul-searching
in the USA: “The West is being left behind ….” The wave of ‘Post-Sputnik mathe-
matics reform’ that followed was led by mathematicians and scientists, whose views
on learning and teaching were intuitive rather than research based. Their core belief
was that teachers need to understand the mathematics more deeply, going back to
the foundations: set theory! In Birmingham from 1960 to 62, Peter Hilton and Brian
Griffiths set up weekly 3-hour lectures for high school teachers on fundamentals of
pure mathematics and how they relate to school arithmetic and algebra.

29.1.4.1 Personally

In 1962–64, almost by accident, I foundmyself facedwith a challenge. After a couple
of years, the organizer thought the topic should change to applied mathematics; my
head of department asked me to run the course. At that time, the mathematics in
the last two years of British schools included, along with algebra and calculus,
NewtonianMechanics of particles and rigid bodies in 2 dimensions—just as Newton
had designed it 300 years earlier! So, in the first year, I reviewed in some depth the
physics behind the highly stylized problems in the syllabus, like those in Fig. 29.3a.
These were based on 12 learned models, with no active modelling.

I became so frustrated with ‘perfectly light inextensible strings’ running over
‘perfectly smooth weightless pulleys’ that I decided to make the next year’s course
focus on modelling. It opened with a practical workshop ‘On falling off ladders’
that led the teachers to understand that, among the various instabilities, the ‘bottom
slipping away’ in Fig. 29.3a was the most dangerous—but only when someone is
climbing the ladder, which was not in the syllabus! I devised a version of the now-
standard modelling process diagram, shown in Fig. 29.3b. (Note how it handles
‘processes’ and ‘states’—an issue that persists to this day.)

I then started teachingmodelling in the sameway to undergraduateswith problems
like:

• ‘On owning a car’ What is the best age (of the car!) to buy, then to sell a used car,
so as to minimize the cost. The students were able to expose various myths.

• ‘On walking in the rain’ so as to keep as dry as possible. Should I run?How
fast?What if there is a wind?

29.1.4.2 Other Early Initiatives on Teaching Modelling

In England, Ron McLone and a few other ‘explorers’ in university mathematics
departments were experimenting with modelling in their courses. In the US Henry
Pollak, then Head of Mathematics and Statistics at ‘Bell Labs’, worked with various
efforts to introduce modelling in schools.
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a b

Fig. 29.3 a Stylized mechanics tasks, b Modelling diagram—1964

Special mention must be made of USMES: Unified Science and Mathematics
in Elementary Schools. Led by Earle Lomon, an MIT physicist, the team at the
Education Development Centre (EDC) developed a series of modules to support
6-week whole-class projects on practical topics including Classroom design, Orga-
nizing school lunch, Welcoming a newcomer to the community and Kids’ dessert
preferences—this one led some classes to develop factor analysis! Teacher support
was through ‘Teacher logs’, each written and illustrated by the team with a teacher
working on the project, and ‘How to cards’ describing useful techniques—practical,
scientific andmathematical.USMESwaswonderful for students but only outstanding
teachers could handle this extended open problem solving in a productive way. This
inspiredme later ‘tomakeUSMESaccessible to typical teachers’ in theShellCentre’s
Numeracy through Problem Solving project.
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29.1.5 The Development of the Modelling
Community—1970s and ’80 S

In the following decade, many other people joined the modelling enterprise, which
has gradually grown into the ICTMA community. I will mention only some key
examples here. Niss and Blum (2020) give a more comprehensive survey of the
development of modelling.

In the UK, George Hall in Nottingham developed a modelling course for under-
graduates. Chris Ormell in Norwich developed a modelling-based mathematics
course for humanities-focused high school students. David Burghes in Exeter
founded the Journal of Mathematical Modelling for Teachers. Ian Huntley in
Sheffield and Chris Haines in London were among the pioneers in the polytechnics,
leading the first large-scale implementation of modelling in mathematics courses—
and, for a long time, the only one. They were helped by an institutional factor.
While each university devises its own courses, the courses in polytechnics were then
approved by a central organization, CNAA. The CNAA mathematics panel decided
that there should be a modelling course in all three years of any mathematics degree.
Thus, modelling became institutionalized in a way that never happened in English
universities, where innovation is easy but tends to be evanescent.

In the USA, inspired by Henry Pollak, groups arose around Boston and else-
where. Sol Garfunkel began to develop COMAP from a university-focused collabo-
ration towards the diverse achievements that were later recognized with an ISDDE
Prize for Excellence in Design. Ed Silver, Richard Lesh and Helen Doerr developed
schools of modelling with rather different foci on the relationship betweenmodelling
and mathematics. Max Bell, another pioneer, made modelling and applications the
core of the UCSMP Everyday Mathematics curriculum, which is widely used in US
elementary schools to this day.

In Denmark, Mogens Niss recognized a potential role for modelling in mathe-
matics curricula as a student instructor in the 1960s, first in statistics then in microe-
conomics. In 1972, as the first mathematician at the new Roskilde University, where
he and his colleagues were designing all the courses ‘from scratch’, Mogens started
with a course on ‘mathematical model building’. Modelling grew and flourished on
that foundation, with Morten Bloemhoj and Thomas Jensen among the pioneers in
the ongoing work.

In Germany, Werner Blum was inspired by working with Henry Pollak on the
applications theme group for ICME-3 in Karslruhe, where Gabriele Kaiser became
involved. An early problem was on the design of the income tax system. Again the
group flourished with the work of Katja Maass, Rita Borromeo-Ferri and others.

In Australia, a strong strand of work on modelling grew through the work of Peter
Galbraith and Gloria Stillman. In South Australia, John Gaffney, Vern Treilibs, Jeff
Baxter and others developed modelling tasks for use in schools and in high-stakes
examinations. Treilibs, on a year visit to the Shell Centre, performed a study of the
formulation process that remains significant (Treilibs et al. 1980; Burkhardt 2017).
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In the Netherlands, the work at what became the Freudenthal Institute deserves
special mention. Led initially by Freudenthal and carried forward by Jan de Lange,
the team took a complementary approach to modelling, seeing it as a route to concept
development in mathematics through a process of successive abstraction and gener-
alization from concrete situations with the concept ‘hidden’ at the centre. Realistic
Mathematics Education was developed and later became the basis of Mathematics
in Context, the US middle school curriculum, and later developments in the UK.

29.1.6 ICTMAs

A key long-term event in this period was when, in 1983, David Burghes launched
the first International Conference on the Teaching of Modelling and Applications
in Exeter. The title of my paper in the book that followed (Berry et al. 1984) was
Modelling in the Classroom: How can we get it to happen?—a central concern still.
Exeter ’83 began the series of ICTMA conferences and publications leading to the
Hong Kong ICTMA-19. This turned the diverse work of many contributors into a
coherent community.

The other important connecting strand arose fromGabrieleKaiser’swork as editor
of ZDM Mathematics Education, in particular the special issues on modelling.

29.2 Developing Design-Focused R&D

My exploratory work on teaching modelling led to an invitation to move to
Nottingham in 1976 as director of the Shell Centre forMathematical Education, with
the immodest ‘brief’: “To work to improve the teaching and learning of mathematics
regionally, nationally and internationally”,. I decided that this required:

• Focus on direct impact on practice in classrooms
• Recognizing that ‘scale’ can only be achieved through reproducible materials
• An engineering style research and development approach, with practical products
• A focus on design: strategic, tactical, technical (of which more later)
• A central role for modelling—for student motivation and real world usefulness.

These principles have informed the sequence of linked design research and develop-
ment projects that have developed tools that support classroom teaching and learning,
assessment both formative and summative, teacher professional development and
systemic change.

The engineering research methodology we have developed, standard in other
applied fields, embodies: input from prior research and development (ours and
others’); imaginative design; and systematic iterative development through trials in
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increasingly realistic conditions, each revision based on rich and detailed feedback
from classroom observation.

I shall describe some of these projects in brief to bring out themore general design
principles that we developed, project by project.

29.2.1 Testing Strategic Skills (TSS 1980–85)

The strategic design (Burkhardt 2009) of this project set out to exploit the huge
influence of high-stakes examinations on teachers choices of learning activities for
their classrooms. WYTIWYG: what you test is what you get was obvious to teachers
(and to me) though not then accepted by examination providers. WYTIWYG is
now accepted as a fact though “tests worth teaching to” remain rare. Key features
of TSS were gradual year-by-year change, with specific integrated support for the
new area of learning. The first module was on non-routine problem solving tasks
in pure mathematics; modelling skills came in with the second year’s TSS module
on translation skills, The Language of Functions and Graphs (Swan et al. 1985)—
for which its lead designer, Malcolm Swan, was awarded the first annual prize for
excellence in designof ISDDE, the International Society forDesign andDevelopment
in Education (The ‘Eddie’).

The TSS design tactics were to:

• Introduce each year to the high-stakes examination one new task-type that is
important but currently not assessed

• Offer schools well-engineered materials that exemplify the new task type, support
the 3-weeks of new teaching involved, and in-school do-it-yourself professional
development

• Give schools two-year’s notice of the change, and remove content that involves
3-weeks teaching from the syllabus.

This approach was popular with teachers and students, whose performance in this
new area, not surprisingly, improved substantially.

We learnt from TSS the power of these broader design strategies:

• Gradual change Plan the pace of change to answer: How big a change can typical
teachers carry through successfully each year—given the support we can provide?

• WYTIWYG High-stakes examinations are powerful levers—for better or, usually,
for worse. So work to turn the exams into “exams worth teaching to”

• Alignment Avoid mixed signals. Harmonize and link: policy documents, exami-
nations, curriculum materials, and professional development

• Materials-based professional development This can increase the power of session-
based PD, offering the leaders a level of support they know most teachers need—
but they have never sought for themselves.

The tasks in Fig. 29.4 show the flavour of LFG.
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The Bus Stop Queue Which Sport?

Fig. 29.4 Tasks from The Language of Functions and Graphs

29.2.2 Numeracy Through Problem Solving(NTPS 1984–88)

Modelling is the focus of NTPS with the strategic design goal of making
teaching modelling accessible to typical mathematics teachers. The key tactical
design elements are:

• 3-week group projects tackling practical problems
• Activity sequences led by student booklets, supported by a teacher’s guide
• Ensuring final products from each group, evaluated by the class
• Assessment at three levels: Basic level during the project, with external exams

assessing transfer to closely similar situations (Standard level) and more distant
situations with similar structure (Extension level).

Five NTPS modules were developed on this basis (Shell Centre 1987–89):

• Design a board game—design, develop, construct, evaluate both board and rules.
• Produce a quiz show–create a TV style game show: choose the format, develop

fair questions, run it with the rest of the class as an audience that later chooses
the best show. Running the quizzes in real time is challenging for the teacher.

• Plan a trip– plan and carry through a class day-trip to another town.
• Be a paper engineer—design pop-up cards and boxes—develop skills and infer

geometric principles
• Be a shrewd chooser—work our how to make well-informed consumer decisions,

learn pitfalls, etc.
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Heads 
move 1 
space

Tails 
move 2 
spaces

Find 
design 
faults

From Design a Board Game From Be a Paper Engineer

Fig. 29.5 Tasks from Numeracy through Problem Solving

The print materials are available fromwww.mathshell.com. The tasks in Fig. 29.5,
from Board Game and Paper Engineer, give something of the ‘flavour’ of the work.

Each 3-week module is built on a sequence of four phases:

• Explore the domain—the materials supply examples for the students to analyse
and criticize to build their understanding of what is involved—that a board game
needs a board and a set of rules that makes for a competitive game that ends. For
example, the task Coin ‘Snakes and Ladders in Fig. 29.5 many weaknesses, some
easier to find than others. Students take delight in finding these faults.

• Design your product–this involves exchanging ideas within the group, then
converging on the principles of a design.

• Construct your product—this involves detailed design and construction.
• Evaluate—review and analyse the products from other groups, explaining your

choices and reasons for them.

The response in the trial schools was enthusiastic among teachers and students of all
levels of performance in mathematics—which did not always match their level on
the modules.

The project’s examinations were not part of the high-stakes system. So, in contrast
to TSS, WYTIWYG did not operate and the take-up was limited. To influence the
mainstream, an alternative GCSE option built around the modules was later created;
the take up was substantial but still a minority of schools, probably reflecting the
pedagogical challenges and the absence of new content—essential to keep the total
difficulty within bounds.

The broader design tactics we learnt from NTPS included:

• The value of examples with faults—some ridiculous, some with deep mathe-
matics—in motivating student engagement

• The power of examining a well-specified real world domain in detail
• Injecting essential points through the student materials—but only after the group

should have noticed them (e.g. getting parental permissions for Plan a Trip).

http://www.mathshell.com
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29.3 The Modelling Potential of Technology

Modelling involves using mathematics to get deeper insight into situations in the real
world outside the mathematics classroom, and evaluating how good a description
each model provides. How do you bring enough of the real world into the classroom
to make this work? Students’ practical knowledge, written descriptions and video
can play a part. But technology can offer a vivid way of bringing into the classroom
a variety of simplified ‘real situations’ that help students develop the skills of active
modelling. We call these apps investigative microworlds. Figure 29.6 shows some
examples from Shell Centre projects.

29.3.1 Investigations on Teaching with Microcomputers
as an Aid 1979–88

ITMA focused on the potential of a single computer to present a class with small
investigative microworlds to help teachers develop modelling skills in their students.
Eureka andBottles in Fig. 29.6 both showgraphs ofwater level against time. InBottles
a, steady stream of water flows into a vessel—the issue is how the shape of the graph
relates to the shape of the container. Eureka offers a four-command programming
language to construct, with suggestions from the class, various scenarios for a bath.
The challenge comes in the next phase of the lesson, when only the graph is shown.
What shape is the bottle? What was the scenario for the bath? The apps provide
examples of increasing challenge to ensure productive struggle for all students. The
graph in Traffic is similar, relating the position of cars against time to the overhead
‘video’.

Fig. 29.6 Investigative microworlds



29 Modelling in School Mathematics: Past Achievements … 353

The other two examples in Fig. 29.6 involve a more complete modelling process.
The students work on the computer, alone or in pairs, to collect data from the app
and to build a model that explains it. In Bridges, they can vary the length, width
and thickness of the plank bridge; the app then gives the weight it can support. The
challenge is to organize this information and use the patterns revealed to construct
a verbal, graphical or algebraic model. It turns out that the breaking weight is linear
in the width (like two planks side by side so fairly obvious), quadratic in the thick-
ness, and inversely proportional to the length. This provides a ‘ramp’ of difficulty,
challenging students at all levels.

The microworld on the right is from the 1999–2005 World Class Arena project;
students collect data on the water that overflows for objects of various weights, some
of which sink while others float. Archimedes was said to have sorted out this, his
principle, leaping out of his bath crying Eureka! There is evidence that the restricted
universe of such simulations works better in enabling students to make scientific
inferences than real experiments, where so much effort is involved in just getting the
experiment to work!

29.3.2 Role Shifting and the ‘Classroom Contract’

Brousseau (1997) formulated the concept of the ‘classroom contract’—the under-
standing between teachers and their students as to who will do what, what roles each
will play. In traditional mathematics classrooms, teachers mainly play the direc-
tive roles: they manage the classroom activities, eXplain new concept and skills
with worked eXamples, and set eXercises that ask the students to imitate what they
have been shown—the 3X model of ‘demonstrate and practice’ teaching. Modelling
implies much more active roles for the students—managing their work through the
modelling process, asking themselves questions along the way, and explaining what
they have found.

A Shell Centre study of teachers and students working with the ITMA modules
led to results with general implications for design (Phillips et al 1988). 17 teachers
workedwith one ITMAlesson aweek for tenweeks, closely observed by the team.We
observed changes in the interactions and identified over 30 roles played by teachers
and/or students; we simplified them into six groups (Fig. 29.7).

Of these, only Resource needs explanation—a resource provides information, but
only on demand. The ITMA study found that, using ITMA microworlds, teachers

Fig. 29.7 Classroom roles Directive roles Supportive roles

Manager

Explainer 

Task setter

Counsellor

Fellow Student 

Resource
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spontaneously moved away from the directive roles in a way that allowed students
to take them up. The app screen became a kind of ‘teaching assistant’, in task setting
and in answering “what if” questions that arose in the class. Teachers moved into
the supportive roles, as counsellor and fellow student, asking: What have you tried?
What do you think? What’s it doing there? We call this role shifting.

The broader design tactics we learnt from these projects include:

• Explicit design for role shifting is an essential element inmodifying the traditional
classroom contract for the development of non-routine mathematical skills and
more generally, in meeting the five dimensions of TRU set out in 1.1

• Creating ‘investigative microworlds’ is a powerful tactical design tactic for
changing the classroom contract in this way.

29.3.3 The Multiple Roles of Technology

We end this section by acknowledging the myriad other roles that computers can
usefully play in amodelling curriculum.Computers of various levels of sophistication
provide tools for doing mathematics and for learning mathematics:

• For calculation: from simple calculators through spreadsheets and computer
algebra systems to sophisticated tools likeMathematica, technology is nowcentral
to the way calculation is done—except in too many mathematics classrooms

• For investigation: in addition to our examples, there are domain specific tools for
dynamic geometry, graphing, data analysis and presentation

• For communication: the combination of computer power for analysis and for
presentation, pioneered in exploratory data analysis, makes communicating
mathematical results and insights much more effective.

Fewof these tools are to be found inmostmathematics classrooms.This partly reflects
a mismatch of timescales—it takes a decade to design and develop the profoundly
new curriculum that technology implies, while the technology itself changes every
few years.Whatever the causes, the hugemismatch between school mathematics and
mathematics in the ‘real world’ is a profound problem, which modelling can help
cure. No one objects to the use of technology in tackling real world problems—or
its use in other STEM subjects.

29.4 Formative Assessment in Modelling Lessons

Rich and timely feedback is central to improving the behaviour of any system. Hence
the fifth in the TRU list of essential features of powerful classrooms with which I
began: formative assessment. A more detailed account of the key role this plays is
given in (Burkhardt and Schoenfeld 2019); here I shall look at what it means for
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teaching modelling and the design tactics that we developed for that purpose (Swan
and Burkhardt 2014).

29.4.1 Mathematics Assessment Project(MAP 2010–15)

Most work on helping teachers to develop the skills of providing feedback to students
in the course of their teaching has been based on extensive, and thus expensive,
professional development. In MAP, we set out to explore how far teachers could
achieve effective formative assessment lessons (FALs) in modelling when supported
by specifically designed teaching materials. (These can be downloaded free from
map.mathshell.org). The structure of each FAL is a sequence of individual, small
group and whole class activities. I will illustrate the structure from the lesson on the
Matchsticks task in Fig. 29.8.

In a prior lesson, each student tackles the unscaffolded modelling problem.
The teacher reviews (not scores) the work of the class and prepares qualitative

feedback.
The teacher’s reviewof the student work is supported by the Common Issues table

for the problem.Apowerful design tactic, this lists the challenges andmisunderstand-
ings that students are likely to have and suggests non-leading questions or prompts,
as in Fig. 29.9.

In the main lesson

• Each student writes a response to the teacher’s comments.
• In pairs or small groups, students work to produce and share a joint solution

The groups are directed to create a joint approach though explicit instructions:

Matchsticks are often made from pine trees – this tree is 80 feet 
high with a base diameter of 2 feet

Matchsticks are rectangular prisms 
1/10 inch by 1/10 inch and 2 inches long 

Estimate how many matchsticks 
you can make from this tree.

Fig. 29.8 The Matchsticks task
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Common issues Suggested questions and prompts
Has difficulty getting started • What do you know? What do you need to find out? 

• How could you simplify the problem? 
Ignores the units 
For example: The student calculates the volume of a 
matchstick in cubic inches and the volume of the tree trunk 
in cubic feet. 

• What measurements are given? 
• Does your answer seem reasonable if you consider 

the size of a matchstick compared to the size of a 
pine tree? 

Makes incorrect assumptions 
For example: The student multiplies the volume of the tree 
trunk in cubic feet by 12 and assumes this gives the volume 
of the tree trunk in cubic inches. 

• Can you explain why you have multiplied by 12? 
• When you figure out a volume how many dimensions 

do you multiply together? How does this calculation 
effect how you convert the volume from cubic feet to 
cubic inches? 

• Can you describe the dimensions of the tree in 
inches? What do you notice? 

Fig. 29.9 The start of the Common Issues table for Matchsticks

• Share your method with your partner(s)—and your ideas for improving your
individual solution.

• Together in your group, agree on the best method for completing the problem.
• Produce a poster, showing a joint solution to the problem.
• Write down any assumptions you have made. Check your work.
• Make sure that everyone in the group can explain the reasons for your chosen

method, and describe any assumptions you have made.

Students then review carefully designed ‘sample student work’, as in Fig. 29.10,
comparing different approaches. This is a second design tactic worth noting. The
students in pairs are asked to analyse each response and comment on strengths
and weaknesses—specifically: What has this student done correctly? What assump-
tions has (s)he made? How can (s)he improve the work? Notice the shifting of the
assessment role from the teacher to students.

Fig. 29.10 Student responses to the Matchsticks task
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Originally, there were, of course, calculation errors in the responses; we removed
them because we observed in classroom trials that students focused only on this
familiar kind of error, not noticing the strategic and tactical mistakes—in the first
example in Fig. 29.10, the neglect of units (bigmatchsticks!) and using area instead of
volume, and the subtler confusion of units in the much stronger second response (not
to mention the ‘spurious precision’ that so often comes from thoughtlessly reading
numbers off a calculator).

Then

• The whole class discusses the quality of each solution and the payoff of the
mathematics.

• Individual students improve their solutions to the initial problem, again prompted
with specific questions: How did you check your method? What assumptions did
you make? Is your method similar to one of the sample responses? What are the
differences?

• Finally, they write about what they have learned.

It is worth looking at this process in terms of the standard phases of modelling:

• Understanding the situation: “fitting matchsticks into the tree” is a volume-ratio
problem

• Formulating a model for the tree: roughly a cylinder? a cone? ignore branches?
• Solving: Calculating the volumes (formulas provided). Getting the units right,

relating feet3 to inch3. Computing the ratio, handling the big numbers. Choosing
appropriate accuracy.

• Evaluating your answer: “Does this make sense?” “How can we improve it?” “Do
we need to?”

We call this ‘formative assessment’; where is the assessment?

• From the prior lessons responses, teachers get information on what students can
do unaided.

• Teachers offer differentiated support to students, through questions, as and when
this is needed—differentiation through support became a standard design tactic

• Students get constructive feedback via other students, and the teacher, as student
work is discussed.

• Students act on feedback by improving their responses.
• Teachers get feedback on learning by comparing performances before and after.

29.5 Why is Large-Scale Improvement So Elusive?

Policy folk always say they want modelling in mathematics. Official mathematics
curriculum documents in many countries include modelling as an essential element.
I hope the reader may now see the basis for my claim that, as a community, we have
learned how to enable typical teachers to teach modelling much more effectively. Yet
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I believe that, if one dropped in on 100 randomly-chosen classrooms, you would be
lucky to see any sign of active modelling by students. Thus it is fairly clear that we
do not know how to lead school systems to make the changes needed for modelling
to happen on a large scale. That seems to me still the central challenge. Can better
design of materials alter this? If so, how?

29.5.1 Challenges of Change

In any school system, there are at least three important communities with the same
declared priority for improving student learning and implementing the changes that
this implies; however, each community has its own current day-by-day pressures that,
in practice, turn the core priority into just a long-term aspiration. In a recent paper
(Burkhardt 2019), I analyse these pressures in some detail and suggest ways forward,
in the British context at least. I point to the contrast with the relationship in health
care between the research, development, policy and practice communities. I suggest
that a key is to move technical issues of teaching and learning out of the political
domain into a long-term program of systematic research and development, designed
to offer policy makers a range of well-engineered options for implementation. There
are three strands that need ongoing support:

• Solution-focused ‘engineering’ research and development of tools and processes
for teaching, learning and professional development

• Moving the balance of insight-focused research to support practice (Burkhardt
and Schoenfeld 2003; Burkhardt 2016), and

• A structure to evaluate these innovations and advise government on a coherent
implementation program.

The key is to recognize that, as in medicine, improvement will be gradual, based
on well-engineered innovations. There is some interest in government at moving in
this direction—though, as ever, they have other, more urgent things that occupy their
attention!

29.5.2 Some Issues in Teaching Modelling

Great progress has been made across ICTMA on ways of teaching mathematical
modelling.We know that a modelling curriculum needs standard elements including:
regular work on worthwhile tasks; a variety of challenges at multiple levels; student
discussion and reflection on alternative solutions and their implications. There remain
a number of issues where more research is surely needed.

What else? What other elements should be included in a modelling curriculum?
Should we teach modelling strategies explicitly, as in the Special Project unit on
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modelling that we designed for the Australian reSolve project (Wake et al. 2019)?
Should we teach the subskills of model formulation (Treilibs et al. 1980; Burkhardt
2017)? and there are more.

‘Grain size’ What is the appropriate balance of lengths of modelling activities
across: short intriguing tasks that stimulate 10–20 min of discussion; lessons like
Matchsticks that take a few class periods; units that take a week or two like NTPS
Be a Paper Engineer.

Balancing activity patterns What sequencing of individual, small group and class
working best promotes both individual modelling skills and the ability to work in
teams.

What about the classroom contract? When reasoning, not just answers, is the
core goal, as in modelling, what variety of roles should the teachers and their
students’ experience? Should this new classroom contract be explicitly shared with
the students? How far does it help in addressing the five dimensions of TRU?

Support for the teacher The teaching described in this chapter is a far cry from the
3X ‘demonstrate and practice’ model that most teachers around the world are used
to. It involves tasks with a much longer ‘reasoning length’, with the teacher moving
from directive to supportive roles. More profoundly, beliefs about mathematics as
a set of procedural skills to be learned by students have to broaden to include their
thinking about novel problems and constructing substantial chains of reasoning and
explanation.

And finally:
How do we make these things a reality in every mathematics classroom?

29.6 “Maths Is Boring”—How Modelling Can Help
Engagement

Most math lessons are not interesting to most students. Most maths classrooms often
have just one lesson genre—the‘same old, same old’ ‘XXX’. In contrast ‘English’
(first language) lessons have many genres: students write/read/analyse/critique a
wide variety of arguments/stories/poems/plays. Mathematics needs more lesson
genres (Burkhardt and Swan 2017), based on modelling, that ask students to inter-
pret/critique/create/improve models in design/planning/finance/risk and many other
fields. ‘Surprise and delight’for students should be a design goal. So I conclude this
chapter by proposing a strategy that seems more novel than it is: design dramas. I
begin with an assertion:

Every classroom is a theatre, each lesson a play.
Unlike some other subjects, mathematics lessons rarely ‘fit the bill’. Usually, the

math teacher is the director and the star. The students are the audience. The play
begins with a long soliloquy, then it’s over! Students just imitate what they have
been shown, many times over. There is no dramatic tension—or surprise. No wonder
“maths is boring” to so many.
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Fig. 29.11 Reducing road accidents—an investigation

Let us consider a different approach.A lesson beginswith amystery—apuzzle or a
question. The students are detectives: they gather evidence, build theories.Arguments
are presented. The student witnesses are cross-examined. The class is the jury.

So designing for drama supports‘role shifting’, moving students into high-level
roles– consultant, designer, planner, teacher. The class teacher is still the director—
but no longer the star. This is not new, for example, the Numeracy through Problem
Solving modules are built around investigation. Making drama a normal part of
mathematics lessons is a fine goal; modelling provides a route.

Software microworlds can support investigation. In reducing road accidents, for
example, students investigate the data in the graphical database in Fig. 29.11, looking
for patterns and making recommendations—often vividly presented—on how best
to use the budget.

To summarize, this chapter has described a process of learning about the design
of ways of teaching modelling, emphasizing the general design strategies and tactics
that I and the Shell Centre team have developed through a sequence of projects over
the years. These are described, with linked examples, in (Burkhardt and Pead 2020).
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Chapter 30
Opportunities for Modelling:
An Extra-Curricular Challenge

Sol Garfunkel, Mogens Niss, and Jill P. Brown

Abstract Opportunities for mathematical modelling offered as part of normal class-
room activity or via extra-curricular events. The environment in which modelling
occurs varies and this includes variation in support available from a more knowl-
edgeable other. Most common are opportunities for modelling within the usual
classroom environment where support is provided by the classroom teacher. Less
common, but increasing in number, are extra-curricular modelling opportunities.
Support from a more knowledgeable other is non-existent in the International Math-
ematicalModelling Challenge. Success in The Challenge indicates the learning envi-
ronment of such challenges is clearly conducive to student engagement with mathe-
matical modelling. We can infer learning from the usual classroom environments is
utilised by students as part of their successful modelling activity.

Keywords Extra-curricular challenge · Knowledgeable other · International
mathematical modelling challenge ·Modelling challenge · Real-world ·
Scaffolding

30.1 Introduction

It is well known that mathematical modelling is a critical aspect of mathematics (e.g.
Niss et al. 2007) and increasingly included in curriculumdocuments (e.g. NGA2010;
VCAA 2015). Much has been written about the challenges of teachers including
mathematical modelling in their teaching practice (e.g. Blum 2015; Niss et al. 2007;
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Stillman, Kaiser et al. 2013). Where mathematical modelling occurs, the degree of
teacher control necessarily decreases as opportunities for student decision making
increase. In “true” mathematical modelling, this control will be low. Naturally, when
students (and teachers) first experience mathematical modelling, additional teacher
support may be warranted. This is especially the case when either or both teacher
and students are novice modellers. The lessening of control also relates to typical
practices in a specific classroom. In other words, in classroom environments where
students are expected to work collaboratively, make decisions, record and communi-
cate their thinking, the distance from that environment to that needed for mathemat-
ical modelling is less than in a teacher-directed classroom environment (see Blum
2015).

Kaiser and Stender (2013, p. 279) posit the following overarching question and
sub-questions,

how complex authentic modelling problems put forward by the realistic or applied perspec-
tive on modelling can be integrated into mathematics education, what kind of learning envi-
ronment is necessary, whether a change in the role of the teacher to a coach or mentor of the
students is needed.

This chapter describes one such way: through extra-curricular challenge with the
aim of allowing students to experience the power of mathematics to solve real-world
problems.

30.2 How is Mathematical Modelling
Implemented/Experienced?

In locations where students engage in modelling tasks, this occurs in one of three
broad “environments”. The first, and highly desirable, environment is when students
engage with modelling activities in their “normal” classroom environment. This is
usually only reported in the research literature; however, when it is also the subject
of a research project (e.g. Blum 2015). Secondly, students engage in extra-curricular
modelling experiences with or without the support of a more knowledgeable person.

30.2.1 Extra Curricula Modelling: Opportunities
for Scaffolding

In some circumstances, students engage in mathematical modelling outside the
normal classroom environment. Extra-mathematical modelling experiences include
modelling days or weeks (e.g. Kaiser et al. 2013; Stender et al. 2017) and modelling
challenges and are increasing in popularity. These experiences are described by
Stillman, Brown et al. (2013) as activities where “their focus is on mathematical
modelling activity, they are events that are external to normal classroom activity,
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they involve experts external to the school and are usually not at the student’s
school” (p. 218). In these environments, a tutor or mentor is present to support
student modelling. In these circumstances, the level of support for student, external
to task design, is intended to be low. However, the intended degree of support varies.

Kaiser and Stender (2013) describe the tutors in their modelling “weeks” as future
teachers. Hence, “by this means the students were intensively supervised during
their work on the modelling problems whilst on the other hand the future teachers
had the opportunity both to gain practical experiences during the [modelling week]
project” (p. 309). The students involved were Year 9 students working on one task for
three days. The future teachers were prepared as tutors during a modelling seminar
prior to the modelling week (Stender 2019). The seminar included working on all
three modelling tasks the school student would be working on and learning about
teacher interventions including scaffolding. Heuristic strategies were a key focus.
The intention was that during the modelling activity, tutors would provide motiva-
tional support then strategic help using heuristic strategies (e.g. can you simplify
the situation? Would a graph help?) before resorting to content related strategic help
(e.g. have you considered an exponential model for your plot?), and finally if needed
provide content related help (e.g. can you find an exponential function in the form
y = A.bt +C for your data?). To maximising student learning and problem solving,
interventions were planned and intended to be provided from least to most support.
Tutors support for students was a key focus and the tutors had been “educated for
adaptive support” (Stender et al. 2017).

Stillman, Brown et al. (2013) describe results from their study involving 70 Year
10–11 students fromAustralia and Singapore participating in the 2010 A.B. Paterson
Mathematical Modelling Challenge in Australia. Students worked in mixed groups
(i.e. Year level, country, gender) on a self-selected problem. In this Modelling Chal-
lenge, for students at the Year 10–11 level, the mentors began the two-day Challenge
by presenting about

the nature of modelling during which the modelling cycle is presented as a scaffold and
students are given a short modelling task (e.g., optimum location for a hospital) to tackle
…. [Subsequently, student teams] begin the process of choosing a situation of their own
to model, posing a problem and generating questions to answer…. From this point on the
mentor’s role is mainly supervisory and to intervene as little as practicable. (p. 219)

In themodellingweeks, students are presentedwith a selection of tasks,whereas in
the A.B. PatersonMathematical Modelling Challenge, the Year 10–11 student teams
were expected to pose their own modelling problem. Hence, the degree of deci-
sion making and the extent of support expected to be provided by the tutor/mentor
between these two examples of extra-curricular modelling activity varies. In both
cases illustrated, student feedback was positive. Kaiser and Stender (2013) reported
that student participation in modelling weeks may impact positively not only on
mathematical skills but on attitude towards mathematics. Results from the study
by Stillman, Brown et al. (2013) found that the Challenge was “considered by
most [students] as inherently valuable as a learning experience about modelling
and application of mathematics in real situations” (p. 226).
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These examples illustrate the extent of differences in mathematical modelling
where there are opportunities for different degrees or type of support from a more
knowledgeable other. In one example, the opportunities for support were carefully
planned reading to be implemented in the moment as needed. In the other example,
the support was limited to ensuring students had a similar understanding of what
modelling is, were introduced to a modelling cycle diagram that could be used to
scaffold their own modelling, and had been supported in an introductory problem
to begin working as a collaborative group. Other differences related to the back-
ground of the students (one state versus two countries), participation guidelines
(higher achieving versus interested in real-world problems) and choice of problem
as described previously.

30.2.2 Extra Curricula Modelling: No Opportunities
for Scaffolding

A third circumstance of modelling environment exists where no teacher, tutor or
mentor (i.e. no knowledgeable other) is involved to support the students’ mathe-
matical modelling. These include the China Undergraduate Mathematical contest in
Modelling (CUMCM) (beginning 1992), and in the USA, several contests organised
by the Consortium for Mathematics and its Applications (COMAP). These include
theMathematical Contest inModelling (MCM) (beginning 1985) and from 1999, the
Interdisciplinary Contest in Modelling (ICM), and the High School Mathematical
Contest in Modelling (HiMCM). In each of these, teams can use any inanimate data
source—but all sources must be referenced appropriately—but no help from people
other than team members.

The CUMCM (see Jiang et al. 2007) involves teams of three undergraduate
students in China. They have three days to solve one of two modelling problems.
Teams can only discuss the problemwith each other, “not their advisor or anyone else,
except members of their own team” (Jiang et al. 2007, p. 168). In 2019, over 42,900
teams participated. COMAP (see https://www.comap.com/undergraduate/contests/)
describes the MCM as “a contest where teams of undergraduates use mathematical
modelling to present their solutions to real world problems”. Teams of three select
one of six available problems to work on for four days. The ICM is a subset of the
MCMwhere the teams select one of three specified problems. In 2019, 14,108 teams
and 11,262 teams participated in the MCM and ICM, respectively. In the HiMCM,
teams of up to 4 high school students work on one of two problems for three days.
In 2019, 868 teams participated. The overwhelming majority of participants in these
contests are from the USA and China, even though they are open to others around the
world. The large numbers of participants in these contests is clear evidence of students
valuing mathematical modelling and participating in mathematical modelling.

https://www.comap.com/undergraduate/contests/


30 Opportunities for Modelling: An Extra-Curricular Challenge 367

30.3 The International Mathematical Modelling Challenge

The International Mathematical Modelling Challenge (IMMC or IM2C) for high
school studentswas established in 2014 by collaboration betweenCOMAP (Bedford,
MA, USA) and NeoUnion ESC (Hong Kong SAR, China). The purpose was to
foster and further high school students’ interest and competence in mathematical
modelling by offering them challenging problems to work on in teams. The inten-
tion is to promote the teaching of mathematical modelling and applications at all
educational levels for all students. The idea is that, both students and their teachers
need to experience the power of mathematics to help better understand, analyse and
solve real-world problems outside of mathematics itself—and to do so in realistic
contexts, that is in a collaborative team, with access to any digital tools including the
internet they need. The IMMC allows students to do this directly, and their teachers
vicariously via their students. Teams are awarded one of the following designations:
Outstanding, Meritorious, Honourable Mention, Successful Participant. For further
details see the website www.immchallenge.org.

Every year a new modelling problem is posed. The challenge is meant to more
closely mirror real experiences with mathematics, as teams of up to four students are
permitted to use any inanimate resources and are given an extended time period to
do their work. The teams have up to five days to work on the problem and submit the
report of their solution. The problems in the first five years of the IMMC, 2015–2019,
have seen a diversity of contexts. In brief, the tasks were:

• Movie scheduling—design a model for the effective filming and production of a
motion picture.

• World record insurance—design a model to effectively plan for expected pay
outs for world record-breaking performances at a track and field meet warranting
a prize, make recommendations regarding insurance to cover such an outcome
from both the organiser and insurance company’s perspective.

• International meeting—Design, and test, an algorithm, to allow international
attendees to determine the best location for a face to face meeting

• Best hospital—Devise a model, including mortality as one factor, to measure the
quality of a hospital, so that when an individual has a non-emergency you can
advise them which of several hospitals they should select to attend.

• Earth’s carrying capacity—Develop a model that identifies the earth’s carrying
capacity for human life under current conditions, propose how this carrying
capacity can be raised accounting for perceived or anticipated future conditions.

30.3.1 Global Participation

With the intention of being genuinely international, teams can select a five-day time
frame within a longer time window that best suits them. In the IMMC, students do
not choose from a selection of problems, all teams attempt the same problem. There

http://www.immchallenge.org
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Fig. 30.1 Numbers of
participating
countries/regions and teams
2015–2019

is no cost to enter the IMMC. Figure 30.1 shows the increasing participation by both
counties/regions and by the number of teams. If we assume that the teams all had
four members, the number of participants has risen from 68, in the first year of The
Challenge, to 228 in 2019. As each country or region can only have two teams, the
increase per year is slowing at this global level. To see the real participation and
impact of the IMMC, we need to look at the local level, as will by illustrated by the
case of Australia.

30.3.2 Local Participation: The Case of Australia

How each country or region selects the two teams each year varies. In some coun-
tries, other challenges or competitions are used to select the two teams. In other
countries, including Australia, teams participate in The Challenge in local dates set,
for example, by the Australian IMMC Advisory Group. These submissions are then
judged by the Australian Judging panel and the two deemed best are submitted to the
international expert panel for judging. In Australia, Fig. 30.2 shows how interest has
grown exponentially in the four years of participation. In the four years of participa-
tion by Australian students, 2016–2019, roughly half of the registered teams actually

Fig. 30.2 Australian
participation in the IMMC
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submit their solution to The Challenge. In terms of participation by gender, 40–46%
of students registering for TheChallengewere female, and of the studentswho submit
44–46% of those were female.

30.4 The 2019 Challenge

In 2015, Niss drew our attention to prescriptive modelling (see also Brown 2019). In
descriptive modelling, the purpose of the modelling activity is to come to grips with
aspects of an existing reality—we want to capture, understand, explain, or predict
aspects of the world as it exists before us. In prescriptive modelling, we want to
create or shape reality, which will then eventually change aspects of the world. In
the 2019 IMMC problem, the main task clearly involved descriptive modelling as
student teams needed to understand the world as it exists today. They needed to
determine what are the key factors impacting the carrying capacity of the earth and
how these factors interacted with each other. In the latter part of the task, prescriptive
modelling occurred as students made recommendations as to what “should be” along
with associated actions to achieve increased carrying capacity.

In 2019, 57 teams from 33 countries submitted solutions through the national
selection procedure to the following problem:

What is the Earth’s Carrying Capacity for Human life? 1. Identify and
analyze the major factors that you consider crucial to limiting the Earth’s
carrying capacity for human life under current conditions. 2. Usemathematical
modelling to determine the current carrying capacity of the Earth for human
life under today’s conditions and technology. 3.What canmankind realistically
do to raise the carrying capacity of the Earth for human life in perceived or
anticipated future conditions? What would those conditions be?

The Expert Panel chose five solutions as Meritorious. The teams were from St.
Paul’s Co-Educational College, Hong Kong (SAR) China; Brisbane Boys College,
Australia; Manurewa High, Auckland, New Zealand; Il Liceum Ogólnokształcące
z Oddziałami Dwujęzycznymi, Warszawa, Poland; and Utrechts Stedelijk Gymna-
sium, Utrecht, The Netherlands. The teams presented their solutions at ICTMA19 in
Hong Kong (See Fig. 30.3).

The Expert Panel [Stolwijk 2019] had this to say about the solution papers:

The IM2C judges wish to congratulate all students who took part in the 2019 IM2C. The
judges were impressed by the efforts of all participating teams, the mathematics shown in the
solutions and the high quality of the final submissions. All of the 57 papers submitted (from
33 different countries/regions) showed great creativity in working on the Challenge. While
the Expert Panel judges see only two papers from each participating country or region, we
recognise that many more students participate in the Challenge. It is exciting to know that so
many students are engaging in, and successfully completing, this mathematical modelling
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Fig. 30.3 The 2019 IM2C
meritorious teams, their
advisors, and contest officials

opportunity. We encourage students to continue to form teams, compete to represent their
country or region and aspire to be named among the top teams at the international level
Expert Panel judging.

This year’s problem was quite a different type of problem than in the former four IM2C
in that it was fairly open ended. In many cases, teams found it difficult to find the appro-
priate mathematics to apply. Students performed analysis on data mined from available Web
sources, leading to a variety of descriptions of “the Earth’s capacity for human life under
today’s conditions and technology”, but not necessarily leading to a useful mathematical
model to address the actual problem. Many teams concentrated their efforts on collecting,
analysing, and (sometimes) recalculating the data on annual supply rates and annual per
capita demand rates of various resources. At that point, teams needed to analyse and look
across these data, but many limited their mathematical model of carrying capacity to a very
simple one that did not take into account that different critical resources are not independent.
Thus, one of the main discriminators of “better papers” was inclusion of some interdepen-
dence of the resources into the mathematical model, as well as posing and solving some kind
of optimisation problem for such a model.

30.4.1 Meritorious Solutions

From the 57 papers judged, five were considered to beMeritorious. These were Team
2019006 Hong Kong, Team 2019018 Australia, Team 2019029 New Zealand, Team
2019031 Poland and Team 2019046 The Netherlands. The five countries/regions
represented in this year’s top category exemplify the growing international impact
of IM2C. Most of these five teams considered 3 or 4 main factors, together with
additional factors. All five teams included food andwater as two of their main factors.
Other main factors included shelter, land, carbon emissions and oxygen. Additional
factors considered included, roads, hospitals and schools (2019046) and nitrogen
and phosphorus emissions, material and water footprints, % of population living in
poverty, education, and access to electricity (2019031). An explanation of the factors
and their interdependence was critical in the 2019 problem. For example, some teams
considered space which was then considered in terms of both living requirements
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Fig. 30.4 Consideration of
the factor: water by team
2019029 (New Zealand)

and food production. Figure 30.4 illustrates how the New Zealand Team carefully
considered the various sources of water and its use.

The meritorious teams were careful to justify their choices and use of informa-
tion—facts, figures and graphs—sourced from the Internet, and also referenced the
source of the information used. A common approach was to initially consider each
factor individually, determine the carrying capacity based on this factor and then the
smallest such carrying capacity became the actual carrying capacity as determined
by that limiting factor as all of that resource was used up.

The mathematics used in the 2019 Challenge was fairly simple in most cases.
Teams spent significant time determining what factors were the most important to
consider. Each factor was then considered, independently at least initially, to deter-
mine the population based on that factor (e.g. what population could be sustained by
the available water given its multiple uses). Subsequent factors were considered, and
the minimum predicted population taken as the sustainable value. Generally, factors
were interdependent, and this had to be addressed.

Carbon emissions were identified as the limiting factor by 2019006 and 2019031,
whereas food was the limiting factor identified by 2019029. Team 2019018 broke the
world into 13 regions, “to allow for greater differences in quantity of food, shelter
and water around the Earth” and this team determined differing limiting factors
for each region. Team 2019046 used area as their main unit of analysis, that is, to
determine how much is required to produce food and oxygen and provide shelter.
They determined water availability was more than sufficient, thus, land was the
limiting factor in their model.

With regard to digital technology use, of the top five teams, all clearly used
the Internet to source information related to the problem. With respect to other
digital technology, it was not very clear what was used, or how. Team 2019031 from
Poland used the programming language Python “to apply a system dynamic model”
although the code was not illustrated nor included. Team 2019018 from Australia
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used extensive spreadsheet calculations as they divided the world into 13 regions
and determined current land and water usage for a variety of purposes and hence
the limiting factor and carrying capacity for that region. Hong Kong Team 2019006
set up and solved simple equations as they determined that food consumption and
carbon emissions, for example, were linearly related to population.

30.4.2 Detailed Consideration of the Solution
from the Netherlands Team

For Team 2019046 from The Netherlands, assumptions included a world without
conflict nor natural disasters nor epidemics, allowing the full capacity of the Earth
to be reached. In addition, the majority of work is done from home thus reducing
unnecessary use of land to accommodate workplaces, climate change is halted, and
the current average use of resources remains. The critical factors the teamdetermined
were food, water, oxygen, shelter, energy and other variables (services—hospitals
and schools, and roads).

With regard to food, they noted the different eating habits (food type and average
intake of calories) around the globe. They mathematised this as needing to determine
the area required to produce the number of kilograms per capita per year. To simplify
the situation, they considered only some major food sources (e.g. sugar (beet and
cane), fruits, vegetables, cereals and meat). For animals used for meat, milk or eggs,
they also considered the need to feed these animals. They calculated the average
number of hectares required to feed people for each continent and overall for the
World.

Forwater, they considered all freshwater sources excluding ice caps, glaciers, and
permanent snow. Noting the Water cycle natural allows water to be renewed every
40 days, and they found water was a smaller problem than they expected. Water was
not the limiting factor for their model.

For oxygen, the team considered two sources: algae and trees. For these they
considered the area (ha) of the earth covered by each and how much was produced.
Finally, they determined the number of people that could be supported by oxygen
produced from algae plus the number of people that could be supported by oxygen
produced from trees.

For shelter, the team ascertained the habitable area of the Earth. They mathe-
matised this as, average space per person is the average house size divided by the
average number of households. They noted that multi-storey dwellings reduce the
area needed. They observed that some uninhabitable parts can be reclaimed as is
already occurring in The Netherlands.

With regard to energy, only indefinitely sustainable sources through theuseof solar
panels, wind turbines, and hydroelectric power stations were considered. For each,
they determined how much energy was produced and how much area was needed.
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They also considered the unused surface of the Earth that could be developed to
source more energy.

Keeping in mind, they wanted to keep services as simple as possible they calcu-
lated the area needed for major services, that is, schools and hospitals. Roads were
seen as essential for transport and the area of these was determined. Clearly, is the
Earth’s surface is used for these services it cannot be used to produce food or house
people.

Other than for water, the team thus determined the area of the Earth’s surface
available for each of the selected factors and how many people this could support.
The Team found that it was oxygen that determined the carrying capacity. This
capacity was between 8 and 10 billion people. Note that at the time of the challenge,
according to the world population clock (https://worldpopulationreview.com) the
population was approximately 7.7 billion, so this is certainly a reasonable result.

Changes that would allow the carrying capacity to be increased were stop eating
meat, stop wasting food, increase non-meat food production using multilevel agri-
culture methods, increased use of multi-storey flats for shelter; Lower oxygen ratio;
grow more algae to increase oxygen production; shift schooling online and hence
remove school buildings, reduce need for roads as less travel needed, consider travel
alternatives to road-based methods, and increase land reclamation.

In the end, making all of these adjustments and fully optimising the carrying
capacity, the team claim the carrying capacity could increase to 17–6—23.6 billion
people that is an increase of around 114–137%! However, the team did not stay in the
mathematical world as they comment, “Now that all themathematical questions have
been answered, one question still remains; do we really want this to happen?” They
note that although the solution may be mathematically possible, it is not a desirable
way to live. Furthermore, it would be very cramped living conditions and we humans
value our space. Whist they have determined the potential carrying capacity, they did
not factor in the happiness level of people living this.

30.5 Final Words

The modelling problems presented in this chapter are certainly what Kaiser and
Stender (2013) would classify as complex authentic problems. We argue that
modelling challenges are one such approach for successful integration ofmodelling in
mathematics education. In such challenges, a different learning environment neces-
sarily exists compared to that in the usual mathematics classroom; however, this
environment and the role of “knowledgeable others” vary. The increasing participa-
tion in such events is evidence that small groups of students can adapt their usual
learning environment (e.g. Stender et al. 2017; Stillman, Brown et al. 2013) to that
of a small group, extended time on a single task and variable additional input.

Clearly the learning environment of modelling challenge sees student groups
drawing on the experiences in “normal” classroom environments. In the IMMC envi-
ronment, there is no “knowledgeable other” beyond the team members themselves.

https://worldpopulationreview.com
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However, although the teacher is absent in-the-moment, the skills and knowledge
and ways of working have already been “taken up” by the students, who are able
to draw on these learning to successfully work “teacher-less” during the challenge.
Clearly any team of students who successfully completes IMMC has demonstrated
both modelling competencies (e.g. Niss et al. 2007) and metacognitive modelling
competencies (e.g. Stillman 1998).

Thus, the environment, be it a normal classroom, extra-curricular activity or
modelling challenge, by its very nature, determines the role of the knowledgeable
other, from teacher tomentor or coach to no-human help duringmodelling. However,
there is no doubt that previous teacher advice and interventions experienced by the
students in their regular mathematics classrooms were drawn on by the student teams
as they worked during the modelling challenge to successfully solve the task. Being
self-sufficient in activities such as the IMMC,must, at least in part, be attributed to the
collective previous teaching and learning experiences of the team members. Finally,
as the International Mathematical Modelling Challenge is truly a case where mathe-
matical modelling occurs in both the East and theWest and student teams frommany
locations around theworld solve the same real-world problem each yearwithout scaf-
folding from knowledgeable others, it is evident that student teams around the world
are able to draw on their experiences and in the moment work ‘sans’ a “knowledge-
able other” to solve the complex mathematical modelling tasks. We can infer that
the classroom environments of the students, include situations where students work
collaboratively, make decisions, understand the importance of communicating their
thinking not only to each other during task solving but also to others about the final
solution rather than being solely in a teacher directed classroom environment (see
Blum 2015).
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Chapter 31
How Mathematical Modelling Can Be
Promoted by Facilitating Group
Creativity

Hye-Yun Jung and Kyeong-Hwa Lee

Abstract This study approaches mathematical modelling and creativity grounded
in a sociocultural perspective. We examine an exploration of integrating group
creativity into mathematical modelling in ninth grade class. Data were collected
from lesson observation and interviews with participants. Findings indicated that
group creativity contributed to simplifying the situation and elaborating models and
that to get a more elaborated model, group composition reflecting cognitive diversity
and teacher’s guide for interactions based onmathematical grounds should be empha-
sized. Different types of interaction and creative synergies for group creativity along
with modelling stage and different effects on modelling according to the emerged
group creativity are described.

Keywords Mathematical modelling · Sociocultural psychology · Group
creativity · Interaction · creative synergy · Role play

31.1 Introduction

Mathematical modelling has been regarded as important within mathematics educa-
tion during last few decades (English 2006). Mathematical modelling activity,
however, is rarely integrated into everyday classroom, and the difficulty of modelling
activity for students is often attributed to this situation (Blum and Borromeo Ferri
2009). Although many studies suggested alternatives such as using technology,
this still remains unsolved and as a meaningful challenge for researchers. In this
study, we also challenge this. For supporting students and promoting mathemat-
ical modelling in everyday classroom, we focus on the sociocultural nature of
mathematical modelling that has not been concerned (Lesh and Doerr, 2012).
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One of the distinctive characteristics of mathematical modelling activity is that
it is performed in groups (Vorhölter 2018). Group creativity, which is also based on
sociocultural psychology, develops in group activity and gives groupmembers oppor-
tunities for idea sharing, productive conflict, and critical argumentation (Glăveau
2018). Because mathematical modelling is a group activity, group creativity can be
also developed in mathematical modelling and group members can have opportuni-
ties to share and review their ideas about modelling activity which group creativity
provides.

With this perspective, we propose group creativity as a pedagogical strategy to
promote mathematical modelling. We explore how to facilitate group creativity
through mathematical modelling and how to promote modelling activity through
group creativity in a school context with grade 9 students. The research questions
are as follows. (1) At each stage of modelling, which types of interaction and creative
synergies are developed? (2) What effects of group creativity on modelling are
observed?

31.2 Theoretical Background

In this section, we present the main issue of this study. First, we confirm the charac-
teristics of mathematical modelling as a group activity. Second, special aspects, the
definition of group creativity and the possibility of group creativity as a pedagogical
strategy for promoting mathematical modelling, that are important for this study are
reviewed.

31.2.1 Mathematical Modelling as a Group Activity

Although the definition of mathematical modelling is debated, in general, it is
regarded as a cyclic and recursive process that requires understanding a real world,
simplifying the situation, and creating a model (Blum and Borromeo Ferri 2009).
Mathematics modelling has inherently sociocultural nature (Lesh et al. 2003).
Previous studies also concern with its sociocultural aspects in which models are
often developed by groups and the development of models often involves social func-
tions (Lesh & Doerr 2012). Noting that mathematical modelling is a group activity,
researchers have attempted to interpret multiple aspects of it that are distinguished
from individual aspects. For example, Vorhölter (2018) pointed out that modelling
tasks are usually performed in groups and that, for successful modelling, students
have to share their knowledge, plan together, monitor and explain themselves to
each other. English (2006) also indicated that students communicate with each other
in the process of developing models, including evaluating models and presenting
other models. Seen from a sociocultural perspective, these mathematical modelling
activities are inextricably connected with sociocultural effects.
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31.2.2 Group Creativity as a Pedagogical Strategy

Although the definition of group creativity varies from researcher to researcher, many
studies (e.g. Glăveau 2018) present common key concepts in the definition: sharing
ideas through ‘interaction’ and the ‘creative synergies’ resulting from it. In contrast to
individual creativity, group creativity emphasizes the process rather than the output
(Zhou & Luo 2012). Based on these, we define group creativity in this study as
follows: the process or outcome of having creative synergies as thoughts presented
by group members are shared through interactions within a group.

Interaction is an idea sharing process in a social context (Glăveau 2018).
According to the manner of sharing, it is divided into three key types (Jung and Lee
2019): (1) mutually complementary interaction, or the cumulative sharing of diverse
thoughts; (2) conflict-based interaction, or the confrontation caused by inconsis-
tency of thoughts; and (3) metacognitive interaction, or the critical thinking process
that evaluates or validates thoughts. Diversity and conflict are interrelated, in that
high levels of diversity among members can cause conflicts (Kurtzberg and Amabile
2000–2001). Moreover, a full tapping of the shared ideas would require additional
process, such as evaluation and elaboration (Sawyer 2012).

Creative synergy involves more creative problem solving or extended knowl-
edge composition compared to individual creativity (Levenson 2011). According
to previous studies (e.g. Levenson 2011), creative synergy can be divided into four
types: (1) group fluency, which produces additional solutions by following up other
members’ ideas; (2) group flexibility, which produces solutions based on different
strategies; (3) group originality, which produces original thoughts as thoughts are
built based on previous ideas; and (4) group elaboration, which critically reviews
others’ thoughts following up other members’ ideas. The key feature of creative
synergy that distinguishes it from individual creativity is that members’ solutions
come from others’ suggestions (Levenson 2011). Figure 31.1 depicts the develop-
ment process of group creativity. In sum, as various thoughts are shared, combined
and extended through three types of interaction within a group, the result becomes
greater than the sum of each individual’s creativity (Baruah & Paulus 2009).

Fig. 31.1 Development process of group creativity
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Table 31.1 Group composition and students’ roles

Group Thought presenter Conflict inducer Thought evaluator

2 S2 S1, S3 S4

5 S8 S5, S7 S6

As a pedagogical strategy, group creativity reinforces iterative review within
a group through three types of cyclical interactions. By giving opportunities for
students to critique and rethink problem solving process, students can share, combine
and extend their thoughtswithin a group (Sawyer 2012). To be a pedagogical strategy,
group creativity requires open, complex and ill-structured tasks rather than routine
tasks (Levenson 2011). With this respect, modelling task, of which features are
similar to that of group creativity (English 2006), also provides students with partici-
pating in the development process of group creativity that allows students to critique
and rethink solving process. Sum up, group creativity can be used as a pedagogical
strategy for promoting mathematical modelling.

31.3 Method

31.3.1 Participants and Research Context

Twenty grade nine students and a teacher with three years’ teaching experience
participated in this study. The students were divided into five groups of four. Each
group was formed considering students’ cognitive diversity and friendships (Baruah
and Paulus 2009). To reflect the cognitive diversity, students clarified their thinking
style and attitude toward new ideas and participated in group discussions in different
ways according to the roles assigned to them based on those data: Thought presenter,
Conflict inducer and Thought evaluator (see Table 31.1). The three roles induced
mutually complementary, conflict-based and metacognitive interaction, respectively.
This was the first time for them to participate in role playing. In this study, we focus
on two groups: Group 5 with the most active interaction and Group 2 without.

31.3.2 Instructional Design and Mathematical Modelling
Task

Classes were held three times, and each was 45 min long. Students spoke freely and
used smartphones to search for information. The students had the initiative in their
activities. The teacher guided the students to the interaction. One of the researchers
observed the entire course of the lesson as an observer. The task was as follows.
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Find the Best Snacks Last winter, Yejin went to America and made an Amer-
ican friend named Yeony, a famous YouTuber who uploads snack reviews.
After returning to Korea, Yejin received an e-mail from Yeony.

‘I want to upload a video on YouTube to introduce Korean snacks. I would
be very happy if you would recommend two snacks according to the following
criteria:

1. Avoid fattening snacks;
2. Avoid snacks with unhealthy ingredients; and
3. Avoid expensive snacks compared to quantity as much as possible.’

After checking the e-mail, Yejin asked you to choose snacks to recommend
to Yeony. Based on the above criteria, analyse five snacks given to you and
then write a letter recommending two of those to Yeony with valid reasons.

31.3.3 Data Collection and Analysis

All lessons were videotaped, audio-recorded and transcribed. The students’ work-
sheets and the researcher’s field notes were collected. Semi-structured interviews
with participants were conducted after lessons and then audio-recorded and tran-
scribed. The students are represented as Table 31.1, and the teacher and researcher
are represented by T and R, respectively.

For the data analysis, after checking all collected data, we selected the case of three
types of interaction through winnowing. The unit of analysis was the observed types
of interaction at each stage of modelling. Interactions and creative synergies were
analysed and categorized based on the theoretical background and the characteristics
of the content. In order to increase the validity and reliability of the analysis, an
intensive descriptionwas presented, and to analyse fromvarious aspects, participants’
interviews for the case were added. In addition, peer debriefing and member checks
were done.

31.4 Results

After understanding the problematic situation, the students simplified it. They chose
the threemost important factors affecting the selection of snacks and found the figures
of the snacks for the three chosen factors. Subsequently, students suggested and exam-
ined three mathematical models. Afterwards, they chose one of them and selected
two snacks using the chosen model that integrated the figures. This study suggests
that group creativity developed in mathematical modelling might contribute to the
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mathematical modelling such as the elaborate analysis of various factors embedded
in the situation and the model refinement. In this section, we analyse group creativity
and its effects developed in the process of simplifying and deriving mathematical
model.

31.4.1 Group Creativity and Its Effects Developed
at Simplification Stage

1. S5: The price. We can’t buy snacks if we don’t know price.
2. S6: I agree.
3. S7: No, the calorie. The most important thing is how much energy, the source

of our strength, you can get when you eat snack.
4. S5: If I have only 1 dollar and the snack is 2 dollars, then we can’t buy it.
5. S7: We should choose factors that have a wide gap between snacks.
6. S6: Why should we do that?
7. S7: If the difference is similar, all snacks will be the same. But, if we choose

those factors,
8. S5: All snacks are different.
9. T: Think about Yeony’s criteria.
10. S8: Teacher told us to think about Yeony’s criteria.
11. S5: I got it! So, we have to check the price.
12. S6: The price of the snacks is similar.
13. S7: First is fat. Sodium corresponds to Yeony’s second criterion. Price per gram

for Yeony’s third criterion.

In Group 5, three types of interaction occurred. At first, S5 suggested the price
as the key factor (1), and S6 supported this (2). However, S7, a conflict inducer,
intentionally disagreed with S5 and suggested another factor, calorie (3). In this
case, the criterion to select each factor was from their real-world experiences, and S5
and S7 disagreed with each other (4). This is a conflict-based interaction. Students
argued with their subjective experiences, not objective reasons. As the conflict was
not resolved, members discussed another criterion, ‘the size of difference in figures
between snacks’ (i.e., group fluency, group flexibility). S7 suggested this (5), and
S6, a thought evaluator, asked a question about clear reasons for the criterion (6).
Following S6, S5 and S7 elaborated on the meaning of it (7, 8). Following previous
thoughts, they added thoughts complementarily (i.e., mutually complementary inter-
action and group fluency). As the students were not concerned about task context,
Yeony’s criteria, the teacher guided them to check it (9) and the students did (10).
Using Yeony’s criteria, members checked the aforementioned factors again (11, 12)
and chose three factors based on the cumulative thoughts (13). As the criterion
changed, the ‘price’ factor was evaluated differently (i.e. group flexibility). Based on
the cumulative thoughts, the members checked factors repeatedly (i.e. metacognitive
interaction). As a result, three criteria were integrated, and members selected three
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Table 31.2 Group creativity and its effects observed at simplification stage

Group Group creativity Effects

Interactions Creative synergies

2 Mutually complementary Group fluency, group
originality

Selecting the factor

5 Mutually complementary,
conflict-based,
metacognitive

Group fluency, group
flexibility, group
elaboration, group
originality

Checking various factors
Setting the elaborated factor
selection criteria
Selecting the appropriate
factor

factors based on it (i.e. group elaboration): fat, sodium and price per gram. These
factors are different from other groups’ factors (i.e. group originality). This shows
extended knowledge composition (Zhou and Luo 2012) and support rich evidence
for the simplification.

In contrast to Group 5, there was only mutually complementary interaction in
Group 2. At first, S3 presented the price as the key factor. In connection with this,
S2 presented price per gram (i.e. group fluency). In this case, the criterion was the
students’ real-world experiences, which is the same as Group 5. However, the type of
interaction that occurred is different. As a result, the students chose the three factors:
price per gram, calorie and quantity. These are differentiated from other groups (i.e.
group originality).

Table 31.2 shows the types of interaction, creative synergies and its effects
observed at simplification stage in Groups 2 and 5. In the mathematical modelling
process, group creativity emerged by combining three types of interaction can
contribute to review the factors extensively and to refine criteria for selecting elab-
orated factors. By inducing repeated reviews, it serves as a catalyst for students
to select the appropriate factors, while mutually complementary interaction alone
contributes only to the expansion of factors.

31.4.2 Group Creativity and Its Effects Developed
at Mathematical Model Stage

After simplifying, for each snack, the students calculated figures corresponding to
each factor. Then, the students examined three models to integrate the figures for
each snack.

14. S5: Add up figures and get the average of it.
15. S7: 5 points to the first, and 4 points to the second.
16. S5: No, add 1, 2, 2. Then, select the lowest average. For example, C is 1.7.
17. S7: C is 5. What? An average? Not addition?
18. S6: What do you mean?
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19. S5: I got it! Not division but addition. 1 plus 2 plus 2. Is it right? (omitted)
20. T: If you give 100 weights only to fat and C is 1, 2, 2 (place),
21. S7: This means that, to the first place in the most important information,
22. S5: give 100 weights. And if you think that the price is not important, give 10

weights.

At first, S5 suggested ‘the average of figures’ (14). Following S5, S7 added an
Example (15). Next, S5 disagreed with S7 and suggested ranks, not figures. (16).
Following previous thoughts, the students had added models and disagreed with the
added opinion (i.e., group fluency, mutually complementary and conflict-based inter-
actions). As S7 raised a question about ‘the average of figures’ model (17), S6, a
thought evaluator, asked a question about the difference between the models (18).
Due to the question of S6, S5 identified that the mathematical meanings of the three
models, the average of figures, the average of ranks and the sum of ranks, were the
same (19). The thought evaluator, S6, provided an opportunity to review the shared
models and the conflict inducers, S5 and S7, reviewed the model together rather than
inducing additional conflict without logical grounds. Following the shared thoughts,
they elaborated on the mathematical meanings of the models with reasonable justi-
fications (i.e. metacognitive interaction, group elaboration). Afterwards, ‘the sum of
weights’ was discussed. As the teacher gave an example (20), S7 and S5 completed
the meaning of the model (21) and applied the model to a given situation (22). As in
simplification stage, emerged group creativity is the catalyst of amodel development,
since students can text and refine ideas based on others’ ideas.

In Group 2, unlike Group 5, there was only mutually complementary interaction
and group fluency. At first, S2 presented ‘the sum of weights’ model. Following
S2, S3 added a model, ‘cost-effectiveness’. Following the model proposed by S3,
S2 suggested a similar model, ‘health’. Members did not review the validation and
features of models.

Each group chose ‘the sum of weights’ model. Although the two groups chose
the same model, the developed group creativity and its effects differed. Table 31.3
shows the types of interaction, creative synergies and its effects observed at mathe-
matical model stage in Groups 2 and 5. The development of group creativity engages
students in developing, understanding, modifying and using a model to make sense a
context and to solve a modelling task. Table 31.3 also shows that although mutually
complementary interaction can extend the number of sharing models, conflict-based

Table 31.3 Group creativity and its effects observed at mathematical model stage

Group Group creativity Effects

Interactions Creative synergies

2 Mutually complementary Group fluency Sharing the model

5 Mutually complementary,
conflict-based,
metacognitive

Group fluency, group
elaboration

Sharing the model
Confirming the
mathematical meaning of
the shared models
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and metacognitive interactions are needed to confirm the mathematical meaning of
the shared models.

To sum up Tables 31.2 and 31.3, interactions, creative synergies and effects are
linked. As more types of interaction occur, more types of creative synergies occur
and more effects occur. For example, at simplification stage, while Group 2 just
selected factors, Group 5 set elaborated criteria and selected the proper factors based
on it. And, at mathematical model stage, while Group 2 just collected models, Group
5 checked the model’s meaning. The teacher and the student mentioned effects of
group creativity in modelling process as follows.

R: What effects do you think have occurred through the interaction for group
creativity?

T: It helped in terms of expansion of students’ thinking. There were many cases
where they could see through the opinions of other friends what they had not
thought of before.

R: How did activities in this class help you solve the given task?
S7: (when simplifying) We could choose the most reasonable information after

checking the shared information.

31.5 Discussion and Conclusion

Using group creativity as a pedagogical strategy, we observed that majority of the
students could better engage in each modelling stage. Focusing on the three types of
interaction and four types of creative synergies, the major findings are as follows.
First, according to the groups and the stages, different types of interaction and creative
synergies and different effects were observed. Second, emerged group creativity
promoted the modelling. According to the emerged group creativity, its effects on
modelling were different.

Based on the significant differences in group creativity developed in the two
groups, we can confirm that group creativity emerged by combing three types of
interaction is needed for the learning and teaching of mathematical modelling. For
developing model, it is needed for students to engage in multiple cycles of descrip-
tions, interpretations, conjectures, and explanations that are iteratively refined while
interacting with other students (Lesh et al. 2003). Group creativity, which is devel-
oped by the dynamic process of three types of interaction (Glăveau 2018), can support
this. In particular, through conflict-based and metacognitive interactions, students
engage in multiple interpretations and conjectures that are iteratively refined, and
group elaboration occurred. By elaborating on the mathematical meaning of the
shared model, students identified mathematical concepts contained in the model.
Extended group creativity drove model refinement and knowledge creation (Zhou
and Luo 2012). In this respect, Vorhölter (2018) also emphasized the capacity to
monitor each other’s work for modelling.

For the development of mathematical modelling and group creativity, previous
studies (Baruah and Paulus 2009; Lesh et al. 2003) suggested some teaching method
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and environment. In addition to them, we suggest the followings for the learning
and teaching of mathematical modelling through group creativity. At first, group
composition reflecting cognitive diversity is needed. Appropriate role playing can
enhance refinement in understanding situation and deriving model. In particular, the
role of thought evaluator is critical. Unlike in Group 2, S6 performed her role well
and this led to additional review. Second, teacher’s guide for interactions based on
mathematical grounds is needed. At simplification stage, similar to Lesh and Doerr
(2012), students argued about a task based on their own experience not on mathe-
matical grounds. The first criterion for the simplification was students’ experience
in each group and neither led to metacognitive interaction. In this case, to induce
additional arguments, teacher’s guidance is needed.

This study has the following implications. First, we present group creativity’s
particular contribution to the learning and teaching of mathematical modelling. As a
pedagogical strategy, group creativity can promotemathematical modelling. Second,
this study follows and extends previous studies (e.g. Lesh andDoerr 2012) presenting
mathematical learning through modelling. As we can see in the results section,
group creativity can supportmathematical learning throughmodelling. In sum, group
creativity can be developed through mathematical modelling activities, and group
creativity can support mathematical modelling activities and extend mathematical
knowledge.
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Chapter 32
Data-Based Modelling to Combine
Mathematical, Statistical,
and Contextual Approaches: Focusing
on Ninth-Grade Students

Takashi Kawakami and Kosuke Mineno

Abstract This chapter examines ninth-grade students’ data-basedmodelling to esti-
mate previous and unknown Japanese populations. The results of the students’
productions of group and individual models and their individual use of the group
models demonstrated that the data-based modelling approach—which involves
putting ‘data’ at the core of mathematical modelling—can be used to construct,
validate, and revise various models while flexibly combining mathematical, statis-
tical, and contextual approaches generated by using data from real-world contexts.
Data-based modelling can be a pedagogically dynamic and flexible approach for
balancing the development of generic modelling proficiency and the teaching of
mathematics and statistics through real-world contexts.

Keywords Data-based modelling ·Mathematics · Statistics · Real-world context ·
Population estimation · Boundary interactions

32.1 Introduction

With the advent of big data and the need to develop models to deal with uncer-
tainty, several researchers in mathematical modelling education have emphasised
the need to extend the concepts of models and modelling in mathematics educa-
tion to the statistical domain (e.g. English and Watson 2018; Kawakami 2017). The
mathematical modelling education community frequently promotes mathematical
and real-world contextual approaches (Blum et al. 2007), whereas the statistics
education community emphasises the use of statistical and contextual approaches
in statistical modelling (Langrall et al. 2017). In this study, the data-based modelling
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approach—which involves putting ‘data’ at the core of mathematical modelling—
contains characteristics of both mathematical and statistical modelling as it involves
not only mathematical and contextual approaches, but also statistical approaches, in
the modelling progress (English and Watson 2018). Furthermore, it can bridge the
distance between learning mathematical modelling and statistics (Kawakami 2017,
2018). However, it remains poorly understood how, and to what extent, primary
and secondary school students use data-based modelling to solve real-life problems
(e.g. Engel and Kuntze 2011). This chapter illustrates ninth-grade students’ use of
mathematical, statistical, and contextual approaches in data-based modelling.

32.2 Combining Mathematical, Statistical, and Contextual
Approaches Through Data-Based Modelling

Both mathematics and statistics education communities have increasingly empha-
sised the need for boundary interactions between mathematical modelling education
and statistics education (English andWatson 2018;Langrall et al. 2017). The dual role
of mathematical modelling—as an end and as a means—in mathematics education
(Niss 2008) highlights the mutually beneficial relationship between learning mathe-
matical modelling and statistics (Kawakami 2018). On the one hand, the real-world
context of statistics can be employed as an end or content to learn generic modelling
proficiency (competency and disposition). On the other hand, the modelling process
can be ameans to elicit and construct statistical concepts (i.e. distribution) to organise
data, through constructing, evaluating, and revising models as sharable representa-
tions of a given system’s structure (Hestenes 2010). Data-based modelling is a peda-
gogically dynamic and flexible approach and can be employed as either the former
or the latter aspect (Kawakami 2017, 2018); this study focused on the former aspect.

Data plays key roles in developing models in both mathematical modelling and
statistics (Engel and Kuntze 2011). Data are crucial in various aspects of modelling,
such as model sources and references to test and validate models. Moreover, data
are essential as a driving force for statistical inquiry involving problem definition,
planning, data collection, data analysis, and conclusion (Wild and Pfannkuch 1999).
Data have two epistemic characteristics: First, data are numbers with a real-world
context (Cobb and Moore 1997). Second, data have a structure and variability (i.e.
signal and noise) (Konold and Pollatsek 2002). Therefore, data are not only the
objects of mathematisation to uncover or abstract the underlying mathematical and
statistical structure of data in order to solve real-world problems but also the sources
of mathematical and statistical knowledge, ideas, and concepts (Lesh et al. 2008;
Wild and Pfannkuch 1999). Mathematics and statistics differ in terms of their ways
of using data (e.g. Cobb and Moore 1997). On the one hand, mathematics mostly
deals with operations regarding numerical values in data and abstractions, pattern
identification and generalisations based on data, and generally adopts a deterministic
view of the data and derived interpretations and conclusions. On the other hand,



32 Data-Based Modelling to Combine Mathematical, Statistical … 391

statistics always links data to real-world contexts and considers that there is no
certainty in interpretations of data and their solutions due to data variability. Based
on the aforementioned characteristics and handling of data, mathematical approaches
(i.e. operations and reasoning that focus on invariant structures and signals in data),
statistical approaches (i.e. operations and reasoning that focus on variability and noise
in data), and contextual approaches (i.e. operations and reasoning that focus on real-
world contexts beyonddata) canbe elicited in conjunctionwith data-basedmodelling,
and this can help to observe, manipulate, and represent real-world data. Based on
modelling epistemology, where components of several models are combined and
reconstructed into a coherent model for inquiry purposes (e.g. Kawakami 2017),
students can develop meaningful models by combiningmathematical, statistical, and
contextual approaches, thereby promoting generic modelling proficiency to utilise
the characteristics of data through data-based modelling.

32.3 Methodology

This chapter addresses the following research question: How did the students use the
three approaches in their models through data-based modelling? To investigate the
question, we analysed group activities and post-lesson individual reports through a
series of teaching experiments conducted in 2015. This study included four classes
of ninth-grade students (73 males and 78 females aged 14–15 years) from a national
junior high school in Japan. The experiments were coordinated by the classroom
teacher, who is the co-author of this chapter. The students had previously learnt
concepts in descriptive statistics (i.e. mean, median, mode, histogram, and relative
frequency), probability (i.e. statistical probability andmathematical probability), and
function (i.e. proportion, inverse proportion, and linear function). However, they had
not learnt modelling with complex data. During the experiments, the students were
asked to use calculators and not simulation software.

32.3.1 Design

32.3.1.1 Population Estimation

Population estimation is a crucial topic in statistics compared with demography
because the future population has a considerable impact on the national policies and
economy. Smith et al. (2001) stated that although experts use complex mathematical
and statistical methods in population estimation, the following mathematical, statis-
tical, and contextual approaches are the foundation of population estimation: (a)
deriving an underlying data structure (i.e. population change pattern), (b) focusing
on population change variability, and (c) considering variability sources, such as
births, deaths, migration, and social circumstances.
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In mathematics education, Galbraith (2015) cited population estimation as an
authentic modelling example for real-world problem solving. Before World War
II, in the Japanese textbook for tenth grade mathematics (Tyuto Gakko Kyokasho
Kabushiki Kaisya 1944), population estimation was included in the ‘Statistics and
Probability’ unit, which enabled the students to learn (a) decision making based on
data and common sense, (b) evaluation and comparison of models based on assump-
tions, and (c) statistical probability (e.g. death probability). Therefore, population
estimation is an excellent topic for learning data-based modelling; however, less
empirical research has been conducted on population estimation in mathematics
education at the lower secondary level.

32.3.1.2 Tasks

Population estimation tasks Population prediction is an important theme that
affects not only the national economy but also policies. This year (2015) will
be the census in Japan. What is the population of Japan by age group this year?

Task 1: In order to predict the population by age group in 2015, we would
like to predict the population by age group in 2010 that can be verified. We
collected Japanese population data by age group in 1995, 2000, and 2005 when
the census was conducted from the website of the Ministry of Internal Affairs
and Communications as in Table 32.1. Consider how to predict the population
of Japan by age group in 2010 and compare the predicted and actual population
data in 2010.

Task2:Refer tofindings fromTask1.Consider how topredict the population
of Japan by age group in 2015.

The population estimation tasks comprised two tasks aimed to estimate the (then)
upcoming 2015 census population of Japan. However, the word ‘predict’ was used

Table 32.1 Japanese population data by age group in 1995, 2000, and 2005 (Partially omitted)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
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instead of ‘estimate’ in the tasks and class to help students understand their goal.
Because students may findmodel development difficult without scaffolding, a model
development sequence through different situations (Lesh et al. 2003) was adapted
for model development using different data. In Task 1, students conceived ideas of
models for population estimation in 2010 based on the data, and in Task 2, they
employed the model created in Task 1 to estimate the population in 2015. By esti-
mating the population in 2010, the student models could be evaluated and improved
compared to the actual population in 2010. Table 32.1 comprises data based on 5-
year intervals and 5-year age groups (i.e. cohort: a group of people born in the same
interval), and the students could understand patterns of population change through
Table 32.1 and/or population pyramid graphs.

32.3.1.3 Teaching Experiments

All classes were taught two or three 50-min lessons. At the beginning of the first
lesson, the teacher introduced the problem of the declining population of 14–15-
year-old students in Japan and the subsequent decline in the number of university
students, which would severely affect the management of universities and colleges.
Numerous participating students aimed to acquire university education in the future,
and thus, they considered population estimation to be necessary for individuals and
society. The teacher then set the topic of the lessons as ‘Predicting the population’
and asked the following question: How do you predict population? The teacher
presented Task 1 after the students provided their responses (e.g., ‘collecting data on
births and deaths’ and ‘collecting data on populations of each age’). The students
were categorised into 40 groups (3–4 students in each group) and were asked to
collaboratively complete Task 1, in order to advance engagement with real-world
context (Brown 2017). However, the teacher distributed calculators and additional
data and resources (e.g. population based on age groups, number of births, birth
rate, mortality during 1990–2005, number of births based on mothers’ age, and
population pyramid graphs) on request. Each group summarised the designed group
models for predicting population in 2010 on the provided whiteboards. During the
second lesson (for one class, the second and third lessons), the group models were
shared, compared, and evaluated to elicit different perspectives from the students
for model creation in Task 2. The students observed and implemented the following
aspects in group models: (a) prediction by focusing on a cohort, such as analysing a
generation and diagonally arranged data in Table 32.1; (b) including percentage and
not population difference; and (c) considering the real-world context of the data. For
model validation, at the end of the class, the teacher asked the students to compare
the population in 2010 that had been estimated using group models and the actual
population in 2010. The students were curious to understand reasons for the matched
or unmatched population values. Task 2 was an individual report assignment. In
addition to finding the solutions and results of Task 2, the students were asked to
prepare a report with answers to the following question: How did you implement the
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approach used for population prediction in 2010 (Task 1) to predict the population
in 2015 (Task 2)?

32.3.2 Data Collection and Analysis

The analysed data comprised the group models in Task 1 (as documented on the
whiteboards), individual models in Task 2 from the reports, and student responses to
the question from the reports. To address the research question, group and individual
modelswere categorised based on the approaches used by the students (i.e.mathemat-
ical, statistical, and contextual approaches). This study’s mathematical approaches
includedmathematical operations and procedures with regard to data values, abstrac-
tion, pattern identification with functional perspective, generalisations from data,
and deterministic perspectives regarding trends; its statistical approaches included
the determination of operations and procedures with consideration of data varia-
tion and decision making under uncertainty; and its contextual approaches referred
to the use of knowledge with regard to the real-world context of Japanese popu-
lation and society. Moreover, the use of group models to create individual models
was categorised according to frequently used terms and similar terms (e.g. ‘apply’,
‘modify’, and ‘collect’) observed in the student responses for understanding model
development by the individual students.

32.4 Results

This section summarises the student productions of the groupmodels from the white-
boards, individual models from the reports, and their individual use of the group
models from the reports in order to illustrate findings regarding the addressed research
question.

32.4.1 Student Productions of the Group and Individual
Models

With regard to the results of models proposed for Task 1 by the 40 groups, math-
ematical approaches included focusing on patterns of change in cohort population
differences, making generalised formulae to estimate population, calculating the rate
of change in the cohort population, and calculating the rate of change in the total
population for each 5-year interval. The statistical approach included the calcula-
tion of average cohort population differences to accommodate the variation in the
data values. The contextual approaches included considering the causes of variability,
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Table 32.2 Categories of group models in Task 1 (N = 40 groups) and individual models in Task
2 (N = 151)

Category Characteristics Percentage (%)

Task 1 % Task 2 %

M1 Using only mathematical approaches 40 28

M2 Using both mathematical approaches and contextual
approaches

10 9

M3 Using both mathematical approaches and statistical
approaches

48 46

M4 Combining mathematical, statistical, and contextual
approaches

2 17

such as the lowbirth rate, aging population in Japan, and immigration to Japan. For the
individual final models in Task 2 by 151 students, in addition to the approaches used
in the group model, the following approaches were used: calculating the change in
birth and death rates (mathematical approach); identifying significant figures (statis-
tical approach); comparing predicted and actual values (statistical approach); and
considering the effect of natural disasters, such as earthquakes (contextual approach).

Table 32.2 presents the categories of groupmodels in Task 1 and individualmodels
in Task 2. For Category M1 in each case, the student groups or individual students
used only mathematical approaches (as described above). They estimated popula-
tion data for the years 2010 or 2015 based on patterns they obtained from changes in
existing population data every five years (e.g. ‘decreasing by about 5,000 thousand’).
They did not explicitly mention data variation and argued that changes in population
every 5 years are constant, so they were assigned to Category M1. For example, one
student group estimated the population for 2010 by adding the differences between
the decades 1995–2005 to the 2000 cohort population. Concerning Category M2
in each case, the student groups or individual students utilised both mathematical
and contextual approaches (as described above). They interpreted the cause of the
increase or decrease in the numerical value of the data based on the real-world context
of Japanese population and society in addition to the characteristics of Category M1
(e.g. ‘The decline in population is probably due to aging and the declining birth rate’).
With regard to Category M3 in each case, the student groups or individual students
used mathematical and statistical approaches (as described above). They estimated
population data for 2010 or 2015 and calculated average and/or significant digits
in order to accommodate data variation (e.g. ‘The average was calculated because
the variation in the value change was large’). They explicitly mentioned data varia-
tion in contrast to Category M1, so they were assigned to Category M3. The group
students or individual students who constructed the models assigned to CategoryM4
combined mathematical, statistical, and contextual approaches (as described above).
They interpreted the cause of the increase or decrease in the numerical value of
the data and/or adjusted the estimates based on the real-world context of Japanese
population and society in addition to the characteristics of Category M3.

Figure 32.1 provides a summary of a Category M4 model that was proposed by a
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Fig. 32.1 An example of category M4 (Summary by authors)

student duringTask2.This student developed threemodels for eachpopulationgroup.
For the age groups of 5–79 and 0–4 years, the student used an average rate of the
change in cohort population and the average population difference, respectively. For
each 5-year interval group in the 5–79 years group, the student calculated the average
cohort change rate for 5 years, added the average to the 2010 cohort population (➆
in Fig. 32.1), and estimated the cohort population 5 years later (x in Fig. 32.1). He
generalised these procedures with a formula. For example, the formula for the 15–19
age group in 2010 was as follows:

(
15− 19 age population in 2000

10− 14 age population in 1995
× 100+ 15− 19 age population in 2005

10− 14 age population in 2000
× 100

+ 15− 19 age population in 2010

10− 14 age population in 2005
× 100

)
÷ 3

+ (10− 14 age population in 2010)

For the age groupof 0–4years, the student calculated themeanbecause variation in
data was evident. For the age group of higher than 80 years, the student considered
medical care and aging society and calculated survival probability based on the
following cogitation: ‘Medical care is advanced, and Japan is inclined to become an
aging society. Thus, I considered another approach for prediction’. Themathematical
approaches included abstracting the structure of cohort from the data and generalising
it with a formula (especially for the age group 5–79 years), calculating the rate of
change in each cohort population, and calculating the difference of population. The
statistical approach included calculating the average cohort population differences to
accommodate variation in data. Probability was calculated using mathematical and
statistical approaches. Contextual approaches related to the Japanese society were
used to develop alternative models.
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Table 32.3 Categories of
students’ individual use of
group models (N = 151)

Category Characteristics Percentage (%)

U1 Applying own group’s model 24

U2 Modifying own group’s model by

(a) Adding other data and models 19

(b) Changing operations 31

(c) Both (a) and (b) 16

U3 Correcting own group’s model 3

U4 Changing own group’s model 7

Regarding the results of the group models, 88% of the groups were assigned to
Category M1 (40%) or Category M3 (48%); only 12% of the groups incorporated
contextual approaches into their models. However, because this result was obtained
after analysing group models that were summarised on whiteboards, students may
have used contextual approaches in their model construction processes. On the other
hand, for individualmodels, 74%of the studentswere assigned toCategoryM1 (28%)
or Category M3 (46%); 26% of the students incorporated contextual approaches
into their models, and 17% of the students combined mathematical, statistical, and
contextual approaches.

32.4.2 Students’ Individual Use of the Group Models

The use of group models by the students to develop individual models was clas-
sified into four categories (Table 32.3). The students applied, modified, collected,
or changed their group models. Overall, 66% of the students modified their group
models by using the following three methods: (a) adding other data and models, (b)
changing operations, or (c) both. For example, in Category U2 (a), the students used
the following approach: adding data, such as births, deaths, immigration, natural
disasters, and so on; creating models for each age group by considering the differ-
ences in variability (e.g. age groups 0–4, 5–79, and higher than 80 years); and adding
functional models by using and comparing the total population with the sum of the
population of different age groups. On the other hand, Category U2 (b) included
using aspects, such as the difference of change, rate of change, mean, and signifi-
cant figures and using alternative data view. The students assigned to Category U2
explicitly developed mathematical, statistical, and contextual approaches. For Cate-
gory U3, the students corrected errors, such as calculation errors, in their group’s
models, and for Category U4, they adopted the models proposed by other groups.
Moreover, the students described the model features, including similarity, simplicity,
generality, and shareability, in their individual use of the group models. One example
of considering shareability was as follows: in his report, a student who was assigned
to Category U2 (b) stated that he clarified the assumptions in his alternative model
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after reflecting on the fact that the meaning and intention of his group model was
not shared properly with his classmates due to the ambiguity of his group model
assumptions.

32.5 Discussion and Conclusion

This chapter addressed some aspects of the data-based modelling (i.e. estimating
the Japanese population) performed by ninth-grade students. All the participating
students developed individual models based on the group models (Tables 32.2 and
32.3). Moreover, 66% of the students improved their group models while pursuing
the similarity, simplicity, generality, and shareability of their model. These find-
ings may have resulted from the effect of the model development sequence (Lesh
et al. 2003), which included model sharing and validation, and collaborative engage-
ment with real-world contexts (Brown 2017) in lessons. Furthermore, mathematical,
statistical, and contextual approaches were used flexibly and creatively in order to
construct individual models (Fig. 32.1). The students also developed a mathemat-
ical and statistical understanding (English and Watson 2018) that reflected different
concepts including the meaning and usage of proportions and mean. They combined
and developed several mathematical, statistical, and contextual approaches by using
data observation, manipulation, and representation while estimating the population.
The aforementioned results suggest that a data-based modelling approach could also
help students acquire the generic modelling proficiencies necessary for manipu-
lating and using big data in order to obtain interdisciplinary solutions in the later
grade levels, consequently in their adulthood. However, this study also revealed that
students tended to experience difficulties when they attempted to incorporate contex-
tual approaches into their models during the development of group and individual
models (Table 32.2). This result validates the difficulty of incorporating contextual
approaches into mathematical modelling practice (e.g. Brown 2017), thereby indi-
cating that more research is necessary to examine the data-basedmodelling processes
conducted by students using the collected data, including videos of student group
work.

In conclusion, this study suggests that the data-based modelling approach can
be used for constructing, validating, and revising various models while flexibly
combining the mathematical, statistical, and contextual approaches generated by
using data from the real-world context. Data-based modelling is a pedagogically
dynamic and flexible approach, and it can be employed for various educational
purposes, including the teaching of mathematical modelling with the aid of the
real-world statistical context or statistics teaching by using mathematical modelling
processes (Kawakami 2017, 2018). This study focused on the former purpose;
the students developed not only mathematical and contextual approaches but also
statistical approaches such as statistical probability (e.g. survival probability, as
shown in Fig. 32.1). This finding provides a firm foundation for effectively teaching
statistical and stochastic concepts with the aid of data-based modelling. Thus, the
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data-based modelling approach will help to resolve the challenge posed by Niss
(2008) of balancing the development of modelling competencies and the teaching of
mathematical and statistical contents using real-world contexts.
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Chapter 33
Implications of Using Mathematical
Modelling as a Pedagogical Tool
on the Mathematical Concepts
of Proportions and Proportional
Reasoning in a Non-prototypical
Secondary Mathematics Classroom

Muzi Manzini and Duncan Mhakure

Abstract Consistent with international trends, mathematical modelling is heralded
and has been documented as a construct that is imperative for the teaching and
learning of mathematics in South African schools. The study discussed in this
chapter explored the immediate implications of using mathematical modelling as
a framework for the teaching and learning of powerful mathematical concepts such
as proportional reasoning in South African schools located in under-resourced low
socio-economic areas. Results show that the initial apprehension that students expe-
rienced when exposed for the first time to a model-eliciting activity was soon trans-
formed into a diverse range of creative mathematical approaches, when they learned
that the activity is open-ended by default.

Keywords Mathematical modelling ·Models and modelling perspectives ·
Model-eliciting activities · Non-prototypical mathematics classroom · Powerful
mathematical ideas · Proportional reasoning

33.1 Introduction

The teaching and learning of primary and secondary school mathematics in South
Africa are informed by the National Curriculum and Assessment Policy Statements
(DBE 2011). One of the aims of this curriculum is to ensure that students acquire
and apply knowledge and skills in ways that are meaningful to their own lives and
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promote knowledge in local contexts while being sensitive to its global relevance. In
this regard, mathematical modelling is prioritised as a key specific objective, deemed
to be a set of imperative general principles that must apply across all primary and
secondary grades. Currently, much international attention is being paid to mathemat-
ical modelling (Stohlmann 2017); in particular, to modelling as a problem-solving
tool, or a resource for linking (through application) abstract classroom mathematics
with real-world situations. Moreover, internationally there is also a revamped surge
towards examining mathematical modelling as a pedagogical tool (Arseven 2015).

The study reported in this chapter seeks to explore the implications of the employ-
ment of mathematical modelling as a framework for the teaching and learning of
powerful mathematical concepts in South African secondary schools in low socio-
economic areas. These are schools located in communities that are characterised
by poverty, inequality and related social ills that may manifest in (for instance)
classroom disruption, student-teacher violence, etc. that is “non-prototypical math-
ematics classrooms”. For the purposes of this study we interpret “powerful mathe-
matical concepts” in the same way as Skovsmose and Valero (2002); these speak to
key ideas and processes geared at optimising the likelihood of success, in terms of
student access to the opportunities of the twenty-first century and the fourth indus-
trial revolution. These include, inter alia, quantitative literacy, and mathematical and
statistical reasoning (e.g. proportional reasoning, reasoning using data, probabilistic
sense-making, algebraic cognition, mathematical modelling, visual representations,
problem-solving and -posing, etc.) (Moreno-Armella and Block 2002; Skovsmose
and Valero 2002). This is especially critical in the context of delivering to students’
real-world mathematics that has meaningful and immediate implications for their
own lives. More specifically, the study reported in this chapter sought to investigate
the students’ mathematical struggles that acted as impasse factors when students
are solving real-world problems on the concepts of proportions and proportional
reasoning. Therefore, using the models and modelling perspective (MMP) theo-
retical framework, the following research question was investigated: What mathe-
matical struggles are prominent as impasse factors when students are engaged in
a model-eliciting activity involving the concepts of proportions and proportional
reasoning?

33.2 Theoretical Framework

In linewith our research context, this study used a theoretical framework underpinned
by contextualmodelling, theMMP. This framework has proven extremely valuable in
studying the interaction between students, teachers, mathematics instruction, and the
curriculum delivered. Thus, as in English (2003), theMMPwas adopted in this study,
because it has been shown to be a powerful conceptual framework for research on the
development of interaction between students, curriculum resources, and instructional
programmes, see also (Lesh and Lehrer 2003).
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More specifically, for our context, the following points arewhat ultimately aligned
the policy imperatives, the teaching and learning context, and the underlying theo-
retical framework. (1) MMP emphasises that thinking mathematically is about inter-
preting situations mathematically at least as much as it is about computing (Lesh
and Doerr 2003). (2) MMP asserts that the development of elementary but powerful
mathematical concepts and constructs (models) should be considered important goals
of mathematics instruction (Lesh and Doerr 2003). (3) The MMP-related literature
illustrates how modelling activities often lead to remarkable mathematical gains
by students previously regarded as systematically disadvantaged, mathematically
immature, or simply not gifted enough for such sophisticated and powerful forms
of mathematical thinking (Lesh and Lehrer 2003; Lesh et al. 2003; Schorr and Lesh
2003; Kang and Noh 2012). (4) MMP draws on the design of activities that motivate
students to develop the mathematics needed to make sense of meaningful situations
(Stohlmann 2017).

The main problem-solving activity that students engaged with in this study is an
example of what are called model-eliciting activities (MEAs). These activities are
characterised by authenticity and meaningfulness of context, open-endedness, and
the lack of structure typically associated with secondary school textbook word prob-
lems. More importantly, and as is characteristic of mathematics education research
involving student-produced work, the emphasis was on the thinking and reasoning
tools employed by students when engaged in non-routine activities. In this regard,
the process that students engage in when solving MEAs is regarded as the main
product or the fundamental aspect of the expected student-generated solution, as
also explained by Lesh and Doerr (2003). Figure 33.1 below depicts the modelling
cycle adapted from (Mooney and Swift 1999), and Table 33.1 explains the cycle in
the context of a model-eliciting activity.

Fig. 33.1 The iterative mathematical modelling cycle
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Table 33.1 A description of the steps involved in the MMP cycle, in the context of MEAs

Modelling stage Description

0. Given a real-world problem
scenario

A real-world context, a case study, is given to students.
MEAs use real, practical problems, often sourced from
print-media advertisements or articles, or other
publications. These tend to have more personal
meaning and are understandable to students

1. Describe the real-world problem A clear and succinct description of the real-world
problem must be stated. The modeller (the student, in
this case) must also isolate and appreciate the practical
features of the real-world scenario

2. Define the mathematical problem
(Mathematise in simple language)

Once the real-world problem is fully understood and is
well articulated, it must be translated into a clear,
unambiguous mathematical problem; that is, the
real-world scenario must be posed as an appropriate
and related mathematical question (Pertamawati and
Retnowati 2019)

3. Devise the model
(Mathematise using Occam’s razor)

Conception and formulation of a suitable mathematical
model, i.e. the problem statement is now coded into
some form of mathematical expression, equation,
geometric construction, etc. This involves making
assumptions, choosing suitable variables, and
providing a sensible rationale for any decisions made
in the model construction (Mousoulides et al. 2008;
Mooney and Swift 1999)

4. Resolve the model Using any suitable mathematical concept or construct,
a solution to the mathematical model devised must be
determined (Pertamawati and Retnowati 2019)

5. Decode the solution Reinterpreting the model’s solution in terms of the
practical, real-world meaning. Does the solution make
sense, in terms of the real-world problem? If so, what
is the mathematical solution that tells us how to
proceed (Stohlmann 2017)

6. Evaluate the model This is about establishing the connection between the
mathematical model (real result) and the real-world
problem with the aim of validating and examining the
mental representation from students and compare them
to their initial assumptions on how to find the solution.
This entails, in addition, checking assumptions made
during the process of solving the real-world problem,
and the acknowledgement and identification of the
limitations of the proposed solutions (Borromeo Ferri
2006)

(continued)
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Table 33.1 (continued)

Modelling stage Description

7. Document the model solution This stage requires a documented final product, either a
written report or in oral form, outlining the
problem-solving strategies and solution
employed—that is, a report on the successful solution,
or highlighting how further research could produce an
improved solution. This must be a clear and concise
explanation of how the client (the entity or person
facing the real-world problem) should address the
problem. In addition, where feasible this should also
illustrate the reusability (if any) of the model in terms
of its ability to help the client solve other problems of a
similar nature (Galbraith and Holton 2018; Lesh and
Doerr 2003)

As suggested in Galbraith and Holton (2018), for the purposes of the introductory
MEAacyclicalmodel as depicted inFig. 33.1 ismost useful and applicable in practice
if it is further augmented in a form that can guide or scaffold a systematised approach
to individual problems. In this sense, the following list outlines the sequential steps
of the process used by students progressing towards a group solution.

The actual process pursued by the students is analysed in the next section. In
brief, the process followed by the students in converting the real-world problem
into a mathematical model, from a MMP, is an important step for students engaged
in a model-eliciting type of activity. It employs “Occam’s razor”, with the aim of
emphasising to students the need to “avoidmaking things harder than they need to be”
(Mooney and Swift 1999, p. 4). This encourages students to exclude all information
and details not particularly useful for their purposes, or which cannot be processed
given the constraints at hand. In turn, this permits the students to slice a real-world
problem into manageable modules, and ameliorates the complexities associated with
real-life problems (Mooney and Swift 1999).

33.3 Research Methodology

33.3.1 Participants and Procedure

A total of 129 (male and female) middle-secondary (Grade 10) mathematics students
participated, aged 14–15 years, and from three schools. None of the students had any
direct prior exposure to the mathematical modelling cycle process. The schools that
participated in the study were in different locations but had similar socio-economic
status. Since the study involved students who were minors, ethical clearance was
sought from parents and guardians, the school, and the provincial department of
education. The study took place during normal mathematics lessons, in the presence
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of both the researchers and the teachers. During the implementation of the model-
eliciting activity, each student received his or her own copy of the activity and was
given about five minutes to read and understand the task on their own. Subsequent
to that, they were divided into groups of two or three, and worked on the MEA as a
collective.

33.3.2 Data Collection and Analysis

Data was collected using audio recordings (and transcriptions thereof) of the student
group sessions. In addition, all written student work and solutions were collected for
documentary analysis. Each group submitted a brief report summarising the process
and advising the client on the solution. Among other aims, the report was intended
to motivate the students to articulate the assumptions made and processes required.
The Galbraith and Holton (2018) process was adopted, as the MEA also served as
an introduction to the modelling process for students with no previous experience of
modelling. Depicted below is the underlying model-eliciting activity that was used
in this study. The students’ modelling activities were analysed within the modelling
framework outlined in Table 33.1.

The modelling activity Thabo Mali, a keen sport supporter, is planning to
host a group of friends on Saturday to watch a soccer derby match. He plans
to serve them beef burgers at half time. Thabo knows his Gogo’s recipe for
making very juicy beef burger patties; however, the recipe only caters for 4–6
people, and he suspects he will have 6–9 friends visiting on Saturday. Hewould
like advice on how he should adapt the burger patty ingredients to cater for
all his friends. Write a report in which you advise Thabo on how to adjust the
ingredients for:

(i) this coming Saturday, and
(ii) any other weekend.

Gogo’s (Granny’s) secret ingredients (4-6 servings)

(1) 3/2 kg beef
(2) 1 egg
(3) 3/4 cup dry bread crumbs
(4) 3 tablespoons milk
(5) 2 tablespoons Worcestershire sauce
(6) 1/8 teaspoon cayenne pepper
(7) 2 buds of garlic
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33.4 Results and Discussion

In this section of the chapter, we use the MMP framework in the context of MEAs
to describe, and analyse the interactions between students, teachers, mathematics
instruction, and the curriculum delivered. These interactions are described and
analysed within the eight modelling stages shown in Table 33.1.

(0) given a real-world problem: Initial indications were that being handed a task
that did not look like what the students normally deal with in the mathematics
classroom seemed to captivate them. The context of the task was reportedly
familiar to the students,with one alleging “That’smydadon sportingweekends”;
and thus, they immediately took interest in the activity.

(1) describe the real-world problem: In terms of describing the real-world problem,
the task was designed to be as clear as possible, especially given that this was
the students’ first experience with a MEA. However, they were still required to
extract and isolate the important features of the real-world problem in one the
sentence and write them down, as a form of scaffolding for the next step. Here,
it was clear that the students had started thinking about what exactly they were
required to do.

(2) define themathematical problem (Mathematise in simple language): Beyond the
puzzled facial expressions, they also started to ask questions: “What does it mean
to ‘adjust’ in mathematics?”; “So! what are we supposed to calculate, sir?”—
some students would seek clarification. Some description of the problem used
phrases such as “Calculate how many more of each ingredient Thabo needs”,
“Increase the number of ingredients by how much?”, etc. Although specifying
the problem in simple English did not trouble the students much, evidently
there was some disagreement within the groups as to how they would utilise
their “answers” to advise the client.

(3) devise the model (Mathematise using Occam’s razor): This was clearly the first
time the participants had been challenged with an open-ended type of mathe-
matical activity, in which choice of approach depends on the drawing of indi-
vidual assumptions about the real-world problem situation. The results show that
initially the students experienced challenges in drawing these assumptions. As
a result, initially some resorted to making quick guesses regarding the solution,
without thinking deeply about what it would mean in reality.

(4) resolve the model: However, once they were clear that the structure of their
solution would depend on them first making certain key assumptions and, that
they could then devise a particular solution contingent on those assumptions—
the studentswere very keen to communicate their assumptions. In themain, these
were either client-focused or ingredient-availability-based, with the very clear
aimof simplifying the calculations required. Inter alia, assumptions included: (i)
Thabo (the client)must have enough food for everyone; (ii) Thabomustmeasure
ingredients accurately; (iii) Thabo must know exactly howmany (more) friends
are coming; (iv) Thabo should get all the things he wants to buy in advance; (v)
Thabo must organise the ingredients so that everyone gets one burger.
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(5) decode the solution: This process of generating assumptions was facilitated by
somedirected student questions posed to the session facilitators,which indicated
that the studentswere starting to engage criticallywith the task. These “what-if”-
type questions included the following: (i) How do we know how many burgers
per person Thabo will serve? (ii) Do all the friends need to receive the same
amount of food? (iii) Can Thabo cut up any extras and share them equally? (iv)
What if Thabo is broke, and cannot afford what he wants to buy?

(6) evaluate the model: In devising the mathematical model, there were struggles
initially. Even when some of the student groups were clear on their situational
assumptions, they struggled to agree among themselves on how to mathematise
the task they had been given. Based on the simplifying assumptions, some
students chose to make quick estimates of the required ingredient input amounts
and, offered some justification for the decisions made. For example: “Multiply
every ingredient by 3, because Thabo is expecting more than double the number
of people catered for byGogo’s original recipe”. These studentswere comparing
the ‘4’ from ‘4–6’ to the ‘9’ from ‘6–9’. There were a fair number of algebraic
expressions generated, and also a few attempts at arithmetic and proportional
reasoning.

(7) document the model solution: To solve the mathematical model, students were
allowed to use any mathematics concept or construct they deemed appropriate,
including proportions, reasoning and algebra. For example, Group A used
proportions, i.e. a:b as c:d: given 4–6 and 6–9, 4:6 as 6:9 therefore 2:3 and
2:3; in other words, adapting from 4–6 to 6–9 simplifies to the equation new
amount = old amount × 3/2. Here is a transcription of the relevant conversation:

Teacher: Does the answer make sense?
Group member 1: Not sure, but I think in a way it does.
Teacher: How so?
Group member 1: Well sir, at least the recipe will be increased, since 3/2 is bigger

than 1.
Group member 2: Yes sir, there is a proportional increase—we are multiplying by

an improper fraction.
Teacher: So, how many eggs must Thabo use?
Group member 3: 1times 3/2! It’s one and a half.
Group member 1: Should we not round up, and say two eggs?

In some groups, the engagements showed members had a good grasp of the real-
world interpretation of their solution, as well as the ability to evaluate the reasonable
practicality of such a solution. Perhaps familiarity with the context of the MEA was
critical in this regard. Two groups (B & C) reasoned as follows: (1) Reduce the “old”
ingredients (4–6) to serve 1 person. (2) Increase the ingredients for 6–9 people. That
is, when using the lower limits of the two ranges (4–6) and (6–9), first divide the
original ingredient amount by 4; the result is an equivalent proportion for one person.
Then multiply the answer by 6, i.e. new amount =(old amount ÷ 4) × 6.
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Fig. 33.2 A groups’ summary report of the modelling process

The study also showed that some students harbour misconceptions about handling
fractions (simplifying or arithmetic operations), or about translating from spoken
language to mathematical language. For example, in the group discussions some
members were unsure whether “increase an ingredient by 3/2” translates to “add
3/2” or “multiply by 3/2”. Part of the reason for this seems to stem from the students’
undeveloped use of mathematical language; for instance, no student was able to
articulate the calculated amount (3/2) as a “factor”, which would have indicated
from the outset that the answer must be a number used in finding a “product”.

There was some apprehension evident regarding writing a report, as students in
mathematics are not typically asked to document their answers. Initially, they were
not sure what to write. However, once it was clear that there was no prescribed
structure for the report, and that they simply needed to summarise what the client
should do, they managed to turn in their documentation. (See the sampled report in
Fig. 33.2.)

33.5 Conclusions

This chapter investigated the students’ mathematical struggles that were impasse
factors when students were engaged in solving MEAs on the mathematical concepts
of proportions and proportional reasoning. Two important factors are noteworthy
in this study. Firstly, given the fact that students who participated in the study had
no prior exposure to mathematical modelling, it is evident that there are definite
gains to be made by permeating the curriculum with MEA-type activities. This,
especially in relation to the sometimes elementary but key mathematical ideas—for
instance, the variation in problem-solving approaches adopted by the students, for
example, proportional reasoning, algebraic and pure arithmetic. Indeed, it is only
fair to assume that further exposure to learning mathematics through mathematical
modelling will go a long way in expanding the scope of approaches used. Secondly,
the learning environment in South African schools is largely traditional in terms of
the systematic approach to mathematics teaching and with a clear emphasis on high-
stakes examinations. This makes it difficult for teachers to readily adopt modelling
as a newway of teaching. Although teachers did not directly form part of the research
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team, the study provided useful and practical information to teachers on how MEAs
can be used for teaching mathematics in schools.

The immediate implication for pedagogy and student struggles is that there
appears to be a definite need to move students away from the (often limiting)
understanding that mathematical solutions (‘the answers’) to mathematical prob-
lems are always unique, and either correct or incorrect—especially since real-life
problems are generally open-ended. More importantly, the activity revealed some
embedded conceptualmisconceptionswith respect to arithmetic operations involving
fractions and translation from everyday language to mathematical operations or
representations, as well as with the mathematical interpretation of real-life contexts
(mathematisation).

Further research should focus on understanding how choice of context in the
MEAs influences student engagement with it; in particular, how students deal with
assumptions. It could also explore how mathematical modelling in the context of
model-eliciting activities can be used as a tool to help students bridge the gap between
spoken language and mathematical language and, to make connections between
different representations.
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Chapter 34
Using the Modelling Activity Diagram
Framework to Characterise Students’
Activities: A Case for Geometrical
Constructions

Duncan Mhakure and Arne Jakobsen

Abstract This chapter reports from a study investigating the use of a modelling
task that was given to sixty-two Grade 11 students from two schools in low socio-
economic areas in SouthAfrica. TheModellingActivityDiagram (MAD) framework
was used to characterise students’ mathematical thinking style when working on a
real-world problem on geometrical constructions. Although students were able to
find solutions to the scaffolded questions, they had problems with identifying key
mathematical concepts required during themathematisation process and assumptions
required to solve themodelling task.Only 16%of the students successfully completed
the modelling task.

Keywords Mathematical modelling ·Modelling activity diagrams · High-stakes
examinations ·Mathematical thinking styles ·Mathematical objects ·Modelling
competencies

34.1 Introduction

Over the past two decades, mathematical modelling has increasingly been viewed
as a central instructional strategy in mathematics education, from elementary school
to higher education settings. The notion that all mathematical objects are abstract
makes mathematics as a school subject difficult for students to learn. By using the
phrase mathematical object, we refer to: sets, numbers, matrix, real numbers, func-
tion, differentiation, and squares, to name but a few. For instance, it is easy to see
square-like shapes in everyday life situations; however, it is difficult to see the abstract
object of the square—without imposing the mental image of a square on a real-world
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thing (Stacey 2015). Perhaps not surprisingly, mathematicians refer to mathematical
objects as if they are physical objects. During the modelling process, “abstract tools
developed in one context can be applied to many other physical phenomena and
social constructs of the human experience and science” (Stacey 2015, p. 58). The
latter aligns itself with the construct of mathematical modelling, in which a real-
world problem is mathematised or converted to an intra-mathematical problem using
a process that applies abstract mathematical objects, which have been discovered and
derived in different areas of application. In mathematics education contexts, math-
ematical modelling as an instructional strategy is seen as a modelling vehicle (Julie
2002)—an approach for teaching mathematical concepts and enhancing students’
abilities in solving real-world problems (Erbas et al. 2014). It also true that in the past
two decades, many educational studies using mathematical modelling as a teaching
strategy have been carried out, with a number of them detailing how mathemat-
ical modelling has been applied to school curricula (Erbas et al. 2014; Kaiser and
Sriraman 2006).

Whilst this chapter is foregrounded in the South African mathematics educa-
tion context, a more global perspective of the construct of mathematical modelling
is adopted. The South African National Curriculum Statement (NCS) and the
Curriculum and Assessment Policy Statement (CAPS) for Further Education and
Training Phase Grades 10-12 states that: “Mathematical modelling is an important
focal point of the curriculum. Real life problems should be incorporated into sections
whenever appropriate. Examples should be realistic and not contrived” (Department
of Basic Education (DBE) 2011, p. 8).Modelling contexts need to come from various
everyday life situations—these include “issues relating to health, social, economic,
cultural, scientific, political and environmental issues where possible” (DBE 2011,
p. 8). A dominant feature of the SouthAfrican schools’mathematics curriculum is the
high-stakes examinations, which in some way determine the discourses around how
mathematics should be taught and/or learned in schools. Given that mathematical
modelling is not highly prioritised in high-stakes examinations in the South African
schools’ mathematics curriculum, it seems that, anecdotally, teachers spend less time
pursuing the modelling goals of the curriculum.

Evidence from research shows that, whilst there is consensus on mathematical
modelling as a cyclical process and its general phases, the challenge is that it does
not explicitly show students’ work as they engage in the process (Albarracin et al.
2019; Czocher 2016). This view is shared by Blum (2002) and Pelesko et al. (2013)
who posit that cognitive aspects from individual students’ work during the modelling
cycle should be the focus of further research. Niss (2013) contends that the real-world
problems being solved do influence the way in which the mathematics modelling
cycle is applied, andby implication the instruction that is intended to support students’
work on the problem being investigated. This chapter is a response to these two
calls. We investigated students’ individual mathematical thinking when working of
a real-world problem. Hence, the research question is: What are the characteristics
of students’ mathematical thinking styles when working on a real-world problem on
geometrical constructions.Weuse theMAD framework (see Sect. 34.2 on theoretical
framework), to characterise students’ mathematical thinking styles when solving the
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modelling task, we show how the mathematical modelling cycle relates to the MAD
framework.

34.2 Theoretical Framework

In this section, key elements of the theoretical framework onmathematical modelling
are presented. First, the cyclical characteristic of themathematical modelling process
is presented. Second, the MAD framework categories and their respective descrip-
tions are analysed, together with their linkage to the mathematical modelling
process.

34.2.1 Mathematical Modelling Cycle

Themathematicalmodellingprocess, as a construct, is cyclical and canbe represented
by differentmodelling cycles, someof themalso include representations of individual
students’ cognition and interpretation of the problem in context (Czocher 2017;Maaß
et al. 2018). In addition, Borromeo Ferri (2010) posits that during the modelling
process, students are often engaged in loops as they navigate between the real-
world model and the mathematical model. In Fig. 34.1, we present the mathematical
modelling cycle (Kaiser and Stender 2013) which outlines the knowledge and skills
necessary to build modelling competencies as illustrated in words in italics.

The expressions written in the rectangles in Fig. 34.1 give an end-product of each
of the five phases of the modelling cycle. A real-life situation constitutes a real-life
practical problem which needs to be solved by collecting important information and
writing down the necessary assumptions, thus converting it into a real model. An
appropriate mathematical approach)—could be a formula or construction)—is used

Real 
situation

Real model

Real results  

Mathematical model

Mathematical results 

Working 
mathematically:
using an approach to 
get a mathematical 
result  

Mathematising:
identifying a
mathematical 
approach
Interpreting:
relating results from 
calculations to the 
real situation 

Simplifying and 
understanding: 
the task to be 
solved

Validating:
comparing 
the result
with object

Validating:
thinking 
about 
improving 
the solution

Rest of the world Mathematics

Fig. 34.1 Mathematical modelling cycle ( Adapted from Kaiser & Stender, 2013, p. 279)
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Table 34.1 Descriptions of MAD framework categories (Albarracín et al. 2019, p. 215)

Categories of MAD Description

Reading Unpacking the context and understanding it

Modelling Transitioning from a real-world context to a mathematical interpretation of
the task

Estimating Making sense of the quantitative estimates in the problem in context

Calculating Using simple mathematical concepts to calculate the missing information
on the sketched diagrams or figures

Validating Interpreting, verifying and validating the mathematical calculations from
the model, and making sense and meaning of the calculations as they relate
to the real-world problem

Writing Giving a brief summary of the findings in a report, and how they relate to
the original task or problem, and the processes leading to finding the
solution to the problem

to translate a realmodel to amathematicalmodel. The chosen approach—(calculating
and/or constructing)—are used to work out the mathematical results. Real results are
obtained as students relate the mathematical results to the real situation through
interpreting. In order to validate the real results, students can check if the real results
fit the real situation, and check for the scope of improving the solution.

34.2.2 Modelling Activity Diagram Framework

While the mathematical modelling cycle contain the general phases of the modelling
cycle, it does not sufficiently provide a framework for detailed analyses of the
students’ cognitive processes during modelling activities (Albarracín et al. 2019).
Due to this limitation, we use the MAD framework (Ärlebäck and Bergsten 2013) to
analyse the mathematical thinking styles of students engaged in a modelling activity
(Borromeo Ferri 2010). Mathematical thinking style is a construct that was founded
by Borromeo Ferri (2010), and it refers to how individual students use their math-
ematical abilities to solve the modelling task in ways which are unique to them.
Table 34.1 below describes the categories of the MAD framework that we used to
analyse the students’mathematical thinking styles on amodelling task ongeometrical
constructions. The six categorisations are presented in the order in which they are
operationalised: reading, modelling, estimation, calculating, validating and writing.
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34.3 Methodology

This study is part of a bigger project whose aim is to improve the teaching and
learning of mathematics in secondary schools located in low socio-economic areas
in South Africa, schools that are characterised by a lack of teaching and learning
resources. Equally important is that the students from these schools have not been
exposed to solving open-ended, unstructured and complex everyday real-world prob-
lems, which are the types of tasks envisaged in the mathematical modelling cycle.
Teaching and learning in these schools are often textbook driven, with a limited use
of everyday real-world contexts in the teaching of mathematics. This study uses the
grounded theory as a qualitative research approach to unravel and obtain theoret-
ically dense explanations, predictions, and interpretations of the students’ mathe-
matical thinking processes during the modelling process (Glaser and Strauss 2017).
Using theMAD framework, the study characterised and analysed thesemathematical
thinking processes as students engaged and solved the modelling task.

A cohort of sixty-two Grade 11 students from two schools participated in this
study, with thirty-one students from each school answering questions about the scaf-
folding modelling task. In addition, students were audio-recorded, and transcriptions
were done to analyse students’ utterances during the modelling activity, where they
were asked to explain their solutions.

34.3.1 The Modelling Task and Data Collection

The modelling task: Design a four-lane 400-metre athletics track on a
rectangular school ground with dimensions 180 m and 90 m.

When the task was piloted at another school, we discovered that the Grade 11
students in that school experienced difficulties in understanding the task. Hence, we
decided to scaffold the task by using two supporting questions. Question 1 sought to
probe students’ general knowledge about the shape of a 400-metre track, knowledge
about SouthAfrican athletes,why staggering in the lanes is important, and inwhich of
the three proposed track designs the athletes can run fastest around the track. It was an
attempt to have students scaffold around the modelling task by bringing the students
into the context of the task. Question 1a) asked if students knew who Mr Wade
van Niekerk was. He is a South Africa athlete and the current (2020) world record
holder for the International Association of Athletics Federations (IAAF) athletics
400-metre track event. The second question required the students to calculatemissing
dimensions on the shape representing the inner track. This task is an example of a
modelling-eliciting problem, where the key goal is the students’ ability to find the
required mathematical concepts to enable them to solve the problem task in context
(Kang and Noh 2012; Ng 2013). In this task, students need to apply elementary
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mathematical concepts such as: perimeter of shapes—including circles and semi-
circles, calculation of length of arcs given angles to name but a few. The task can
be classified as a level-3 problem since it is open-ended, messy, unstructured, and
complex (Kang and Noh 2012; Ng 2013).

Question 1

(a) Have you ever watched Mr Wade van Niekerk competing in a 400-metre
track event? YES or NO (circle the correct answer).

(b) Which of the following diagrams labelled A, B or C represent a shape of
an athletic track? Explain in two lines.

(c) Explain in which of the three track diagrams above the athlete will be able
to run fastest. Respond in two lines.

(d) Explain how four athletes running the 400 m in the first four lanes can be
positioned at the start to ensure that each one of them runs 400 m when
they reach the finish line.

Question 2 See Fig. 34.2.

(a) The length of the perimeter 
PQRSTV of a running track is 400 
metres. The straight lengths PV and 
RS each measure 110 meters. PQR 
and STV are semicircles. Calculate 
the distance PR.

(b) Design a four-lane four hundred
metres athletics track on a 
rectangular school ground with
dimensions 180 metres and
90 metres.

Fig. 34.2 The scaffolded modelling task
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34.4 Findings of the Study

In this section, the main findings of the study are presented. First, we give some
descriptive analyses of how the students performed on the scaffolding activities of
the task as shown in Fig. 34.2, including some examples of the students’ narratives
on their modelling process. Second, we discuss students’ performance within the
MAD categories.

34.4.1 Descriptive Analyses of Students’ Work
on the Modelling Tasks

The analyses below are based on three levels of achievements of the modelling task:
students who “completed both questions 1 and 2”; students who “completed both
questions 1 and 2(a)”; and students who “completed question 1 only”.

Completed both questions 1 and 2: 42 students, of which only 14 students (36%)
indicated that they had watched MrWade van Niekerk running 400 m. All 42 identi-
fied the correct figure C for the shape of the track. The notion of staggering athletes at
the starting point was understood by 28 students (67%). 30 students (71%) correctly
calculated the distance PR.

Completed questions 1 and 2(a): 13 students, of thesefive students (38%) acknowl-
edged that they had watched Wade running, in addition to identifying alternative C
as the correct shape of the tracking field. While 11 students (85%) acknowledged
the importance of staggering athletes at the starting point, 10 (77%) had the correct
calculation of the distance PR.

Completed question one only: 7 students, of which four (57%) students had
watched Wade running; although 6 students (86%) acknowledge the importance of
staggering athletes at the beginning of the race, they failed to calculate the distance
PR, equating it with the length of the semi-circle PQR as 90 m.

Whilst the scaffolding of the task helped students to understand its context, only
ten students of the sixty-two correctly sketched the four-lane track. The calculations
of the exact staggering positions of athletes remained a challenge to all the students.
One of the challenges students faced is that they were looking for a single approach
to solve the task—instead of realising that there were multiple ways in which the
tasks could be solved. This could have been due to the students’ limited exposure to
solving open-ended and unstructured problems. On communicating his/her solution,
one student said, “After making my four lanes I will use a wheel metre to measure
400 m from the finish line clockwise in each lane until I get 400 m to get the starting
positions of each of the athletes”. This was a solution proposed by a student who
realised that calculating the staggering positions was going to be difficult for him/her.
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34.4.2 Using the MAD Framework to Characterise Students’
Modelling Activities

TheMAD framework is useful in characterising the students’ mathematical thinking
style within the phases of the modelling cycle. In Table 34.2, we characterise the

Table 34.2 Characterising students’ mathematical thinking styles during the modelling proses
using the MAD framework

Categories of MAD Description of modelling activities of students from the problem in
context

Reading Unpacking and understanding the task: The scaffolding of the task led
to the students thinking about the problem in context. Students were
forced to think and focus on the problem context by answering the initial
questions—on Mr van Niekerk, choosing the appropriate shape of the
400-metre athletics track, the notion of staggering the athletes at the start
of the event, and which shape of the track field allows the athletes to run
fastest

Modelling Transitioning from a real-world context to a mathematical
interpretation of the task: Students formulated a representation, in the
form of a figure and/or diagram, of the problem in context by building a
mathematical model that highlighted the shape of the track, how
staggering can be achieved, and the width of the lanes of the 400-metre
track. Few students managed to carry out this transition from real-world
context to a mathematical model

Estimating Making sense of the quantitative estimates in the problem in context:
Students list the quantitative estimates required from the figure and/or
diagram they sketched under the “modelling” category above. The
students decide on which quantities are given and which ones need to be
calculated—and with what accuracy. Using estimations, the students draw
a rough sketch or representation of the 400-metre track. Students decide
on the width of the track (standard line is 1.2 m)

Calculating Using simple mathematical concepts to calculate the missing
information on the sketched diagrams or figures: Students identify the
concept of perimeter of a single lane of 400-m as a central concept. They
calculate the perimeters of the semi-circles, ensuring that each lane length
is 400 m from start to finish. Finally, they must calculate the exact starting
positions in all four lanes – finding the final arc length and the
corresponding angle leading to an accurate calculation of the actual
staggering positions

Validating Interpreting, verifying and validating the mathematical calculations:
Students make sense of the mathematical results, including calculations,
within the problem in context: design a 400-metre four lane track.
Students are given opportunities to critique and compare their solutions
with their peers, in addition to justifying their own solutions or designs

Writing Students report on and communicate about their track designs, and thus
have an opportunity to re-visit the mathematical modelling cycle activities
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students’ mathematical thinking styles visible during the modelling process within
the MAD framework (Borromeo Ferri 2010).

From this characterisation of students’ mathematical thinking styles, we observed
that although students were able to find solutions to the scaffolded questions, they
nonetheless experienced challenges with the formulation of the mathematical model.
In other words, students had problems with identifying key mathematical concepts
required during the mathematization process, and assumptions required to solve the
modelling task, such as thewidth of the lane. For example,whilst students understood
the notion of staggering athletes within lanes, often the students’ mathematical styles
did not lead to tangible solutions. As a result, only 16% of the students successfully
completed the modelling task.

34.5 Conclusion

Reforming education through the introduction of new instructional approaches, such
as,mathematicalmodelling, to classrooms environments dominated by the traditional
teacher-centred and textbook driven practices can be challenging. In the context of
this study, studentswere expected for the first time to solve open-ended, unstructured,
and complex everyday real-world problems, which are the types of tasks envisaged
in mathematical modelling. The findings of the study support the notion that the
MAD framework was useful in characterising the students’ mathematical thinking
styles within the phases of the modelling cycle. As expected, students struggled
to solve the open-ended task. In order to support teaching for understanding, the
modelling taskwas scaffolded to bridge and narrow the gap between students’ current
approaches and the proposed modelling instructional approach. The scaffolding of
the modelling task allowed students to familiarise and get a better understanding of
the task. As a way forward on adopting the modelling as an instructional approach
in the identified schools, further studies are required to focus on supporting teachers
on how to implement mathematical modelling approaches in their teaching practices
and enhancing the teachers’ skills on designing open-ended tasks.
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Chapter 35
Sense-Making in Mathematics
with Activities of Mathematical
Modelling: The Case of Multiplication
at Primary School

Simone Passarella

Abstract Mathematical modelling can be seen as simulations of problem-solving
situations that, starting from realistic and rich contexts, favours understanding,
reasoning and sense-making. In this study, we designed a model eliciting sequence
with the aim of bringing out formal mathematical concepts from students, in order to
help themgivemeaning to newmathematical knowledge and sense to theirmathemat-
ical activity. The teaching casewas conducted in a primary school class during regular
mathematics lessons dealing with multiplication as iterated sum. The study supports
the fact that the implementation of model eliciting activities can foster emergent
modelling, i.e. the students’ attitude to discover and (re-)create new mathematical
concepts.

Keywords Model eliciting activity · Emergent modelling · Teaching case ·
Teaching practice at primary school · Artifacts · Realistic mathematics education

35.1 Introduction

Thinking mathematically can be seen as interpreting situations mathematically, in a
close interaction between mathematical understanding and the understanding of the
complexity and variety of the natural and social phenomena of contemporary world.
In this direction, mathematical modelling represents a critical tool to understand the
reality or society in general. Teaching students to interpret critically the communities
they live in and to understand its codes and messages should be an important goal for
education (Bonotto 2007), in order to give students not only mathematical compe-
tencies but also to prepare them to situations they will have to face in an increasingly
complex world. However, students’ reasoning and critical thinking are not favoured
by the current school practice. Indeed, several studies have shown a discontinuity
between mathematical competencies in and out of school. Mathematical problems
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turned in stereotyped exercises in the four basic operations solved through the appli-
cation of mechanical procedures. Moreover, students seem to have established a set
of rules of which include: (i) any problem is solvable and makes sense; (ii) there is a
single, correct and precise (numerical) answerwhichmust be obtained by performing
one or more arithmetical operations with numbers given in the text; (iii) violations of
personal knowledge about the everyday would may be ignored (Greer et al. 2007).
The main consequences of this situation are an increasing gap between mathematics
and real-world (Gravemeijer 1997) and a suspension of sense-making (Schoenfeld
1991) that do not favour mathematical modelling (Blum and Niss 1991).

On the contrary, according to the Realistic Mathematics Education (RME)
perspective, a connection between mathematics and reality in order to improve
students’ critical thinking and reasoning should be fostered with activities based
on realistic and rich contexts (Gravemeijer and Doorman 1999). The teaching of
mathematics might be seen as a human activity of guided reinvention (Freuden-
thal 1991), in which students are active participants in the learning process, in a
balance between students’ freedom of invention and the power of teacher’s guidance.
Modelling is a powerful educational strategy to improve the teaching of mathematics
in a guided reinvention approach, offering students opportunities to attach meaning
to the mathematical constructs they develop while solving problems.

This study is part of a research project whose overall aim is to develop prototypes
of practices available for teachers of primary and secondary schools. The project
is divided in three main phases. The first phase consisted of a questionnaire that
was administrated by the author to in-service primary and secondary mathematics
teachers. The findings indicated that despite teachers implement regularly modelling
activities, they ask for materials to deepen their preparation and practice. The second
phase expected the implementation of several teaching experiments based on math-
ematical modelling. The third phase will consist in the development of professional
teaching courses based on mathematical modelling. In this chapter, we will focus on
the second part of the project. In particular, we will present a teaching case at primary
school. The aim of the study is to help students give meaning to new mathematical
knowledge and sense to their mathematical activity.

35.2 Theoretical Framework

Mathematical modelling is commonly identified with the process of structuring,
generating real world facts and data, mathematizing, working mathematically, inter-
preting, validating and evaluating. Related to this definition of modelling, we consid-
ered the inter-connection between theModel Eliciting Activity (MEA) approach and
the emergent-modelling one.

MEA consists in simulations of real-life problem-solving situations in which the
central goal is to develop, test, revise and refine powerful, sharable and re-usable
conceptual tools. It is evident that the process of modelling itself is at the core of
MEA. In this perspective, in fact, students construct a model through repeated steps
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following the pattern: (i) expression of possible mathematical approaches; (ii) tests;
(iii) revision based on their tests, discussions and interpretation of results (Leavitt
and Ahn 2010). In order to implement model eliciting activities, Lesh et al. (2003)
proposed a model development sequence, whose simplified version is made by three
subsequent phases: warm-up; model construction; presentation and discussion. The
warm-up phase involves activities whose aims are to introduce or test preliminary
notions and to help students be confident with the context of the modeling activity.
The central phase of the sequence is the model construction one, in which students,
working in groups, create a model to solve a problem based on a real context. Each
group of studentsmakes a project in which themodel they developed is explained and
their findings are shared. Finally, in the presentation and discussion phase, students
present in a whole class discussion their projects.

The starting point of a modelling activity is the choice of the real context to
be modeled, but what do we mean with real context? One of the characterizing
principles of RME is the reality principle. According to this principle, contexts for
mathematical activities, and in particular for modelling ones, should be realistic and
rich. A context is realistic if it is meaningful, sense-making for students. As a conse-
quence, situations should come from the real world, but also from a fantasy world
or from the mathematics itself, until they are experientially real for the student (Van
den Heuvel-Panhuizen and Drijvers 2014). However, this realistic connotation is not
sufficient to have a valuablemathematical problem. The context, indeed, must be also
rich (Freudenthal 1991), i.e. poor in words and rich in mathematical concepts. An
example is represented by cultural artifacts that thanks to their richness in mathemat-
ical meaning can stimulate students to connect mathematics and everyday contexts
(Bonotto 2013).

A fundamental component ofmodelling ismathematization, in its double nature of
horizontal mathematization and vertical mathematization (Treffers 1987; Freuden-
thal 1991). Horizontal mathematization refers to the movement from the real world
and the world of symbols (mathematical objects, structures, methods), and vicev-
ersa. Students describe, translate a concrete situation in mathematical terms and use
mathematical tools to solve real problems. Vertical mathematization, instead, refers
to an internal movement in the world of mathematics. Here, students reflect on their
own mathematical activity, recognize mathematical relations and work with them.

A nature of modelling that fosters vertical mathematization is emergent modelling
(Gravemeijer 2007). Emergent modelling was introduced with the meaning of
supporting the emergence of formal mathematical ways of knowing. It is a dynamic
process from a model of students’ situated informal mathematical strategies to a
model for more formal mathematical reasoning. Students do not previously need
at their disposal mathematical tools, instead the process of modelling becomes
itself a way to develop new mathematical concepts and applications (Greer et al.
2007). As a consequence, the role of the model shifts during the learning process,
from being situation-related to becoming more general. In conclusion, emergent
modelling can be seen as a long-term process that favours understanding, reasoning
and sense-making.
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35.3 Research Question

The aims of this study are: (i) to foster the emergent nature of modelling; (ii) to
enhance the understanding of some aspects of the multiplicative structure in a mean-
ingful way; (iii) to provide teachers with activities on the educational strategy of
modelling. In the specific, the research question we investigated was the following:

• How can emergent modelling be fostered to help students in understanding some
aspects of the multiplicative structure?

In order to answer to our researchquestion,we implemented a teaching experiment. In
the specific, our hypothesis was that a modelling activity designed following a model
eliciting sequence (Lesh et al., 2003) with the use of suitable artifacts could actually
foster the emergent nature of modelling. In the following section, the phases of the
model eliciting activity will be presented together with thematerials developed for its
implementation. As a consequence, the activity represents also a practical material
that could be used and/or adapted by teachers in the future.

35.4 Teaching Case

The study was conducted in a second-grade class (age 7) composed by nineteen
students during two weeks of regular mathematics lessons. The class had never been
engaged in a modelling activity before the teaching experiment. At the time of the
activity, students were working on multiplication in the set of natural numbers. In
particular, multiplication as iterated sum was introduced by the official mathematics
teacher oneweek before the teaching experiment. Studentswere able to performbasic
multiplications between numbers with one digit. We decided to design a modelling
sequence with the aim of enhancing the understanding of some aspects of the multi-
plicative structure. In the specific, the designed materials ought to foster students’
re-invention of the distributivity property of multiplication over addition.

The research method for the data analysis was qualitative. The aim of the data
analysis was to reconstruct the classroom progress, which resulted in an empirical
grounded understanding of students’ reasoning during the classroomactivity. In order
to be able to reconstruct the learning process and verify our hypothesis, different kinds
of data were collected: transcriptions of classroom dialogs; observations of group
working; students’ final projects. In the next section, we will present some extracts
that highlights students’ reasoning during the activity and that permit to answer to
our research question.

The modelling activity was implemented by the author with the cooperation of
the regular mathematics teacher. The designed sequence involved the three model
eliciting phases: warm up, model construction, presentation and discussion. At the
time of the modelling activity, the school in which the teaching case took place was
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under building renovation. As a consequence, we decided to choose as real task the
following Tiling Problem:

The Tiling Problem
The school director decided to renovate the school. Students can design a floor
tiling of their own classroom. The floor of your classroom was divided in six
equal strips. Each group of students should tile a strip, using all the available
types of floor tiles.

The first part of the activity (two hours) was dedicated to the warm-up phase. The
text of the task was given to each student together with: (i) the figure of the class-
room divided in six stripes; (ii) the figure of each stripe to be tiled; (iii) a brochure
with the shapes of the available tiles (triangular, square, rectangular) with the corre-
sponding costs. Finally, the task was repeated in a clearer form (see Fig. 35.1). This
brochure represented a cultural artifact that, thanks to its richness in (mathematical)
meaning created a sort of hybrid space that connects mathematics and everyday
contexts. During the warm-up phase, students, firstly individually and then in groups
(of three or four), were asked to answer some questions dealing The Tiling Problem.
Questions were about comprehension of the task and reasoning on the relations
between different tiles and their cost (Fig. 35.2). The second phase (five hours) of
the modelling activity consisted in the model construction. In this phase, each group
created a poster in which they designed the floor tiling and explained the strategies
followed to calculate its total cost. In the final phase of the activity (two hours),
presentation and discussion, each group presented to the classroom their project
explaining the steps followed to solve the task. Each member of the group had to
take part to the presentation.

35.4.1 Results

In this section we report some results from the modelling activity. During the model
construction phase, each group of students created a poster in which they designed
the floor tiling and explained the strategies followed to calculate its total cost. In
Fig. 35.3, there are some examples of students’ group working and final posters.
While solving the task, all the groups developed a similar strategy to obtain the total
cost. The strategy consisted in two steps. The first one consisted in counting the
number of all the tiles of the same type and multiply the number obtained with the
relative cost. For example, one group counted fifty square tiles, twenty-six triangular
tiles, and fifteen rectangular tiles. Then, the number of each type of tilewasmultiplied
by its relative cost. In our example, students had to perform 50× 6, 26× 4, 15× 10.
This step highlights the notion of multiplication as iterated sum, already known by
the students. While performing multiplications similar to the latter one, the groups
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Fig. 35.1 a Classroom divided in six stripes b Stripe to be tiled c Available tiles d Cost of the tiles
e Task given to students

encountered the problem of multiply a number with one digit and a number with
two digits. Since in several groups, students were not able to find a way to solve this
problem, the researcher decided to reason about it in a whole class discussion. Some
students suggested the strategy reported in the following dialogue (R = researcher;
S1 = first student; S2 = second student) to calculate 6× 57:

S1: I write 6× 57 = 57× 6.
Then I divide 57 as 50 and 7…
R: Divide?
S1: Write…?
R: Decompose.
S1: Yes, I decompose 57 as 50 plus 7!
Then I calculate 50× 6.
S2: That is 300!
S1: Then 6× 7
S2: 42
R: Excellent, and with these number? (pointing 300 and 42)
S1: I put them together!
R: How?
S1: I compose them…
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Explain the task in your own words
………………………………………………………
………………………………………………………
………………………………………………………
………………………………………………………

Fig. 35.2 Warm-up questions

Fig. 35.3 Students’ group working and some final projects
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(a) (b)

Fig. 35.4 a Students’ strategy to calculate 26× 4, b Calculation of the total cost

R: What does it mean?
S1: I make the sum!
After the discussion that included also other examples solved by students, each

group applied the strategy suggested by their peers to perform their operations. In
the group of our first example, students were able to calculate 26 × 4, as shown in
Fig. 35.4a.

The second step to solve The Tiling Problem was to sum the costs of each shape
of tiles. In our example, students having calculated 50 × 6 = 300, 26 × 4 = 104,
15× 10 = 150, summed 300 + 104 + 150 = 504 that represented the total cost in
euros of their tiling design (see Fig. 35.4b).

35.4.2 Discussion

In agreement with the process of emergent modelling, the assignment given to the
students stimulated them to create and work with new mathematical concepts they
did not know before. In the specific, the strategy developed by students to solve the
task that consisted in grouping the tiles with the same shape and then multiply by the
associated costs, showed that they were able to re-invent two fundamental mathemat-
ical concepts: (i) factorize by grouping; (ii) distributivity property of multiplication
respect to addiction.Thedistributivity property is evident in the extract of the dialogue
proposed in the previous section and in Fig. 35.4a, in which students, guided by the
interaction with the teacher and peers, were able to reason and explain this property
that would be at the base of their following strategies of calculus. In this way, proper-
ties of mathematical operations become meaningful for students, because no longer
mechanical rules but rooted in their experience, directly constructed by students to
solve a concrete problem in a meaningful context. This re-invention process was
possible not only thanks to the designed sequence, but also to the use of a suit-
able artifact (brochure Fig. 3.1). Having given students the shapes of the tiles to
be used and the constraint to use all of that shapes, guided them to face with the
problem of performing multiplications between numbers with more than one digit,
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and consequently to the reformulation of the distributivity property of multiplication
over addition. As a consequence, model eliciting activities together with suitable
artifacts could foster the emergent nature of modelling that confirms our hypoth-
esis. Moreover, the understanding of some aspects of the multiplicative structure in
a meaningful way was enhanced. Therefore, answering to our research question, the
integration of artifacts in a model eliciting sequence can actually foster emergent
modelling.

The use of an artifact established a connection not only between mathematics
and real world but also between various mathematical topics and other subjects
(arithmetic, geometry, art). We remark that to achieve such results, the role of the
teacher is fundamental. The teacher, indeed, has to encourage students to use their
own methods; stimulate students to articulate and reflect on their personal beliefs,
misconceptions and informal problem-solving and modelling strategies. Conse-
quently, learning become a constructed understanding through a continuous interac-
tion between teacher and students, that can be synthetized, using Freudenthal words,
in teaching and learning as guided reinvention, reinforcing in this way mathematical
reasoning and sense-making.

35.5 Conclusions

This chapter presented a teaching case designed following the phases of a model
eliciting sequence, providing teachers with a practical material to be adapted in their
classrooms.

The results show that complexmodelling activities can be implemented also at the
first grades of primary school. The study supports the fact that the implementation
of model eliciting activities can foster emergent modelling, i.e. the students’ atti-
tude to discover and (re-)create new mathematical concepts and tools. This process
was reinforced by the use of suitable cultural artifacts that represent realistic and
rich contexts for modelling activities. Moreover, activities based on real contexts
help students give meaning to new mathematical knowledge and give sense to their
mathematical activity.

We believe that teachers professional development courses should be increased,
in order to make teachers able to design and/or adapt valuable modelling activities
in their daily school practice, enhancing students’ reasoning and sense-making.

For the future, we will focus on the development of teachers professional devel-
opment courses based on modelling. In the specific, we would work with teachers to
make them able to recognize cultural artifacts starting from the needs and interests
of the students present in their classrooms.
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Chapter 36
Modelling the Fundamental Theorem
of Calculus Using Scientific Inquiry

Andrzej Sokolowski

Abstract This study provides an example of a mathematical modelling activity that
utilizes scientific reasoning to support the learning of mathematics concepts. The
method of merging mathematics concepts with scientific reasoning was developed
using research on and recommendations about designing effective exploratory STEM
modelling activities. A calculus topic, the Fundamental Theorem of Calculus (FTC),
was converted into a modelling activity. The FTCwas selected due to its significance
in integral calculus and calls for designing activities that would develop students’
covariational reasoning crucial to understand the theorem. A group of 21 high school
students participated in this study. The students’ responses showed positive effects
of this activity in understanding the FTC. Suggestions for further studies conclude
this paper.

Keywords Modeling · Inquiry · The first fundamental theorem of calculus ·
Accumulation · Change of function value · Covariational reasoning

36.1 Introduction

Mathematical modelling serves traditionally twomain purposes: to solve a particular
problem or to develop individuals’ modelling skills (Stillman et al. 2013) and as such
it generates positive learning effects (e.g. Sokolowski 2015). This study sought to
expand the purposes of modelling and aimed to design an activity to merge math-
ematical modelling with scientific reasoning. Many researchers (e.g. Honey et al.
2014) are concerned that mathematics is underrepresented in the STEM paradigm.
Hämäläinen et al. (2014) posited that mathematics concepts should be considered as
processes of embracing mathematical structures to theoretical knowledge and empir-
ical observations. Given that students’ familiarities with mathematical modelling
are one of the priority skills to succeed in STEM university programs (Deeken
et al. 2019), it is seen that the role of mathematics in STEM can increase through
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mathematical modelling. Such intertwining can also serve as a way of improving
students’ mathematical reasoning in science courses (Sokolowski 2019b). Inquiry as
a learning method in mathematics has been widely discussed (Honey et al. 2014).
While learning viamultifaceted explorations plays a vital role in developing students’
skills in science and mathematics (Crouch and Haines 2004; Pollak 2015), verifying
how scientific methods can support modelling in mathematics has been rarely under-
taken. It is believed that merging mathematical modelling with scientific methods
will support not only understanding of mathematics concepts but also mathemat-
ical reasoning whose importance is gaining momentum in contemporary science
practices (Pospiech et al. 2019).

36.2 The FTC; Teaching Challenges and Research
Recommendations

The FTC was developed independently by Newton and Leibniz in the sixteenth
century (Boyer 1959) and has been seen as a hallmark of differential and integral
calculus. Sobczyk (2013) suggested that the geometric form of the FTC provides a
significant improvement and generalization over other types used in teaching this
theorem. Tall and Bakar (1992) found out that conceptual understanding of calculus
theorems is much more profound if students are given opportunities to explore its
ideas. He advocated for designing activities to have students re-constract the calculus
concepts. Connally et al. (2019) suggested three rules for effective calculus teaching:
graphical, numerical and analytical. These rules served as platforms through which
calculus studentswere supposed to explore the concept to gain understanding. Carson
et al. (2003) highlighted understanding of the notation of the FTC as equally impor-
tant as its conceptual counterpart. Blum (2011) pointed out that many students’
concept image of integrals is related to area interpretation which, according to Blum
diminishes the idea of integral function. Thompson (1994) introduced covariational
reasoning as critical mental action to understand the virtue of the FTC. Covariational
reasoning is about coordinating the buildup of accumulation under the graph of f ′(x)
with a change of f (x). It requires coordination of images of two varying quantities
while attending to determine how they change in relation to each other (Carlson et al.
2002). Thompson (1992) found out that the development of images of the rate of
change starts with learners’ image of change in some quantity (e.g. object’s displace-
ment) and progresses to a loosely coordinated image of two quantities (e.g. change
of velocity) which progresses to an image of the covariation of these quantities.
The idea of motion and covariation of the area under the velocity graph and object’s
displacement will be a backbone of the activity. Among learning theorems, active
learning providing discovery approach (Cummins 1960) has been suggested as the
most effective in teaching calculus.
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36.3 The Theoretical Framework of the Activity Design

Scientific inquiry is central to developing students’ scientific reasoning skills (Prince
and Felder 2006). Mathematical modelling provides a framework that allows for
inducing consistent quantification methods of scientific investigations. Therefore,
scientific inquiry methods merged with mathematical modelling deem to be a promi-
nent learningmethod. The fundamental elements of scientific inquiry are hypotheses,
nature of the inquiry, type of elicited model and the verification stage. How are scien-
tific methods linked with mathematical modelling in the current research? The litera-
ture does not provide many examples of such intertwining. The hypothesis is defined
as the investigator’s proposed theory explainingwhy something happens based on the
learner’s prior knowledge (Felder andBrent 2004). Its cognitive purpose is to confirm
or correct an investigator’s content understanding. Dunbar (2019) claimed that the
hypotheses translate into the mathematical structure that becomes the heart of the
mathematical model. Lim et al. (2009) found out that hypotheses were often formu-
lated qualitatively and focused on testing isolated mathematical concepts. Klymchuk
et al. 2008 noted that students fail to validate formulated mathematical structures
or have difficulty with a contextual interpretation of the derived model. Scientific
methods can be supported by inductive or deductive inquiry (Prince and Felder 2006).
The inductive inquiry that is about reasoning from specific observations to reaching a
general conclusion has been proven to play a prominent role in concept learning and
thedevelopment ofmathematical expertise (Haverty et al. 2000).Because exploratory
mathematical modelling activities are defined as pattern formulation and general-
ization (Lesh and Harel 2003), inductive inquiry seemed to be the right choice to
guide such practices. Figure 36.1 depicts an outline of the laboratory design. It was
inspired by an earlier study (Sokolowski 2018) and attempted to provide opportuni-
ties to improve conceptual understanding of mathematical concepts while attending
to scientific contexts.

This framework was applied to develop the laboratory instructional support.
Michelsen (2006) advocated replacing the current monodisciplinary approaches
with an interdisciplinary one, where mathematics and science are woven contin-
uously together. This modelling scheme can be considered a proposal for such an
interdisciplinary approach.

36.4 Methods

This study can be classified as one-group quasi-experimental (Shadish et al. 2002).
Quasi-experimental research shares a range of similarities with an experimental
design. The following question guided the study: Can an activity that merges math-
ematical modelling with scientific inquiry support conceptual understanding of the
FTC?A group of 21 high school calculus students (12males and 9 females, age range
17–18 years) from a suburban high school participated in this study. The students
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Fig. 36.1 Merging mathematical modelling with scientific inquiry

were introduced to the techniques of evaluation of integrals and the interpretation of
accumulation. Yet, the formal definition of the FTC was not presented. The students
took a pre-test, and after the laboratory conduct, they took the post-test. The quality
of the verbal responses served as an indicator of their understanding.
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36.5 Conduct of the Instructional Unit

This section contains a summary of the critical elements of the laboratory design and
conduct. The scientific background was supplied by a physics simulation designed
by Interactive Simulation Project PhET that is downloadable for free from http://
phet.colorado.edu/en/simulation/moving-man.

36.5.1 Mathematical Knowledge and Scientific Context

The activity was designed to help students develop a conceptual understanding of
the FTC of the form

∫ b
a f (x)dx = F(b) − F(a) where F is an antiderivative of

f , that is, a function such that F ′ = f (Stewart 2012). FTC has a vast range of
applications in calculus and science. To focus students’ attention on developing
covariational reasoning, a cognitive load of computing the accumulation under the
derivative graph was reduced to applying geometry formulas. The interactive sim
called Moving Man was selected because of its high capability of displaying the
relations between the movement of the man and the corresponding position x(t),
velocity v(t), and acceleration a(t) functions. This capability enhanced further the
covariational reasoning and allowed for linking the sides of the FTC using two inde-
pendent covariate methods—areas under v(t) and a difference in the values of the
antiderivative, x(t).Reasoning about the Fundamental Theorem of Calculus involves
mental actions of coordinating the accumulation of rate-of-change with the change
antiderivative (Thompson 1994). By observing simultaneously the man’s movement
x(t) and v(t) graphs, students were to connect the scientific underpinnings of the
phenomena with its mathematical representations. This linkage was to guide the
students to discover that the accumulation under f ′(x) is equal to the change of
values of f (x). Before initiating the laboratory conduct, the students were supposed
to state their hypotheses. Dual mathematical and scientific nature of the hypoth-
esis that students were to formulate and the duality of the verification phase of the
activity intended to support the intertwining. The culminating stage of the activity—
discovering equity between theman’s change of position using two differentmethods
interrelated the left and right side of the algebraic forms that resulted in reconstructing
the FTC. Further deployment of the discovered pattern in problem solving extended
the theorem’s applicability.

36.5.2 Details of the Laboratory Conduct

Students were provided with instructional support that contained snapshots of the
simulation along with the problem statement and tasks to follow. The instructor
opened the sim and entered motion parameters—precisely, −10 m for the initial

http://phet.colorado.edu/en/simulation/moving-man
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Fig. 36.2 Snapshot of the sim with position and velocity graphs. Source PhET Interactive
Simulations (n.d.)

position, 4 m/s for the initial velocity and −0.5 m/s2 for the acceleration—and let
the man walk while simultaneously displaying his position and velocity-time graphs
(see Fig. 36.2). The man’s movement was restricted—by the simulation design—to
his initial and final locations, which were −10 m and 10 m; thus, the motion, due to
these restrictions was stopped after 16 s.

The students were to hypothesise the answer to the following question: Can the
accumulation under the velocity function be used to compute the change of the
man’s position? Students were to support their answers using calculus and science
knowledge. The sim displayed the primary function and its derivatives, but it did not
display the area under the graphs explicitly. Thus, the students were to apply their
prior knowledge about accumulation to formulate their hypotheses. They gathered
the data and proved/disproved their hypotheses.More specifically, they computed the
area under the velocity graph, and calculated change of the man’s position using the
position graph. Separate screenshots of enlarged graphs of the velocity and position
functions allowed for taking precise data. Students were supposed to calculate:

a)

4∫

0

v(t)dt = _________ b)

8∫

4

v(t)dt = _________ c)

16∫

0

v(t)dt = _________

These computations constituted the left side of the FTC. The following differences
represented the right side of the FTC.

a)x(4) − x(0) = ______ b)x(8) − x(4) = ___ c)x(16) − x(0) = _____
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Students were to pay attention to the units of calculated quantities. This nuance
was explicitly highlighted because the equity of the magnitudes, coupled with the
correlation of the physical units were to support the virtue of the FTC. Once the
data was gathered and calculations performed, students were guided to search for
patterns. They concluded that the computations of areas and respective change of the
antiderivatives were the same. Some were prompted to correct their computations,
especially when the accumulations were negative. Finally, considering their findings,
the students were to link the sides of the computed quantities (e.g. a with a, b with b
and c with c) by selecting the correct sign either > , < , or = .

a)
4∫
0
v(t)dt___x(4) − x(0) b)

8∫
4
v(t)dt___x(8) − x(4) c)

16∫
0
v(t)dt___x(16) − x(0)

Studentswere to realize that not only the numerical values of the computed expres-
sions were supposed to be equal but also that their physical units—metres—corre-
sponded. Thus, both the mathematical theorem and scientific laws were to lead them
to formulate the FTC. The experimental counterpart enhanced the meaning of the
discovery and provided prompts for its validity. To extend the applicability of the
discovery, the students gathered data and formulated similar inferences using velocity
and acceleration graphs. The instructor summarized their findings and concluded that
by establishing equities between both methods of computations: accumulation under
the function derivative and change of function values, they discovered and proved
the validity of the FTC. They further applied the ideas in other contexts related to
science and engineering.

36.6 Data Analysis

The activity was well-received by the students. It seemed that the friendly and
straightforward scientific environment enhanced the concept of understanding,
making the abstract calculus structure more tangible. The following day, the students
were supposed to explain the meaning of the FTC using their own words. Table 36.1
includes selected correct (markedwith *) and incorrect pre-test andpost-test students’
responses. Response was marked correct if it contained the terms accumulation,
derivative, antiderivative and their logical linkage that would reflect the interpretation
of the FTC.

Majority of the students (76%, N = 16) correctly explained the meaning of the
FTC on the post-test as opposed to (33%,N = 7) on the pre-test. The pre-test showed
that many students associated the algebraic statement of the theorem, referring only
to the accumulation of the derivative. For example “The left side gives you the
accumulation, the right side explicitly solves for the accumulation”. This statement
indicated that the student just explained the procedure, not the concept. After the
laboratory, the students have changed their perceptions. They more often referred
to the right side of the theorem as the values of the antiderivative. It is seen that
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Table 36.1 Selected students’ pre-test–post-test descriptions of the FTC

Pre-test Post-test

The fundamental theorem is utilized in
calculus to find the derivative and its relations
It helps you to find the rate of change and
average values in relation to its derivative
The left side gives you the accumulation. The
right side explicitly solves for the accumulation
The main idea is applying the derivative to
solve the problems or taking the antiderivative
*The integral of a function from point a to
point b is equal to the rate of change of the
function antiderivative
*The accumulation of a function will be the
same as f ′(b) − f ′(a)
It is an easier way to calculate rates of change
It allows me to understand the idea of the rate
of change and its relation to its derivative
The left side is the formal accumulation which
is equal to the process of accumulation
There are two different ways of calculating the
same number

The antiderivative of the derivative equals the
original function
Finding antiderivative of value will give you
the displacement of the antiderivative
*The accumulation of the derivative f ′(x)
represents the value of the f (x)
*The change of F(x) might be obtained by the
integral of f (x)
The purpose is to access all of the info from
x(t), v(t) and a(t) while starting with data
from a single function
*The antiderivative from a to b of some
function is equal to the integral of this function
from a to b
The relations between integrals of v(t) and a(t)
*Accumulation of the derivative is equal to the
function values of the antiderivative
*The accumulation is equal to the change of
the antiderivative
The area comes out to equal the function
solutions

observing the construction of two different graphs x(t) and v(t) helped students
realize that both sides of the FTC referred to two different algebraic structures that
produced the same answer. Most of the students who did not verbalize the theorem
had difficulties conceptualizing the accumulation under the derivative graph and
were confused about distinguishing between the conventional meanings of F(x) vs
its lower f (x) notation. Some students explained the theorem strictly referring to
the contexts of the lab. It was to note that the students did not use the term change
of antiderivative values often when interpreting the right side of the theorem. This
imprecision though did not invalidate the answers.

36.7 Discussion

While the results are encouraging, room for improvement exists. Further studies
on how students would transfer the meaning of the theorem to solve traditional
textbook problems or examination assessment items would shed more light on the
learning effects of the activity. The activity served as an example of a lesson that
attempted to link scientific methods with mathematical reasoning to enhance the
understanding of FTC. The goal of this activity was also to have students realize
that science and mathematics are not isolated disciplines and that the theorems
of mathematics can support the laws of motion used in science. While science
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provided the context, mathematics provided concise ways of quantifications. Both
views merged, proving that both disciplines are unified. Blum (2009) pointed out
that many students’ concept image of the integral function is weak and called
for more attention to develop such a notion. While the goal of this activity was
to develop a conceptual understanding of the FTC, it is seen that it could also
address this concern. Such an extension would broaden the interpretation of the FTC
and more meaningfully relate both its sides. This could be exercised after having
students realize that

∫ t2
t1
v(t)dt = x(t1) − x(t2). Changing the limits of integration to

∫ t
0 v(t)dt = x(t) − x(0) and solving for x(t) = x(0) + ∫ t

0 v(t)dx generate an inte-
gral function that could be used to link the properties of derivative and antideriva-
tive further. While this lab focused on conceptualizing an advanced calculus topic,
the theoretical framework of the design can be extended to lower mathematics
courses, for instance, to explore the slope conceptualization (Sokolowski 2019a)
or to discover limitations of function transformations. Exploratory mathematical
modelling activities have the potential to solidify their role in STEM education.
They providemeaningful and tangible interpretations that enhance understandings of
abstract mathematics theorems and laws. It is believed that such actions not only inte-
grate mathematics conceptual and procedural knowledge but also enhance students’
scientific skills.
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Chapter 37
Mathematical Modelling Activities
Within a Context-based Approach
in Thai Classrooms

Sakon Tangkawsakul and Aumporn Makanong

Abstract In this chapter, mathematical modelling activities were designed by inte-
grating the relevant processes following a context-based approach. The activities
emphasised authentic situations that were closely related to the real life of ninth
grade students to encourage them to integrate mathematical knowledge, skills, and
processes in the creation of mathematical models to understand and solve prob-
lems. During the activities, most of the students engaged in mathematical modelling
processes with their friends. This allowed them to use and practically connect
mathematics with real situations and problems encountered during their daily lives.

Keywords Mathematical modelling processes · Context-based approach ·
Mathematical modelling activities · Students’ real-life problems · Connect
mathematics · Secondary student

37.1 Introduction

Knowledge of mathematics allows students to apply their skills to solve extracurric-
ular real-life problems, especially those closely related to real-life daily activities.
About half of 15-year-old Thai students did not attain the international basic profi-
ciency level at mathematics in PISA 2009 and PISA 2012. They also had little or no
experience in applying their mathematical knowledge and skills to solving extracur-
ricular problems (Klainin 2015). Therefore, mathematical activities that enhance
students’ mathematical knowledge and skills to solve class-based problems require
enhanced development.

In several countries, mathematical modelling is an essential educational topic
that enables students to deal with real-world problems. This supports mathematical
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Fig. 37.1 Modelling process adapted from Blum and Borromeo Ferri (2009)

learning (Blum andBorromeoFerri 2009). However, in Thailand, although the ability
to deal with real-world problems has been recognised, both students and teachers
have little experience in the context of mathematical modelling.

Hence, wewere interested in designing activities tomakemathematicalmodelling
accessible to teachers and students in Thailand. Many situations that are relevant to
daily life provide interesting issues that can be used to encourage students to connect
classroom and extracurricular mathematics. Descriptions of relevant activities that
can be subjected to mathematical modelling processes and students’ responses are
presented in this chapter.

37.2 Theoretical Framework

37.2.1 Mathematical Modelling Processes

We were particularly interested in the mathematical modelling cycle described by
Blum and Borromeo Ferri (2009). They developed an ideal modelling process that
includes seven phases or steps allowing cognitive activities to solve the modelling
tasks. In this chapter, we adapted these phases into six design activity processes as
shown in Fig. 37.1.

Figure 37.1 combines the interpretation and validation of the results that support
students to relate everyday real-life situationswithmathematical concepts.Moreover,
students presented their results based on the assumptions of real-world situations and
the situation model.

37.2.2 Context-based Approach

When designing the activities, we adapted the idea of using real-world situations
as a context-based approach to provide opportunities to connect mathematics with
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daily life following Wijaya et al. (2014). This idea related to the development of
modelling tasks by Borromeo Ferri (2018). Contexts or situations in each modelling
activity must be closely related to students’ experiences, as well as connect to math-
ematical knowledge that they have assimilated to deal with the problems and activity
processes. Moreover, the context should encourage and engage students to integrate
mathematical knowledge, skills, and processes to think outside of the box and create
mathematical models to understand and solve real-life problems (Beswick 2011;
Sullivan et al. 2003). We restricted real-world situations to interesting and accessible
problems that were closely related to students’ experiences.

37.3 Design of the Study

The purpose of this study was to describe the activities and record the students’
responses. Two questions were posited as (1) the students’ responses for each math-
ematical modelling process and (2) similarities and differences in the students’
responses for each activity.

37.3.1 Participants

The study participantswere divided into twogroups. Thefirst consisted of threemath-
ematics teachers and one expert mathematics educator who had more than 15 years
of experience teaching in Chiang Mai, while the second comprised 30 students in
the ninth grade who had no previous experience of mathematical modelling in the
classroom based on the Basic Education Core Curriculum in Thailand.

37.3.2 Designing the Activities

The goal was to encourage the students to think and create models to understand
and solve real-life problems through mathematical modelling processes. We adapted
the ideas of a context-based development of modelling tasks from Borromeo Ferri
(2018) as follows: (1) The situations must closely relate to students’ experiences as
well as connect to mathematical knowledge that the students have learned to use
within their learning processes; (2) Each activity should include further material
(such as calculators) or require actual experiments to support the students to model
the problem.

The activities were inspired by three real-life local problems that occur in Chiang
Mai, Thailand and closely relate to students’ experiences. We acquired information
concerning students’ experiences and previous knowledge relevant to the activities by
conducting interviews with teachers and students to confirm that the local problems
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of each activity both encouraged and engaged students. After that, we developed
the activities and verified their correctness, opportuneness and relevance with the
assistance of three mathematics teachers and one expert mathematics educator. We
gave them hands-on data as lesson plans and teaching materials to consider the
three selected activities. Their opinions concerned time management, questioning
and guiding the students during the modelling processes since the students had no
previous experience of mathematical modelling techniques.

The first activity, the street market problem, considered the relationship between
the sizes and numbers of booths that can reasonably be arranged in a street market
context when considering the size of the street. This activity was closely related to
students’ lives because street markets are central locations where students often walk
and shopwith their parents or friends. Besides, schools regularly organise exhibitions
as walking streets to display students’ work, products, and handicrafts. Most of the
students assist their teachers to set up and manage these exhibitions.

The Street Market Problem
In Chiang Mai, a large Sunday street market is located in the centre of the old
walled city area and close to your school. The products on sale aremainly hand-
icrafts that are made in and around Chiang Mai. You and your team members
are given the relevant materials. Draw your own conclusions and answer the
following questions:
1. What is the appropriate size of a standard booth used for selling and

displaying products at the street market?
2. What is the relationship between the size and the number of booths that

can be reasonably arranged in the street and what is the size of the street?

The second activity, the dust particle problem, concerned air pollution and was
closely and related to the daily lives of students. The dust particle problem was a
continuous occurrence in the province.

The Dust Particle Problem
In Thailand, Chiang Mai is one of many provinces struggling with the dust
particle problem. Chiang Mai’s PM2.5 annual average is well above the safety
limit set by the World Health Organisation. You and your team members are
given the relevant materials. Draw your own conclusions and present answers
to the following questions:
1. What does “PM 2.5” mean?
2. What is the relationship between the size of the dust particle and visible

real objects? (e.g., hair, pencil lead, table tennis ball, and beads).
3. When does the dust particle problem usually occur in Chiang Mai,

Thailand? Why does this usually happen at the same time each year?
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Fig. 37.2 a Stone table and four chairs and b Seating arrangements modified by students

The third activity, the bench problem, involved benches that students use for
relaxing with their friends. Regular benches in the school were constructed from
lightweight stone that two students could easily lift and move to another position.

The Bench Problem
In schools and some public parks, lightweight stone tables are often provided
for relaxation and other activities. Generally, the stone tables have four chairs,
as shown in Fig. 37.2a. Students arrange the stone tables depending on the
number of friends who want to sit together, as depicted in Fig. 37.2b.

You and your team members are given square tiles (tables), bottle caps
(chairs) and writing materials. Draw your own conclusions and answer the
following questions:
1. What is the optimal appropriate style of arranging the garden stone tables

and chairs to allow more people to sit together?
2. Howmany garden stone tables and chairs should you arrange for 12 people,

15 people and over 15 people to sit together?
3. What is the relationship between the number of tables and chairs in your

arranged seating plans and unused chairs in the general set up?

37.3.3 Experimenting the Activities in the Classroom

A qualitative approach was adopted in the form of a case study. Results of the three
experiments were analysed for students’ responses to each step of the activities. Each
experiment lasted for 90min and was conducted in a classroomwith 30 students who
did not have previous experience of mathematical modelling. The students were
organised into six groups of five students with wide-ranging abilities in mathematics
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and varied social backgrounds. The teacher and the researchers implemented the
activities. The teacher’s role was as a facilitator, encouraging and guiding a small
group of students to deal with problems and activity processes. Responses were
gathered through observations, written work, and interviews with the students.

37.4 Results of the Study

The responses of the students showed that most of them fully engaged in the math-
ematical modelling processes with their friends under the guidance and support of
the teacher. Gradually, they learned how to use and connect mathematics with local
problems. Details of students’ responses that related to the mathematical modelling
processes in each of the three activities were as follows.

37.4.1 Students’ Responses to the Street Market Problem

Initially, the teacher showed pictures and discussed the student’s experiences at the
street market. All of the students participated in the discussion. They stated that they
used to go there to walk and shopwith their parents or friends. The teacher then posed
questions and the students first considered and then tried to understand the real-life
situation with their friends. Some groups of students discussed with their friends
about the school’s exhibition that was regularly organised along similar lines to the
walking street to show students’ work, products and handicrafts. Then, they were
asked to make assumptions about the shape of the booths and the size of the street to
simplifying the situation. The studentswere given paper, a ruler, ameasuring tape, and
writing materials to measure the length and width of the street and the approximate
distance of the street from the school. Then, the teacher gave the students time to
think about the appropriate mathematical knowledge andmathematising that related
to solve the problem.

After that, the students worked mathematically based on the assumptions. To
answer the first question, most of the students used a ruler and measuring tape to
determine and discuss the appropriate size of a rectangular booth. Each group of
students settled for a similar size of booth as 1.5 × 1.5 m2 and 2 × 2 m2 and then
they considered that the appropriate size of the booth depended on the length of the
street and related to the number of booths along the length of the street. To answer
the next question, the teacher guided the students to use the appropriate size of a
rectangular booth to find the number of booths that could be reasonably arranged in
a 10 m length of the street, a 50 m length of the street and in general. The students
concluded that the relationship between the length of the booth denoted as B, the
number of booths denoted as nB, and the length of the street denoted as S consisted
of two cases. (1) If the booths were arranged on both sides of the street, in general
terms the relationship could be written as nB = 2× (S/B) and (2) If the booths were
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arranged on only one side of the street, then in general terms the relationship could
be written as nB = (S/B).

The teacher then asked the students to interpret and check the mathematical
results. The students reviewed the appropriate size of a booth. They used measuring
tape and their experience to confirm the size of the booth. The size of a standard
rectangular booth should be limited to 2 × 2 m2 by the management teams of the
market. Moreover, they found that the relationship between the length of the booth,
the number of booths, and the length of the street was not feasible in general condi-
tions, particularly the width of the street. The space in the middle of the street was
appropriate for arranging booths on both sides of the street. In this case, they added
the necessary condition as the width of the street. This must be more than 1.5 m and
double the width of the booths.

In the final step, the teacher allowed the students to prepare for presenting and
sharing their ideas with the whole class. One group of students used the ratio of the
length of the paper to the corresponding distance on the street (scale map) and size of
the booths. This showed that the students not only applied mathematical knowledge
to solve the problem but also to model their working idea. The students determined
that the lengths of the street and the booths were related. For example, the length
of the street should be divisible by the length of the booths and the length of the
booths was a factor of the length of the street. These students tried to connect their
mathematical knowledge using whole numbers to determine if the other answers
were reasonable.

37.4.2 Students’ Responses to the Dust Particle Problem

During the first step, students were shown a news clip explaining the dust particle
problem in Chiang Mai. The teacher then discussed the meanings of some essential
vocabulary in the video and the cause and effect of the dust particle problem. Ques-
tions were posed to the whole class to ensure that they understood the real-world
situation. Next, the teacher presented model pictures of dust particles. The shape
of the dust particles was regarded as spherical to simplify the situation and allow
assumptions to be made when solving the problem (e.g. shape, size and the unit
for measuring dust particles). Then, the students used the appropriate mathematical
knowledge, mathematising, to answer the questions.

The students worked mathematically. For the first question, most students were
able to explain the meaning of PM 2.5 and they recognised how to represent vary
small numbers in exponential and scientific notation that referred to the size of the
dust particles. However, all the students were confused about how to use equivalent
ratios to compare the size of dust particles to the size of visible objects in the second
question. In this case, the teacher guided the students to review how to compare
two numbers as a ratio by discussing with friends. Then, the teacher presented addi-
tional examples to the whole class to recall the concepts of ratio, equivalent ratios
and proportions. After reviewing each concept, the groups of students were able
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to compare and identify relationships between the size of dust particles and visible
objects. They produced similar answers based on approximating the size of the
objects. To answer the third question, the teacher presented real data concerning
the air quality index and the amount of dust particles in the atmosphere from Thai-
land’s Pollution Control Department. The data sheets contained real secondary data
sets without cleaning. The students had to detect the irregular units of measurement
presenting the number of dust particles. Then, they converted all the irregular units to
the same unit before analysing and interpreting the data to predict the periods when
dust particle problems occurred.

The teacher instructed the students to interpret and check all the results and then
mathematically review some parts of the workings. Some students used the size of
real objects to ensure that their results in the second question were reasonable. They
also used their smartphones to search for information about dust particle problems
on the Internet to support their possible results. In the final step, the teacher asked the
students to present how they solved the problem and their conclusions. Reflecting
on this activity, one group of students stated that they initially used only dots to
represent the amount of dust particle data. Later, they revised their data as a line
graph to represent changes over time. Moreover, the teacher imparted more details
about how to use a line graph. One of the students surprisingly announced that on
returning home he would tell his parents how small dust particles were by comparing
their size to a pencil lead. This case showed that the student realised that the dust
particle problem was hazardous and could explain the results using mathematical
knowledge.

37.4.3 Students’ Responses to the Bench Problem

Initially, the teacher showed pictures and conducted a discussion about the general
arrangement of the stone tables (Fig. 37.2a). Then, the teacher posed the first ques-
tion to the class. This guided the students to understand the real-world situation.
The students discussed the problem with their friends and analysed the appropriate
patterns of arranging the stone tables. They made assumptions about the types of
chair (one-person chair) and style of arranging the stone tables (Boardroom style,
Fig. 37.2b) to simplify the situation. Then, the students usedmathematical knowledge,
mathematising, to answer the questions.

The students worked mathematically based on the assumptions made in the
previous step. First, the students tried to model table patterns by drawing diagrams.
Next, the teacher gave the students some square tiles and bottle caps to make sample
arrangements and observe and model the relationship among the number of tables,
used chairs and unused chairs. Some groups of students used three or four square tiles
and bottle caps to make samples of arrangements. By contrast, others thought that
more people sitting together would require more square tiles and bottle caps. This
showed that the students did not look for a pattern when arranging the tables. The
teacher noticed that some students failed to observe all the data from the experiment
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of arranging the tables, especially the number of tables, used chairs and unused chairs.
The teacher guided the students to take notes, collect the data and look for patterns
in the table arrangements. After that, most of the students were able to answer the
second and third questions. To achieve this, they used the square tiles and bottle caps
to check their results of arranging tables as well as to test the relationship among
the number of tables, used chairs, and unused chairs. Moreover, they interpreted
the number of used chairs in a real-life context. They realised that the number of
used chairs was equal to the number of people sitting together. Some students said
that if they knew how many people wanted to sit together, then they would know
the required number of tables and chairs. This case showed that the students could
connect their experiences by arranging tables for many people seated together to
solve this problem.

As the final task, the teacher asked the students to prepare, present and share
their ideas with the whole class. Most of the students were uncertain about how
to use a variable to represent a relationship, such as a variable number n. In this
relationship, the variable n represents the number of tables and must therefore be a
positive integer. One group of students said that their group could use the ratio to
describe the relationship. Moreover, some students said that even if someone could
move the garden stone tables and chairs into several patterns, they should not do that
because the assets might be damaged.

37.4.4 Similarities and Differences Between Students’
Responses to the Activities

Because of the observations made during the experiments, we compared students’
responses by discussing each of the mathematical modelling processes.

First, for understanding the real-world situation and simplifying the situation,
there were several similarities between the street market problem and the bench
problem. All the students satisfactorily discussed the details of each situation with
their friends. They explained what the problem entailed and they connected to their
experiences and knowledge about the problem to consider a suitable solution. These
major similarities indicated that using context-based or local problems helped the
students to understand real-world situations.

However, there were minor differences between the dust particle problem and the
two other activities. In the dust particle problem, the teacher explained the meaning
of some essential vocabulary related to dust particles and presented model pictures
of dust particles to the whole class because they had never seen the shape of dust
particles. These major differences indicated that although the dust particle problem
occurred annually in their province,most studentswere unaware of the pollution. This
case showed that using modelling to resolve local problems encouraged the students
to integrate their mathematical knowledge, skills, and processes with everyday real-
life activities.
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Second, students’ responses in each activity were similar. They could use the
appropriate mathematical knowledge to solve local problems, mathematising, after
discussionswith their friends and support from the teacher.Most students alsoworked
mathematically in the group correctly because they were stimulated to recheck their
work before interpreting the results.Moreover, interpreting and validating the results
showed similar students’ responses in each activity in terms of the tools used to vali-
date the conclusions. The students used extra materials and conducted experiments
to confirm their conclusions. For example, they used ameasuring tape and their expe-
riences to confirm the optimal size of the booth in the street market problem and they
used a few square tiles and bottle caps to arrange, observe, andmodel the relationship
between the number of tables, used chairs, and unused chairs in the bench problem. In
the dust particle problem, students used the size of real objects to ensure the validity
of their results about the size of dust particles and their smartphones to garner infor-
mation. Lastly, when presenting their conclusions, all the students reflected on their
knowledge gained from mathematical modelling processes to ensure accurate and
reasonable inferences.

37.5 Conclusions and Recommendations

Based on the implication of activities in the classroom, most of the students readily
engaged in mathematical modelling processes. They were able to use and connect
mathematics with other situations as mathematical connection ability. Moreover,
most of the students stated that these activities increased and enhanced their aware-
ness of the utility of mathematics and encouraged them to continue learning. This
confirmed that modelling activities generated a positive attitude towards learning
mathematics. In future, to implement mathematical modelling activities with non-
experienced students, the teacher should first analyse the students’ knowledge and
use scaffolding strategies to help solve problems. Furthermore, the teacher should
design sub-activities or use manipulative aids that engage students to investigate by
trial and error, collect data, observe and make conjectures to solve real-life problems
by themselves. The teacher can assist with student progress using guided questions
if necessary.
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Chapter 38
How to Integrate Mathematical
Modelling into Calculus Teaching?

Xuejun Zhou, Xingqi Li, Shiping He, and Xiaowei Li

Abstract Integrating mathematical modelling into a calculus course teaching is an
effective way to cultivate students’ innovative and practical abilities. Moreover, it
is a significant direction of the reform of calculus course. In this chapter, from the
perspective of teachers, we explore how to infiltrate the mathematical modelling in
calculus teaching, such as including definition introduction, theorem application and
practice training. In particular, three examples, that is, circle cutting, table placing
and investment cost are presented in detail to illustrate the three aspects, respectively.

Keywords Mathematical modelling · Calculus · Teaching · Definition
introduction · Theorem application · Practice training

38.1 Introduction

Modelling is considered a vehicle for supporting students’ endeavours to create and
develop their primitive mathematical knowledge and models (Erbas et al. 2014).
More and more teachers from universities in China realize that the teaching of math-
ematical modelling is very important. Specifically, mathematical modelling may
guide students how to think, how to use mathematical tools to solve various practical
problems. Therefore, it is necessary to incorporate mathematical modelling in the
courses of university mathematics in China.
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Many scholars have proposed suggestions to integrate mathematical modelling
into the courses of university mathematics. Jiang et al. (2007) introduced a two-
year project on incorporating ideas and methods of mathematical modelling into
the teaching of main mathematical courses in Chinese universities and colleges. Ye
(2012) proposed and designed several mathematical modelling modules and inte-
grated them into calculus teaching. Silva et al. (2015) proposed using mathematical
modelling in the curriculum and software to cultivate students’ learning skills to
model mathematically and offered different approaches to reinterpret the calculus
point of view. Sokolowski et al. (2011) recommended an alternative to strengthen the
process of teaching mathematical modelling—utilization of computer-based science
simulations. Shi et al. (2019) put forward to use the classical model to analyze the
calculus knowledge system.

Calculus is one of the key courses of university mathematics in China. In teaching
calculus, teachers always argue about how to deal with the relationships between
concrete and abstract, practice and cognition. In fact, a focus on mathematical
modelling and applications would be a good breakthrough. It can cultivate students’
application awareness, stimulate students’ interest in active learning andhelp students
understand the abstract definitions and theorems. In this chapter, how to integrate
the idea of mathematical modelling into calculus courses will be discussed from the
perspective of teachers.

38.2 Problem and Background

The China Undergraduate Mathematical Contest in Modelling (CUMCM) is the
most popular competition in China. In 2019, more than 130,000 students from nearly
1500 universities participated in CUMCM. These students have learned mathemat-
ical modelling and shown competence in their subsequent courses, projects and later
careers. Most of them have learned calculus for at least one or two semesters. Many
students do not understandwhy they have to spend somuch time in studying calculus,
and why it is important for their future careers. As a result, their study lacks moti-
vation and initiative. In order to solve the problem, in our university, the coaching
team of mathematics modelling has insisted on integrating mathematical modelling
ideas into calculus teaching and has exploited and utilized calculus in the guidance
of mathematical modelling competition. The authors will argue how to integrate
mathematical modelling and applications into calculus teaching on the basis of their
experience of teaching calculus and mathematical modelling.
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38.3 Permeating the Idea of Mathematical Modelling
into Calculus

In this section, we will discuss how to integrate the idea of mathematical modelling
into calculus course through three aspects, definition introduction, theorem applica-
tion and practice training.

38.3.1 Definition Introduction

Generally speaking, the definitions of function, limit, derivative, integral and series
are abstracted from some quantitative relation or spatial form of objective things
(Jiang 1993). Accordingly, these definitions should be naturally elicited from their
actual prototype and examples in students’ daily life, so that students realize that
the definitions are not rigid rules, but closely related to real life. Therefore, when
introducing these definitions, teachers should try to combine them with practice,
set up appropriate mathematical models, provide abundant and intuitive back-
ground materials in observation, experiment, operation, conjecture, induction and
verification.

For example,the formal and precise definition of limit in calculus is difficult for
beginners of calculus to understand. As a result, students often regard it as obscure
mathematical symbols and memorize it without understanding. To help students
understand the idea of limit more intuitively, we consider an interesting problem: the
area of a regular polygon is used to approximate the area of a circle. As the number
of polygon sides increases, the accuracy of the approximation will become higher.
This problem can be considered as a model of circle cutting (as shown in Fig. 38.1).

Fig. 38.1 Circle cutting:
Approximating the area of a
circle with the area of a
regular polygon

2π
n

R
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In Fig. 38.1, we can easily find that the area of a circle can be regarded as an
approximation of the area of its inscribed regular polygon. The area of the inscribed
regular polygon can be expressed as

Sn = 1

2
nR2 sin

2π

n
, (1)

where n denotes the number of sides of the inscribed regular polygon and R is the
radius of the circle. Moreover, the area of the inscribed regular polygon of this circle
is less than the area of the circle. As the number of sides of the inscribed regular
polygon increases, its area will gradually increase. Accordingly, the area of the circle
is equal to the limit of the area of the regular polygon, that is,

lim
n→∞ Sn = lim

n→∞
1

2
nR2 sin

2π

n
= πR2 · lim

n→∞
sin 2π

n
2π
n

= πR2. (2)

Based on the procedure of this modelling, students realize that the area of the
circle goes from approximate to precise. Furthermore, exploring the thinking of
problem-solving and generalizing of the law of problem-solving can help students
understand the definition of limit. In addition, we may also use computer software
to demonstrate the graphical and numerical changes. Such treatment would also be
applied to the definition of integral by computing the area bounded by a curve with
trapezia.

Many definitions in calculus have a good practical background. In definition intro-
duction, these resources should be utilized to guide and inspire students to discover
and create. The modelling of definitions is helpful. Students can experience the
formation of mathematical definitions and improve their abilities of generalization
and application.

38.3.2 Theorem Application

There are many theorems in calculus. In fact, some theorems are difficult for students
to understand at the beginning. In order to help students grasp the ins and outs of
the theorems, we can apply the theorems to practical problems. Whereupon, the
conditions of the theorems are regarded as the assumptions of the models and the
conclusions of the theorems can be used to solve the problems.

For example, we discuss the application of the theorem of root existence. The
function f (x) is continuous in the closed interval [a, b], and f (a) and f (b) have
different signs (that is, f (a) f (b) < 0). Then, there is at least point ξ in the open
interval (a, b), so that f (ξ) = 0.

We consider a practical problem: on an uneven surface, can youfind an appropriate
place to locate a table so that all four legs of the table touch the surface at the same
time?
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Fig. 38.2 Mathematical
model of the rectangular
table

In order to solve this problem by modelling the theorem of root existence, we
make some assumptions. First, the four legs of the table constitute a strict rectangle
on the plane. Second, the height of the ground is continuously changing, and there
will be no discontinuities in any direction, that is, the ground can be regarded as a
mathematically continuous smooth surface. Third, the four legs of the table are the
same length. Fourth, the ground is relatively flat, so that at least three legs of the
table touch the ground at the same time.

We consider the centre of the rectangular table as the coordinate origin. When
the rectangular table rotates around this centre, the angle formed by the diagonal
connecting vector CA and the x-axis is θ (see Fig. 38.2). Let the distances between
the four legs and the ground be, respectively, hA(θ), hB(θ), hC(θ) and hD(θ). For
any θ, three of hA(θ), hB(θ), hC(θ) and hD(θ) are always zero. In addition, hA(θ),
hB(θ), hC(θ) and hD(θ) are all continuous functions with respect to θ. Thus, this
problem can be transformed into a mathematical model. Specifically, hA(θ), hB(θ),
hC(θ) and hD(θ) are all positive continuous functions with respect to θ, and three of
hA(θ), hB(θ), hC(θ) and hD(θ) are always zero for any θ. Our goal is to find some
θ ≥ 0, so that hA(θ) = hB(θ) = hC(θ) = hD(θ) = 0. Therefore, we can apply the
theorem of root existence to solve this model.

The advantage of the above modelling is that a variable θ is used to describe the
position of the table, and a function of θ is used to indicate the distance between the
four legs of the table and the ground. Of course, we can also make other assumptions,
such as the four legs of the table form a square or trapezoid. At this time, the method
and result of this problem may be different.

38.3.3 Practice Training

Mathematical modelling has been considered a way of improving students’ ability
to solve problems in real life (Lesh and Lehrer 2003; Niss et al. 2007). In China,
students consolidate knowledge mostly by using definitions, theorems and formulas
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to finish theoretical questions in calculus. This approach to learning makes it difficult
for students to be creative. In order to make up for this shortcoming, mathematical
modelling can also be incorporated into practice training.

We can properly arrange somepractical problems so that students havemore space to think. In
the traditional ways, students should do their homework independently. Therefore, we must
encourage students to form discussion groups in order to strengthen their communication
and cultivate their cooperation capability. They will experience mathematics, understand
mathematics and master the thought and method of mathematical modelling.

We consider a problem of applying a series to investment costs. The government
plans to build a new wooden bridge or cable-stayed steel bridge over a river. The
cost of constructing a steel bridge is RMB 3,800,000. The steel bridge needs to be
painted every 10 years, and the cost of each painting is RMB 400,000. The expected
life of the steel bridge is 40 years. The cost of building a wooden bridge is RMB
2,000,000. The wooden bridge needs to be painted every 2 years, and the cost of
each painting is RMB 200,000. The expected life of the wooden bridge is 15 years.
If the annual interest rate is 10%, which bridge is more economical to build?

To solve this problem simply, students would make some assumptions. First, the
prices of steel andwood are not affected bymarket, and their prices are relatively fixed
during the construction of the bridge. Second, the interest rate remains unchanged.

Suppose the initial investment is p, the annual interest rate is r, and the investment
is repeated once every t years. So, the cost of the first update is pe−r t , and the cost
of the second update is pe−2r t . In this way, the investment cost D is the sum of the
following proportional series:

D = p + pe−r t + pe−2r t + · · · + pe−nrt + · · · = p

1 − e−r t
. (3)

The cost of building abridge includes twoparts, i.e., building abridge andpainting.
For the steel bridge, p = 3,800,000, r = 0.1, t = 40, and the cost of building the steel
bridge can be expressed by

D1 = 3, 800, 000

1 − e−4
= 3, 870, 908. (4)

when p = 400,000, r = 0.1, t = 10, the cost of painting the steel bridge can be
expressed by

D2 = 400, 000

1 − e−1
= 632, 788. (5)

Therefore, the total cost of building a steel bridge is D = D1+D2 = 4, 503, 696.
For the wooden bridge, p = 2,000,000, r = 0.1, t = 15, and the cost of building

the wooden bridge can be expressed by

D1 = 2, 000, 000

1 − e−1.5
= 2, 574, 400. (6)
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when p = 200,000, r = 0.1, t = 2, the cost of painting the wooden bridge can be
expressed by

D2 = 200, 000

1 − e−0.2
= 1, 102, 438. (7)

Therefore, the total cost of building a wooden bridge is D = D1 + D2 =
3, 676, 838.

Thus, a wooden bridge is more economical.
Actually, the prices of steel and wood are usually affected by market. Under this

assumption, the annual increase in the prices of steel and wood can be denoted as b.
At this time, Eq. (3) can be rewritten as

D = p + pe−(r−b)t + pe−2(r−b)t + · · · + pe−n(r−b)t + · · · = pe(r−b)t

e(r−b)t − 1
. (8)

Thus, different b will lead to different results. For example, when b = 7%, a steel
bridge is more economical.

Through the processes of mathematical modelling and applications, students
realize that calculus is a useful tool to solve practical problems. We should try to
conduct the principle of combining theory and practice in teaching, and improves
the students’ abilities to analyze and solve practical problems.

38.4 Conclusion

In our university, students enjoy these teaching practices. Students are very inter-
ested in mathematical modelling and applying calculus to solve practical problems.
Many students had preliminary understanding of mathematical modelling during
their freshmanyear, and later also participated inCUMCMand achieved good results.
Meanwhile, their experiences also built a foundation for the subsequent courses.

Calculus is the wisdom crystallization of human mathematics development.
Mathematical modelling is an important tool to solve practical problems. How to
integrate mathematical modelling into calculus teaching is worth discussing. This
chapter explains integratingmathematicalmodelling into calculus from three aspects,
including definition introduction, theorem application and practice training. The
ideas presented here go someway towards what Haines and Crouch (2007) described
as helping “novices develop into experts to define concise descriptors of behaviours
related to mathematical modelling and applications”. In addition, some examples are
provided in this chapter, just to set the ball rolling. We hope to offer some remarks
for teachers engaged in calculus or mathematical modelling teaching.
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Chapter 39
Economic Applications
in the International Debates onModelling
and Applications Since the 1980s

Dirk De Bock, Johan Deprez, and Ann Laeremans

Abstract In many countries, secondary school students learn about mathematical
applications and modelling through examples and contexts exclusively taken from
physics or other natural sciences. However, there are good reasons to argue in favour
of changing this situation and, in particular, to more intensively include applications
from economics, business, or finance in secondary school mathematics. In order to
identify the role of such applications in the mathematical–educational debates since
the 1980s, we scrutinized all Proceedings of past ICTMA conferences as a represen-
tative body of research and development in this field. We came to the conclusion that
economic applications were indeed not well represented in these debates. However,
a positive trend was revealed since ICTMA12, the first ICTMA whose conference
theme explicitly referred to economics.

Keyword Economic applications · Economic modelling · Historical overview ·
ICTMA · Literature review ·Mathematical modelling

39.1 Introduction

In many countries, secondary school students learn about mathematical applications
and modelling through examples and contexts exclusively taken from physics or
other natural sciences. Although mathematical and statistical methods are increas-
ingly used in the social sciences and humanities, applications from these scientific
fields are often neglected in current mathematics education. There are several good
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reasons to argue in favour of changing this situation and, in particular, to more inten-
sively include applications from economics, business, or finance in secondary school
mathematics. First, applications from the various fields of economics often require
less domain-specific knowledge than the traditional applications of mathematics in
the natural sciences, and are therefore easier to understand formany students. Second,
applications from these fields can improve students’ economic and financial literacy,
and are worth studying from a citizen’s perspective onmathematics education. Third,
extending the domains of application would enrich students’ view on mathematics
and its power to model a broad range of situations, both in real life and in a scien-
tific domain other than the natural sciences. Fourth, it can ensure that also students
in study streams with a strong mathematical component are introduced to some
economic principles and laws, as well as to a corresponding quantitative approach.
At present, this is not always the case and it could enable these students to consider
economic-oriented studies at the tertiary level. Fifth, a sound understanding ofmathe-
matical concepts, for instance the integral and the differential quotient, often benefits
from exemplifications and interpretations in a variety of disciplines in which these
concepts are used and have a slightly different meaning (de Lange 1987; Freudenthal
1973).

39.2 Economic Applications in Mathematics Education

From a historical perspective, we find advocates of closer relations between mathe-
matics education and economic applications as early as a century ago.Webster (1918)
argued that “the pendulum has swung too far to the cultural side and that we must
introduce the commercial and industrial factors” (p. 194). In his paper, he suggested
two kinds of changes in the mathematics curriculum. On the one hand, he proposed
to include financial mathematics, i.e. a topic with an explicit economic focus. On
the other hand, he promoted the use of graphs, which is a more generally applicable
skill, using arguments based in economics, i.e. because “all large corporations are
using this mode of interpretation” (p. 195). Also Schaaf (1934) wanted to reform
mathematics education in high school “so that as adults they [the pupils] will be able
and willing to think about social-economic problems in quantitative terms” (p. 374).
He argued in favour of what he calls “quantitative thinking”, which encompasses
statistics (e.g. the concept of frequency distribution), elementary probability theory
(e.g. the concept of probability) and calculus (e.g. the concepts of functional relation-
ship between two variables and of rate of change) and against conventional algebra
and geometry, which are, in his words, “rather inadequate for an intelligent under-
standing of the vital problems that beset us today” (p. 374). Finally, we mention the
contribution at the Royaumont Seminar of Tucker (1961), who refers to new types
of problems, coming e.g. from economics, to suggest changes in the mathematics
curriculum, like the study of matrices and linear programming. For a more detailed
account of Tucker’s contribution, we refer to De Bock and Zwaneveld (2020).
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An exploration of literature yielded several descriptions of teaching projects
featuring a diversity of economic applications in mathematics classes, both from
recent and older times. Whereas older sources introduce financial mathematics in
mathematics classes from the point of view of a future employee working in the
financial sector, Mariner and Miller (2009) use high school algebra and pre-calculus
to discuss financial mathematics in relation to the problems in the housing market
during the financial crisis. Schaaf (1951) and Ruppel (1982) show how business
arithmetic can profit from including slightly more evolved mathematics, notably
elementary algebra and graphs. Olson and Sindt (1982) developed classroom activi-
ties around topics in consumer mathematics, i.e. how the rate of inflation determines
the time to double price of an item and how quickly growth rate of consumption can
deplete a finite resource. Nievergelt (1988) uses income tax as an economic context
to study three representations of functions. Also, more theoretical concepts from
economic science are included in a number of teaching projects: Van Dyke (1998)
shows how cost, revenue and profit functions can be visualized. Kang, Letze and
Letze (2017) use the concept of Production Possibilities Frontier in their project.

This abundance of practice-oriented papers is in sharp contrast with the virtual
absence of papers reporting on empirical research concerning economic applications
in mathematics education. Although a comprehensive review of the literature on
economic applications in mathematics education is beyond the scope of this chapter,
a systematic search of Educational Studies in Mathematics (ESM) and Journal for
Research inMathematics Education (JRME), two renowned journalswith a very long
tradition in our field, was undertaken. 1 This search, however, yielded no research
papers on this topic, apart from studies linking primary mathematics education to
money in daily life. Given our focus on secondary and, although to a lesser extent,
on primary education, we did not search for evidence of economic applications
in scientific journals that typically publish papers at university level or deal with
advanced mathematics.

39.3 An Analysis of the ICTMA Proceedings

39.3.1 Research Questions

What role did economic applications play in the international debates on the role
of applications of mathematics in education? Which applications were involved and
can certain trends be observed?

1We used the following keywords, including a wildcard character in order to search efficiently
for related words: economic* (referring to, e.g., economic, economics, economical, etc.). financ*,
cost*, income*, profit*, market*, business*, consum*, money*, fiscal* and mortgage*.
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39.3.2 Methodology

To review the role of economic applications in the mathematics education debate
since the 1980s, we scrutinized all ICTMA Proceedings to date, from ICTMA1 to
ICTMA17, thatmeans a total of 18 edited books2, as a representative body of research
and development on mathematical modelling and applications. Chapters3 in these
Proceedings having economics as a main focus, or having at least a clear economic
angle, were inventoried and analysed inmore detail. This means that for each of these
chapters, we identified the: (1) educational level, (2) methodology, (3) strength of the
economic angle, (4) economic domain and (5)mathematical domain. For educational
level, a distinctionwasmade between primary, secondary and tertiary education,with
the latter category being further subdivided intowhether or not the chapterwas related
to teacher education.Whenmore than one educational level was applicable, the most
dominantwas assigned. For research-oriented contributions,methodology referred to
the applied research methodology (quantitative, qualitative or mixedmethods, which
means a combination of quantitative and qualitative methods). Chapters without a
clear research focus, e.g. descriptions of teaching practices, programs or projects,
were labelled as practice-oriented.4 Finally, methodology could also relate to litera-
ture reviews. For strength of the economic angle, we distinguished the chapters with
economics as the main focus and those with an auxiliary focus on economics. The
latter meant that, although the main focus of the chapter was not economic, there was
still an economic angle, or that the examples cited came mainly from economics.
This inclusion criterion is quite broad, but we did not include chapters with only one,
not further elaborated economic example, and chapters in which only references to
an economic domain were made without further information or discussion.

With regard to economic domain, in which economics is generally defined as the
social science that studies the production, distribution and consumption of goods
and services, we distinguished between (a) macroeconomics, commonly defined
as the “branch of economics dealing with the performance, structure, behaviour,
and decision-making of an economy as a whole” (“Macroeconomics”, n.d., n.p.)5,
(b) microeconomics, the “branch of economics that studies the behaviour of indi-
viduals and firms in making decisions regarding the allocation of scarce resources
and the interactions among these individuals and firms” (“Microeconomics”, n.d.,
n.p.), (c) business economics, the “field in applied economics which uses economic

2TheProceedings of ICTMA2were published in two separate volumes:Volume1dealtwith “Mathe-
maticalmodellingmethodology,models andmicros”,Volume 2was titled “Mathematicalmodelling
courses”. A list of the ICTMA Proceedings is available on the ICTMA website (“Literature”, n.d.).
3These chapters are further elaborations of papers presented at the respective ICTMA conferences.
4In older ICTMA Proceedings (see, for instance, de Lange, Keitel, Huntley and Niss 1993) such
contributions were commonly referred to as “case studies”. Nowadays, however, this term has a
research-methodological meaning. We have chosen the label “practice-oriented” in order to clearly
distinguish these chapters from those with a research orientation.
5In addition to the classical concepts, such as inflation, price levels, rate of economic growth,
national income or gross domestic product, also measures of social inequality, such as those based
on income and wealth distributions, are included in the macroeconomics domain.
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theory and quantitative methods to analyse business enterprises and the factors
contributing to the diversity of organizational structures and the relationships of
firms with labour, capital and product markets” (“Business economics”, n.d., n.p.)
and (d) finance, the “field that is concerned with the allocation (investment) of assets
and liabilities over space and time, often under conditions of risk or uncertainty”
(“Finance”, n.d., n.p.). Applications related to operational research were typically
classified in the domain of business economics.

With regard tomathematical domain, we basically relied on the content categories
used in the PISA surveys for assessing mathematical literacy of 15-year-old students
(OECD 2018): (a) change and relationships, (b) space and shape, (c) quantity and (d)
uncertainty and data. Change and relationships deal with describing, modelling and
interpreting change phenomena using algebra and functions, “including algebraic
expressions, equations and inequalities, and tabular and graphical representations”
(OECD 2018, p. 59). This category is most closely related to the common school
subject algebra. Because ICTMA chapters often involve more advanced mathemat-
ical modelling by students who are older than the PISA target group, an extension
proved necessary. Therefore, we divided change and relationships into two subcat-
egories: (i) algebra and pre-calculus, including calculating with logarithms and the
study of functions without the calculus apparatus (linear and quadratic functions,
inverse proportional relationships, and basic exponential, logarithmic and trigono-
metric functions), and (ii) calculus, including derivatives, integrals and differential
equations and their applications on more complex functional relationships. Space
and shape encompasses plane and spatial “patterns, properties of objects, positions
and orientations, representations of objects and shapes, decoding and encoding of
visual information, navigation, …” (OECD 2018, p. 59). The school subject geom-
etry serves as a foundation for space and shape, but the scope of this category is
broader including also areas such as spatial visualization andmeasurement. The cate-
gory quantity incorporates quantitative relationships and involves “measurements,
counts,magnitudes, units, indicators, relative size, and numerical trends andpatterns”
(OECD 2018, p. 59). It is most closely related to the school subjects number and
number operations. The last category, uncertainty and data, focusses on presenting
and interpreting data, and evaluating conclusions drawn fromdata in situationswhere
uncertainty is central. It also includes “recognising the place of variation in processes,
having a sense of quantificationof that variation, acknowledginguncertainty and error
measurement, and knowing about chance” (OECD 2018, p. 60). The school subjects
that are closest to this category are probability and statistics.

The analysis of all ICTMA Proceedings, according to a standardized analysis
scheme based on the categorizations we discussed above, was conducted by two
independent researchers. In case of inconsistencies, the criteria were refined until a
full consensus was reached.
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39.3.3 Results

Table 39.1 shows the distribution of the economic-related chapters in the respective
ICTMA Proceedings. Each relevant chapter is given a tracking number. Table 39.2
provides an analysis of these chapters with the tracking number as a unique identifier.

Table 39.1 Distribution and identification of chapters related to economics in the different ICTMA
Proceedings

ICTMA Proceedings: serial
number/number of
chapters/number of pages
(from Chap. 1)

Number of economic-related
chapters/corresponding total
number of pages

Identification and assigned
chapter’s tracking number
(between brackets) of
economic-related chapters

1/38/483 3/40 pp. 11–25 (1), pp. 257–268 (2),
pp. 269–281 (3)

2–Vol. 1/23/306 0/0

2–Vol. 2/25/267 2/33 pp. 58–69 (4), pp. 188–208 (5)

3/70/449 6/37 pp. 159–165 (6), pp. 187–191
(7), pp. 195–200 (8),
pp. 207–212 (9), pp. 280–285
(10), pp. 348–354 (11)

4/44/427 2/22 pp. 147–157 (12), pp. 249–259
(13)

5/37/392 3/23 pp. 235–243 (14), pp. 297–302
(15), pp. 385–392 (16)

6/24/334 0/0

7/32/401 4/51 pp. 51–61 (17), pp. 183–202
(18), pp. 331–341 (19),
pp. 385–393 (20)

8/34/344 2/17 pp. 51–61 (21), pp. 183–202
(22)

9/38/422 6/63 pp. 15–29 (23), pp. 62–71 (24),
pp. 90–98 (25), pp. 119–129
(26), pp. 227–234 (27),
pp. 381–390 (28)

10/26/330 3/41 pp. 16–29 (29), pp. 101–110
(30), pp. 267–283 (31)

11/23/267 1/15 pp. 3–17 (32)

12/49/492 3/34 pp. 25–42 (33), pp. 110–119
(34), pp. 288–293 (35)

13/53/648 6/66 pp. 111–118 (36), pp. 119–129
(37), pp. 173–188 (38),
pp. 223–233 (39), pp. 255–264
(40), pp. 399–408 (41)

14/68/722 1/10 pp. 289–298 (42)

(continued)
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Table 39.1 (continued)

ICTMA Proceedings: serial
number/number of
chapters/number of pages
(from Chap. 1)

Number of economic-related
chapters/corresponding total
number of pages

Identification and assigned
chapter’s tracking number
(between brackets) of
economic-related chapters

15/52/617 5/53 pp. 67–76 (43), pp. 153–163
(44), pp. 241–251 (45),
pp. 517–526 (46), pp. 607–617
(47)

16/50/603 10/107 pp. 67–79 (48), pp. 241–250
(49), pp. 251–261 (50),
pp. 317–326 (51), pp. 327–337
(52), pp. 351–361 (53),
pp. 407–416 (54), pp. 477–486
(55), pp. 557–566 (56),
pp. 579–589 (57)

17/52/637 8/86 pp. 37–47 (58), pp. 107–116
(59), pp. 211–221 (60),
pp. 337–347 (61), pp. 443–453
(62), pp. 491–501 (63),
pp. 577–586 (64), pp. 615–625
(65)

Out of a total of 738 chapters, 65 (or 8.81%) were found with an economic angle.
These chapters represented 698 (or 8.57%) of the 8141 pages in the 18 Proceedings
that were analysed. The majority of these chapters referred to secondary (31) or
tertiary education (29), the latter group including only three chapters about teacher
education. The vast majority (39) were not research-oriented and therefore labelled
as practice-oriented. A main economic angle was only identified in 15 chapters.
Economic domains varied, although microeconomics and business economics were
best represented (with each 22 chapters). With regard to the mathematical domain,
Change and relationships were best represented with 25 chapters on algebra or pre-
calculus and 23 chapters on calculus.

39.3.4 Discussion

In line with our expectations, we found that economic applications were not
well represented in the debates at ICTMA since the 1980s. Although we used a
very broad inclusion criterion, less than 10% of the contributions had a link to
economics. Inspired by the historical overview of ICTMA (“The first twenty-five
years” 2000-2019), we present a more fine-grained qualitative analysis of the results
and try to identify some trends.

Economic-related chapters in the ICTMA Proceedings are mainly related to the
tertiary and secondary levels. However, whereas in the 1980s, the pioneering years
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Table 39.2 Analysis of economic-related chapters in the Proceedings of ICTMA 1 to 18

Category Chapter’s tracking numbers Total number of chapters

Educational level

Primary 32, 37, 41, 44, 62 5

Secondary 5, 6, 7, 8, 9, 12, 13, 17, 18, 21, 24,
26, 29, 30, 34, 35, 40, 43, 45, 49,
50, 51, 52, 53, 54, 55, 57, 58, 59,
60, 65

31

Tertiary–Teacher education 14, 42, 63 3

Tertiary–Other 1, 2, 3, 4, 10, 11, 15, 16, 19, 20, 22,
23, 25, 27, 28, 31, 33, 36, 38, 39,
46, 47, 48, 56, 61, 64

26

Methodology

Quantitative 28, 34, 45 3

Qualitative 14, 35, 42, 43, 44, 46, 49, 51, 52,
54, 55, 56, 58, 60, 62, 63

16

Mixed methods 27, 29, 41, 50, 59 5

Practice-oriented 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,
13, 16, 17, 18, 19, 20, 21, 22, 23,
24, 25, 26, 30, 31, 32, 33, 36, 37,
38, 39, 40, 47, 48, 53, 57, 64, 65

39

Literature review 15, 61 2

Strength of economic angle

Main 2, 3, 4, 8, 11, 15, 20, 33, 36, 39, 45,
47, 50, 55, 61

15

Auxiliary 1, 5, 6, 7, 9, 10, 12, 13, 14, 16, 17,
18, 19, 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31, 32, 34, 35, 37, 38,
40, 41, 42, 43, 44, 46, 48, 49, 51,
52, 53, 54, 56, 57, 58, 59, 60, 62,
63, 64, 65

50

Economic domain

Macroeconomics 2, 13, 18, 31, 33, 45, 48 7

Microeconomics 4, 5, 12, 16, 21, 22, 23, 24, 27, 32,
35, 43, 47, 49, 51, 53, 54, 56, 57,
60, 62, 64

22

Business economics 1, 3, 9, 14, 17, 19, 20, 28, 29, 30,
34, 36, 37, 38, 39, 41, 42, 44, 46,
58, 63, 65

22

Finance 6, 8, 10, 11, 25, 26, 50, 52, 55, 59 10

More than one domain 7, 15, 40, 61 4

(continued)
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Table 39.2 (continued)

Category Chapter’s tracking numbers Total number of chapters

Mathematical domain

Change and
relationships– Algebra and
pre-calculus

2, 3, 4, 6, 7, 8, 9, 12, 14, 16, 17, 21,
24, 30, 36, 40, 43, 45, 46, 49, 50,
51, 53, 60, 64

25

Change and
relationships– Calculus

1, 5, 11, 15, 18, 19, 20, 22, 23, 25,
26, 27, 28, 34, 35, 39, 47, 48, 52,
54, 55, 57, 61

23

Space and shape 62, 65 2

Quantity 29, 32, 37, 41, 44, 56, 59 7

Uncertainty and data 10, 13, 31, 33, 38, 42, 58, 63 8

of ICTMA, almost all chapters involved tertiary (engineering) education, this has
changed since the end of the 1980s. From then on, secondary education receives
more and even as much attention as tertiary education. For a first contribution with
an economic angle to primary education, we must wait until ICTMA11 (English
2003), and also thereafter, such contributions remain rare. In the 1980s, and to a
lesser extent also in the 1990s, chapters related to economics were practice-oriented.
The emphasis was on teaching modelling and various mathematical models were
discussed. From around 2000 onward, this focus has shifted slowly to research on
mathematical modelling and this research focus has become predominant for the past
ten years.

Although we observed a slightly positive trend over the years, the share of
economic-related chapters remained small. This applies in particular to chapters with
economics as the core focus. A slight turnaround appeared since ICTMA12 (2005),
the first ICTMA with a conference theme explicitly referring to economics and
welcoming a plenary lecture on “economic modelling” by Barker (2007), member
of the Monetary Policy Committee of the Bank of England. Barker discussed the
range of issues which arise from the use of economic models, generally defined
as theoretical constructs representing economic processes by sets of variables and
logical and/or quantitative relationships between them. In particular, she focussed
on the importance of recognizing the context when selling particular models to the
bank’s clients.

39.4 Final Comments

Taking the ICTMA Proceedings as a representative body of research and develop-
ment, we reviewed the situation of economic applications in mathematics education
debates since the 1980s. This led us to a descriptive scheme of such applications
within the chapters of these Proceedings. On that basis, we could conclude that the
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role of this genre of applications in debates at ICTMA conferences was, in particular
up to ICTMA11, rather limited. However, we did not answer the question whether
economics was under-represented in the ICTMA debates compared to other scien-
tific disciplines. This would require similar analyses for various disciplines that
make frequent use of mathematics, such as physics, chemistry, biology, linguistics
or psychology.

Future research could also examine the role of economic applications in recent
debates more thoroughly through the analysis of more wide-ranging sources,
including a broad range of journals, curricula and textbooks. As far as journals are
concerned, we systematically searched ESM and JRME, two flagship journals in the
scientific discipline of mathematics education, but neither usually publish research
papers at the university level or deal with advanced mathematics. It would be worth
exploring for evidence of applications to economics in journals that typically treat
more advanced topics in mathematics, such as International Journal of Mathemat-
ical Education in Science and Technology; International Journal of Research in
Undergraduate Mathematics Education; Journal of Mathematical Behaviour; Prob-
lems, Resources, and Issues in Mathematics Undergraduate Studies (PRIMUS); or
Teaching Mathematics and its Applications. The analysis of textbooks for secondary
or primary schools is particularly interesting because it can provide valuable insights
into the role of economic applications in mathematics lessons as they actually take
place at these levels. Such analyses could alsomap out the situation from one country
or region to another. To further improve current educational practices, it is critical to
provide teachers with meaningful economic applications that they can integrate in
their courses, applications that can empower their students with basic mathematical
and economic ideas.
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Chapter 40
Inquiry-based Orbital Modelling to Build
Coherence in Trigonometry

Celil Ekici and Cigdem Alagoz

Abstract Mathematics modelling education has potential to support pedagogical
innovations by fostering coherence within mathematics as well as supporting inter-
disciplinary connections. Students often struggle to build coherence in trigonom-
etry presented in multiple mathematical frames such as triangle, circle, vector and
complex numbers. Design-based research experiments are conducted to extend the
modelling of circular motion to the modelling of advanced periodic orbits from a
series of trigonometric functions. Inquiry-based orbital modelling allows students
experiment with modelling of periodic orbits with technology-rich tasks in inter-
preting the meaning and connections of periods and amplitudes of circular functions
and the emergent patterns. The results show that learners experience coherence while
interpreting, comparing and validating their orbital models in circular, functional and
complex trigonometry with connections in between.

Keywords Coherence · Trigonometry ·Mathematical modelling · Periodic
functions · Fourier analysis · Integrated STEM learning

40.1 Introduction

The learning tasks for inquiry-based mathematics education come not only from
applications ofmathematics but also frommathematical objects themselves (Schoen-
feld andKilpatrick 2013). Trigonometry is a subject traditionally richwithmodelling
tasks involving triangles, circles and the periodic phenomena from secondary schools
to college (Bressoud 2010). Yet, it is often problematic for students to build coher-
ence with trigonometric functions due to the multiplicity of trigonometric frames
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involving triangle, circle, periodic functions, vectors and complex numbers (Altman
and Kidron 2016; Ekici, 2010).

Inquiry-based mathematical modelling is a cyclic process including selecting
mathematical framings, determining relationships, interpreting and validating
(Anhalt and Cortez 2015). New loops can be initiated during mathematizing and
validating. Inquiry-based modelling of periodic orbits serves as a driving theme
across modelling tasks to connect trigonometric frameworks. Orbital modelling is
the modelling of periodic orbits traced by the trajectory of a point on a circle rotated
about another circle. For example, an orbital pattern with four petals is mathematized
by an ordered pair (cos t + cos(−3t), sin t + sin(−3t) where t is a real number. We
use mathematical modelling as a vehicle for coherent learning progressions across
the trigonometric frameworks while mathematizing periodic phenomena.

40.2 Problem and Theoretical Framework

While there is a research in covering the gap from triangle to circle trigonometry
(Moore and LaForest 2014; Weber 2005) largely due to students’ conceptual diffi-
culty with radians, there is a need for research on learning progressions for coherent
learning of trigonometry connecting circle, functional and complex trigonometry
(Ekici 2010). This study is conducted to address this gap with a sequence of math-
ematical modelling tasks to facilitate coherence of learning trigonometric functions
in real and complex domain. The orbital modelling learning trajectory is designed
to deepen student knowledge of college trigonometry for freshmen for a connected
learning of circle, functional and complex trigonometry for applied mathematics
education. Themodelling task sequences are intended to provide a balanced perspec-
tive in modelling education to advance mathematical ideas and connections (Doerr
2016; Hjalmarson et al. 2008; Zbiek and Conner 2006). Orbital modelling allows
us to use time as a variable to support learners overcome their conceptual difficulty
with the angle measure with radians in circular motion.

Our underlying mathematical framework has three main stages of learning
progressions from circle to complex trigonometry through orbital modelling. In the
first stage, the circle trigonometry is initially used to model a trajectory of a point
around a single circular orbit mathematized by an ordered pair of single sine and
cosine functions with (x(t), y(t)) = (r cos(2π ω t), sin(2π ω t)) with t representing
time, and ω representing the frequency. x(t) and y(t) trace the trajectory of the point
along a circular orbit. In second stage, the circle trigonometry is extended to peri-
odic functions using multiple circles to model periodic orbits (x(t), y(t)) as a sum of
trigonometric sine or cosine functions in Cartesian plane. Third stage of progression
is to model the orbital patterns by using complex trigonometry. This is conceptually
based on the Euler formula to combine the ordered pair (x, y) as a single number z
so that the sum of trigonometric functions are now, z(t) = r1eiω1t + r2eiω2t + . . ..
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40.2.1 Learning Trajectories as Modelling Sequences
Towards Building Coherence

Learning trajectories provide an integrated approach to developmathematical knowl-
edge for teaching mathematical modelling through analysis of tasks and their
sequences, students’ experience of learning, connecting, anticipating and attending
to discourse and assessment (Sztajn et al. 2012). The instructional design theory of
Realistic Mathematics Education (RME) (Gravemeijer 2004) is adopted with the
guided reinvention and emergent modelling with instructional sequences designed
to challenge learners to organize circle trigonometry at one level to produce new
understanding at a higher level. In exploring the multiplicity of mathematizing
phase, frame shifts and comparisons of our modelling process across mathematical
frames are gradual and incremental across the semester to build a strong metacogni-
tion in modelling practice to build connections within discipline of trigonometry.
This design-based research approach aligns with Streefland’s (1993) orientation
on shifting of perspectives across purposeful modelling task sequences as a context
for deepening students’ understanding of mathematics and mathematical connec-
tions. Building on Lesh and Doerr’s models and modelling approach, we facilitate
students’ work on “real-life” modelling challenges such as modelling double Ferris
Wheel rides, that are designed to require students to invent, refine and generalize
powerful mathematical constructs (Lesh and Doerr 2003).

In this study, learning trajectories are connected with an orbital modelling task
sequence on designing advanced double Ferris Wheel rides. These orbital patterns
are investigated and mathematized by a pair of periodic functions as a combination
of circular functions or a single function in Euler form with complex numbers.
Combined circular functions essentially form a series of trigonometric functions to
model any periodic function or pattern.

Underlying justification behind teaching and learning mathematical modelling of
orbital paths is to facilitate the emergence of intuitive ideas for functional analysis
and Fourier analysis ideas as a foundation for applied and engineering mathematics
education. The intuition for Fourier Analysis lies in modelling a complex periodic
pattern as a combination of sine waves with different frequencies and amplitudes.
The goal for research-based design experiments is to build a coherent trigonom-
etry practice with orbital modelling task sequences across trigonometric frames
with an ultimate mathematical horizon on Fourier analysis. Learning trajectories are
investigated across a series of orbital modelling tasks towards building a coherent
trigonometry practice through modelling. Design-based research involves iterative
series of teaching cycles conjecturing, enacting, assessing and revising modelling
task sequences to build coherence along learning trajectories (Simon 1995).
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40.2.2 Learning Trajectory in Trigonometry for Orbital
Modelling

The trigonometry students are often given opportunities to study trigonometric func-
tions as simple periodic functions that can be associated to a circle modelled by (r cos
ωt, r sin ωt). In teaching trigonometry, circular functions are commonly introduced
to model periodic phenomena such as the changes in the vertical and horizontal
position of a rider on a Ferris Wheel with circular functions. Here, we expand the
practice of modelling with circular functions to the modelling of periodic functions
as a sum of trigonometric functions.

We experiment with learning trajectories in teaching practice of college trigonom-
etry by modelling periodic orbits with a series of trigonometric functions. We aim
to provide a transition from a [trigonometric] function as a “model of” to a sum
of [trigonometric] functions as a “model for”. We refine our modelling sequences
to facilitate coherent learning trajectories based on our classroom experimentation
informed by our experience with students. We identify the patterns across trigono-
metric objects in orbital modelling observed through its variations within a trigonom-
etry frame and across frames building on students’ experience during the teaching
experiments. For example, the learning trajectory along model sequences is conjec-
tured to elicit the relationships across periods in building a certain orbital pattern
in a parametric pair of trigonometric functions (x(t), y(t)). Once established, this
learning trajectory offers a connection within a frame. Then model task sequences
orients students’ inquiry into whether the observed connection as a pattern still holds
when the modelling problem reframed in complex representation as (x(t) + iy(t)).

Local instructional practices around the learning trajectories are designed,
assessed and revised to help to coordinate students’ and teachers’ understanding
across trigonometric frames. Inquiry-oriented modelling sequences are designed to
facilitate student discovery of trigonometric andmathematical ideas and connections
behind orbital modelling. Using dynamic applets, students learn to treat trigono-
metric functions as objects that can be manipulated and combined to build and
study advanced periodic orbital patterns. Informal approach to analysis with trigono-
metric functions allows students to develop an intuition and demand towards a deeper
mathematics that can be revisited and expanded in later courses for college students.

Inquiry-based math modelling task sequences on orbital modelling theme is
designed to support learning trajectories building a series of connected mathematical
ideas across circle, functional and complex framings of trigonometry. Thismodelling
approach is aimed to foster student understanding of trigonometric functions as
building blocks tomodel any periodic behaviour by using alternative frames of math-
ematizing with circular functions, a series of circular functions in real and complex
domain. This pluralist approach to mathematising phase is kept across mathemat-
ical modelling tasks sequences to revisit, experimenting with the orbital modelling
through its alternative mathematical representations. This approach is designed to
offer students opportunities to build connections and develop coherent meanings
with the trigonometric objects in modelling orbital patterns.
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40.3 Method and Data

Design-based teaching experiments were conducted in the context of college
trigonometry class taught by the first author to develop and implement inquiry-based
modelling task sequences with a theme on orbital modelling. The class met for two
75-minute sessions each week for 14 weeks, with a common learning objective of
developing triangle, circle and complex trigonometry perspective. Participants were
freshmen without prior background on trigonometry. Students did not have prior
experience with GeoGebra prior to this class. Orbital modelling activities are done
in a span of four weeks to connect circle trigonometry and complex trigonometry
with modelling and technology integration. Students work samples and classroom
artefacts including the GeoGebra investigations are collected and analysed as they
worked on their modelling projects. The authors collaborated on design and anal-
ysis of learning trajectories during designing, assessing and revising modelling task
sequences.Observation and reflection logswere kept.Datawas analysed following an
open and axial coding approach to identify emergingpatterns in students’ responses to
tasks or connections between these responses (Corbin andStrauss 2008). Researchers
worked on themes emerging from data regarding participants’ experience with
modelling sequences to support coherence within mathematics during the math-
ematization, interpretation and validation of alternative trigonometric models for
periodic orbits.

40.3.1 Orbital Modelling Tasks in Trigonometry

Inquiry-based modelling activities supported students’ experimentation in extending
the study of trigonometric functions from modelling with single sinusoids to
modelling periodic functions as a combination of circular functions. Inquiry-
based modelling of periodic orbits is a driving theme across multiple modelling
task sequences. The learning trajectories are designed to revamp trigonometry for
mathematical scientists including computer scientists and engineers.

Orbital models are extensions of the unit circle representation depicting the hori-
zontal and vertical position of a rider with a parametric pair (x(t), y(t)) as t changes.
Dynamic GeoGebra applets are designed to help students examine orbital behaviour
visually and algebraically to investigate the emerging patterns between periods and
amplitudes with their implications to orbital behaviour.

x(t) = r1 cos(w1t) + r2 cos(w2t) + . . . . + rn cos(wnt)

y(t) = r1 sin(w1t) + r2 sin(w2t) + . . . . + rn sin(wnt)

Cross-cutting activity is here to design complex Ferris Wheel rides (such as Sky
Wheel) modelled by combined circular functions. Students start with modelling of
a Ferris Wheel, develop models of periodic orbits formed by the trajectory of a rider
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located on several circles on circles simultaneously rotating with different periods
and radii. Starting in week 2, initial modelling sequence works on a single wheel
with different rotational speeds, boarding positions using the specifications of famous
models such as High Roller in Las Vegas. Using resources over Internet, students find
videos and information about the design features of famous Ferris Wheels with their
radii and periods. Students work on modelling horizontal and vertical position of the
rider at time t. Students are expected to model the orbits by mathematizing first with
cartesian and complex trigonometric models extending their understanding of basic
circular orbits parametrized as (r cos(ωt), r sin(ωt)). ExperimentingwithGeoGebra1,
students examine the characteristics of modified circular functions generated by
adding circular functions with different amplitudes and periods in modelling peri-
odic orbits. Participants make observations on the emergent phenomena by building
conjectures about the patterns among parameters in generating different orbit fami-
lies. Students compare the models and build connections across frames in modelling
the periodic orbits by trigonometric functions. The functional trigonometry perspec-
tive as an extension of circle trigonometry is advanced here to develop an intuitive
understanding of Fourier analysis which is a fundamental idea for engineers and
applied mathematicians.

40.4 Results

40.4.1 Representative Orbital Modelling Tasks

Students were introduced the following orbital modelling task with their follow-up
sequences.

40.4.1.1 Design Orbital Path for the Sky Wheel

Design Your Sky Wheel
You are commissioned to design a Double Ferris Wheel that should provide a
thrill ride as seen in Fig. 40.1a. Develop a mathematical model for the rider’s
orbital path during the entire Sky Wheel ride. Investigate the impact of the
periods and radii on the orbital patterns to come up with your thrilling ride.

During the first phase of the Sky Wheel Modelling task, students watch a video of
aDouble Ferris Wheel in action as depicted in Fig. 40.1a. Themodelling challenge is
to describe orbital pattern traced by the position of a SkyWheel rider during the entire

1GeoGebra (Hohenwarter et al. 2018) is an interactive software for mathematics learning from
primary to college.
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Fig. 40.1 Sky Wheel as Double Ferris Wheel https://www.youtube.com/watch?v=2LUNVPtRn0A

ride. The rotating arm connects centres of two wheels. From the video and Internet
research, students make estimations for the radii and the periods of the rotating arm
and two small Ferris Wheels. By using the command curve (a cos(b t), a sin(b t), t,
0, T) in GeoGebra, students discover the meanings of the parameters in generating
an orbital pattern and observe that the constants a is linked to the radius and b is
linked to the period T as 2π/T. The resulting orbital model is depicted in Fig. 40.1b.

During this orientation phase for inquiry-based learning, students start posing
what if questions on the design of SkyWheel examining the impact of different radii
and periods on orbital patterns. Initial teaching experiments helped us observe that
students preferred using period compared to the frequency to visualize what happens
to the period of the combined periodic functions. This modification allowed them to
use real time as an angle measured in radian.

x(t) = r1 cos(
2π

T1
t) + r2 cos(

2π

T2
t),

y(t) = r1 sin(
2π

T1
t) + r2 sin(

2π

T2
t).

Expanding the realistic model for Sky Wheel, a GeoGebra applet is created for a
generalized double Ferris Wheel model describing the orbit of a rider on a multiple
circle system by connected rotating circles (see https://www.geogebra.org/m/ezw
nvma8). Based on the initial explorations in generating orbital patterns in GeoGebra,
this applet is collectively developed in class with students for a dynamic experimen-
tation. This applet facilitates the discovery of orbital patterns by a dynamic construc-
tion and comparison of graphical and algebraic representations. The parameters are
changed by sliders for radii and periods of revolutions for the central arm and the
FerrisWheels. SkyWheel provides a concrete generative model that can be extended
to study and design more thrilling rides. This modelling challenge allows students
to study orbital modelling by a series of circles rotating with different period and
radii. Students individually or in groups generate and compare their orbital patterns
by different radii and periods.

https://www.youtube.com/watch?v=2LUNVPtRn0A
https://www.geogebra.org/m/ezwnvma8
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40.4.1.2 Challenge of Creating Loops and Turns

Students are given the challenge to examine the characteristics of an orbital pattern
interpreting from the relationships between the periods, their ratios and the signs as
positive or negative. Students design a thrill ride of their choice building alterna-
tive trigonometric models, examining orbital patterns, comparing their models, and
justifying their arguments with peers.

The Rides with Loops Task
Discover how you design your Sky Wheel so that riders can experience any
desired number of loops during their ride, say 1, or 5. You may use the applet
to examine the relationships between the periods of the wheels and the rotating
central arm for your generalized SkyWheel. For a rider to experience any given
number of loops, identify the relationship between periods for the rotating
circles (wheels or arm) in your design.

During this Rides with Loops Task activity students experiment individually or
in groups with the orbital patterns to determine the relationships between periods in
generating loops. Students argue the meaning and the impact of the negative period
if it is permissible in the problem context. Students conclude that the negative sign of
a period should be interpreted to indicate the clockwise rotation of the wheel or the
central arm. In response to this task, Henry’s response is a common across students.
He offers his favourite Double Ferris Wheel design with an orbital path with five
loops as in Fig. 40.2a. The parametric trigonometric functions modelling the orbit
for the rider is, contrasted with the positive periods 50 and 12.5 given in Fig. 40.2b.
The equations are y(t) = 13 sin(2π /50 t) + 5.5 sin(2π /(−12.5) t) and x(t) = 13
cos(2π /50 t) + 5.5 cos(2π/(−12.5) t) where t is time.

Get to know Your Family of Your Sky Wheel Task is the next modelling activity
exploring orbital paths with the same periodic ratios. It is designed to develop an

Fig. 40.2 Henry’s designs with 5 loops versus 3 loops with period ratios −4 and +4 as in (a) and
(b)
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intuitive idea of functional analysis by examining orbital curve families. This inquiry-
based task provides a learning progression along orbital modelling sequence to deter-
mine the impact and the constraints of the students’ choices of radii in the orbital path
designs. Holding ratios of periods constant, students observe the impact of radii on
the orbits and resulting impact on the experience for the riders. The idea behind this
modelling sequence is to examine the resemblance of orbital characteristics when
radii is being manipulated for orbits with different periodic ratios. This manipula-
tion is facilitated by GeoGebra applet. Using the applets, students manipulate their
designs so that they can compare the orbital patterns based on their choices of radii
and periods. Interpretation is a critical part of this analysis.

Rachel: When Ts are multiples it makes a loop for each multiple and subtracts
one, number of loops are T 2/T 1−1. For negative multiples, it makes a loop for every
multiple plus an extra loop |T 2/T 1| + 1.

Rachel’s observation is another typical expected learningoutcomeobserved across
students connecting the orbital loop patterns to the periods of T 1 and T 2. Henry’s
designed pentagonal or five-pedal patterns exemplify how a family of five-pedal
resemblance of orbital models are generated by period ratios of −5 or −1/5.

40.4.1.3 Modelling a Given Periodic Orbital Pattern by Different
Frames for Trigonometry

Next task in modelling sequence asks students model a given periodic orbit with four
loops as in Fig. 40.3. This activity is reintroduced after mathematizing a circular orbit
using the complex framing of a circular orbit as reiωt = r(cos(ωt) + i sin(ωt)). This
framing allows students to combine (x(t), y(t)) as an orbital model into one equation
as x(t) + i y(t) = r1eiω1t + r2eiω2t .

Students’ parametric models have the periods of 12, −4, and the radii 13 and 5.5
for wheel and the central arm as in Fig. 40.3a. Multiple solutions are generated for
the same orbital pattern using {T 1, T 2, r1, r2} = {21, −7, 13, 5.5}, with T 1/T 2 =
−3 or T 1/T 2 = −3. Using GeoGebra, students are able to compare and connect the
parametric and complex representations of this pattern as in Fig. 40.3.

(a) Mario’s parametric framing for 
orbital modelling (x(t), y(t))

(b) Jasmine’s complex framing of orbital modelling
of Sky Wheel z(t)=

Fig. 40.3 Comparison of student modelling work using multiple framings of Sky Wheel Modelling
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40.4.2 Assessment

We built the following framework for a collaborative formative assessment of math-
ematical modelling problems inspired by the work by Diefes-Dux et al. (2012). First
dimension asks students examine with their peers what it is their mathematical model
describing about the double Ferris Wheel ride. Students are expected to elaborate on
the procedure they follow in developing their mathematical models. Students assess
howwell theirmathematicalmodel addresses the problemofmodelling riders’ path in
a double Ferris Wheel. Students are expected to demonstrate fluency with alternative
mathematical representations, whether algebraic, graphical, or verbal and switching
in between clearly. Students revisit and reassess their models if it is sufficiently
descriptive of the desired periodic orbits for their own Sky Wheels.

Second dimension asks students to assess how their modelling process works if
reused in modelling new yet similar periodic orbits. This allows them to look back
the steps in their modelling procedures across similar orbits with different periods
and radii. This helps to reveal students’ strategic competence with their modelling
process at metacognitive level examining the characteristics of periodic patterns and
radii in generating loops and turns for desired rides.

Third dimension asks students consider other problem contexts that can be
modelled using the mathematical modelling procedure for periodic orbits. This
dimension helps student to think of different modelling situations that can have
similar structure with periodic orbits. Recontextualization and transfer of process
are harder for students.

Articulation of the assumptions in context is challenging for students that
require deeper understanding of physics and research into interdisciplinary context
(Galbraith and Stillman 2001). We ask students for rationales for their steps during
the modelling process reflecting their understanding of the relevant context.
Freshmen students question the constraints and the physical implications in real-
istic content, but their conceptual knowledge of speed and acceleration is not well
formed yet, not having taken a physics or a calculus course earlier. Students listed
the defining attributes of the sine wave as period, amplitude and phase, as embodied
by the attributes of a rotating object as revolution per minute, radius and initial
angle. Students early on missed the phase as a defining attribute for sine waves in
describing orbital patterns. This shortcoming is in part due to the experimental setup
and constraints with the GeoGebra applets. Learning trajectory can be modified to
facilitate stronger connection between the phase and initial angle before rotation for
the circular motion.

Throughout the orbital modelling sequence, students build more complex orbital
paths by manipulating simple circular functions. The culminating idea at the end is
a conceptual orientation towards looking into a periodic behaviour as a composition
of a circular functions. This is to provide readiness towards more formal approach
towards the Fourier analysis as a process to find the set of cycle periods, amplitudes
and phases to match any periodic function, f (t). At the end students’ work have
generated simple examples for this reverse conceptual orientation, that is “How do
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we decompose a complex periodic function or a signal into a group of circular
functions with their dominant amplitudes, fundamental frequencies and phases?”.

40.5 Conclusions

The integration of modelling into teaching trigonometry and other school subjects
works well when there is a “balancing act” during the instruction between developing
students’ modelling skills on the one hand and using modelling to help them learn
mathematics and sciences on the other. Aligning with Zbiek and Conner (2006),
Schoenfeld and Kilpatrick (2013), we use mathematical modelling as a context
for deepening students’ understanding of mathematics. The learning trajectories
allow the shifting of perspectives across modelling task sequences, as inspired by
Streefland (1993). Focusing on conceptual connections across trigonometry while
designing and experimenting the modelling sequences along a learning trajectory
builds more coherence to the content. Since the focus is on deepening mathematical
connections through modelling, doing more mathematics with less contextual shifts
is found to be working as pedagogically intendedd here in the learning trajecto-
ries for building foundations of Fourier analysis through rich modelling contexts.
Contextual variation is kept at minimum across modelling tasks when we shift
the focus from one modelling task to the next. The new trigonometric frames and
representations during the mathematization phase are compared with the previous
models to help students build more advanced understanding of trigonometry as a
subject providing multiple frameworks for mathematizing orbital modelling prob-
lems. This learning trajectory offers a learning process with an iterative function:
looking back and looking forward with the same modelling activity with different
mathematical lenses (Kilpatrick 1985). Purposeful variations along modelling task
sequences provides students and teachers opportunities for reflection and discussion.
For future research, orbital modelling provides authentic interdisciplinary learning
opportunities for students to investigate, build, and synthesize their knowledge of and
experience with physics, engineering and technology.
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Chapter 41
Video-based Word Problems
or Modelling Projects—Classifying
ICT-based Modelling Tasks

Gilbert Greefrath and Pauline Vos

Abstract Mathematical modelling tasks increasingly feature the use of digital tools
and media. In this chapter, we discuss the wide variety of these. Until now, classifica-
tions for modelling tasks did not consider the use of tools and media. Therefore, we
developed a new classification for ICT-based modelling tasks. One class relates to
mathematics; the others differentiate across (1) modelling aspects unrelated to tool
andmedia, (2) the task context, (3) the digital tools andmedia (CAS,Wikipedia, type
of feedback, etc.) and (4) students’ anticipated activities guided by task regulations,
such as group work or time restrictions. The classification was validated with three
example tasks. A visual presentation based on the classification system enables the
evaluation of qualities of a given ICT-based modelling task and can give insight into
potential adaptations.

Keywords Mathematical modelling ·Modelling tasks · Task analysis · Digital
tools · Digital media · Classification

41.1 Introduction

All over the world, mathematical modelling is entering mainstream mathematics
education, not just in classroom activities, but also in curricula and assessments
(Frejd 2011; Vos 2013). Simultaneously, digital tools and media are embraced by
education, and the combination of both has led to a wide variety of mathemat-
ical modelling tasks (Drijvers et al. 2016). On the one hand, there are open-ended
modelling research projects within technology-rich environments, and on the other
hand, there are tasks that are questionable to label as ‘modelling tasks’, yet these
allow students to use digital tools (e.g. CAS, DGS). In this chapter, we first explore
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the wide variety between these extrema. Then, we review existing classifications
of modelling tasks and classify aspects specific to ICT-based modelling tasks. The
purpose of a classification is to obtain a plausible evaluation of the quality of ICT-
based modelling tasks. We validate the new classification by applying it to three
example tasks. A visualisation based on this classification allows us to describe
strengths and weaknesses of a given ICT-based mathematical modelling task.

41.2 Examples of ICT-Based Modelling Tasks

To illustrate the variety, we present three examples of ICT-based modelling tasks.
In the Maypole Task(see Fig. 41.1), the task designers offers a video to illustrate a
traditional group dance in Bad Dinkelsdorf. Such media replace verbal descriptions
and assist students in understanding the task context. Students are asked to process
this situation with the help of mathematics. They are asked to write a number into
an answer field, making this task potentially suitable for a digital test with automatic
grading. Students can use a clickable calculator, which enables teachers/researchers
to log students’ calculation activities. This task is not based on a problem from the
dancers or the choreographer, and the focus is on a number answer. This makes the
Maypole Task effectively a word problem on the application of Pythagoras’ theorem.
In real life, the radius of the dancers’ circle is adapted to the available space, whereby
the dancers shorten the ribbons by winding these around their hands. Also, one may

Fig. 41.1 Maypole task—using Pythagoras’ theorem. Adapted from Rellensmann and Schukajlow
(2017)
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In the movie you will see a recording from the cockpit of a glider. Watch 
the movie carefully, especially the altimeter (left) and the variometer 
(right). Compare the two displays and describe how they interrelate.

Fig. 41.2 Glider task—introduction of the derivative function (www.net-mathebuch.de)

note that the town of Bad Dinkelsdorf does not really exist. So, the city and the
problem for the dancers are inauthentic, but the video shows an authentic dance.

The Glider Task (see Fig. 41.2) includes a movie showing the take-off by a glider
plane, together with the displays of the altimeter indicating the altitude and the
variometer indicating the rate of climb or descent. Just like in theMaypole Task, this
movie shows an authentic situation, as demonstrated by the details like the dirt on the
windscreen and the tiny features in the horizon. The students are asked to compare
the two displays. The video playback can be moved back and forth by students
to explore the situation. The openness regarding the approach to the task and the
openness regarding the final answer invite students’ discussion. This makes the task
potentially suitable for group work. It is anticipated that students will recognise a
connection that will lead them to develop an intuitive and informal, yet meaningful
understanding of the derivative function.

The Algal Bloom Task from Geiger and Redmond (2013) is a project-based task
in a technology-rich environment. It starts from a large, authentic data set on the CO2

concentration in the Darling River, together with explanations about algae blooming,
sunlight deprivation and the potential death of all life in the river. The question asks
whether the present data are a cause for concern. This open-ended task allows for
various approaches, does not target a single correct answer and is covered in two
lessons, in which students work in pairs.

The above three example tasks show the wide variety in how digital tools and
media can interact with mathematical modelling tasks. There is no linear scale from
less digital to more digital, when comparing between traditional paper-and-pencil
mathematical modelling tasks that request students to use digital tools like CAS or
DGS, and tasks, in which students are asked to explore situations through digital
media, like in the Glider Task. Also, there is no linear scale from less modelling
to more modelling, when comparing between tasks with embedded digital media

http://www.net-mathebuch.de


492 G. Greefrath and P. Vos

illustrating the task context, or tasks with clickable links to the world beyond the
classroom. The variety in ICT-based modelling tasks is multi-dimensional, and our
study aims at finding ways to describe, compare and evaluate these.

In this chapter, we will not discuss how digital tools and media shape and change
communication, organisation, cognitive levels and other aspects of modelling activ-
ities. For this, we refer to recent research (e.g. Molina-Toro et al. 2019; Monaghan
2016; Williams and Goos 2012). Also, we will not study whether or not the use of
digital tools and media within tasks lead to new modelling activities, more realistic
contexts, more intense group work and so forth. Rather, we will exclusively focus
on mathematical modelling tasks, in which digital tools and media are integrated.
Since we want to describe, compare and evaluate these, we need criteria for impor-
tant aspects across the tasks. Our study was guided by the following questions: (1)
Which criteria are suitable to describe and compare ICT-based modelling tasks?
(2) How can we classify and evaluate qualities of different ICT-based modelling
tasks? To answer these, we studied the literature. After several rounds of adapting
and improving, we formulated a classification system. We used the three described
tasks to validate the classification and evaluate the qualities of these tasks.

41.3 Classifying Tasks

There are a variety of ways to classifymathematical modelling tasks. The assessment
framework from OECD (2013) distinguishes the following aspects: mathematical
topics (e.g. geometry), mathematical concepts (e.g. angle, perimeter), mathematical
competencies (e.g. reasoning, representing),modelling activities (mathematize;work
mathematically; interpret/evaluate), task difficulty, task format (e.g.multiple choice),
students’ digital tools (calculator, spreadsheet) and whether a task is presented on
paper or screen. This framework gives us a first basis. However, it was typically
developed for large-scale testing; it does not include, among others, criteria on open-
ness or group work. This framework includes ‘task difficulty’, which is important
in testing and can be determined for large student groups. This aspect is framed
by the testing regime; if students were given more time or free access to Internet,
the ‘difficulty’ could be different. Therefore, we will not include task difficulty into
our classification, but rather include regulations that frame a task, such as allowing
students to have ample time, peer collaboration or access to resources.

A comprehensive classification tailored to modelling tasks was created by Maaß
(2010). This classification caters for a wide variety of modelling tasks and gives
us a base to build on (see below). However, it does not include the use of tools and
media. For this, we will use a description of digital aspects within modelling tasks by
Geiger and Redmond (2013), but these authors only considered open project-based
tasks in rich digital environments and not the less open tasks. So, we started from the
classification system by Maaß (2010), restructured it and obtained five main classes.
The first class pertains to the mathematics needed to solve the task, such as the topic
(e.g. geometry) and the concepts (e.g. angles, perimeter). This class is substantial to
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a modelling task. The other four classes are explained below. Since we aimed for
a classification that would enable a comparison across tasks, and an evaluation of
qualities, we focused on developing classes that could be rated for higher or lower
quality. Only the first class, regarding mathematical topic and concepts, cannot be
rated. A summary of the classes, subclasses and ratings will be presented at the end
of this chapter.

41.3.1 Modelling Tasks Without Considering Digital Tools
and Media

Starting from Maaß (2010) and OECD (2013), we found classes for mathematical
tasks describing competences required to solve the task (e.g. reasoning, representing).
In some classifications of competencies,mathematicalmodelling is a subclass among
other mathematical activities (e.g. Blomhøj and Jensen 2007). However, many math-
ematical activities can alternatively be perceived as sub-activities within mathemat-
ical modelling. In this chicken-and-egg dilemma, we chose the latter perspective,
namely to view any given mathematical activity as potentially being a subclass of
mathematical modelling, in particular as part of ‘working mathematically’. In our
classification, we included this class, with the rating 0–4 for the number of compe-
tencies needed to solve the task. Another class from Maaß (2010) distinguishes
between holistic modelling (students undertake the whole process) and atomistic
modelling (students undertake a partial process, like only setting up the real model).
We adapted this class by rating the number of modelling activities, in which the
students were asked to engage in. Also, we included a class from Maaß (2010)
regarding the information given in a task: superfluous (making for an overdetermined
task),missing (underdetermined task), inconsistent (both over- and underdetermined)
and matching.

In her classification, Maaß (2010) had three further classes, but these needed
reconsideration when looking through the lens of a classification of ICT-based
modelling tasks. One class was ‘nature of the relationship to reality’, which needed
adaptation when considering virtual worlds, which have their own digital reality. The
second class needing reconsideration was ‘type of representation’, which described
texts and pictures, but not animations, video or other interactive representations. The
third class pertained to openness (in solution methods), which we shall extend to
openness to tools. We will return to these below.

41.3.2 Task Context in ICT-Based Modelling Tasks

In this class, we assert that a modelling task always contains a context with some
problem that needs to be tackled mathematically. A first subclass here is the reality
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reference of the task context, which is the way the context is presented compared to
the actual real world. For example, a task context can be designed as intentionally
artificial (e.g. to simplify it to students). An artificial context can be perceived as a
digital reality, like in games. If the task context is closer to the real world of humans,
it can be realistic when it is experientially real and imaginable for students, even if
not convincingly originating from real life. In the case where the presentation of the
context contains evidence of its genuine existence, for example through a video, the
task context, or parts of it, can be authentic (Vos 2018).

Modelling tasks always contain both a task context and a question or a request.
So, we classify the relation between context and the problem posed, which is the
question reference of the task context. A presented context can ‘beg’ for a question;
one could imagine a task involving a video of citizens who present their context and
ask for help to find a solution that has used value to them. When there is convincing
evidence that people in the task context genuinely require an answer to their question,
it is an authentic question. However, often the question is not presented with such
urgency and authenticity; nevertheless, it can still be a realistic question. We assert
that a task cannot have an artificial task context and an authentic question. However,
a modelling task can have a meaningless, artificial question based on an authentic
context (e.g. authentic data), which makes it a dressed-up word problem. In the case
where both the task context and the question relate to the students’ current or future
lives, we speak of a relevant question, distinguishing between student relevance
(relevance from the students’ point of view) and relevance to life (relevance to the
students’ future situations) (Greefrath et al. 2017).

Regarding the task context, we also include its representation. These can be text,
diagrams or picture, which are static. A video can be played back, thus offering
some interactivity. We can also imagine interactive animations that offer the students
the possibility to explore the situation, for example through sliders to manipulate
variables.

41.3.3 Aspects of the Digital Tool or Medium Within
ICT-Based Modelling Tasks

In this chapter, we use the term digital tools and media as shorthand for overlapping
terms like ICT, digital technology, digital environments, digital worlds, digital prod-
ucts and so forth. There are some ambiguities in these terms. For example, a video
is generally perceived as a medium, but it can also be a tool for a designer to explain
a task context, or a product created by students to report on their modelling project.
We shall distinguish between digital tools for students to solve the task, like pocket
or graphical calculators, CAS, DGS, spreadsheets, Wikipedia and so forth. We can
also look at how the use of tools and media is regulated (openness of tool use). A task
designer can encourage or restrict the students’ use of a certain digital tool ormedium
(“solve this task using CAS”). Digital tools andmedia are also available to designers,
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teachers and examiners, who can use tools for the presentation of a task, but also to
administer students’ activities (logging answers) or for evaluation purposes. When a
task is offered within a digital environment, there can be different types of feedback:
a short response (right/wrong), or more elaborate feedback providing ‘an explanation
about why a specific response was correct or not’ (Shute 2008, p. 160). The tool or
medium can also allow a designer to frame the timing of the feedback (immediate
or delayed).

41.3.4 Students’ Anticipated Activities and Task Regulations

Any task designer, teacher or examiner will anticipate certain students’ activities
that are expected to be triggered by a given task. However, many mathematical
modelling tasks are open towards approaches, to the use of tools and media or to
different interpretations of contexts or answers. This implies that designers, teachers
and examiners cannot (and should not) be fully able to foresee what students will do.
Nevertheless, we included a subclass for students’ anticipated activities, in which
the variation in students’ activities is rated, and we acknowledge that rating this
quantitatively will be somewhat subjective.

A different subclass pertains to whether or not the task designer creates an open
task, offering solution openness and/or answer openness. Also, Maaß (2010) had
included this subclass, but we elaborate it with digital learning environments in
mind. Open tasks are those that allow, for example, multiple solutions (at different
levels). Open tasks can be classified according to the clarity of the initial and final
states and the clarity and ambiguity of the transformation. When a modelling task
is offered with an answer field in a digital environment, like in the Maypole task
(Fig. 41.1), the mere presentation already announces that the task has little answer
openness; nonetheless, the problem is open with regard to solution strategies. Some
tasks can be classified as (un)clear tasks, including both a subjective and an objective
component. The subjective component means that the perceived clarity depends on
the students’ competencies and on the regulations that enable a student to gain further
clarifications. The objective component refers to whether task-specific information
can only be tapped with limited accuracy, even by experts with the best tools and
media, like with some Fermi problems (see Ärlebäck & Bergsten 2010).

The subclass of task regulations pertains to rules set by designers, teachers or
examiners. One such regulation is whether or not group work is allowed and whether
students perform the work independently or may consult with others (including
experts). Also, we can consider whether students have ample time to explore or be
creative, or whether they are subject to a regime of time restrictions. When a task is
used for a high stakes test, there will be pressure on students to find the answer that
an authority will judge as ‘correct’. A task can also be geared towards the application
of a certain formal mathematical concept. Oftentimes, such a task asks for theorems
or algorithms that were recently learned in lessons. The Maypole task is a typical
task on applying Pythagoras’ theorem, although one could conceivably estimate the
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length of the ribbon based on experience, based on a drawing, or based on a role
play. In this subclass, we considered that the greater student’s independence and
ownership, the better the task aligns with the spirit of mathematical modelling.

41.4 Results

Using the criteria and descriptions presented in Sect. 41.3, the three task examples,
Maypole,Glider and Algal Bloom task,were rated by the authors within the scope of
a qualitative research process. Based on the literature, we had reached a classification
with five classes, of which the first regardingmathematical topic and concepts cannot
be rated. The other four classes had subclasses theoretically derived, and these were
ordinal and thus made accessible for quantifying. At the end of the process, the
example tasks were rated for each subclass. In the few cases, in which the raters
disagreed, the raters discussed the issue until agreement was reached on a common,
final rate. This resulted in values assigned to the example tasks for each of the
above-mentioned criteria (see Table 41.1).

The Maypole task mainly focuses on a few modelling activities and the digital
tools and media play a subordinate role, with little openness regarding approaches,
tool use or possible answers. The Glider task shows a higher overall potential in

Table 41.1 Results of the classification (A Maypole task, B Glider task, C Algal Bloom task)

A B C

3.0 Mathematics Topic, concepts (not rated)

3.1 Competencies Number of competencies: argue mathematically, solve
problems mathematically, communicate mathematically, model
mathematically (0–4)

2 4 4

Focus of modelling activity Number of different sub-competences: understand, simplify,
mathematize, work mathematically, interpret, validate, expose,
holistic (0–8)

3 8 8

Quality of the information given Exact, overdetermined or underdetermined, both (0–2) 1 2 2

3.2 Reality reference of task context Artificial, digital reality, realistic, authentic (0–3) 2 3 3

Question reference of task context Artificial, realistic, authentic (0–2) 0 1 2

Representations Verbal (text only), static (table, picture, diagram),
semi-interactive (video), interactive (0–3)

1 2 1

3.3 Digital tools for students Number of used tools: no tool, one, more than one (0–2) 1 2 2

Openness of tool use Prescribed tool use, some choice, free choice (0–2) 1 2 2

Digital tools for teachers Number of activities, e.g. presentation, evaluation (0–2) 1 1 1

Types of feedback by the tool No feedback, simple feedback, elaborate feedback (0–2) 0 0 2

3.4 Students’ activities Number of anticipated activities: exploring, computing,
drawing, checking, presenting, etc. (0–6)

2 4 6

Openness Number of open states: initial state, final state (0–2) 1 1 2

Task regulations No group work, group work, group work and consult others
(0–2); yes/no time restrictions (0–1); high/low evaluation
norms (0–1); high/low formal mathematics demand (0–1)

1 3 5
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Fig. 41.3 Net diagram of the Maypole task and the Glider task

terms of modelling and digital tools and media. The modelling properties are partic-
ularly noticeable. And finally, the Algal Bloom task, in which many in the ICTMA
community will consider the only ‘real’ mathematical modelling task of the three,
scores highly overall.

A visual way to represent the classification of individual ICT-based modelling
tasks is a net diagram. The lowest value of the scales is in the middle of the diagram.
The potential of each example is directly apparent. A larger area indicates greater
potential. The classes on the left generally express the use of digital media, and the
classes on the right generally express the modelling potential (Fig. 41.3).

The diagrams show that the modelling potential of the Glider task is strong,
whereas the Maypole task is limited in every class. Due to space limitations, we
could not include the diagram of the Algal Bloom task, which was a nearly regular
tridecagon.

41.5 Discussion, Conclusion, Recommendations

In applying the classification to the example tasks, we obtained a plausible evaluation
of the quality of the tasks.We see strengths in the approach, but acknowledge its limi-
tations. It would require further tasks to be evaluated by more raters to confirm the
validity of the classification scheme and the reliability of the rates. The three selected
examples already show that there can be no unambiguous weighting of the different
criteria, since both the criteria for the modelling and the criteria for the digital tools
and media describe different facets of the tasks, which cannot directly be compared
to one another. One might observe that tasks with a high modelling potential seem to
be visualised by a high degree of authenticity, relevance and a manifold of different
modelling sub-competences. On the other hand, there are interactive multimedia
tasks that performmore strongly on certain aspects relating to digital tools (e.g. CAS
or DGS) and digital media (e.g. video). Weaknesses in modelling classes cannot
be compensated by strengths in tool and media use and vice versa. The classifica-
tion system shows that all these tasks aspects are difficult to compare, and that one
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needs a multi-dimensional view in describing, comparing and evaluating such tasks.
Our classification system refines earlier classifications with respect to the use of
digital tools and media. Also, the classification assists in analysing ICT-based math-
ematics tasks from the perspective of mathematical modelling education. A strength
of this system is that it reveals possible ways to improve the quality of an ICT-based
modelling task and how tasks can be improved bymaking suitable use of digital tools
and media (like tasks embedded into virtual worlds). Our classification also shows
that some tasks gain little from the use of tools and media, like theMaypole task (see
Fig. 41.1). Other modelling tasks could not exist without digital tools and media. In
the Glider task (see Fig. 41.2), the digital medium offers information that could not
otherwise be given. Finally, we note that future developments in task development
will undoubtedly require new criteria to extend the classification system.
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Chapter 42
South African and Norwegian
Prospective Teachers’ Critical
Discussions About Mathematical Models
Used in Society

Suela Kacerja, Cyril Julie, Mohammad Faaiz Gierdien, Rune Herheim,
Inger Elin Lilland, and Charles Raymond Smith

Abstract The chapter concerns prescriptive mathematical modelling and the devel-
opment of critical competence. The potential of suchmodelling examples to promote
critical discussions about the role of mathematical models in society is argued. A
study is presented in which Norwegian and South African prospective teachers crit-
ically discuss a task dealing with a mathematical model, the Body Mass Index. The
question posed in this chapter focuses on critical issues that come to the fore during
the discussions. Four themes were identified, connected to several limitations of the
model and to possible alternative models. The themes are discussed in relation to
prior research on critical discussions of mathematical models in society and teacher
education.
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42.1 Introduction

The Norwegian and the South African mathematics curricula require citizens to crit-
ically assess information expressed in mathematical forms. Mathematical modelling
is highlighted in the newNorwegian curriculum (Ministry of Education andResearch
2020) as one of the six core elements aiming to generate insights into the use of math-
ematics in everyday life, working life, and society in general. The South African
school mathematics curriculum states that “Mathematical modelling is an impor-
tant focal point of the curriculum [and] Contextual problems should include issues
relating to health, social, economic, cultural, scientific, political and environmental
issues whenever possible” (Department of Basic Education 2011, p. 8). Prospective
teachers (PTs) will thus have to deal with critical competence and mathematical
modelling with their students. The crucial role of teachers and their competences in
mathematicalmodelling processes are recognized byBlum (2015). Consequently, the
role of teacher education in educating PTs who can teach modelling is emphasized.

Critical competence in mathematics consists of being able to use and reflect on
mathematics in different contexts, as well as discuss its role in society (Skovsmose
2014). One of the purposes of working with modelling in schools, at different levels,
is to understand the role of mathematics and its connections to the real world. Blum
(2015) identified this with the socio-critical perspective on modelling. Skovsmose
(2014) argued that critical discussions about how the use of mathematical models
in different contexts can influence society and how models’ limitations act out in
the represented phenomena are important for developing the critical competence.
Current and future mathematics teachers will have to support their students in partic-
ipating in such critical discussions. They need to participate themselves in critical
discussions and develop their critical competence in and with mathematics to be able
to support their students. In our study, we created opportunities for PTs to engage in
discussions about mathematical models that influence society. Research on mathe-
matical modelling (e.g. Blum and Ließ 2007) shows that several evaluations aremade
while building mathematical models, such as which variables to take into account
and which not. Starting from those evaluations and choices, a mathematical model
is not a finally settled model, and different mathematical models can be developed
depending on the purpose.

In our study, we use the BodyMass Index (BMI), amathematical model expressed
as m/h2, with m as the mass in kilograms and h the height in metres. The statistician,
Quetelet, developed the BMI formula in the nineteenth century using data obtained
from groups of conscripts (see Hall and Barwell 2015). The BMI is generally used
to classify individuals as of normal weight or overweight. Adults are deemed to
be of normal weight if their BMI falls in the interval 18.5–24.9. The index has,
however, several limitations (see, e.g. Kacerja et al. 2017) because it ignores relevant
variables. However, the model is simple to use, and people can determine their BMI
by inserting their mass and height in a relevant application on the internet. The
limitations, as well as the simplicity of determining the BMI, have consequences for
individuals. Our contention is therefore that by using BMI, the PTs have the potential
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to engage with critical discussions about mathematical models used in society. The
potential is explored in this chapter, based on results from Norwegian and South
African prospective teachers’ discussions presented here. The underlying research
question reported on is: What critical issues come to the fore when PTs discuss the
mathematical model of BMI?

42.2 Theoretical Background

Mathematical modelling is the process that takes place when constructing some
model, using mathematics, of a problem or phenomenon from an extra-mathematical
domain. There are several versions of the modelling cycle that represent the iterative
stages of a modelling process (e.g. Blum and Ließ 2007). Skovsmose (2014) viewed
a model as not representing but re-presenting reality in a new way. Modelling thus
shows one part of reality in a certain way, and not a one-to-one correspondence
between reality and a mathematical model. Thus, the BMI can be viewed as but
one model representing obesity (and underweight). There can be other models or
indicators for the same phenomenon. Discussing existing models is a way to bring
attention to, and investigate, the mathematics in action in society, Skovsmose argued.
A mathematical model serves different purposes depending on the real problem it
answers. This chapter focuses on the prescriptive purpose, which according to Niss
(2015, p. 69) is “to design, prescribe, or structure certain aspects” of the world.
Niss referred to this as prescriptive modelling and argued for including it in math-
ematics classrooms. The Body Mass Index, which has a prescriptive purpose as it
defines obesity in populations,was under scrutiny.Hall andBarwell (2015) argued the
BMI’s potential to promote discussions about the formatting power of mathematics
in society.

Barbosa (2006) presented modelling as critique and Kaiser (2007, p. 111) viewed
this critique as a sub-competency “to challenge solutions”. In the socio-critical
perspective of modelling (Barbosa 2006; Blum 2015), the development of critical
thinking is at the centre, and closely connected to understanding and criticizing the
nature and the role of mathematical models in society. Students should therefore be
given opportunities to develop this critical competency (Skovsmose 2014). Conse-
quently, it is as important for PTs to engage in critical discussions of an existing
mathematical model. Indeed, research in modelling has argued about the importance
of training mathematics teachers in teaching mathematical modelling, and examples
of proper modelling courses in teacher education have been presented (e.g. Blum
2015; Borromeo Ferri 2017). Doerr (2007) argued for the need for teacher education
to work with both subject matter knowledge and pedagogical knowledge of PTs in
modelling and provide them with possibilities to reflect on meta-levels about their
own modelling processes. Borromeo Ferri (2017) added the relevance of prospective
teachers’ written reflections about their work with students and emphasized the need
to foster their reflective competency (p. 132). In a socio-critical study by Villarreal
et al. (2015), PTs were asked to pose mathematical modelling projects. In addition



504 S. Kacerja et al.

to carrying out modelling projects of social issues, the PTs were able to reflect about
mathematics, its social role and the models created, as well as about the potential of
modelling with school students.

Niss (2015) suggested criticizing models and meta-validating them as possible
and desirable in prescriptive modelling. Amongst the issues to consider in such inter-
rogations are, according to Niss: investigating hidden assumptions behind the model,
interrogating which variables were and were not taken into account; the reasons for
choice of variables; the consequences of the use of the model and contemplating
possible alternative models through the consideration of changes of the variables
used. Skovsmose (2014) recommended the studying of a mathematical model in
its structural relationship to the object it represents and to the theory, the interests,
and intentions for building and for using the model. The consequences for using
the mathematical model are also important to be able to critically analyse it. There
are therefore similarities between the recommendations of Niss and Skovsmose for
critically engaging with mathematical models. These recommendations are used in
this chapter to discuss the results from prospective teachers’ discussions.

42.3 Methods

The study presented here is a collaboration between two institutions, one in Norway
and one in SouthAfrica. The aimwas to jointly design a toolkit for teaching indexes as
mathematical models to be implemented in prospective mathematics teacher educa-
tion courses at both institutions.Kacerja et al. (2017) presented some reflections about
in-service primary school teachers’ discussions of the BMI and its use in society.
Based on that study, the toolkit activity sheet was translated and further developed
for the current study. The following three groups of questions were focused on:
exploring the mathematics of the BMI; exploring and discussing the BMI and the
uses of other indexes in society, and on the use of BMI and other indexesin schools
as a basis for developing critical mathematical discussions. A picture of a muscular
male sportsperson with a high BMI value was included to inspire the students. Also,
the BMI formula and a respective graph with the categories were provided.

The question sheet was meant to ensure that the discussions of all three aspects
were realized within the time frame. One set of data was collected in autumn 2017
from 11 female Norwegian PTs (presented as N1, N2, etc.) in the 1st year of their
master’s programme. The PTs were divided in three groups of 3–4 students. The
discussions lasted around 60min, after an introduction on criticalmathematics educa-
tion by the first author. A similar procedure was followed in spring 2018 with 14
South African PTs (3 females and 11 males, presented as S1, S2, etc.), in their 4th
year of study, who discussed the question sheet in 3 groups (of 6, 5 and 3 students).
All the groups were audiotaped, except one group that was videotaped, with their
permission. Teacher educators were present during group discussions, mostly to
clarify any questions and sometimes to ask questions to help the group go forward.
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Fitness for purpose
Muscles vs fat
No gender differentiation
The body shape, the individual look, the 
body construction
Self-picture and knowledge to interpret
Alternative existing formulas
Reasons for using the BMI

Social factors
Not taken into account
Differences between countries
Accessibility of BMI (technology)
Problematic for vulnerable groups

Lifestyle
Eating habits
Physical activities
Metabolic age

Engagement with mathematics
Why is height squared? What if not? 
Heart rate as variable 
Measurement issues

Fig. 42.1 Themes from the data analysis

Thematic analysis was used to analyse the transcribed data, aiming to provide
rich thematic descriptions (Braun and Clarke 2006). The authors had several face-to-
face joint analysis sessions, reading and re-reading the transcriptions and listening
to the audios and videos to gain familiarity with the data. First, the South African
data was used to produce some codes. Afterwards, the Norwegian data was similarly
explored to check if the South African codes applied and if any new codes would
show up. The codes were sorted into four themes according to their topical similarity
and are presented in the next section. As is the nature of discussions, the themes are
not hermeneutically sealed and do overlap. Figure 42.1 presents the four identified
themes and the respective codes. Because of the limited space in this chapter, only
some of the codes will be discussed in the next section.

42.4 Findings and Discussion

Before rendering the four themes from the data analysis, it is important to note that
neither the South African nor the Norwegian PTs rejected the BMI. Rather, the South
African PTs regarded the BMI as relevant but inadequate, as one participant said:
“… it can’t be the only thing to determine whether someone is healthy or unhealthy”.
This is in line with Skovsmose’s (2014) idea of a model showing only one part of
reality. Similarly, the Norwegian PTs pointed out limitations by problematizing how
the BMI is used for individuals and not “for larger groups to say something about
what the average is”. Ideas of meta-validation of the model (Niss 2015) include
identifying assumptions behind the model and its uses, as the PTs did. Both groups
were critical towards the use of mathematics of the BMI.
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42.4.1 Fitness for Purpose of the BMI

When discussing the BMI, its formula and function, as well as its use in society, the
PTs identified several variables not taken into account thatmake it an imperfect index.
Often the identifications started with personal examples. The PTs’ deliberations of
the limitations of the formula about its purpose are discussed in this sub-section.

The PTs criticized the model’s prescriptive use and meta-validated it, as Niss
(2015) emphasized, by identifying variables that are not considered such as not
differentiating between muscles and fat. This is a limitation identified by all six
groups. In the beginning of the discussions, a South African PT referring to the
picture of the muscular sportsperson said: “He is not unhealthy, he is pretty fit. He
is a rugby player and obviously, he is fit, but his BMI is 35.9. Look at the category,
he falls in the second last one. But he is not obese”. The PTs used the contrast
between the sportsperson who “is pretty fit” with “his BMI is 35.9”, a high value
which characterized him as obese. The obese categorization was made by using
the supplied BMI graph categorizing persons with a BMI value between 35 and
39.9 kg/m2 as obese class II. S2 disputed this by arguing that the player might have
a high BMI, “but he is not obese”. In this case, the BMI was not deemed adequate
for use, and the PTs found its uncritical use as problematic. South African PTs often
referred to extreme cases of sportspeople such as bodybuilders or boxers to argue that
the “BMI is restricted in its use” and thus people in sports “should be in a different
kind of scale”.

Norwegian PTs discussed the lack of a variable that differentiated between
muscles and fat:

N2: Yes. But I know that it is very [much] discussed in relation to, for example,
people who have a lot of muscles, it is in a way not fair. Because then… being
overweight …

N3: Muscles weigh more than fat.

The PTs referred to muscular people for whom the categorization by the BMI “is
in a way not fair” because “muscles weigh more than fat”. This meant that they are
likely to have a higher BMI and be categorized as obese, even though they trained
and had muscles, and were as such far from being obese.

In their discussions of the use of BMI in society, all the groups of PTs problema-
tized the inappropriateness of some of its uses. They pointed to the need of having
knowledge to interpret the BMI number, what is behind it, what it is good for and
what it is not good for. A South African PT related this as:

S3: Look at the classic examples they are using nowadays, with the Barbie
presenting like a certain body type in the … So if you don’t fall then … and
if you don’t realise what variables they’re taking into account, then you might
get a negative view about yourself.

S3 started with reality, with Barbies being used as ideals. He used this as a parallel
to BMI, and returned to the BMI again, “so if you don’t fall then”, referring to the
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BMI values that do not fall into the “normal” category. He mentioned the “variables
they’re taking into account”, expressing awareness about the construction of the BMI
as a mathematical model showing one part of reality as Skovsmose (2014) discussed.
S3 ended with “you might get a negative view about yourself” which he saw as the
consequence of teenagers being placed in the categories of BMI without knowing
what is behind the model. He drew attention to young people needing to be able to
interpret the BMI carefully before drawing unwarranted conclusions based on using
only the BMI. These considerations of the potential consequences the BMI can have
on people and in society indicated that the PTs were interacting with the model from
a socio-critical modelling perspective (cf. Barbosa 2006; Skovsmose 2014).

Also coming to the fore in this theme was the reasons for using the formula. As
a Norwegian PT said: “I think they have made it so that it will be a simple tool”, as
Hall and Barwell (2015) noted that the BMI is simple to apply to large populations to
keep track of obesity. Another PT confirmed this: “Different countries would operate
with the same index; they would also be able to say something about those countries
in relation to each other”.

42.4.2 Social Factors

In their deliberations on the role of the BMI in society, PTs raised the issue of social
factors as a missing variable when judgements related to obesity and health based on
the BMI are made. S5 drew attention to the pervasiveness of social factors by stating
“… where we are, it’s very difficult to ignore the social factors”. The “where we
are” points to the low socio-economic areas where they were from and were likely
to teach in.

In relation to the decontextualized use of the BMI, its universality was questioned
since there might be differences between countries, as exemplified here:

S1: And for each country, I’ve heard that this obese thingie differs. They say like in
America, you, even when you’re thin you are classified as obese because of the
unhealthy food they eat and I think in South Africa it will be totally [different]

By saying “this obese thingie differs” and mentioning the USA (America), S1
said that differences in the obesity phenomenon can be connected to diet differences
or eating habits. This is further underpinned when S1 referred to “the unhealthy food
they eat” in the USA. It is however not quite clear what she meant by “even when
you’re thin you are classified as obese”, but it can be interpreted that she argued that
the use of the BMI should be country specific rather than universal. This reference
to other countries, both more and less developed than South Africa, with different
social conditions was further alluded to in their discussions.

When discussing the role of the BMI in society, a link was made to the ease of
accessibility of BMI. For the Norwegian PTs, this was problematic: “I think it is all
too easily available when you know how crazy misleading it can be”. They referred
to the several internet versions of the BMI formula, where you easily get a BMI
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number and a category with prescriptions by just putting in the mass and height. The
problem with such accessibility is in this way related to the consequences for using
the model.

This category indicates that it is not only the model construction issues, such as
the absence of certain perceived variables, that occupy the deliberations on the BMI,
but also social factors which might not be easy to include in the operative formula. In
addition to the meta-validation of the BMI model by discussing variables not taken
into account as Niss (2015) recommended, the PTs interrogated the BMI in relation
to the contexts in which it is used. They found it problematic as a universal measure
due to the differing social conditions in different countries. They discussed hence the
consequences of its use, engaging in what Skovsmose (2014) called the mathematics
in action.

42.4.3 Lifestyle

PTs commented on eating habits, in USA and South Africa, affecting the BMI of
an individual. With respect to the USA, S1 said: “Look at Americans. They’ve got
so much stuff pumped in their foods. They flipping huge”. About South Africa, the
same student said:

S1: [I] often … just see them just eating packets and packets of lambamba beefs [a
kind of potato chip] … they not eating anything that’s good for them. So, their
BMI might say they normal, but are they healthy?

Another aspect not accounted for in the BMI formula, a missing variable, related
to physical activities. The South African PTs discussed different kinds of sports
requiring different kinds of exertions as, for example, chess and rugby. They felt that
the BMI formula did not consider a person’s metabolic age—a measure of how fast
your body burns energy. To them, a very fit person would have a lower metabolic age
than a person who leads a sedentary lifestyle. The PTs also commented that the BMI
values and how they are interpreted related to the “ideal type”, what they called the
“average person”. This suggests that BMI values and their interpretation are based
on many observations and that a particular BMI value attached to a specific person
cannot be seen in isolation to lifestyle factors. The research literature is replete with
observations regarding lifestyle and BMI (e.g. Kushner and Choi 2010).

42.4.4 Engagement with Mathematics

The prospective teachers’ engagement with the mathematical constructs was one
of the themes during their discussions of the BMI. The first set of questions on
the task sheet referred to issues such as what is measured by the formula depicting
the BMI. Mathematical engagement concerns the prospective teachers’ engagement
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with mathematical ideas, how they try to give meaning to the formula and how they
use mathematical entities in their deliberations. These issues are connected to the
meta-validation Niss (2015) proposed for prescriptive modelling.

The Norwegian PTs wondered about the reasons for using the square of the height
in the formula. They do not come much further in those discussions, remaining at a
hypothesis level. One of the groups was talking about an alternative formula, mass
divided by height:

N2: Then you get 30.19, then …
N1: Yes, so you are in the borderland of obesity if you do not use it squared [the

height] …

N2 used a value to calculate the ratio of mass to height and obtained 30.19 kg/m2

as a result. This was done after they used the same values in the original formula.
N1’s assertion “you are in the borderland of obesity” referred to the BMI intervals
where people with a BMI higher than 30 kg/m2 are considered obese. The PTs were
trying alternative versions of the formula, but keeping the same intervals. N3 entered
the conversation at this point by saying: “But if, think if it was not squared, right?
Then the kilos would in a way get divided in how many metres we are, right?” N3
was trying to consider the formula as mass divided by height through the utterance
“think if it [the height] was not squared”. With this hypothesis, N3 continued by
saying, “the kilos would in a way get divided in how many metres we are”. She
sought confirmation by adding “right?” and tried to make sense of the ratio m/h, as
a physical explanation for kilos divided by the height in metres. Teachers in Kacerja
et al. (2017) had similar ideas in their discussions of the BMI formula. The PTs did
not pursue this idea further.

The South African PTs suggested adding heart rate as a third variable that would
affect the BMI intervals so that the sportsperson in the task sheet picture would not
be considered obese. One student pointed thus to the need for changing the formula
as well. S4 proposed:

S4: So, say you run for two minutes and then your heart rate is 74, say 80 to make it
easy. Then they could give, depending on howmuch youwant the scale tomove,
they could have the heart rate over 3 or 2, so it will be either plus or minus that
heart rate. I mean, based on that, that value will be moved, the additional plus or
minus where the point lies on this [the chart with BMI accompanying the task
sheet]

S4 explained the role of the heart rate and a possible way it could be included as
a variable “the heart rate over 3 or 2”. This would be “either plus or minus” and thus
added or subtracted, based on what “they” wanted the scale to do. S4 pointed to the
chart and continued “that value will be moved, the additional plus or minus where the
point lies on this”. He suggested that the BMI for the sportsperson could be moving
to the left or the right of the chart, being placed closer to the normal or the obese
intervals. With the intervention of the lecturer, S4 came up with the formula “kg/m2

+ heart rate/2”. The lecturer drew their attention to the issue of adding or subtracting
quantities with different dimensions. That question remained unanswered.



510 S. Kacerja et al.

42.5 Concluding Comments

The research presented here suggests that when PTs engage with mathematical
models that are used in society, they can point out several critical issues that come
with the use of models. Examples of prescriptive modelling, such as the BMI used
in this study, have the potential to engage PTs in discussions about the mathematical
aspects, such as relevant missing variables and meta-validation processes; they also
have the potential to encourage critical discussions about the role of mathematical
models in society, which is important for developing critical competence. Given
the emphasized relevance of prospective teachers’ engagement with mathematical
modelling in teacher education, it is also crucial that teacher educators facilitate
for critical discussions so that the PTs can realize the potential of mathematical
models used in society. Several of the elements from prescriptive modelling (Niss
2015) and critical perspectives in mathematics education (Barbosa 2006; Hall and
Barwell 2015; Skovsmose 2014) are identified in prospective teachers’ discussions,
showing the relevance of combining the two perspectives in modelling. Similar to
Villarreal et al. (2015), our PTs were able to reflect on the role of mathematical
models in society, even though they did not create the models themselves. Overall,
the study reveals that it is possible to incorporate indexes as mathematical models in
teacher education courses, so that the socio-critical perspective of modelling forms
an integrated component of their mathematical modelling experiences.
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Chapter 43
Carbon Footprints Calculators
and Climate Change

Lisa Steffensen and Suela Kacerja

Abstract From a socio-critical modelling perspective, we research how students
reflect when using a Carbon Footprint Calculator (CFC) in their work with climate
change in themathematics classroom. The findings show that lower secondary school
students reflect on issues such as: how the calculators work; how variables impact
the output; how to make sense of the calculator by breaking down its components,
exploring extreme values, and comparing their own results to others; the people
behind the calculator and its limitations; individual, national and global emissions,
and finally, the “take-home” and “bring forward” message. It is suggested, based
on these findings, that CFCs have the potential to bring about critical reflections on
mathematical models with the power to impact people’s lives.

Keywords Socio-critical modelling · Critical mathematics education · Prescriptive
modelling · Climate change · Carbon footprint calculator · Students’ reflections

43.1 Introduction

Climate change is a big challenge in society, and greenhouse gas emissions contribute
to climate change (IPCC 2014). There is a global focus on reducing greenhouse
gas emissions, however, such emissions are challenging to quantify or to visualize.
Different greenhouse gases have different warming potential for the atmosphere and
a common unit, CO2e, is used to make it easier to compare emissions from gases
such as CO2 and CH4. CO2e refers to the amount of greenhouse gas that, over a
given period, causes the same integrated radiative forcing as an emitted amount of
CO2 (IPCC 2014). It is thus important to identify which emission that contributes
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the most. Wynes and Nicholas (2017) described that governments focused on lower-
impact actions (e.g. recycling and changing lightbulbs), and recommended that more
effective actions should be promoted (e.g. living car-free and eating plant-based
food).

One approach to make individual emission quantifiable is to use mathematical
models such as CFCs. Salo,Mattinen-Yuryev andNissinen (2019) describedCFCs as
a soft-policy measure for raising public awareness of the individual carbon footprint,
and as a tool to steer consumption. They emphasized that reflection and awareness are
not equal to actions, but that the output of the CFCs (the amount of CO2e) provide an
initiator for discussions and potentially a change in behaviour. Similarly, Edstrand
(2015) highlighted that CFCs are used as an educational tool for environmental
awareness. She argued that CFCs could be a way of making the invisible visible by
calculating the individual CO2e-emissions. The global CO2-emission has increased
from about 5 billion tonnes in 1950, to over 36 billion tonnes in 2017 (Ritchie and
Roser 2019). The CO2-emission varies from countries, for instance, Americans and
Australians emit about 15–17 metric tons of CO2 per year, Norwegians about 8–9
metric tons of CO2, while Samoans emit about one metric ton of CO2 (Ritchie and
Roser 2019). The CFC convert a person’s consumption into a specific number, and
thereby one gets an impression of one’s own contribution. On the one hand, CFCs,
as a way of quantifying emissions on an individual level, could bring the attention
towards the relationship between individual human activities and the global emission;
and potentially lead to greater individual responsibility for one’s own actions. On
the other hand, CFCs are not a precise tool, and different CFCs can produce quite
different results for the same person. They are also quite complex, and there aremany
hidden assumptions and hidden mathematics behind the output of CFCs. Carbon
emissions are highly relevant in public debates on climate change and considering
how models such as CFCs and the mathematics behind them can be used to steer
citizens, it is crucial that citizens possess critical competencies in order to make
informed decisions.

In this chapter, we argue for the relevance of including CFCs—as mathematical
models in the classroom—for several reasons. Firstly, to raise awareness of the use
of CFCs as soft-policy measure; secondly, to make students aware of the hidden
mathematics behind such models; thirdly, to make the invisible visible by engaging
with critical reflections; and lastly, to let students become aware of, and to critically
reflect on, their own carbon footprint. The empirical data is from lower secondary
school. The focus of this research is how students reflect when using a CFC when
working with climate change in the mathematics classroom.We use student groups’
reflections while exploring the CFC, as a starting point to reflect on how CFCs could
be used as educational tools in mathematics education.
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43.2 Theoretical Foundation

This study takes a critical perspective in which the perception of mathematics as
objective and representing “the truth” is questioned. Instead, a Critical Mathematics
Education (CME) perspective aims to highlight thatmathematics reflects the interests
and values of the people involved, andmathematics is considered as neither objective,
neutral nor value-free (Skovsmose 2014). In a society where mathematical models
are used to describe phenomena from everyday life and to even prescribe rules and
regulations such as the CO2-tax that affects citizens’ lives, it becomes important
for citizens to identify and critique how mathematics shapes society. This side of
mathematics, which Skovsmose (2014) called the formatting power, gives agency to
peoplewho initiated themodel, to peoplewho built it, and to thosewho use it. Climate
change is a challenge in our society where scientists rely heavily on mathematics to
describe, predict and communicate around the issue (Barwell 2018). Barwell (2018)
argued for themathematical formatting of climate change and thus the importance for
mathematics educators and researchers to be involved in discussing this challenge.
These arguments point to the potential for students to be exposed to climate change
issues in their mathematics classes as one way for them to be involved in discussions
about mathematical models and the formatting power of mathematics.

Mathematical modelling is the process of finding mathematical solutions to prob-
lems from real life. What different models of the modelling process (e.g. Blum
and Leiß 2007; Niss 2015) seem to have in common is the relationship reality-
mathematics where modelling happens and the cyclic nature of the process. Reality
is the starting point for modelling, used to decide the mathematical variables, and
the ending point to refer to whenever a mathematical solution is found. Also typical
is the translation between reality and mathematics all the time, as well as the several
cycles until a satisfactory solution is found. Such a cycle could describe the work
done by the designers of the CFC, with the aim to make visible emission quantities
by categorizing people based on their input data. A mathematical model is a result
of a mathematical modelling process.

Niss (2015) described prescriptive modelling as aiming to design, prescribe, orga-
nize or structure society. There, “the ultimate aim is to pave the way for taking action
based on decisions resulting from a certain kind of mathematical considerations”
(2015, p. 69). This kind of modelling exerts some power, in the sense that it is being
used to model the way we look at certain phenomena from reality, and not just to
describe something mathematically. The prevalence of CFCs might not be spread
throughout the population; however, they could be considered as a way of regulating
an individual’s consumptions andway of life. By assigning people into different cate-
gories, CFCs define and prescribe what is acceptable and not acceptable in terms of
amounts of emission one releases. An often-expressed goal is that individuals should
adjust their consumption after becoming aware of carbon emission. Based on the
definition by Niss (2015), CFCs can thus be considered as examples of prescriptive
modelling. While the modelling process cycle has proved fruitful as an analytical
tool in different research examples (see Kaiser et al. 2006), such a cycle will not
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do the same in cases when students work with examples of prescriptive modelling
(Niss 2015). In such cases, the students explore mathematical models which other
people, the specialists, have developed. Niss (2015) suggested two possible focal
points for engaging students in complex prescriptive modelling. One such point is
to identify what assumptions and prerequisites are behind the models, and how they
influence the model. In terms of CFCs, this would mean to identify variables taken
into account, and the assumptions for choosing those variables. The other focal point
is the meta-validation in which one model of CFC is compared to alternative models
whenever possible, considering what the consequences of using the model are, and
what changes in variables would mean for the model. Both focal points from Niss
are in line with the ideas of CME, where looking at the mathematics, the ways and
contexts it is being used, and the consequences for its use, define what mathematical
competence should look like.

Barbosa (2006) introduced a socio-critical perspective in modelling which is
based on ideas from CME such as the formatting power of mathematics. The
aim here is to develop a critical understanding of society in a social and political
context (Stillman et al. 2013). Therefore, understanding the function of mathemat-
ical modelling and the nature and role of mathematical models in society is the focus
of this modelling perspective (Barbosa 2006). In Skovsmose’s (2014) ideas of CME,
it is important for students to critically reflect on how mathematics affects our lives.
Similar to Skovsmose, Blomhøj (2009) highlighted reflection and critique as impor-
tant and emphasized that the object of such critical reflection can be the modelling
process, the actual applications of a mathematical model, or societal issues. Enabling
students to critically reflect on societal issues is away to empower them throughmath-
ematical modelling. Although critique and reflection on societal issues are imper-
ative, a socio-critical perspective could also involve action. Mellin-Olsen (1987)
emphasized that “a call for a critical awareness excluding action may be interpreted
as just another discussion” (p. 204). So, mathematics education involving societal
issues should, according to Mellin-Olsen, consider how students could take actions
upon these challenges. The action could be a way to enable students coping with the
sometimes-overwhelming hopelessness when facing problems like climate change
(Freire 1992).

One problem with some mathematical models used in society is that the math-
ematics behind those models is hidden, and it is not clear for the user what the
assumptions for that model are. The model serves thus as a black box in which with
certain numerical data one gets a certain number or category as output. Therefore,
it becomes important to find ways to explore the model’s characteristics, hidden
assumptions, and the model’s appropriate use. Working with existing mathematical
models has, therefore, the potential to offer students opportunities to experience and
engage with the formatting power of mathematics.

In order to understand the relevance of CFCs as mathematical models, we present
some features of one CFC (Norwegian Broadcasting Corporation 2014). A CFC
requires some input data from the users and provides the amount of CO2e an indi-
vidual emits. While some CFCs require very detailed input and provide detailed
output, the chosen CFC had a relatively low entry threshold for submitting answers



43 Carbon Footprints Calculators and Climate Change 517

(input) and provided fewer details (output). The designers of the CFC selected four
main areas: housing, consumption, transport and food. Housing includes variables
such as house type, number of persons, type of heating and electricity use. Consump-
tion includes variables such as the monthly income, loan and general consump-
tion, while transportation involves domestic and non-domestic flights and daily
transportation. Food includes numbers of meat, fish and vegetarian dinners.

The mathematics behind the model is not openly observable. One has to explore
the output values for different input values to understand more about the variables
that have the bigger impact. Some description on which numbers the calculations
are based on is provided online. For instance, the designers stipulate 3.2 kilo CO2e
for a meat dinner, 1.8 CO2e for a fish dinner and 1.5 CO2e for a vegetarian dinner. In
addition, an average of 670 CO2e is added each year for the other meals. Concerning
daily transportation, the designers stipulate 2.9 kilo CO2e per litre for gasoline and
diesel, and 121 grams CO2e per kilometre for electric vehicles. These estimates are
based on numbers calculated by Norwegian research centres (Steen-Olsen, personal
communication, April 27, 2020), and considerations such as user-friendliness were
taken when designing the CFC, which influenced their modelling process. Different
representations of the output are provided: a “speedometer” for the total CO2e-
emission, numbers displayed in four boxes (the four areas), a sector diagram, and
two written responses. The first response compares one’s CO2e-emission with the
average Norwegian and the average world citizen: “Each Norwegian emits 11.5 tons
of CO2e per year when we include consumption. A world citizen releases 6.5 tons of
CO2e per year”. The second comment depends on the amount of CO2 emitted and
comes in three categories (with fictive numbers inserted):

1. My carbon footprint is 8.42 tons of CO2. I am an environmental angel, at least
compared to other Norwegians. But there is no reason to relax anyway!

2. My carbon footprint is 10.13 tons of CO2. I am neither a climate pig nor an
environmental angel, but an average environmental Norwegian. Maybe time to
start walking to work?

3. My carbon footprint is 35.20 tons of CO2. I am a climate pig. Now it’s time to
sharpen!

We use the theoretical ideas of critical mathematics education and formatting
power of mathematics, focal points for working with prescriptive modelling, and
reflection and critique of models and modelling, to analyse students’ investigations
of the CFCs.

43.3 Methods

The empirical data was collected through a one-year research partnership with three
mathematics and natural science teachers and their 15-16-year-old students. The
focus was on the facilitation of critical mathematical competencies in the context of
climate change. The students had different kinds of activities during the year, such
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as excursion, discussions and debates. Here, we use data from one lesson where the
students prepared a poster for an exhibition. The students were working in groups of
3–5 students. The teacher had made a task with the wording: “Choose a number that
plays a central role in climate change. […] Show why this is an important number
and what this tells us about global warming”.

Onegroupof three boys cameacross aCFCwhile doing researchon the Internet for
their poster. The empirical data analysed here consists of video- and audio recordings
from this group, and the students’ poster. Thedatawas transcribed andcoded inNVivo
to get an impression of the different reflections. The initial coding resulted in seven
main categories: practical-related issues, global temperatures, graphs/interpretation,
prognoses/uncertainty, global/individual impact, CO2 (e.g. sources, emission), and
CFC. Some of the utterances overlapped and were coded at several categories. For
instance, when the students explored the CFC, one utterance concerned both CO2-
emission and individual impact. In this chapter, we focus on one theme, theCFC. This
theme was further categorized to find out how the students reflected while working
with the CFC. This resulted in two main categories; “Investigating the CFC” and
“Global, national, and individual emission”. Both themes had sub-categories, and an
overview of these categories is presented in Fig. 43.1. Due to page-limitation, not
all sub-categories are elaborated on, and the selected examples were chosen because
they are relevant, interesting, or representative examples for the research question.

43.4 Findings, Analysis and Discussion

The focus of this research was on how students reflected using a CFC when working
with climate change and mathematics. Figure 43.1 presents an overview of themes
emerging from the analysis, and the two main themes, “Investigating the CFC”,
and “Global, national and individual emission”, are discussed in the following
subchapters.

• The function of the CFC
• The variables of the CFC
• Interpretation & Sense-making

of the CFC
• Exploration by breaking down its 

components
• Exploration of the output categories
• Exploration of different scenarios 
• The people behind the CFC
• Limitations of the CFC

• Consumption and Measures
• Norway versus Bangladesh
• The average Norwegian
• Different future scenario
• “Take-home” & “Bring 

forward” message

Investigate the CFC
Global, national & 
individual emission

Fig. 43.1 Utterances concerning the CFC were categorized into these themes
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43.5 Global, National and Individual Emissions

At the start of the lesson, the students clarified with the teacher that individual,
national and global emission were all relevant. The theme Consumption and
Measures captures the idea of individual emission, and it involves discussions about
how consumptions can bemeasured. The first step inmeasuring is to define the object
or the phenomenon to be measured and the attributes that better represent it. Some
typical examples of the attributes mentioned were “how long you shower and how
many products you buy […] how much CO2 you use in commuting to work”. Given
that some actions have a higher impact than others, it could be relevant to understand
and to differentiate between high-impact and low-impact actions as highlighted by
Wynes and Nicholas (2017). In terms of mathematical modelling, this means that
students need to discuss between those variables that are more important for the
phenomena being measured, critically reflect on the assumptions and prerequisites
behind the model (c.f. Niss (2015) focal point), thus choosing between the given
variables.

The theme of Norway versus Bangladesh captures the idea of national emission
and involves one article they found on the Internet. Mark read out loud part of the
information:

Norwegians have 39 times higher emissions per capita than the inhabitants of Bangladesh. It
only takes 9 days for the averageNorwegian to emit asmuchCO2 as a resident of Bangladesh
does during a whole year. With its 149 million inhabitants, Bangladesh overall contributes
less to climate change than 4.6 million Norwegians. (Tajet 2007, p. 1).

Afterwards, he said: “This is totally crazy […] We Norwegians contribute with
39 times more emission than Bangladesh does. 39 times!” His choice of words,
along with his tone of voice and facial expression, can be interpreted as the numbers
were astonishing.When Swedish students usedCFC, they compared themselveswith
Americans with a higher carbon footprint (Edstrand 2015). Contrary to the Swedish
students, these three boys compared their emission with citizens with much lower
impact. In Norwegian public debates, an often-used argument is that since Norway
has only 5 million inhabitants, it would not make a difference what citizens do.
When the students reflect on the quantification and contrasting between Norway and
Bangladesh, it becomespossible for them to critically understand an abstract notion as
Norway’s footprint and their society, in line with the aims of socio-critical modelling
as highlighted by Stillman et al. (2013). It is also in line with what Blomhøj’s (2009)
emphasis on the relevance of reflecting on issues such as different ways of living
and differences in rich and poor countries/citizens. Comparative reasoning relates to
measurement, and because of a lack of familiarity with emission quantities and their
measurement, by comparing and contrasting emission quantities between these two
different countries, the students found a way to create an idea of those quantities.

The theme “take-home” and “bring forward” message concerned the messages
students included as important to bring forward to themselves and to others. An
example of the “take-home” message was when Mark and Henrik manipulated the
type of food inserted in the CFC. They explored what the change in the variables
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would mean for the model, the CFC, in line with Niss (2015) focal points. Mark said:
“If you only eat two meat dinners and say five fish dinners, then you’re suddenly
down at 9.92 [tons of CO2e per year]”. The CFC stipulated 3.2 kilo CO2e for a meat
dinner, 1.8 CO2e for a fish dinner and 1.5 CO2e for a vegetarian dinner, and although
the students did not question how these figures were estimated, they used them to
lower their carbon impact. They continued to adjust other variables and after a while,
Mark said: “3 meat meals, 2 fish meals, and a vegetarian dinner. That’s realistic […]
This is possible”. His tone of voice indicated that he considered the combination of
different meals, as something he could do. He had critically reflected and accepted
the model and reflected on possible actions in his own life, like those Mellin-Olsen
(1987) argued for should accompany a critical awareness. An example of the “bring
forward”messagewas observed at the students’ poster: “Help our planet. Pollute less,
reuse, use public transport, and eat lessmeat. Doing these little changeswill help save
the planet”. This statement can be argued as having a clear message towards acting
more sustainable, by highlighting the message on a public poster on an exhibition.
In addition, it can be argued that it brings hope that action is useful, what Freire
(1992) highlighted as important. Although we cannot draw the conclusion that the
CFC is the reason for this message, nor that the CFC has changed students towards
a more environmentally friendly consumption, like Salo et al. (2019) highlighted, it
did facilitate reflections on these issues.

43.6 Investigating the Carbon Footprint Calculator

Aspects of investigating how CFCs works are included in the theme the function of
the CFC. Mark investigated how the income variable affected the carbon footprint by
comparing two different income levels. He concluded: “So if you make more money,
the carbon footprints grow”. By changing only one area, Mark noticed a positive
correlation between income and carbon footprint and thus identified an assumption
in the model, compared with Niss (2015) focal points. Being challenged by the
researcher about the correctness of this correlation, Mark replied: “So this is just
how they envisage you spending money”. Mark did not specify who “they” are,
but it is reasonable to think that he referred to the designers of the CFC, or those
initiating the design. Mark’s answer about people behind the CFC can be connected
to the formatting power of mathematics (Skovsmose 2014). This example can also be
connected to the students’ reflections about the modelling process that takes place.
In this case, the designers decide how to calculate certain values by deciding, e.g. a
priori that the more money one makes, the higher is the footprint and not taking into
account other variables.

The theme exploration of the output categories concerned the three categories
“climate pig”, “environmental angel”, and “average Norwegian”. These comments
from the CFC added a humoristic element to the output, as seen when Peter laughed
out loud at several occasions. In one of these incidents, he uttered: “I’ve written an
insane number of kilometres”. He read aloud from the feedback: “Ohh! I am a climate
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pig, now it’s time to sharpen”. This incident resulted in that all three boys tried out
extreme values of the variables of the CFC and explored what inputs gave the higher
output (inCO2e), as oneway to get familiarwith the hidden nature of themathematics
behind the CFC highlighted by Skovsmose (2014). However, the normative aspects
of prescriptive modelling are not always uncomplicated, and . for example in the
Scandinavian countries, a recent focus has been on shaming people who drive, fly,
eat meat, et cetera. Based on Peter’s quantitative input, the CFC categorized him as
a climate pig, and one could argue that mathematics and technology, by measuring
and categorizing using predefined criteria, is intended to format his behaviour in line
with the formatting powers of mathematics (Skovsmose 2014).

A reflection by Mark illustrates the theme limitations of the CFC: “If you could
choose to buy short-travelled food more often, or yes… then the average might
decrease. But now they have only imagined that you buy regular meat products
that may have travelled far to get to you”. Mark started by pointing to a limitation,
no option for short-travelled food. He critically reflected on how such an option
could have decreased the average. He highlighted that “they” (the people behind
the CFC) “only imagined” people buying regular products. Mark’s reflections are
related to the ones highlighted by Blomhøj (2009), criticizing specific mathematical
modelling processes and the authentic applications of this in a real-life situation.
It is also related to what Niss (2015) suggested, to identify or analyse the hidden
assumptions underlying the modelling process. In building the CFC, as happens
in modelling, the designers have to choose which variables to include. One such
variable is the amount of food one consumes, which is then given a numerical value
for measuring its impact. In this case, the designers have given one single value
for food, not distinguishing between imported or local food which makes, in fact,
a difference in the impact. Many other examples of prescriptive modelling include
such decisions to use offset variables, which is a critical point one can discuss related
to the impact that the model has when used for different purposes.

43.7 Concluding Comments

The focus of this research is on how students reflect when using a CFCwhenworking
with climate change in the mathematics classroom. We consider the CFC as an
example of prescriptive modelling where the mathematics is hidden. Our findings
show that students’ reflections displayed a variety of issues, and they explored the
model corresponding to some of the focal points recommended by Niss (2015) with
prescriptivemodelling. They reflected on how the CFCworks, how the different vari-
ables impact the result; attempted to give meaning to the CFC by breaking down its
components; explored extreme values and compared the individual average; reflected
on the people behind theCFC, on its hidden assumptions, and its limitations; reflected
on the global, national and individual emission; and reflected on the “take-home” and
“bring forward” message. The students reflected about some sides of the modelling
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process where the designers include certain offset variables, such as the decision to
give a certain value to food types independent of their length of travel.

It is important to highlightwhat the students did not focus on. For instance, they did
not analyse, question or critique: whether the numbers were reliable, trustworthy or
relevant; how the calculationswere carried out, what figures the designers had chosen
to base the calculation on; if the selected areas were representative, nor did they
identify or question the purpose of the CFC. Investigating these types of questions is
crucial in CME. It can contribute to more awareness of the way mathematics affects
our lives and are relevant when working with prescriptive modelling and CFCs.
The student group in this chapter accidentally came across the calculator. However,
the students’ explorations on their own show the potential that working with such
examples has for their competence in exploring mathematical models, their initiating
awareness about the humans behind the models, and their reflections and actions
towards discussing anddealingwith critical societal issues such as the climate change.
Further research would be desirable to focus on situations that facilitate critical
discussions on environmental issues with prescriptive models, such as comparing
and contrasting different carbon footprint calculators in the mathematics classroom.
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Chapter 44
Understanding Links Between
Mathematics and Engineering Through
Mathematical Modelling—The Case
of Training Civil Engineers in a Course
of Structural Analysis

Saúl Ernesto Cosmes Aragón and Elizabeth Montoya Delgadillo

Abstract We studied mathematical modelling in the engineer training program by
contrasting the problems presented by an engineering professor in a course that is
part of the structural analysis professional education core and the modelling carried
out in a project that was developed by students within the class workshop, which
corresponds to the practical section of said course. The results provide evidence that
the modelling competence is promoted and developed in engineering and that it is
possible to consider it as a connector between various training cores, identifying
mathematical models that will allow us to understand and establish relationships
between such training cores.

Keywords Mathematics modelling · Structural analysis · Engineer training ·
Modelling cycle ·Modelling competence ·Mathematical work

44.1 Introduction

Education of engineering students calls for the development of competencies that
will allow them to address situations both at the school and their future professional
development levels.Various accreditation programs for engineering training consider
modelling as a competence to be promoted. Despite the broad evidence on the impor-
tance of modelling in the educational system, research is still limited regarding how
it can be incorporated into the classroom (Borromeo Ferri 2018; Blum 2015), and
more specifically, engineering lacks research about how modelling, under a perspec-
tive of mathematics didactics, is addressed in engineering education (Alpers 2017;
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Romo Vázquez 2014). We studied the training core aspects and chose the profes-
sional training aspect to study the role of (mathematical) modelling in a program that
declares that its engineers are trained in this competence.

Specifically, in engineering, Alpers (2017) states that engineering students face
situations in which they must solve problems through the construction and use of
mathematical models, and therefore he considers that the competence of mathemat-
ical modelling is central to engineering education. In addition, Kaiser and Brand
(2015) state that although the mathematical modelling competence construct has
been addressed in research, the role of the notion of competence and how it can be
characterized in different academic levels are still to be studied. It isworthmentioning
that, for them, the modelling competence is more than an ability, but it is also the
disposition of the individual towards facing a modelling situation.

Niss and Hojgaard (2019) within the framework of the mathematical learning and
competences (KOM for its name in Danish) define eight mathematical competences,
one of them being the mathematical modelling competence. In addition, they estab-
lished that competences are interrelated. It is worth noting that in their definition of
mathematical modelling competence, the authors consider that extra-mathematical
knowledge must be explicit and have a genuine relationship with the mathematical
world. In our case, this extra-mathematical domains are the engineering problems
that are solved both in the context of the class as well as the project, where the extra-
mathematical is related to the understanding of situation analysis of structures and
what is related to mathematics are the models that are used and constructed from
calculus notions. In this way, we address the following research question: How does
modelling training happen in engineering?

44.2 Theoretical Framework

We considered the mathematical working spaces (MWS) (Kuzniak et al. 2016). This
theoretical framework allows to understand the mathematical work developed by
subjects that are facing problems within a school context, but it also allows the devel-
opment of didactic sequences to be implemented in the educational system. MWS is
formed by two dimensions, one is epistemological, relatedwithmathematical knowl-
edge, and the other is cognitive, related to the process of construction ofmathematical
knowledge on the user’s part. The levels are articulated through genesis, a semiotic
genesis that allows to make mathematical objects tangible through the transition
between the poles of the representation (icons, index, symbols) and visualization
(interpretation and decoding of the signs through semiotic processes). An instru-
mental genesis allows to make artefacts operational through the use of symbolic or
technological artefacts, connecting the artefacts and construction poles and a discur-
sive genesis that connects the referential and proving poles, where the proof must be
limited to the use of theory more than experimental intuitions.

We consider the importance to incorporate a didactic theory to analyse mathe-
matics that are present and not only understand themodelling process. The Borromeo
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(a) (b)

Fig. 44.1 a Modelling cycle. (Borromeo Ferri 2006, p. 92) b Extended MWS for engineering.
Adapted from Moutet (2016)

Ferri modelling cycle, from now on MC (see Fig. 44.1a) (Borromeo Ferri 2006,
p. 92) has allowed us to organize and study how problems are addressed in the
engineering class. The MC is based on a real-world component, from which the
situations to be modelled are from and to which we ascribe the extra-mathematical
contexts, and another component related to the mathematical world, which provides
elements to verticallymathematize the situation that needsmodelling, but at the same
time provides stages that articulate both components through mathematization and
interpretation processes that allow to confront mathematics with the real world.

Based on Moutet’s (2016) study, who proposes an extended MWS to link physics
and mathematics, we propose a connection between mathematics and engineering,
where the epistemological level (see Fig. 44.1b) is composed by signs, artefacts and
theoretical references pertaining to engineering.

The MC allows to identify subcompetences of modelling in particular and the
modelling competency at a global level. It is in the subcompetence of working math-
ematically where the MWS intervenes to analyse student production, the class of a
teacher or when this is used for designing modelling situations.

44.3 Methodological Elements

This research was developed through a qualitative methodology under the
instrumental-type case study method, as in Stake (1995). In particular, the case
studies the civil engineering program of a Chilean university. Out of the cores of
basic sciences, engineering sciences and professional education, we chose the latter
one in the area of training in structures.

We considered three sources. Source 1: an interview to a teacher of structural
engineering who has professional experience in the area and informed us about the
role of modelling not only in the professional training field, but also in the workplace.
Source 2: problems worked in the structural analysis class throughout the academic
semester. Source 3: a structural analysis project developed by students (4 teams of
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3 members each), assigned during the workshop of the course. For this chapter, we
present the analysis of the collected data in source 2, and from source 3 we show a
first part that explains the types of problem students face.

The analysis of the problems was performed based on categories established with
the theoretical references used. For the extended MWS, we considered the way in
which the epistemological and cognitive levels were articulated through working
with the genesis, and for the MC we considered the subcompetences of modelling
in order to identify four moments in the class taught by the teacher, inspired in said
subcompetencies, without being exactly equivalent. We have called them M1, M2,
M3 and M4 (see Sect. 4.2).

44.4 Results

The following are the scientific academic situations addressed in the class, a problem
solved in class (calculation of deformations) and a student project.

44.4.1 Scientific Academic Situations Addressed
in the Course

The situations correspond to the treatment of structures through the use of models
associatedwith structures such as beams, frames and trusses. Twoother types of prob-
lemswere addressed,whichwere related to themanagement of structures that are stat-
ically determined and those that are statically undetermined. The theoretical models
were used to ensure their capacity to resist and suffer appropriate deformations, and
this is a goal for the modelled problems.

We observed that throughout the course, the solutions to the problems in general
were built on two hypotheses: the hypothesis of a linear elastic structure behaviour,
this is, that the relation between the applied effort and its deformation is a linear
relation, where proportionality is measured through an elasticity module (E). The
second hypothesis we observed is geometrical linearity, this means that the structure
can only endure small deformations, in such a way that these would be virtually
invisible to the naked eye.

Therefore, from the exploration of problems developed in class, we proceeded
to perform a rigorous analysis of six academic situations in the sense of Niss and
Hojgaard (2019). We based our selection on the aforementioned themes and the
present mathematical objects. In this way, the linear model (or linearity) is present
during the complete development of this course and students learn how to solve and
model structures under thismathematical principle that has ameaning in the structure
analysis for engineering core.
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For the theme of statically determined structures, the mathematical objects that
emerged were those associated with basic notions of calculus (function, derivative,
integral) and in the statically undetermined structures, notions related to linear algebra
emerged (mainly work matrices and notions such as singular matrix, inverse matrix,
transformationmatrix, which facilitated what is called the assembly of local matrices
to a global matrix of the system).

From the identification of objects and associated models, we decided to select
those that were related to calculus notions, in order to go in depth into the analysis.
In the following, we present a problem solved by the teacher in class and some
preliminary results of a project developed by the students of the class, in the context
of a workshop.

44.4.2 The Frame Problem by the Professor

The problem consists of determining the structure deformation of a frame-typemodel
of a statically determined structure.

The problem consists of determining the rotation of the N node (angular defor-
mation) of the structure (see Fig. 44.2), which has a modulus of elasticity
E = 2, 45E + 06N/cm2. The structure that we want to approach is a frame
type, which is formed by two elements (AB element and BC element), and we
can observe that element BC must support a uniformly distributed linear load
of 10000 N/m.

Fig. 44.2 Frame-type structure
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Moment 1. Presentation of a problem and understanding the problem to be solved.
It can be observed that in the program a scheme of the structure is provided, with

distances and given loads, so we can say that stage 3 of the MC is initiated, when
working with a real, simplified and structured model. Regarding the extendedMWS,
we encounter the referential of the epistemological level of engineering, and so the
discursive genesis is activated, because there are engineering concepts present in the
understanding of the situation such as the frame-type structural model, conditions
of material elasticity and types of bearing that support the structure (fixed in A and
movable in C).

Moment 2. Considerations that arise from the extra-mathematical context
presented, with the purpose of structuring and simplifying the situation.

Here, we observed work with stage 3 of the MC, because there is work with the
real model presented, and a free body diagram (FBD) of the structure is elaborated
(see Fig. 44.3). It can be observed that extra-mathematical knowledge of the situation
strongly influences this stage, because there are support artefacts that originate the
unknowns that are external to the structure (FBD). Regarding the extended MWS,
we observed the activation of the semiotic genesis of the epistemological level of
engineering, because there are signs associated with the supports, type of load and
elements that compose the frame-type model and activate, in this way, visualization
and the semiotic genesis.

In addition, we observed the activation of the instrumental genesis. Since the
conditions of structure balance and the sumof forces are used, these provide symbolic
artefacts coming from the epistemological level of engineering. The equilibrium
situation is considered as part of the artefact of engineering and the calculations
performed with the vectors that represent the force that composes the FBD are
considered activators of the mathematical artefacts.

Fig. 44.3 Free body
diagram of the structure
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Fig. 44.4 Use of the moment function in the integral

Moment 3. Identification of the presence of a model (engineering) associated with
the situation. To analyse this moment, we classified two sub-moments according to
the types of engineering models, which we present next.

We identified the presence of a sub-moment 1 associated with models that stem
from the conditions of balance for the calculation of external reactions and a sub-
moment 2 associated with the work with models that come from the internal stresses.
What follows is the development of the latter.

We identified stage 4 of the MC (work with the mathematical model) which uses
the integral model θ = ∫ L

0
mM
E I dx , through the determination of the angular rotation

of the B node with the virtual work1 method. For this, moment functions built in sub-
moment 1 are used (see Fig. 44.4), and one of them is the real moment (M), caused by
aunitary virtual force applied to the pointwhere youwant to calculate the deformation
(m) and the flexural stiffness of the structure (El) for vertical deformations.

Regarding the extended MWS, the semiotic genesis of engineering is activated
when visualizing the signs present in the models, which will allow first the deter-
mination of the moment functions and second, the determination of the deformation
by rotations in the B point of the structure. Next, the semiotic genesis of mathe-
matics is activatedwhen considering the equations that represent engineeringmodels.
Then, we observed the transition to the instrumental genesis of engineering, first
when considering the equilibrium equations as artefacts that will allow the building
of models (moment functions and shear functions, as well as the model for the
determination of the deformation by rotation).

Moment 4. Presentation of the obtained results and analysis of them with the
purpose of confirming the performed processes and validate them: We were able to
observe that although results are presented, validation is restricted only to verification
of the balance of the structure in relation to theFBDbut its angular deformation results
are not validated, therefore performing an internal validation as in Borromeo Ferri
(2006).

In general, we observed that modelling was present, but the nature of such
modelling corresponded to a structural modelling where mathematical modelling
elements were present in an implicit manner. According to our analyses, the basis

1The virtual work method considers a virtual force that according to Hibbeler (2012) is defined as
an imaginary force because it is not part of the actual load.
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of the problems was a dialogue between structural models and the use, in the sense
of Alpers (2017), of theoretical models pertaining to structural analysis that are
influenced by the notions of disciplines such as physics and mathematics.

44.4.3 Working in a Project: Practical Work of Students

Students must model a structure using a software (SAP2000), which is used in engi-
neering for the analysis and design of civil works such as bridges, dams and buildings.
They receive plans with measurements to scale, and this is their first encounter with
a problem since phase 1 of the MC in the course. We will present 3 of 4 stages of
the project, since stage 4 is the armature modelling and it is virtually a process that
repeats previous stages.

For stage 1, the geometrical model of a building related to social housing, offices,
library and hotel (a type of building per team) was requested, whose dimensions
are obtained from the plans. We observed that students presented difficulties of the
instrumental kind, not only related to the use of software, but also related to working
a (real) structure to scale with the plans. This was evidenced by Team 4 that worked
with a hotel:

[Team 4]: The most difficult thing when modelling was to interpret the plan in
AutoCAD, which was subdivided in sections of different lengths and we needed to
be especially careful with measurements to then transcribe them in the SAP2000. In
addition, to work for the first time with a plan at such scale resulted overwhelming
at first sight (…).

For stage 2, they were asked to create and assign the sections and materials corre-
sponding to each element of the building (structure), in addition, to generate the
finite element mesh2 for the roofs and to assign cases and load combinations and
add live loads3, and dead loads4 to the modelling. In this stage, students worked in
feeding the software with the physical and geometrical properties of various struc-
tural elements. In addition, they generated the finite element mesh with the goal of
preparing the model for software analysis. We observed that students developed the
modelling ability in relation to being aware of the kinds of building materials and its
physical properties. This is evidenced by what is stated by Team 3:

[Team 3]: Regarding the assigned loads to our group (300kgf/cm2) in reading
areas and hallways, (400kgf/cm2) in book areas, we consider it correct since by
norm the reading area is assigned a lighter load.

For stage 3, they were asked to generate the analysis of the complete structure
and assign seismic mass to the building. The assigning of loads data was provided in
each project since this is a topic studied in a different course called structural design

2Finite element mesh: an operation performed with the goal of generating a model for the analysis
of finite elements.
3Live loads (associated to the load of people, furniture).
4Dead loads (associated with the weight of the structure).
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and seismic design of buildings. Students obtained the axial force, shear strength
and bending moment values from the software (run analysis), for each one of the
structural elements of the given structures. Students specifically stated that they had
modelled a structure, which means that it is viable for building, as per the diagram
with data provided by the software. They had to interpret and make decisions with
calculations and during the development of the course they had to obtain by manual
calculations.

44.4.4 Modelling Problems and the Role of Mathematical
Models

From the analysis of the selected problems and the work with the modelling of a
building by the students, we observed that the modelling competence is promoted
in the training of a civil engineer. To inquire the mathematical objects that are
present inmodelling of structures is important to understand the relationship between
mathematics and engineering.

When analysing problems that are taught for modelling, we identified calculation
of mathematical objects that are present in the course that are models used (most of
them in an implicitmanner) for structural analysis, andwe selected 6 (see Table 44.1).

To understand the nature of the problems allowed us to have evidence to identify
modelling in engineering and mathematical modelling. To understand the role of
diagrams, the use of professional software that not only makes mathematics invisible
but that allows to model a real structure and at scale are aspects to be considered for
mathematical modelling.

Table 44.1 Analysed problems in connection with calculation objects

Problem Activity to determine Mathematical Objects

Beam resistance analysis Diagrams that represent the
structure resistance. Shear and
moment diagrams

Proportionality, function, first
and second derivative of a
function, definite integral,
equation

Frame reaction calculations External reactions of the
structure

Function, equation solution

Internal forces in truss bars Values of the internal forces in
the bars that form the truss

Equation/system of equations
and equation solution

Linear deformation on a
beam

Value of a linear deformation Function, equation, integral

Angular deformation on a
frame

Value of an angular deformation Function, equation, integral
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44.5 Discussion and Conclusion

Through the analysed problems,we can see thatmodelling in engineering strengthens
what was established by Niss and Hojgaard (2019) regarding the modelling compe-
tence, in which the extra-mathematical context results key. In theoretical terms, there
was a rich interaction between theMC proposed by Borromeo Ferri (Borromeo Ferri
2018) and the articulation of the epistemological dimensions of engineering and
mathematics with the cognitive dimension, validating in this way in the proposal of
Moutet (2016) and that we have extended to engineering.

We observed that during the course, the subcompetence of building a real model
(stages 1 and 2 of MC), in general, is not developed, because of the presence of
problems with structures that start from the real model, with simplifications and
previously performed structures. In the case of the project developed by students
in the class workshop, the subcompetence is developed, but on this occasion, the
subcompetence of working mathematically with a mathematical model would be
subordinated to the use of software (SAP2000). The software invisibilizes the math-
ematical work process as it works as a black box in the sense of the mathematical
operations that are performed for the analysis of the structural model. In this finding,
we differ fromGainsburg (2013), who found thatmodellingwas not clearly promoted
within the instruction for engineering courses. To the contrary, our findings evidence
an explicit teaching of modelling, although divided, as we have mentioned before.

It becomes key to understand the role ofmodels andmathematical and engineering
objects. For the resistance of beam-type structures, the function model emerged
from calculus of external reactions and internal stresses of the beam, through the
construction of shear functions (V(x)) and moment functions (M(x)). At the same
time, for the calculation of deformations in structures of a frame type, the integral
(area) takes a key role where a function model emerges as part of the integrand.
Moreover, we observed diversity of representations in the solution of the problem,
where the importance of the graphic representation stands out, in order to visualize
the maximum values that would be critical when designing the structure.

The study allows us to talk about a mathematical engineering modelling as we
make evident the existence of an indissolubility between mathematics and engi-
neering, so this provides elements to legitimize the inclusion of modelling in the
mathematical classes in the context of engineer training. In this sense, we agree with
Gainsburg (2006), who studied a community of structural engineers at their work-
place and conclude that mathematics alone do not allow for the engineer to give
a solution to the problem, but rather it is a group of norms, judgements and deci-
sions, where mathematics are implicit. Therefore, we do not talk of mathematical
modelling, but of a mathematical engineering modelling.

We consider that mathematical modelling is an articulator that strengthens the
integration of several training areas that compose the engineering curriculum (Basic
Sciences, Engineering Sciences, and Professional Training), so it is an approach that
can contribute not only to the transversality of mathematical knowledge but also to
its interdisciplinarity.
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Chapter 45
How Does the Teaching Design Influence
Engineering Students’ Learning
of Mathematical Modelling? A Case
Study in a South African Context

Rina Durandt, Werner Blum, and Alfred Lindl

Abstract This chapter reports on empirical results about the influence of two
different teaching designs on the development of engineering mathematics students’
modelling competency. 144 first-year students were exposed to a modelling unit
(entrance test, pre-test, five lessons with ten tasks, post-test) following two teaching
designs, similar to the German DISUM study. One group of participants was offered
an independence-oriented teaching style, aiming at a balance between students’ inde-
pendent work and teacher’s guidance, while two other groups were taught according
to amore traditional teacher-guided style. Linear mixed regressionmodels were used
to compare pre- and post-test results. The results show that all groups had significant
learning progress and that the group taught according to the independence-oriented
design had the biggest competency growth.

Keywords Engineering students ·Modelling competency · Solution plan · Student
independence · Teaching design · Teacher guidance

45.1 Quality Mathematics Teaching

The transition from school to university is a substantial hurdle in students’ learning
of mathematics, also because students often lack basic skills and abilities and have
a constricted disposition towards mathematics (compare to Rach and Heinze 2017).
The learning of mathematical modelling is particularly challenging. Nonetheless,
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problem-solving abilities for real life situations, in particularmathematicalmodelling
competencies (for this construct see Kaiser and Brand 2015 Niss and Højgaard 2011,
2019), are crucial in the professional development of engineering students. Reports
over a number of years show that South African students at school level have severe
shortcomings in basic mathematics skills. The teaching of mathematics seems to
follow still mostly a traditional, strongly teacher-directive style with little room
for students’ engagement in mentally challenging activities (compare the TIMSS
findings from Reddy et al. 2016).

What do we know empirically and theoretically about the effective teaching of
mathematics and in particular of mathematical modelling? The general (e.g. Hattie
2009) and the subject specific literature (e.g. Kunter et al. 2013; Schlesinger et al.
2018) reveals that certain necessary conditions have to be fulfilled if teaching ought to
have visible effects on students’ knowledge, skills and abilities.Webriefly summarise
these conditions by the following five criteria for quality teaching (see Blum 2015):

1. Effective classroom management (comprising subject-independent aspects such
as structuring lessons clearly, using time effectively, separating learning and
assessment recognisably or varying methods and media flexibly).

2. Student orientation (progressing adaptively, linking new content with students’
pre-knowledge, using language sensibly, giving diagnose, feedback and support
individually, using students’ mistakes constructively, and encouraging individual
solutions).

3. Cognitive activation of students (stimulating students’ mental activities by main-
taining a permanent balance between students’ independence and teacher’s guid-
ance, avoiding wrong dichotomies such as teacher guided instruction versus
students working alone, “direct teaching” versus “discovery learning”, or teacher
“explains” versus teacher “moderates”, and instead intertwining those elements).

4. Meta-cognitive activation of students (stimulating accompanying and retrospec-
tive reflections, and advancing strategies).

5. Demanding orchestration of topics (creating permanent opportunities for
students to practice the aspired competencies by means of substantial tasks,
fostering learning with understanding and intelligent practicing/repeating,
emphasising justifications, and linking between topics as well as between the
subject and the real world).

45.2 The DISUM Project

In theGerman interdisciplinary research project DISUM1, “quality teaching” formed
the conceptual frame (for more information about DISUM, see Schukajlow et al.
2012; Blum and Schukajlow 2018). The main aim of the project was to find out

1Didaktische Interventionsformen für einen selbständigkeitsorientierten aufgabengesteuerten
Unterricht am Beispiel Mathematik—in English: Didactical intervention modes for mathematics
teaching oriented towards students’ self-regulation and guided by tasks. The project was carried
out 2002–2013 and directed by W. Blum, R. Messner and R. Pekrun.
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empirically how students’ mathematical modelling competency can be advanced
effectively in everyday teaching practice, with a focus on the lower secondary school
level (11-16-year-olds). In the DISUM main study, a more independence-oriented
teaching style was compared with a more traditional teacher-guided style. The
key principles of the independence-oriented style, called operative-strategic design,
were:

• Teacher’s guidance aiming at students’ active and independent work on tasks,
maintaining a balance between teacher’s guidance and students’ independence
according to Aebli’s “Principle of minimal support” (Aebli 1985), and encour-
aging individual solutions.

• Realising that balance by adaptive teacher interventions (which allow students to
continue their work without losing their independence; see Blum 2011; Stender
and Kaiser 2016), in particular strategic interventions (such as “Read the text
carefully!”, “Imagine the situation clearly!”, “Make a sketch!”, “What do you aim
at?”, “What is missing?”, “Does this result make sense for the real situation?”).

• Changing between independent work in groups and whole-class activities (for
students’ presentations and retrospective reflections).

• Teacher’s diagnose and support based on a four-step modelling cycle, the
“Solution Plan” (which was not in students’ hands; see Schukajlow et al. 2015).

The key principles of the teacher-guided style, called directive design (which is
the common style in everyday German classrooms), were:

• Development of common solution patterns guided by the teacher, oriented towards
the average ability of the class.

• Changing between whole-class teaching (oriented towards the “average student”)
and students’ individual work in exercises.

Both the “operative-strategic” and the “directive” teaching were implemented as
optimised teaching styles, oriented towards aspects of quality teaching (classroom
management, cognitive demand). The teachers were particularly trained on two days.

The DISUM main study followed a classical design—mathematics ability test,
pre-test, treatment andquestionnaires, post-test, and follow-up-test. The teaching unit
consisted of 10 lessons (with 45’ each) with altogether 7 introductory tasks and 14
modelling tasks (all tasks identical in both designs), and it was implemented in alto-
gether 24 grade 9 classes at the medium track (“Realschule”) of the German school
system. The results show that both teaching designs had significant and very similar
effects on students’ technical mathematical skills, but only the “operative-strategic”
design had significant effects on students’ modelling competency. However, from a
normative point of view these learning gains were still unsatisfactory, and compared
with the above-mentioned criteria of “quality teaching” therewere obvious shortcom-
ings of the operative-strategic design, in particular somepromising directive elements
were missing such as individual practising and a teacher demonstration in the begin-
ning of how modelling tasks may be solved (the teacher as a “model” according to
cognitive apprenticeship, see Brown et al. 1989). In addition, the “Solution Plan”
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was not in students’ hands (while several studies have shown how favourable meta-
cognitive support can be for modelling activities; for an overview see Niss and Blum
2020, Chap. 6). This led to the construction of a new “method-integrative” teaching
design as a blend of the operative-strategic design with those directive elements
and with the “Solution Plan” for students. A case study in two classes with the
same research design showed significantly higher learning gains compared to the
operative-strategic design.

An obvious question is: Will similar effects be visible in other environments
(such as other topic areas and other educational levels)? At the tertiary level, in
particular, where mathematics is often taught in a rather teacher-centred way as a
service subject for other disciplines, it would be interesting to see whether a more
independence-oriented teaching style may lead to similar results or how the results
may differ due to the different motivations and expectations of the students. More
generally, knowing that mathematics learning and in particular learning mathemat-
ical modelling is dependent on the specific learning conditions and contexts, we need
more studies that repeat certain elements and change others in order to better under-
stand which influence certain variables have and to what extent empirical results may
be generalised beyond the specific circumstances (compare to Schukajlow et al. 2018,
as well as Niss and Blum 2020, Chap. 8). Thus, in 2018 the idea arose to conceive
and carry out a similar research study, following the same conceptual framework,
with engineering students in a tertiary environment in a South African context.

45.3 Research Design

The purpose of this study, carried out in February and March 2019 in a South
AfricanUniversitywith 144 first year engineering students in an extended curriculum
programme, is to enhance the teaching and learning of mathematical modelling at the
tertiary level, guided by applying principles of quality teaching. The students were
exposed to a mathematical modelling unit following two different teaching styles,
analogous to the method-integrative and the directive style described in Sect. 45.2.
The broad research question is: How do the modelling competency and the mathe-
matical competency of the students develop through the modelling unit, depending
on the teaching styles? Here, modelling competency refers to the students’ ability to
solve modelling tasks at the pre-calculus level.

For organisational and administrative reasons, the sample was randomly assigned
to three distinct class groups (called “Pink”, “Blue 1” and “Blue 2”). The modelling
unit was embedded in the students’ first semester mathematics course. The interven-
tion started with a diagnostic entrance test, informed by the South African mathe-
matics school curriculum (CAPS) and by prior knowledge components for calculus
(the content of the course), then a pre-test, followed by a modelling unit with 5
lessons including 10 different tasks, and at the end a post-test. One group (Pink) was
offered a method-integrative teaching design with the four-step “Solution Plan” as
a meta-cognitive aid. In this particular design, analogous to the DISUM project, the
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lecturer aimed at guidance by adaptive interventions. Students were to develop indi-
vidual solutions, various solutions were later discussed and compared in the whole
class, and the lecturer demonstrated in the second lesson how to solve modelling
tasks by using the “Solution Plan”. The other two groups (Blue 1 and Blue 2) were
taught according to a more traditional teacher-directive design that is very common
and well known at the tertiary level in the South African context. In an optimised
form, again analogous to the DISUM project, the whole-class teaching was oriented
towards the “average” student, the lecturer developed common solutions for the tasks
and students followed. The lecturer was the same for both the Pink and Blue 1 groups
and was experienced in teaching mathematics and mathematical modelling, while
the lecturer for the Blue 2 group was only experienced in teaching mathematics.
Irrespective of the teaching design, all groups received the same modelling tasks in
the same order during implementation. Examples of tasks treated in the unit include
the problem of how much air is in a balloon shown on a picture with a base jumper
on top, the problem of what the optimal speed is for dense traffic on a one lane road,
and the problem to approximate how tall a giant would be in order to fit the world’s
biggest shoes (2.37 m by 5.29 m).

Apart from minor everyday logistical problems (e.g. student transport problems,
interruptions in electrical power supply), the implementation of the modelling unit
was according to plan. Each lesson was planned in detail by the first two authors of
this chapter. Additional steps were taken as control measures during implementation,
such as discussions between the lecturers before and after every lesson regarding the
particular teaching design for the group, possible task solutions and appropriate
teacher actions. The lecturers also compiled in-class notes for record keeping on
every lesson. Furthermore, all standard ethical matters were adhered to.

The hypotheses related to the research question were: the researchers expected
equal and substantial progress in mathematics for all three groups (similar to the
DISUM results), and equal but only slight progress in modelling for all three groups
(unlike to theDISUMresults, but an advantage of the Pink group inmodelling seemed
unreasonable because of theSouthAfrican students’ unfamiliaritywith self-regulated
teaching methods).

45.4 Test Instruments and Methodology

Data were collected from the entrance test, and both the pre- and the post-test.
The entrance test, as a diagnosis of basic competencies from school, consists of 25
tasks (32 items with 38 marks) from the content areas algebra, geometry, functions,
trigonometry, calculus, and modelling. The intention was to provide an overview of
the mathematical entrance qualifications of the sample and to use this information as
a covariate in further analyses. The pre- and the post-tests were specifically designed
for this project and aligned with the modelling unit (see Table 45.1). They contained
open modelling tasks (such as estimating the volume of a container shown on a
photo), intra-mathematical tasks of varying complexity with topics relevant for the
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Table 45.1 Pre- and post-test design, and alignment with the modelling unit

Section Number of
tasks/items/marks

Pre-test and post-test (versions 1
and 2)

Alignment with
modelling unit

Section A 2 /2 /6 Modelling tasks with pictures
(Beer Container or Straw Roll)
resp. with given data

Lessons 1 and 5
resp. lesson 2

Section B 3 /6 /7 Mathematical tasks including
proportional, linear and rational
functions

Lessons 2, 3 and 4

Section C 5 /5 /10 Multiple-choice tasks selected in
parallel for each version

Lesson 2

modelling unit, and multiple-choice modelling tasks selected from the well-known
test of Haines et al. (2001). Both tests were administered in two versions with parallel
items, following a rotation design, randomly and equally distributed to each group,
which allowed also for comparing pre- and post-test results. By mistake, in group
Blue 1 only one pre-test version and hence only one post-test versionwere distributed.
The researchers did not expect this inaccuracy to be actually problematic because
of the parallel items in each test version, but the results indicated some effect (see
Sect. 45.5).

All analyses were conducted using the statistical software R (R Core Team 2019),
and the rawvalues of the single itemswere combined to sum scores for each section as
well as to total sum scores for each test. The internal consistencies of the scales were
estimated with McDonald’s Omega, whose values are comparable to Cronbach’s
Alpha with less stringent assumptions about the factorial test structure (McDonald
1999). To examine the respective effects of the teaching intervention, four linear
mixed regression models with dummy-coded predictor variables were created that
take into account the longitudinal data structure nested by participants (for intraclass
correlations see Fig. 45.1a–d), that can handle missing values at different time points
without excluding entire cases, and that have even for small sample sizes superior
statistical power as well as less stringent requirements compared to conventional
methods (for details see Hilbert et al. 2019). Therefore, the time variable (pre-test
versus post-test), the indicator variable for the test version (A versus B) and the
grouping variable (Blue 1, Blue 2, Pink) were dummy-coded (0/1) with Blue 2 as
reference group for design-based reasons.

45.5 Results

As can be seen from Table 45.2, the values of McDonald’s Omega are satisfactory
for all three tests as a whole (ω ≥ 0.59), but relatively low for single sections,
as expected, because they cover heterogeneous topics of the modelling unit with
only a few items (see Table 45.1). For psychometric reasons (i.e., constant values,



45 How Does the Teaching Design Influence Engineering Students’ … 545

Table 45.2 Internal consistencies (McDonald’s Omega) per test (section), means and standard
deviations per group and test (section) and one-way analyses of variance between groups per test
(section)

Test (topic) Number of
items

Internal
consistency

Group (Nentr/Npre/Npost) ANOVA

Blue 1
(48/44/46)

Blue 2
(44/49/48)

Pink
(41/46/47)

Omega (ω) M (SD) M (SD) M (SD) F(2, Ni–3) p

Entrance
test

30 0.79 12.65 (5.59) 10.23 (5.48) 12.98 (5.28) 3.30 0.04

Pre-test
(total)

11 0.59 7.09 (2.86) 6.59 (1.84) 7.22 (2.65) 0.86 0.43

Section A 2 0.17 1.09 (1.25) 0.45 (.71) 1.07 (1.31) 5.01 < 0.01

Section B 6 0.48 3.41 (1.54) 3.61 (1.26) 3.67 (1.52) 0.42 0.66

Section C
vers. 1

3 0.43 2.59 (1.53) 2.28 (1.28) 2.09 (1.31) 1.05 0.36

Section C
vers. 2

3 0.41 – 2.79 (1.35) 2.87 (1.60) 0.03 0.86

Post-test
(total)

11 0.60 10.11 (2.68) 9.08 (2.73) 10.89 (2.69) 5.38 < 0.01

Section A 2 0.19 2.65 (1.77) 1.10 (1.29) 2.64 (1.63) 15.18 < 0.01

Section B 6 0.49 4.35 (1.34) 4.98 (1.26) 5.17 (1.42) 4.78 < 0.01

Section C
vers. 1

3 0.38 – 2.62 (1.61) 2.71 (1.16) 0.04 0.84

Section C
vers. 2

3 0.40 3.11 (1.23) 3.38 (1.01) 3.48 (1.31) 0.85 0.43

Note. ω = McDonald‘s Omega; M = mean; SD = standard deviation; ANOVA = (one-way) analysis of variance; F =
F-value; p = probability of committing a Type I error, Ni : Nentrance = 143, Npre = 139, Npost = 141

negative correlations with the respective scales), two items had to be removed from
the entrance test and two items from section C (in pre- and post-test). So, contrary
to our expectation, some multiple-choice items in section C (Haines et al. 2001)
were not equivalent. After removing these items, the two test versions became better
comparable, but version 1 is still at all times slightlymore difficult than version 2 (see
Table 45.2). This favours group Blue 1 which by mistake (see Sect. 45.4) received
only one test version, the easier one in the post-test.

Due to significant group mean differences in the entrance test (see Table 45.2),
its total score was used as a covariate and controlled for in the subsequent linear
mixed models. Regarding test section A (modelling tasks) as dependent variable,
Fig. 45.1a does not only show that Pink and Blue 1 significantly differ from Blue
2 at the pre-test. Rather, it is evident that despite a significant gain in mathematical
modelling competency between pre- and post-test by Blue 2 (β = 0.69, p = 0.01;
β: unstandardised regression weight) Pink and Blue 1 have significant additional
increases (β = 0.80, p = 0.04; β = 0.98, p = 0.01). Thus, referring to test section
A, the results indicate that the competency of groups Pink and Blue 1 grows under
the respective learning conditions (concerning Pink this is similar to the results of
the DISUM study) more than twice as much as that of group Blue 2.
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Fig. 45.1 aLine graph formodelling tasks (intraclass correlation: 0.08).bLine graph formathemat-
ical tasks (intraclass correlation: 0.14). cLine graph formultiple-choice tasks (intraclass correlation:
< 0.01). d Line graph for the complete test (intraclass correlation: 0.16)

In a second linear mixed model with regard to section B (mathematical tasks),
the competency gain of Blue 2 is significant (β = 1.36, p ≤ 0.01), and although the
increase of Pink (β = 0.04, p = 0.92) and Blue 1 (β = −0.43, p = 0.22) deviates
only slightly from that (also similar to the results of DISUM; see Fig. 45.1b), the
average mathematical competency of Blue 1 is significantly smaller in the post-test
(see Table 45.2).

A third mixed model for test section C (multiple-choice modelling questions),
which additionally takes into account the different test versions, shows no significant
result and only descriptively a low, nearly equivalent competency increase for all
groups (Fig. 45.1c). This could be due to the fact that after shortening the scale of
section C the number of remaining items was too small, their closed task format
perhaps unsuitable or their content not sufficiently adapted to the modelling unit.

Finally, the results of the complete test are visualised in Fig. 45.1d for each
group and analysed in a fourth mixed model (again considering test versions).
In comparison with the competency growth of the reference group Blue 2
(β = 1.05, p = 0.16), Pink shows significant additional increases in both test versions
(A: β = 2.10, B: β = 2.71, p ≤ 0.05), while the gain of Blue 1 (just version B at
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post-test: β = 2.82, p = 0.02) is mixed with a test version effect, as further analyses
suggest. So, Pink does not only outperform Blue 2 in the post-test significantly (see
Table 45.2), but also Blue 1, and shows a significant improvement of competency that
is mainly attributable to the learning intervention (similar to the results of DISUM).

45.6 Discussion and Perspectives

The purpose of this study, carried out in 2019, was to enhance the teaching and
learning of mathematical modelling at the tertiary level, guided by principles of
quality teaching. First-year engineering mathematics students were exposed to a
modelling unit following two different teaching styles, analogous to the method-
integrative and the directive style in the DISUM project. The results of this study
indicate that quality teaching is promising also for the tertiary level and thus comple-
ment the results of the DISUM study. Both teaching designs, implemented in an
optimised form by specifically trained lecturers, had effects, but for the development
of mathematical modelling competency the method-integrative teaching style seems
more favourable, analogous to DISUM but contrary to our cautious hypothesis. This
may have consequences not only for engineering but also for teacher education in
SouthAfrica (see Jacobs andDurandt 2017). An interesting result is that the twoBlue
groups, both instructed according to the directive teaching style but with different
lecturers, had distinctly different learning gains. Therefore, corresponding with other
results (e.g. Kunter et al. 2013), the teacher variable seems important, also at the
tertiary level and also for teaching modelling. This aspect should be further investi-
gated, for instance, by taking into account the lecturers’ professional competencies
as a covariate.

Froma normative point of view, both the pre- and the post-test results appear rather
weak (see Table 45.2), so there is certainly a big potential for further improvement. To
a considerable extent, these results are certainly due to the unsatisfactory university
entrance qualifications of the students. However, there will also be room for a further
improvement of the teaching design. One possibility is to extent the duration of the
teachingunit and to includemore phases for individual practising,with and eventually
without teacher support. Another possibility is to link the modelling examples more
closely to the engineering subjects and to those South African students’ life contexts.
This will be realised when the study is repeated in 2021; corresponding tasks have
been developed.
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Chapter 46
Reflective Engagements by Practising
South African Teachers on a Constructed
Model for University Funding
and Rankings

Cyril Julie

Abstract A model for funding and ranking of universities was constructed by a
group of practising teachers during an introductory immersion course on mathemat-
ical modelling and the applications of mathematics. The group presented their model
to other members of the participating cohort of teachers. Interactions between the
group who constructed the model and their peers during this presentation were anal-
ysed. The overall analysis was anchored around the notions of internal and external
reflections occurring during the deliberations of the two groups. These reflections
were thematically analysed to ascertain the arguments used to critique and defend
the presented model. The analysis rendered four themes of which two were distinctly
aligned to internal reflections. The other two were an intertwinement between the
external and external reflections.

Keywords Ranking models · Ratings · Internal reflections · External reflections ·
Practicing teachers · Index

46.1 Introduction

Rankings of all sorts are mathematical models—an extra-mathematical domain is
taken and mathematised. They are widely reported in the public media. This makes
them themost pervasivemathematicalmodels the general public has contact with and
experience of. Some of them are, at times widely (and passionately), debated in the
public domain because of agreement or not with the outcomes of their application.
At least, two kinds of ranking systems exist. One is a performance-based ranking
system which is based on a system for the award of points such as league tables in
sporting competitions and the rankings resulting from the Trends inMathematics and
Science Study (TIMSS). The other kind is based on data on certain issues gathered
from institutions or persons of interest to construct some measurement model for
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ranking. The Human Development Index (HDI), which ranks countries according to
their development status using certain indicators, is a ranking model of this nature.

In many instances, rankings result from ratings where an issue of import is
placed on a pre-ordered scale by (knowledgeable) adjudicators. TheWorld Economic
Forum, for example, uses such an approach to rank countries according to the inclu-
sion of creative and critical thinking skills in the teaching in the country. The respon-
dents, executives in business, are requested to provide an opinion on the question
“In your country, how do you assess the style of teaching?” The respondents have
to assign a value of 1–7 [1 = frontal, teacher based, and focused on memorizing; 7
= encourages creative and critical individual thinking]” (Schwab 2019, p. 620) to
indicate the response to the question. The values selected by the respondents from
a country are used in various formulae to obtain a score for the particular country.
For the issue, style of teaching, the computed values for each country is used to rank
the countries on this issue. Although many rankings result from ratings, ratings are
not without controversies as illustrated by Minton (1992) for the college football
competition in the USA.

Rankings of universities are widely reported in the public media. The three most
popular ranking systems for universities are the Academic Ranking ofWorld Univer-
sities (ARWU), The Times Higher Education (THE) world university rankings and
Quacquarelli Symonds (QS) system (Degenar 2014). All three ranking systems use
research, although differently weighted, in conjunction with other indicators as an
element of their system. In SouthAfrica amajor source of research income for univer-
sities from the government is based on research outputs include articles in journals
in an approved list of journals, books approved by appointed expert committees and
creative pieces such as music compositions. Frequent reports are produced of these
research outputs. In these reports South African universities are ranked (see, e.g.
Mouton 2019). This chapter reports on the reflections of practising teachers during
the initial report-back of one group’s preliminary model dealing with funding for
research output for three hypothetical universities in South Africa.

The research question being pursued was: What kind of reflections do practising
teachers engage with when they collectively deliberate on an alternative funding
and ranking model constructed by a peer group for the ranking of South African
universities?

46.2 Theoretical Considerations

As is in the postulated research question, the focus is on reflections. Cobb et al. (1997)
define collective reflection as “the joint or communal activity of making what was
previously done in action an object of reflection” (p. 258). They distinguish collective
reflection from Piaget’s reflective abstraction, a psychological activity. Blomhøj and
Kjeldsen (2011) use a similar definition of reflection by referring to it as a “deliberate
act of thinking about some actual or potential action aiming at understanding the
action and improving it” (p. 386). They refine this notion of collective reflection by
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distinguishing between internal and external reflections students engage in during
the construction and accompanying deliberations of a mathematical model. Internal
reflections are linked to the cyclical mathematical modelling process and become
visible or can be extracted from deliberations, if there is access to them, or recalls by
the model constructors of the model construction process. Modelling competencies
such as selection of variables, declaration of assumptions, mathematical work and
validations are under discussion during internal reflections. External reflections are
deliberations associated with the context within which a mathematical model is
applied.

The research reported in this chapter focuses on the internal and external reflec-
tions practising teachers engaged in when they constructed an alternate model for
funding and ranking South African universities.

46.3 Data Collection and Context

The data used in the study was collected during an elementary short introductory
immersion course, as part of a continuing professional development programme for
mathematics teachers, on mathematical modelling and the applications of mathe-
matics to a group of practising teachers with no prior experience of the areas. In
the South African curriculum mathematical modelling is an important focal point of
the curriculum. It stated that problems related to health, economics, et cetera should
be the real-life issues to be included (Department of Basic Education, DBE 2011).
The participating teachers had limited, if any, experience of mathematical modelling
and the applications of mathematics since mathematics courses they encountered
in their pre-service teacher education were generally anchored around pure mathe-
matics. Their experience is primarily with the use of word problems at the end of a
mathematical topic. Another experience they have is the use of ready-made models
whichmust be particularised and then calculate some results using given information
(Julie 2015). Thus teachers had limited, if any, experience of the construction of a
mathematical model.

The duration of the course was 16 hours over a weekend (4 hours the Friday and
Sunday and 8 hours the Saturday) at a venue where participants stayed for the entire
weekend. Ten high school teachers, one primary school teacher and a mathematics
curriculum advisor participated in the course. I was the facilitator and there were five
females and seven males.

The teaching procedure startedwith the participants being given the 2016 Summer
Olympic rankings of the participating countries. The teachers had to develop an alter-
nate ranking system. This was followed by a lecture on the modelling cycle using the
depiction of the mathematical modelling process by Stillman (1998). Some compo-
nents of themathematical modelling cycle were exemplified by appropriate instances
which arose during the teachers’ construction of the alternate ranking system for
the Summer Olympics. Since the anticipation was that teachers would attempt to
construct a ranking model comprising multiple disparate components, the Human
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Development Index and the normalisation process to obtain non-dimensional entities
for calculations were also discussed.

Upon completion of the 2016 SummerOlympic rankings activity, it was discussed
and linkages to the modelling process were drawn out. Participants were then
provided with a set of situations—a parking lot design, control of an elephant herd in
a national park in SouthAfrica, a ranking system for South African universities based
on publications output and the placement of emergency service to mathematically
model. They had to work in voluntary selected groups and each group had to select
one situation to dealwith. Three groupswere formed and one group chose the ranking
system for South African universities based on publications output. The focus the
research reported in this chapter is on the work of this group. This ranking system
is, as explained above, one where the institutions annually submits their research
outputs to the relevant government authority and an expert committee assesses and
audits which research outputs qualify for research funding from the government. Of
particular interest are the reflections that took place when the group reported the first
draft of their model to the rest of the cohort of participants. The draft can be char-
acterised as an “unrealistic model” (Spooner 2019). It was, in a sense a provisional
model which could hopefully lead to an informed revision of the model based on the
reflections.

The report-back sessions were video-recorded and this was the data source that
was used for analysis. Although the data are restricted to the video record, it is reason-
able to accept that there were deliberations amongst participants in spaces, which
I was not privy to, other than the work venue. The newsprint recording, Fig. 46.1
below, that unfolded during the group’s report was also part of the data.

Fig. 46.1 Newsprint recording of ongoing work
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46.4 Methodological Approach

The 45 min of video-recorded interactions were transcribed and the transcription
with the recordings of ongoing work was analysed. The analysis was conducted
using an adapted version of thematic analysis Terry et al. (2017). Thematic analysis
is a search for themes inherent in the data. Six phases of analysis followed: famil-
iarisation with the data, initial code generation, creating themes, reviewing themes,
definition of themes and doing a report of the analysis. The process is non-linear
and iterative. Normally only the communicative acts of the research participants are
used. I, however, was a participant and not divorced from the ongoing deliberations.
Hence the reference to adapted version of thematic analysis.

The coding was primarily inductive but the constructs of internal and external
reflection were kept in mind. Hence, there were elements of deductive coding present
during the entire process. An indifferent stance was taken with respect to the “cor-
rectness” of the model. Twenty codes resulted and these were converted into themes.
Four overlapping themes resulted and these are presented in the next section.

46.5 Results and Discussion

In the transcripts belowPG(number) is used for amember of the groupwho presented
the model and RG(number) a member of the group who responded. Briefly the
model that the group presentedwas onewhere universities will receive initial funding
indicated as “initial pre-funding for papers”. This model entails the redistribution of
the invested funds (28 million Rand) in the ratio 3:2:1 for universities C, B and A,
respectively. The ratios were based on consideration of the distribution of articles
per institution and distribution of income per demographic group. This model of
redistribution was the dominant aspect for the deliberations.

46.5.1 Clarification of Issues Within the Modelling Cycle

During the deliberations, there were explicit references to aspects related to elements
of the mathematical modelling cycle. A member of the responding group requested
clarification on the origin of the ratio “6:4:2:1” by asking “Explain to me that
ratio” [RG1] (refers to 6:4:2:1 in figure). A member of the presenting group [PG1]
responded “According the average household income”. PG1 was supported by
another member of the presenting group by stating “Yes we’ve done it. We’ve got all
the calculations…” [PG2].

Referring to the calculations (and having done it) is part of the mathematical work
done during the model construction process. This mathematical work is not strictly
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during the construction of the final model but rather during the stage of “formulating
the mathematical problem” as given by Stillman (1998).

The discussion proceeded by RG2 stating, “You guys obviously looked at a
relationship between funding and papers published. … Is that what you guys are
assuming?” Attention was thus drawn to the underlying assumptions of the presented
model. The response was that it was about funding to which RG2 responded “… you
guys are looking at it from only one angle”. The presenting group was adamant that
this was not the case because “We looked at a lot of things” [PG1].

The member of the responding group is thus drawing attention to possible flaw in
the presented model. Because the deliberations focused primarily on aspects of the
model, the reflections at stake here are internal reflections.

46.5.2 Suggestions for an Alternative Model

After about 25 min, attention is drawn to the task as set out on the activity sheet.
Reference is made that the reporting group should not have developed a distribution
model but one that had its focus on the articles produced by the university academics.
This is viewed as a problem by the responding group as revealed in the transcription
excerpt below.

RG2: This problem that we have there. The funding that we have there is per
lecturer, per academic staff. Did you guys work out howmany of those academics
do not produce papers? Then you’ll find out that there are more lecturers at
university A that is not producing publications.
RG6: If I look at the first statement there (refers to task sheet) then the first
row is termed the academic staff members, then the next row is average annual
publications. And then when I look at, when I look at university C they are having
two hundred and sixty-one staff members. And if that figure…I divide by one
thirty-eight then I get an answer of about one point eight which is the higher
number than [for] university B and university A. Which means that C is the one
that is producing more publications than the other universities.

At this point, I intervened by suggesting that RG6 was calculating the number of
lecturers per publication and if this calculation is inverted it will be publications per
lecturer.

Despite this interchange the reporting group, however, stuck to themodel of redis-
tribution of the invested funds. As with the first theme above, the deliberations are
also of an internal reflection nature. However, in terms of Blomhøj and Kjeldsen’s
(2011) definition of reflections also triggering improvements, there were no indica-
tions of the reporting group’s willingness to construct a revised model based on the
internal reflection.
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46.5.3 Addressing Discrimination of the Past

Discrimination of the past and possible corrective actions are widely discussed and
debated in the public media in South Africa. RG2’s comment, “Because we linked
to apartheid and because we linked to previous disadvantage. That’s a normal thing
to do.”, shifted the discussion in the direction of racial demography being a major
driver of the presented model. PG2 responded affirmatively. RG2 continued to bring
this actual issue into sharper focus by stating “If this was a room full ofWhite people
they might have handled this completely differently and make it even and spread
it out and let every university get the same amount of funding. It’s weird that you
didn’t go that way?” The presenting group defended their position by emphasising
the factors they preferred captured in the utterance “No, no, no. We went this way
because of the factors that we were favour(ing)” (PG2).

The responding group also raised concerns about penalising university A and not
recognising their efforts as having some benefit for the future. RG4 articulated this
position as “Why crush a good thing because … university A having produced more
papers…that’s good…Why deny that progress [and]…concentrate on the future.
Then instead of promoting those who are producing less [you] might have handled
this completely differently…”.

The presenting group responded to these political issues by referring to fairness
which is the next theme being discussed. This theme leans more towards external
reflections since the discussions were not explicitly concerned about the internal
mechanisms of the model construction process but on political-ideological concerns.

46.5.4 Equity as Purpose of the Constructed Model

Early in the discussions the presenting group made it clear that their model was
about “something that should be done to make sure that there should be fair funding
for the three universities.” [PG]. Doubt was expressed whether the model is actu-
ally complying with the criterion of fairness with RG4 saying “you not saying the
same thing [about] A. You decreasing A [and] I don’t think that is fair allocation
of resources”. Attention is here drawn to decreasing the allocation to university A
as unfair. Further elaborations of the fairness issue are delved into when attention
was drawn to an apparent discrepancy between the quest for fairness and the redis-
tribution of the available funds to increase the production of research articles. This
discussion proceeded as follows:

RG1: I have to disagree, the problem is on the funding model not on promoting
producing more.
PG1: [But] the funding is depending on the publications …
RG1: Is the system we use fair? That’s the thing. So we’re working on this as the
only problem. So we’re saying let’s promote this organisation because they are at
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the bottom. It’s like we’re saying is the model we are [presented with] fair? [It is]
Not saying let’s increase this one.

The reporting group, however, maintained their stance on fairness since they
considered the demographic make-up of the three institutions and the distribution
of household income as the way to bring about equity. As with the last-mentioned
theme this one also leans towards external reflection since the deliberations engaged
were not strictly about model construction process.

46.6 Concluding Discussion and Comments

Two of the themes, discussed, clarification of issues within the modelling cycle and
suggestions for an alternative model, were internal reflections forthcoming from the
communicative acts. The other two, addressing discrimination of the past and equity
as purpose of the constructed model, are not strictly external ones. Rather, they are
intertwined with the external ones being dominant but not completely separate from
the internal ones.

This study raises various issues for further investigation. One is linked to task
design for the development of ranking models which need to include composite
dimensions. The participants in this study focused on one issue, redistribution of
existing resources based on invested funds. The other information did not configure
in the preliminary model but was more used as justifications despite the respondents
offering seeds for reconsidering a different model which can include more dimen-
sions. This points in the direction that for practising teachers with limited experience
of mathematical modelling and the applications courses should also focus on the
development of non-dimensional indexes that are constructed using multiple dimen-
sions and using a process of normalisation to make numerical calculations so as to
ranking from the indexes, as is the case for the Human Development Index.
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APPENDIX: Activity Sheet

Funding of Universities
One factor taken into account for the funding and ranking of universities is the

number academic publications per year. This factor is expressed as the number of
publications per academic staff member. The situation for three hypothetical South
African universities is given below:
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University A B C

Academic staff
members

782 428 261

Average annual
publications

477 248 138

Average annual income
(Million Rand)

385 200 130

Invested funds (Million
Rand)

20 5 3

Number of students 18 119 12 041 6 519

Institutional Distribution students according to Apartheid-designated Groups (%)

Institution A B C

African 20 45 91

Coloured 16 47 5

Asian 12 6 3

White 52 2 1

Average Household Income (Statistics South Africa, 1995)

Apartheid-designated
Group

Average Household
Income
(Rand)

Average Household
Income (Dollars)

Adjusted Average
Household Income
(Dollars) according to
HDI adjustment
formula

African 23 000 2 191 2 191

Coloured 32 000 3 048 3 048

Asian 71 000 6 762 6 046

White 103 000 9 810 6 114
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Chapter 47
Mathematical Modelling Problems
in a Mathematics Course for Engineers:
A Commognitive Perspective

Svitlana Rogovchenko

Abstract Mathematical knowledge is very important for engineers; both quanti-
tative and qualitative analysis of physical systems and manufacturing processes
require solid scientific principles and appropriate mathematical tools. Teaching of
mathematical modelling at the university contributes to the development of math-
ematical competencies, motivates the interest to mathematics and plays a signifi-
cant didactical role in promoting advanced mathematical thinking. These views are
supported by the analysis of students’ work on a mathematical modelling assign-
ment in a university mathematics course for future engineers with the help of the
commognitive framework. Students’ narratives in written solutions and oral discus-
sions reveal different components of students’ precedent-search-space and confirm
the progressive development of exploratory routines.

Keywords Mathematical discourse · Commognition · Mathematical modelling ·
CAS · University engineering education

47.1 Introduction

Mathematics plays an important role in sciences, engineering and technology. Engi-
neering students are usually taught several mathematical courses designed to provide
them with a solid mathematical knowledge necessary for future job and moti-
vating further interest in mathematical subjects. However, this purpose is not always
achieved; mathematics is often seen by the students as a discipline that teaches
mostly procedures completely irrelevant to their future careers whereas “for them
the focus on practical elements of the mathematical parts of the course is particularly
important” (Sazhin 1998, p. 146).

Studies show that after a course in differential equations engineering students
are still unable to use their knowledge in advanced engineering courses (Czocher
and Baker 2010). In many universities, mathematics as service course is taught for
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students coming from a very wide range of engineering areas (civil, electrical, elec-
tronic, computer engineering, etc.) and selection of modelling tasks that are inter-
esting and important for all specialisations is a big educational challenge. Lack
of mathematics knowledge leads to the situation when engineering graduates need
to take additional courses in “selected topics in mathematics” required by engi-
neering departments. It is often realised at this point that many students have little
or no experience of solving applied mathematical problems and the task of bridging
the gap between students’ mathematical and engineering knowledge becomes quite
demanding.

Nowadays, the progress in the design of university mathematics curricula is
observed: mathematical modelling courses, project-based courses, problem-solving
courses are offered to engineering students at various universities (Wedelin and
Adawi 2015). At the same time, several mathematics courses, for example, differen-
tial equations, are taught with the focus on modelling perspective and applications
that use modelling techniques to enhance teaching and learning quality (Czocher
2017). Using mathematical modelling as a teaching approach, various goals can be
attained including building the relationship between elements of real-world systems
and their mathematical representations, testing and adjustment of models, devel-
oping students’ mathematical competencies, cognitive and decision-making skills in
different realistic situations, improving retention of mathematical knowledge, etc.

47.2 Mathematical Modelling and Technology
in Engineering Curriculum

Blum and Niss (1991) suggested several ways of including mathematical modelling
tasks in mathematics instruction: the separation approach, the two-compartment
approach, the islands approach, the mixing approach, the mathematics curriculum
integrated approach and the interdisciplinary integrated approach. They argued that
“in ‘mathematics as a service subject’ programmes, all approaches can be encoun-
tered, but probably the two-compartment, the islands, and the mixing approaches
are the ones most widely used” (p. 62). One of the popular teaching approaches in
engineering curricula, also employed by the author, is the mixing approach where
“elements of applications and modelling are invoked to assist the introduction of
mathematical concepts” and “newly developed mathematical concepts, methods and
results are activated towards applicational and modelling situations whenever possi-
ble” (BlumandNiss 1991, p. 61).Assignmentswith real-word problems are classified
as higher-level cognitive demand tasks because they focus on “comprehension, inter-
pretation, flexible application of knowledge and skills, and assembly of information
from several different sources to accomplish the work” (Doyle 1988, p. 171). From
the learning perspective, such problems help students to interrelate different areas
of mathematical knowledge and connect it to other forms of knowledge in science
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and engineering, motivating thus particular ways of interdisciplinary thinking and
acting.

Nowadays, mathematics lecturers become more aware of the importance of tech-
nology in university teaching. Undergraduate engineering curricula include different
programming courses; programming skills acquired by students can be success-
fully used in mathematics classes. Kramarski and Hirsch (2003) argue that computer
algebra systems (CASs) positively contribute to the strengthening of students’ math-
ematical thinking offering numerous advantages for the teaching and learning of
mathematical modelling; “in particular, implications for collaborative group activity
in modelling and applications work are profound” (Galbraith et al. 2003, p. 122).
Computers can be used at different steps of the modelling task; application of digital
tools has been successfully integrated into a seven-stepmodelling cycle producing an
extendedmodelling cycle (Greefrath 2011, p. 302). Theoretical and empirical studies
confirm that “while many of the uses of the computer are essentially computational,
enabling students to investigate problems involving ‘messy’ real world data, others
are meant to facilitate both procedural and conceptual learning of mathematical
topics” (Selden 2005, p. 133). Use of technologies in a differential equations class
promotes the development of mathematical modelling competencies in engineering
students (Gallegos and Rivera 2015, p. 443). Integration of Maple, MATLAB,Math-
ematica into applied mathematics projects for engineers showed promising results in
enhancing “the capabilities of engineering students to use mathematics for solving
problems in larger projects as well as to communicate and present mathematical
content” (Alpers 2004).

47.3 Theoretical Framework: Mathematical Discourse
and Commognition

From a commognitive perspective (Sfard 2008; Lavie et al. 2018), learning is viewed
as routinisation. Routine is defined as a task-procedure pair, “the routine performed
in a given task situation is the task, as seen by the performer, together with the
procedure she executed to perform the task” (Lavie et al. 2018, p. 9). Commognition
theory considers the following elements of mathematical discourse: words and their
use (words that are specific to the discourse); visual mediators (graphs, diagrams and
specific symbols); routines (repetitive patterns characteristic of a discourse); narra-
tives (sequences of utterances about the mathematical objects of the discourse or the
processes on the objects). The theory distinguishes practical and discursive routines
which in turn are classified as process-oriented (rituals) and product-oriented (deeds
or explorations). Narratives are endorsed, modified, or rejected by the community
using substantiation, construction and recall routines.

It may happen in a mathematical task situation that the interpretation of the task
by the student differs from what was meant by the teacher. The learner acts relying
on a precedent-search-space (PSS) consisting of situations relevant to the current
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task. For a mathematical modelling problem, the student’s PSS can be represented
by the collection of mathematical methods that can be used for solution; familiar
problems, relevant to the given one; student’s previous life experience with respect
to the given problem; mathematical skills, etc. The members of PSS applicable
in a task situation are found with the help of precedent identifiers. According to
commognitive approach, the learner can participate in a new discourse only in a
ritualised way and ritualised routines are expected to gradually transform to explo-
rations (de-ritualisation) (Heyd-Metzuyanim and Graven 2019). Routines charac-
terised by flexibility (multiple solutions); bondedness (absence of redundant steps);
applicability (potential use); performer’s agentivity (the number of autonomous deci-
sions, ability to carry out more complex tasks without help); objectification (ability
to think in terms of mathematical objects); substantiability (the performer has the
criteria to assess his/her own performance) are classified as explorative routines.
Commognitive approach can be used for analysing various mathematical discourses,
both verbal and written, everyday (spontaneous), presentations for school students,
scholar publications, etc. (Sfard 2008, p. 132).

Mathematical modelling (MM) problems contribute to the development of
advanced mathematical thinking by engineering students which encompasses the
use of nonalgorithmic, complex ways of thinking that often lead to multiple solu-
tions and involve interpretation and use of several different criteria. Analysis of the
meaning and the structure of problems containing uncertainty often requires self-
regulation and considerable mental effort (Resnick 1987). Commognition theory
has been recently used to analyse the learning and teaching at the university level
(Viirman and Nardi 2018; Treffert-Thomas et al. 2018) and “it seems a promising
and rewarding task to formulate a commognitive perspective ofmathematical models
and modelling” (Ärlebäck and Frejd 2013, p. 48). Commognitive framework was
also employed to identify modelling routines in MM activities by analysing verbal
mathematical discourse of prospective teachers engaged in a summer camp activity
(Shahbari and Tabach 2017). The authors of this study were able to trace “a change
from using a non-systematic routine to using a systematic routine and from routines
focusing on choosing specific cases to routines focusing on eliciting criteria for
making choices” (p. 185).

The focus in this chapter is on mathematical routines and the use of mathematical
language in students’ discussions and written reports. Commognitive theory was
chosen as an appropriate theoretical framework to analyse students’ mathematical
communication, both verbal and written, and to draw conclusions about students’
use of available mathematical arsenal and the ways they build mathematical (and
modelling) routines. Certainly, interpretations of the word use, visual mediators,
narratives and routines are subjective; the teacher acts as a representative of the
mathematical (professional) community that assesses the level of the mathematical
maturity and “literacy” of students’ discourse.
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47.4 Methodology and Data Collection

The study took place in the engineering department of the medium-sized Norwe-
gian university. Modelling tasks were introduced in a differential equations course
for the fourth-year engineering students who by that time took several courses in
engineering, chemistry and physics. Students in this class neither had modelling
courses nor previous modelling experience in undergraduate studies which included
the sequence of courses Mathematics 1, 2 and 3 covering mostly topics in calculus
and linear algebra.Mathematics courseswere notmuch coordinatedwith engineering
and physics courses taught at the same time. The intention to modify the differential
equations course was motivated by the idea to use the mixing approach connecting
the knowledge students gained in different areas including physics and mathematics.
Since there was no dedicated course in MM offered at the university, the syllabus for
a differential equations course was modified to introduce several MM assignments
in the form of course projects. The introduction of the MM assignment had several
pedagogic purposes: to enrich students’ mathematical narratives about the nature
of differential equations, promote students’ advanced mathematical thinking and
use of mathematical language, contribute to the development of general modelling
routines, explain how known mathematical routines can be used and combined to
produce newmathematical routines, motivate transformation of ritualisedmathemat-
ical routines into explorative routines in the process of MM as a particular problem
solving strategy. In addition, students’ work in small groups introduces important
elements of collaborative learning in mathematics courses and enhances students’
social skills, although this was not the focus of the study.

Forty students (38 males and 2 females, all in their twenties) were given different
sets of modelling problems. Small groups of two to three students worked for one
week on the assignment, discussed their solutions to problems and produced indi-
vidual written reports. MM tasks were mostly linked to the subject area of engi-
neering studies (mechatronics); the analysis of the mathematical model with respect
to the real-world problem was required. The level of complexity of the problems
was different, ranging from closed to open-ended problems. Students were asked
to employ mathematical methods for finding solutions and use CAS (Maple or
MATLAB) to support their work. They were expected to use previous program-
ming experience and computational skills (PSS); some programming tutoring was
also provided in the course. Students audio-recorded group discussions in the absence
of the lecturer and provided their recordings at her request for research purposes.
Group solutions were presented by each group in a whole-class session. Students’
individual written reports were evaluated as a part of the course work; the mark
counted towards the final grade.

The research questions addressed in this study are: How does the engagement
with MM problems motivate the development of mathematical discourse and math-
ematical routines? To what extent does the use of CASs contribute to such develop-
ment? The analysis focuses primarily on students’ work on several important steps
of modelling cycle related to mathematisation, choice of solution method, model
validation and interpretation of results.
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47.5 Data Analysis

The study topic is Existence andUniqueness Theorems for the initial-value problems
for differential equations. Contrary to traditional teaching practices, students engaged
withmodellingproblems toworkwith the theorem.Oneof suchproblems is presented
below.

Problem. Consider a cylindrical bucket of constant cross-sectional area A with a
hole of cross-sectional area a. The small hole is plugged, and the bucket is filled to
depth h0. A clock is started as the plug is removed and the water begins to leak out of
the hole. Construct a DE model to determine the height h(t) (m) with respect to time
t(s). Take g = 10 m/s2. Choose your values for A and a so that the ratio A

a = √
5.

(a) Explain all your steps while setting the model. (b) Take t0 = 0, h0 = 4, set
the IVP, explain the meaning. (c) Solve the problem and observe that the solution if
defined for all t but after some time it stops being a realistic description of the height.
What physical event occurs at this moment? (d) Build a realistic continuous solution
to this problem and show that the solution is valid for all t. Is this solution contin-
uously differentiable? (e) Do these results contradict the Existence and Uniqueness
Theorem? Explain your reasoning in detail. (f) Plot the solutions found in part (c)
and part (d) and analyse the graphs.

Students suggested several physical descriptions of the problem (illustrated in
Excerpt 1) and discussed corresponding mathematical models which demonstrates
the flexibility of the modelling routine. Many students used diagrams (visual media-
tors) as a tool for translating verbal description to mathematical mode. They relied
on PSS using combination of several familiar routines in the process of solution:
setting up an initial-value problem—it was not a trivial task requiring several steps:
solving a differential equation, identifying the general solution and applying the
initial conditions to find a particular solution. The mathematical discourse presented
in students’ written solutions suggests that they have developed the ability “to express
things in the language of mathematics” (Schoenfeld 1992, p. 337) known as objec-
tification, successfully selected an appropriate problem-solving strategy available in
their PSS, and completed the solution. In the Excerpt 1 from the discussion in Group
1 one clearly observes the “repetitiveness, and thus patterns which is the source
of communicational effectiveness” (Sfard 2008, p. 195). It was important for this
group to agree on the common solution method and “indorse” the narrative, but not
all groups came to an agreement; in these cases, students presented their individual
versions of solutions.

S11: I used Bernoulli equation to set the differential equation.
S12: I did something similar, but I started from the Conservation of Energy Law to

find the velocity out…
S13: I also used the energy law, and worked with some constants and found a nice

equation…
S11: Yes, we can use different values for constants, but I chose to have the

simplest…
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Students in Group 2 used physical laws to derive the following initial-value problem:

dh

dt
= −2

√
h, h(0) = 4.

Formal integration yields the exact solution h(t) = (2 − t)2. which is valid on the
entire real axis but should be considered only on the interval [0, 2] until the bucket
empties. From the instant t = 2, the bucket is empty and the second “piece” of the
solution to the problem on the half-axis [2,∞), h(t) = 0, can be obtained by the
reasoning in context. The conditions of the Existence and Uniqueness Theorem are
not satisfied for h = 0; this occurs at t = 2 and leads to the multiplicity of solutions
to the given initial-value problem. Talking about the “realistic” solution, students
also discussed the existence of a “mathematical” solution when time is “negative”
(reversing the time), and solution’s meaning in terms of physical phenomena (“water
level will go to infinity”). This investigation was facilitated by the use of CAS; the
students’ discussion illustrated in Excerpt 2 below relates to substantiability and
demonstrates the explorative character of the mathematical discourse.

S21: The solution we got is a parabola. … After t = 2 the solution is no longer
realistic. What physical event occurs at this moment? What occurs is that the
tank become empty and then some sort of filling start to happen at the tank,
whichwould not obviously happen at the real tank… It would be very practical
for my car (laughter), but unfortunately this is not the case.

S22: We agree that the solution is not realistic after this point, like the tank starts
to magically fill again (laughter).

S21: The way I started to solve this is to make the solution the piece-wise function
and say that it follows the original solution up to the point when the tank is
empty and the second part of the piece-wise function is zero for all values of
t after 2.

S23: Yes, we can use different values for constants, but I chose to have the
simplest… I also tried to fit the exponential function, like saying it is linearly
independent, but it did not fit very well so I ended up splitting the function.

The attempt of student S23 tofit exponential function can be interpreted as explorative
routine in the use of CAS.Other students in this group solved the differential equation
and plotted graphs manually; none of them opted for solving the differential equation
analytically with CAS although they did this when asked explicitly. In Fig. 47.1,
the student plotted the formal solution to the problem and a piece-wise defined
function corresponding to the “realistic” solution. The decision not to use the formal
solution described geometrically by the parabola and construction of the realistic
solution demonstrates performer’s agentivity and applicability, two characteristics
of explorative routines. For Fig. 47.1a, the student reasoned: “As our solution is a
parabola, the reasonable thing to suspect is that after the level has decreased to its
bottom value, it will start increasing again. As we plot the graph, we can see that
at t = 2 the container is empty, and mathematically it starts filling again. So, the
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Fig. 47.1 a Student’s graph of formal solution. b Student’s graph of “realistic” solution

solution stops being a realistic description of the height after the container becomes
empty”. For the “realistic” solution in Fig. 47.1b, the student defined a function h(t)
by two expressions, (2 − t)2 for 0 ≤ t ≤ 2 and 0 for t ≥ 2.

In the development of the theoretical mathematical discourse, engineering
students were less confident with the use of mathematical concepts of continuity and
differentiability and relied on geometric arguments to support their argumentation
in written reports, see Fig. 47.2.

The use of mathematical language in this fragment can be described as immature,
the explanation is given on a rather intuitive level, but at the same time there is an
evidence that the visual image from the computer simulation helped to develop the
mathematical discourse. It is confirmed by the fact that the similar sets of graphs are
present in the student’s report twice: in the explanation of the solution as shown in
Fig. 47.1 and in the answer to part (f) of the problem where the explanations to the
graphs were explicitly required.

Fig. 47.2 Student’s reasoning regarding continuity and differentiability of the solution
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47.6 Concluding Remarks

The analysis of written reports shows that students relied on different representa-
tions (realisations) of the modelling task: mathematical description with the help
of a diagram (visual), mathematisation using an appropriate differential equation
(symbolic), graph plotting (visual), solution of the differential equation with the help
of the CAS (symbolic). Mathematical routines employed by students possess char-
acteristics pointing towards their explorative nature whereas routines associated with
the use of CAS were more ritualised. Students’ written reports document striking
differences in their ability to use CASs and demonstrate that technology was mainly
used as a computational and verification tool and, to some extent, as a visualising
tool, but it did not become a transformational or data collection and analysis tool;
this agrees with the findings of Doerr and Zangor (2000).

This study confirms that MM tasks motivate the development of new explorative
mathematical routines thus improving students’ mathematical and programming
skills. Engagement in MM furnishes students with more confidence in mathematical
knowledge and confirms their ability to apply it in practice. If MM tasks explic-
itly requires the use of CASs, special attention should be paid to the establishment
of solid connections between mathematical and CAS routines; students should be
encouraged to use programming not only for informal mathematical explorations but
also as a powerful learning tool. In view of students’ poor skills in the analysis of
symbolic and numeric solutions for continuity and differentiability, teaching the use
of CAS as a helpful tool for rigorous mathematical analysis could improve students’
ability to explore important properties of mathematical objects.

Ärlebäck and Frejd (2013) argued that the “attempt to use the commognitive
perspective on themathematical models andmodelling is challenging sincewe are all
‘newcomers’ to this particular research discourse” but “commognition naturally facil-
itates conceiving mathematical modelling as an interdisciplinary subject including a
number of different disciplines” (p. 55). Our study promotes the use of commognitive
approach as a useful tool for analysing students’ mathematical discourse. Commog-
nitive framework provides important insights into learning routines, helps to spot
difficulties encountered by the students during the modelling process and prompts
how these difficulties can be addressed.
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Chapter 48
Mathematical Modelling with Biology
Undergraduates: Balancing Task
Difficulty and Level of Support

Yuriy Rogovchenko

Abstract We report on extra-curricular activities with biology undergraduates
focusing our attention on the selection ofmathematicalmodelling taskswith different
levels of cognitive demand and the level of teacher’s guidance during students’
collaborative work on the tasks.

Keywords Mathematical modelling · University education · Biology
undergraduates · Teacher’s guidance · Cognitive demand

48.1 Introduction

Mathematics is playing an increasingly important role in the life sciences. In the last
decades, the interaction between mathematics and biology has become more and
more intense with the two sciences positively influencing the advancement of each
other as Cohen notes:

In the coming century, biology will stimulate the creation of entirely new realms of mathe-
matics. In this sense, biology ismathematics’ next physics, only better. Biologywill stimulate
fundamentally new mathematics because living nature is qualitatively more heterogeneous
than non-living nature…. Coping with the hyper-diversity of life at every scale of spatial
and temporal organization will require fundamental conceptual advances in mathematics.
(Cohen 2004, p. 2017)

A new relationship between mathematics and biology places higher demands on
the education of biologists which is “burdened by habits from a past where biology
was seen as a safe harbour for math-averse science students” (Steen 2005, p. 14).
On the other hand, “the need for basic mathematical and computer science (CS)
literacy among biologists has never been greater” (Gross et al. 2004, p. 85); “concepts
from biology should be integrated within the quantitative courses that life science
students take, and quantitative concepts should be emphasized throughout the life
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science curriculum” (p. 86). Benefits of mathematical modelling (MM) in biology
are clearly identified by Odenbaugh (2005, p. 236):

(1) Models are used to explore possibilities. (2) Models give scientists simplified means
by which they can investigate more complex systems. (3) Models provide scientists with
conceptual frameworks. (4) Models can be used to generate accurate predictions. (5) Models
can be used to generate explanations.

Our research on how biology could be brought to the mathematics classroom is
situated within an emerging area of tertiary mathematics education dealing with the
teaching of mathematics to non-mathematicians. This category of interdisciplinary
integration contextualises mathematical ideas for other subjects and “can loosely be
termed thematic integration, where mathematics and other subjects come together
around a particular topic or theme, while each retains their disciplinary nature”
(Williams et al. 2016, p. 19). Several recent papers address the implementation of
mathematics and MM in biology education. Integration of more mathematics and
statistics in biology courses “did not have a negative effect on the performance of
first-year students and can help more advanced students gain a better understanding
of underlying biological principles and concepts” (Madlung et al. 2011, p. 52). The
use of MM tasks in an introductory biology course led to “(i) improved equation
literacy, (ii) greater conceptual and descriptive precision, (iii) formation of conceptual
connections within and among disciplines, and (iv)moremature scientific judgment”
(Weisstein 2011, p. 208).Amismatch between instructors’ expectations and students’
mathematical skills can be “immensely frustrating”, but the situation is improved “by
making quantitative reasoning an explicit objective of our course design” (Hester
et al. 2014, p. 62).

Regular calculus courses can be designed to make them relevant to biology and
pre-medical students; and it has worked verywell for themajority of students (Rhein-
lander and Wallace 2011). However, “for a few students the uncertainties of not
having a concrete answer and working with a big messy problem, even if fully
acceptable in science, are not comfortable for them in math. For these students math-
ematics is about learning more math content and not how to apply the math they
know in a creative, integrated and precise way” (p. 15). Another challenge is that
“the natural tendency for life sciences students to understand how categories of life
forms differ from one another is turned upside down in mathematics, where we wish
to illustrate how seemingly disparate phenomena observed in unrelated applications
are driven by identical mathematical descriptions” (Usher et al. 2010, p. 182).

Chiel et al. (2010) describe a course teachingMM to biology students and biology
to students with strong backgrounds in mathematics, physics, and engineering. In
addition to curriculum-related institutional constraints, they emphasise the cultural
gap between biologists and quantitatively oriented sciences: the training process for
biologists “tends to attract students who are good at memorization” and “repels
students who are most interested in abstract principles” (p. 250). Although the
majority of students didwell in the course, “it is somewhat disappointing that biology
students showed no significant improvement in their attitudes toward and their sense
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of competence in mathematics” (p. 262) and a one-semester course may not be
sufficient for changing students’ attitudes towards mathematics.

48.2 Theoretical Framework

Following Niss et al. (2007), we define mathematical model as “a triple (D, M, f )
consisting of a domainD of the real world, a subsetM of the mathematical world and
a mapping from D to M” (p. 77) and interpret modelling competency as “the ability
to construct and to use or apply mathematical models by carrying out appropriate
steps as well as to analyse or to compare given models” (pp. 77–78). MM is known
to be difficult to teach and learn as Blum explains:

Mathematical modelling is a cognitively demanding activity since several competencies
involved, also non-mathematical ones, extra-mathematical knowledge is required, mathe-
matical knowledge and, in particular for translations, conceptual ideas … are necessary …,
and appropriate beliefs and attitude are required, especially for more complex modelling
activities. These cognitive demands are responsible for empirical difficulty.(Blum 2015,
p. 78, emphasis in original)

By cognitive demands, we mean “the kind and level of thinking required of
students in order to successfully engage with and solve the task” (Stein et al. 2009,
p. 11). Recent empirical and theoretical research suggests that modelling compe-
tency amounts to the ability to successfully perform all steps in a modelling cycle.
Models of a modelling cycle are helpful for the cognitive analysis of modelling
tasks and serve as a tool for scaffolding, diagnosis, and intervention during students’
work on modelling tasks. For research and teaching purposes, seven-step models
of a modelling cycle (e.g. Blum and Leiß 2007; Stillman et al. 2007) are used,
whereas a simpler four-step schema—understanding task → establishing model →
using mathematics → explaining result—is more appropriate for students’ work
(Blum and Borromeo Ferri 2009). “All these steps are potential cognitive barriers for
students as well as essential stages in actual modelling processes, though generally
not in a linear order” (Blum amd Borromeo Ferri, p. 47).

For analysing students’ cognitive difficulties, we rely on a research tool devel-
oped for “(a) identifying and classifying critical aspects of modelling activity within
transitions between stages in the modelling cycle, and (b) identifying pedagog-
ical insights for implementation through task design and organisation of learning”
(Stillman 2015, p. 799). The first two transitions, Messy real-world situation →
Real-world problem statement and Real-world problem statement → Mathematical
model, are particularly useful.

The best students’ learning is achieved on the basis of “quality mathematics
teaching” which combines “a demanding orchestration of teaching the mathemat-
ical subject matter”, “permanent cognitive activation of the learners” and “an effec-
tive and learner-oriented classroom management” (Blum and Borromeo Ferri 2009,
p. 52). Strategic support “plays a prominnet role as the students are only supported
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to find a way to go on, but the solution itself must still be developed by the students
themselves” (Stender et al. 2017, p. 469).

For quality teaching, it is crucial that a permanent balance between (minimal) teacher’s guid-
ance and (maximal) students’ independence is maintained. … In particular, when students
are dealing with modelling tasks, this balance is best achieved by adaptive, independence-
preserving teacher interventions. In this context, often strategic interventions are most
adequate, that means interventions which give hints to students on a meta-level. (Blum
and Borromeo Ferri 2009, p. 52)

One of the main difficulties is that learning depends on the specific learning
context and MM has to be learnt specifically (Blum and Borromeo Ferri 2009). This
sets particular demands on a teacher’s ability to balance the level of students’ support
in the development of meta-knowledge needed for successful modelling and the level
of students’ independent learning.

According to our observations, mathematics teacher’s spontaneous interventions in
modelling contexts were mostly not independence-preserving, they were mostly content-
related or organisational, and next to never strategic. … A common feature of many of our
observations was that the teacher’s own favourite solution of a given task was often imposed
on the students through his interventions, mostly without even noticing it. (p. 53)

The author of this chapter also found the following guidelines very useful for the
organisation of teaching:

Teaching aiming at students’ active and independent constructions and individual solutions
(realising permanently the aspired balance between students’ independence and teacher‘s
guidance); Systematic change between independent work in groups (coached by the teacher)
and whole-class activities (especially for comparison of different solutions and retrospective
reflections); Teacher‘s coaching based on the modelling cycle and on individual diagnoses.
(Blum and Borromeo Ferri 2009, p. 55)

Presenting theoretical material and examples during whole-class analyses of
group solutions and individual solutions to home assessments, the author empha-
sised important cognitive and metacognitive strategies and suggested several ways
for overcoming blockages in the modelling process. Amodelling diagram (Blum and
Leiß 2007; Stillman et al. 2007) served well the purpose. Since “students normally
do not have strategies available for solving real world problems” (Blum 2015, p. 80,
emphasis in original), we organised the teaching and learning based on the knowledge
that students’ success with MM tasks requires:

awell-developed repertoire of cognitive andmetacognitive strategies as well as a rich store of
mathematical concepts, facts, procedures, and experiences; vicarious general encyclopaedic
knowledge of the world and word meanings; and truly experiential knowledge from personal
experiences outside school or in more practical school subjects. (Stillman 2015, p. 796)

48.3 Design of the Study

Motivated by the idea that MM can serve as a “didactical vehicle both for developing
modelling competency and for enhancing students’ conceptual learning ofmathemat-
ics” (Blomhøj and Kjeldsen 2013, p. 151) and knowing that case studies “that show,
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for example, student’s views, motivations or performance, while learning in interdis-
ciplinary lessons, are very helpful” (Williams et al. 2016, p. 22), the author designed
extra-curricular MM activities for the first-year undergraduate biology students at a
reputable research-intense Norwegian university. The twofold aimwas (a) to demon-
strate how even simple mathematics tools can be employed for solving biologically
meaningful tasks, including unstructured problems, and (b) to increase students’
motivation for learning mathematics.

The activities were organised in the form of five three-hour sessions. In addition
to the author, a professor of mathematics, the project team included three mathe-
matics educators with different levels of teaching and research experience: a first
year PhD student, a postdoc with a recently earned PhD degree and a knowledgeable
professor. The author coached a group of 12 volunteer students (9 female and 3male)
enrolled at the same time in a regular first-semester compulsory mathematics course.
This general course emphasised practical use of mathematics and was designed to
refresh and consolidate students’ knowledge of school mathematics preparing them
for further university studies. By the first meeting, students studied properties of
periodic, power, exponential, logarithmic functions, limits, continuity, and deriva-
tives. MM was briefly introduced in the course with exponential growth; differential
equations were covered before we started using them in the activities.

The first four sessions were structured similarly: the author briefly presented rele-
vant theory illustrating it with complete solutions to selected problems; then students
worked collaboratively in three small groups onmodelling tasks of various difficulty.
Collaborative learningmeans that “participants aremaking a coordinated, continuing
attempt to solve a problem or in some other way construct common knowledge”
(Mercer and Howe 2012, p. 11). After each problem-solving block, group solutions
were discussed along with “expert” solutions provided by the mathematician. Then
a new portion of material was introduced, followed by students’ work on the tasks.
In each session, take-home assignments were handed out to motivate students’ indi-
vidual explorations between the sessions; solutions to these tasks were discussed in
the beginning of the next session. In the last, fifth session, three teammembers joined
small students’ groups working on a MM task based on Newton’s cooling law and
presented as a “criminal story”. Video recordings of all sessions were collected and
transcribed. The dataset includes students’ written work and answers on two self-
administered questionnaires using a 5-point Likert scale exploring students’ previous
experience with mathematics, their perception of the subject and its relevance for
biology.

48.4 Modelling Tasks

The author’s expectations of students’ capability to engage productively with
modelling tasks were strongly influenced by his pedagogical practice, personal
beliefs about teaching and learning, and passion for mathematics. The choice of
tasks was motivated by the principles of effective teaching formulated by Swan and



576 Y. Rogovchenko

Burkhardt (2014, p. 16), namely: “the tasks we use should be accessible, extendable,
encourage decision-making, promote discussion, encourage creativity, encourage
‘what if’ and ‘what if not?’ questions”. To reflect all four groups of justifications
for the inclusion of MM in teaching (Blum 2015), we selected open-ended tasks
for “pragmatic” justification to illustrate the mathematical analysis of real-world
situations (Task A below) and well-structured tasks accentuating modelling steps for
“formative” justification (Task C).We have chosenmostly authentic tasks illustrating
the value of mathematics to secure “cultural” justification and added entertaining
tasks aimed at raising students’ interest in the subject (Task B) for “psychological”
justification.

With respect to problems’ complexity, we employed two well-known frameworks
which classify tasks by the degree of cognitive effort (low-level versus high-level,
Stein et al. 2009) and by the type of reasoning, imitative (memorised and algorithmic)
or creative (local and global creative mathematically founded) (Lithner 2008). In
particular, creative mathematically founded reasoning (CMR) should fulfil all of the
following criteria:

Novelty. A new (to the reasoner) reasoning sequence is created, or a forgotten one is re-
created. Plausibility. There are arguments supporting the strategy choice and/or strategy
implementation motivating why the conclusions are true or plausible. Mathematical foun-
dation. The arguments are anchored in intrinsic mathematical properties of the components
involved in the reasoning. (Lithner 2008, p. 266)

Both frameworks highlight the importance of cognitively demanding tasks for
the development of students’ reasoning and problem-solving skills. Since MM is a
cognitively demanding activity, we expected that students’ engagement with high-
level tasks will have a positive impact on their learning and an overall satisfaction
with the activities.

The importance of starting with high-level, cognitively complex tasks if the ultimate goal is
to have students develop the capacity to think, reason and problem solve. … Selecting and
setting up a high-level task well does not guarantee students’ engagement at a high level.
Starting with a good task does, however, appear to be a necessary condition, since low-level
tasks almost never result in high-level engagement. (Smith and Stein 1998, p. 344)

Recent research indicates that task complexity is determined and fixed when
the task is selected, whereas its difficulty varies from student to student; it is also
known that poor performance with modelling tasks is more likely to be associated
with no to low engagement, although high engagement with the task context is
not necessarily associated with modelling success and appears to be task specific
(Stillman 2015). Our ambition was to suggest to students several problems with
high-level cognitive demands, also termed “doing mathematics” which (i) require
complex andnon-algorithmic thinking; (ii) require students to explore andunderstand
the nature of mathematical concepts, processes, or relationships; (iii) demand self-
monitoring or self-regulation of one’s own cognitive processes; (iv) require students
to access relevant knowledge and experiences and make appropriate use of them; (v)
require students to analyse the task and actively examine the task constraints that
may limit possible solution strategies and solutions; and (vi) require considerable
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cognitive effort and may involve some level of anxiety for the student because of the
unpredictable nature of the solution process required (Stein et al. 2009). Research
shows that both the setting of the tasks and the modelling of the process by teachers
are important in the development of students’ “meta-knowledge associated with
the successful modelling of situations in their environment, students need tasks that
require them to engagewith the context in order to solve them successfully” (Stillman
2015, p. 795).

To illustrate the project in this chapter, we selected three tasks. Task A, a chal-
lenging open-ended assignment,Rabbits on the Road, is from the text byHarte (1988,
pp. 211–213).

Driving across Nevada, you count 97 dead but still easily recognizable jackrab-
bits on a 200-km stretch of Highway 50. Along the same stretch of highway, 28
vehicles passed you going the opposite way. What is the approximate density
of the rabbit population to which the killed ones belonged?

TaskB deals with the uncontrolled geometric growth of the bacteriumEscherichia
coli (E. coli). This problem was selected from the book by Enns (2011, pp. 9–10)
where it is introduced to challenge the claim made by Michael Crichton, the author
of the best-selling science fiction thriller The Andromeda Strain, that one cell of E.
coli could produce in just one day a super-colony equal in size and weight to the
planet Earth.

If a single cell of E. coli divides every 20 min, how many E. coli would there
be at the end of 24 h? The mass of E. coli bacterium is 1.7 × 10−12 g, while
the mass of the Earth is 6.0 × 1027. Is Crichton’s claim accurate? How many
hours should he have allowed for his statement to be correct?

Finally, Task C, Growth of a yeast culture revisited is adapted from a textbook
by Giordano et al. (2014, pp. 11-14). The students were given two tables with the
observed biomass pn and the change in biomass �pn measured hourly for 7 h and
then for further 11 h.

The data in the table describe the growth of a yeast culture versus time in hours
and come from the paper by R. Pearl, The growth of population, Quart. Rev.
Biol. 2 (1927), 532–548. (a) Analyse first numerical data in the table. (b) Plot
the data and analyse the graph. (c) Suggest a simplemodel based on a difference
equation of the form�pn = k1 pn , where pn is the size of the yeast biomass after
nhours,�pn = pn+1−pn is the changeof biomass between twomeasurements,
and k1 is a positive constant. (d) What would be your expectations regarding
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the predictive power of the model you constructed? Please explain. Analysing
the data in the second part of the table, we note the change in population per
hour becomes smaller as the resources become limited. (e) Plot the population
against time and explore the shape of the graph. (f) What would you expect in
the long run? (g) Based on the graph, we observe that the population appears
to be approaching a limiting value, known in biology as the carrying capacity.
What would be your expected value for the carrying capacity in this case?
Please explain your answer.

Three sample tasks fall into different categories. An open-ended Task A requires
careful mathematisation. Task B is solved by applying a growth model or by
employing a geometric progression. Task C comes with the “embedded” solution
plan; it develops model building skills and contributes to students’ conceptual under-
standing of how the modelling cycle is implemented. Students’ work in Task A
is classified as “doing mathematics”; it also requires CMR. Complex computation
or methods are not needed, but the solution calls for a novel reasoning sequence
leading to the design of a strategy which must relate scarce information to additional
assumptions needed for the solution. Being rather thoroughly scaffolded, formative
Task C does not classify as “doing mathematics” and it does not require CMR; yet
it is a higher cognitive level “procedure with connection tasks”, “although general
procedures may be followed, they cannot be followed mindlessly” (Smith and Stein
1998, p. 348).

Stewart et al. (2010) differentiate problem-solving reasoning for sciences into
four categories: (1) model-less when the primary method is based on the use of
algorithms; (2) model-using when the model is used to solve problems it can tackle;
(3)model-elaboratingwhen “the primarymotivation for solving problems is to come
to new understandings”; and (4) model-revising when “the real problem is to revise
an existing model to fit anomalous data” (pp. 86-87). In this classification, Task A
is model-elaborating since an “interesting reasoning occurs, and new insights may
emerge” (p. 86). TaskB falls into one of the first two categories,model-less if students
use the reasoning based on the geometric progression or model-using if they exploit
a growth model. Task C is designed as a model-using task since the students are
directly prompted to use and develop further a familiar model.

48.5 Balancing Teacher’s Guidance and Students’
Independent Work

Zech suggested a five-level classification for the organisation of students’ learning
support:

1. Students are motivated only in a general way. 2. Positive feedback is given based on
successful intermediate results. 3. Strategic support is given which takes the form of hints
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that refer on how to proceed without addressing content-related issues. 4. Content-related
strategic support is offered; these are interventions, which also relate to the procedure, but
content-related issues are involved. 5. A content-related intervention is completely related to
the content of the task and contains the core of the solution. (as cited in Stender et al. 2017,
p. 469)

The author organised activities in the project to minimise the teachers’ guid-
ance and maximise students ‘independence, as suggested by Blum and Borromeo
Ferri (2009). To avoid commonmistakes in aMM classroomwhen teachers dramati-
cally reduce students ‘independence by premature content-related interventions or by
imposing teacher-favoured solutions, we shifted strategic support to teaching blocks
where metacognitive strategies based on a modelling cycle scheme were explained
and promoted. During students ‘work on MM tasks, all four team members were
mostly engaged in non-verbal interventions, “tutors looked for the kind of work the
students were doing without speaking to them, but noticed by the student” (Stender
et al. 2017, p. 473), and only occasionally gave hints at meta-level (“read the task
again”, “what is the next step?”, “what assumption might be useful to proceed?”).

48.6 Discussion and Conclusions

At the beginning and at the end of the project, students rated their attitude to mathe-
matics, its importance in biology, relevance of their mathematics course and knowl-
edge, and evaluated their experience of activities (5 represents the strongest positive
response). The averages in the pre-questionnaire were: mathematics is… interesting
(2.75); enjoyable (2.25); important in biology (3.33); existing knowledge of mathe-
matics (3.5); relevance of mathematics course to biology (3.33). The feedback in the
post-questionnaire was very positive and encouraging: the activities were … inter-
esting (4.17); enjoyable (3.92); challenging (4.67); contributed to the understanding
ofmathematics (3.33); biology (3.67); applications ofmathematics to biology (4.17);
usefulness of MM in regular mathematics classes (3.83). Despite the challenges and
occasional frustrating moments, students warmly acknowledged the positive impact
of the activities. Given that we selected tasks with different levels of complexity,
each reflecting at least one of the four justifications for the inclusion of applications
in modelling (Blum 2015), we conclude that both aims of the study were achieved.
Students’ responses on the questionnaire, to our satisfaction, do not support the
hypotheses that “significant effects are less likely… (ii) for short term than sustained
interventions; and (iii) for perceptions of students than teachers” (Williams et al.
2016, p. 19) and encourage the use of short term interventions as an efficient tool for
stimulating students’ interest in mathematics and its interdisciplinary applications.
It goes without saying that “for quality teaching of applications and modelling, the
teacher needs a lot of different competencies” (Blum 2015, p. 88).

What other lessons did we learn? Unexpectedly, a meticulously structured,
restricting students’ agency Task C confused students even more than the open-
ended Task A (for instance, an unusual request to plot the change in biomass versus
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time). This suggests that even a very detailed solution plan embedded in the task may
not necessarily lead to students’ success if teacher’s guidance is limited or unavail-
able. Surprisingly, students denied authenticity of some tasks, including, for instance,
Task A, but did not question it for Task C. This issue, however, did not noticeably
influence students’ engagement with the tasks.

Students had difficulties with the mathematisation. Our study confirmed once
again that “learners are afraid of making assumptions” (Blum 2015, p. 79). In MM
tasks, students may need three different classes of assumptions associated with (i)
model formulation; (ii) mathematical processes; and (iii) strategic choices in the
solution process (Stillman 2015, p. 800). In Task A, one group of students made
reasonable assumptions regarding the traffic intensity during the day and night and
the time it takes to drive 200 km on a highway (i.e. car’s speed) abolishing them
later in favour of guessing the percentage of rabbits hit by the cars (difficulty with
(i)). In Task C, students experienced difficulties with the assumptions in (ii) when
they failed to replace the assumption of unlimited exponential growth of bacteria for
a different one, associated with the “flattening” of the graph due to the nutrient and
space restrictions. We can say that the “assumptions theme” was one of the leading
learnings for the whole activity. In fact, answering the question “What was the best
thing about the activity?” in the post-session questionnaire, many studentsmentioned
the assumption building: “The way we got explained how we can make assumptions
and overlook and add variables”; “It made me think in a different way than usual
and it was exciting. Making assumptions was new to me”; “The assumptions. To
understand what assumption is important and which is not”.

Our experience in the project was very rewarding both for students and for the
project team and in many aspects more positive compared to what was reported by
the biologists who attempted incorporation of mathematics and MM into biology
courses (Chiel et al. 2010; Hester et al. 2014; Madlung et al. 2011; Rheinlander and
Wallace 2011; Usher et al. 2010).
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Chapter 49
Promoting Conditions for Student
Learning in a Mathematical Modelling
Course

Kerri Spooner

Abstract A case study looking into tertiary student learning experiences for math-
ematical modelling was carried out. The focus of the study was the student experi-
ence resulting from one lecturer’s learning goals to address the research question:
What is the student experience with mathematical modelling created by one lecturer
of a first-year mathematical modelling course? Data were collected from student
interviews. Student data were then inductively analysed, using reflective thematic
analysis, to identify themes relating to their collective learning experiences. Results
show that through guidance during lectures, students were able to have an indepen-
dent modelling experience. To further enhance independence, it is recommended that
lecturers work through problems unfamiliar to themselves during lectures.

Keywords Learning goals · Independent modelling · Reflective thematic
analysis · Self discovery · Teaching of mathematical modelling · Tertiary teaching

49.1 Introduction

The purpose of this study was to explore the experience of first-year tertiary students
with an open-ended modelling activity within a mathematical modelling course
designed for engineering students. This study addresses the research question: What
is the student experience with mathematical modelling created by one lecturer of a
first-year mathematical modelling course? The lecturer’s learning goals for students
of the course, including the learning goals for the open-ended activity, were estab-
lished in an earlier study (see Spooner 2020). A particular focus of this study was
to gain insight into the student experience produced from the lecturer’s learning
goals. The modelling course consisted of lectures, tutorials, and a time-restricted,
open-ended modelling project. This chapter considers the connection between the
lecturer’s learning goals and the resulting student experience. Literature on learning
goals for mathematical modelling, current teaching practices concerning the use of
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open modelling projects at tertiary level and teaching support recommended for
modelling projects will be presented. The learning goals of the lecturer used to
inform the interpretation of the student data are referred to, followed by evidence of
the student experiences these produced. This will then be discussed with literature
support.

49.2 Literature Review

Consciously or subconsciously, lecturers have learning goals for students. There is
a known link between learning goals and student educational experiences (Blomhøj
andKjeldsen 2006; Stronge 2018). An established global learning goal for secondary
and tertiary mathematical modelling teaching is to develop modelling competency
(Blomhøj and Kjeldsen 2011; Blum 2011). At the tertiary level, Caron and Bélair
(2007) present and define communication skills, intervention skills, and evaluation
skills as sub-competencies of modelling competency. Blomhøj and Kjeldsen (2011)
promote reflecting internally on the modelling process and fostering the ability to
reflect on the use and application of models as part of developing mathematical
modelling competency. Interviews with mathematical modelling lecturers revealed
modelling competency also includes connecting mathematics to reality, looking for
patterns, exploring relationships, and being comfortable that the first attempt at
producing a model will not likely produce a realistic model (Drakes 2012). In regard
to developing generic modelling competency, a general discussion concerning a
lecturer’s subsidiary learning goals that underpin this general goal is lacking (Spooner
2020). A lecturer’s subsidiary goals for developing mathematical modelling compe-
tency for his first-year modelling were presented in an earlier study (Spooner 2020).
These goals, along with student outcomes created from these goals, form the basis
of this study.

A generally agreed characteristic for developing modelling competency is to
provide students with opportunities to actively participate in the modelling process
(Blomhøj and Kjeldsen 2011, 2013; Caron and Bélair 2007). “Modelling is not a
spectator sport and can only be learnt by doing” (Kaiser and Stender 2013, p. 280)
with many studies suggesting that modelling is best learnt with authentic open-ended
problems (Caron 2019). It is thought to be vital that studentsworkwith, and have their
own experiences of creating, mathematical models of realistic situations (Blomhøj
2009; Kaiser and Sriraman 2006). Alongside active participation, evidence shows
that mathematical modelling competencies can be developed using a combination of
group work, classroom discussion, and individual work (Maaß 2006). Open-ended
modelling activities, where the model to be developed is not immediately obvious,
has similar characteristics.

At tertiary level, Duan et al. (2020), Blomhøj and Kjeldsen (2013), and Caron
and Bélair (2007) studies, centre around the use of various open-ended modelling
activities. To provide guidance for students, support is given, either internally or
externally with open-ended mathematical activities. Support ranges from externally
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supplied heuristic strategies (Caron and Bélair 2007), that is, strategies that enable a
person to discover or learn something themselves (Radford et al. 2015), to consulta-
tions between lecturers and students (Blomhøj and Kjeldsen 2013; Duan et al. 2020).
Specific examples of heuristic strategies include: simplify as much as possible, use a
simulation, draw and use diagrams, explain and discuss your thinking with someone
else (Kaiser and Stender 2013; Stender 2019), and asking, have you seen a similar
problem before? The support provides a scaffold for the activities, that is a structure
or framework for students to refer to (Durandt 2018) as they progress through the
modelling process.

Scaffolding approaches have developed out of constructivist teaching and learning
methods (Kaiser and Stender 2013). One such approach is discovery learning. Alfieri
et al. (2011) carried out twometa-analyses that concluded assisted discovery learning
had better outcomes for students compared to unassisted discovery learning or direct
instruction.Optimal approaches for assisted discovery learning included guided tasks
with internal scaffolding, “tasks requiring learners to explain their ideas” (Alfieri et al.
2011, p. 12), and worked examples (Sweller et al. 2007). Klaher (2009) recommends
using direct instruction initially to facilitate later discovery as an alternative approach
for assisted discovery.

Developing mathematical modelling competency is central to modelling educa-
tion. It is generally agreed that modelling competency is best developed through
providing active opportunities to participate in modelling. The use of open-ended
modelling activities is one way of providing this. Guidance can be provided inter-
nally or externally to the activity and is generally in the form of a scaffold designed
to provide either directed or independent guidance.

49.3 Context of Study

To provide insight into the experience tertiary students have with an open-ended
mathematical modelling activity and how this relates to their lecturer’s student
learning goals, an exploratory case study (see Yin 1981 for method) was conducted.
To achieve this, the research question establishedwas:What is the student experience
with mathematical modelling created by one lecturer for a first year mathematical
modelling course? The context of the study involved a first year summer school
university mathematical modelling course in New Zealand designed for engineering
students, its lecturer, and eight student participants. The five-week course consisted
of two-hour classes (a combination of lecture and tutorial), four times a week.

Following an assessed pre-modelling project tutorial, students in groups of four
undertook an assessed, open-ended modelling activity that formed 5% of their grade.
Students were allocated seven hours to work on the one-day activity. A question
applied on the day was: How high can you jump from a building without causing
injury? The lecturer selected this question as it was ill-defined and open, enabling
students ample opportunity to engage in, and independently develop, a group-directed
modelling process. After working through the modelling process with the question,
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students submitted a written report outlining their process and showing the model
produced. All student groups produced unique models in the form of a function or
set of functions.

The lecturer is considered an expert lecturer, having received five teaching excel-
lence awards. He is focused on developing modelling competencies within a holistic
experience of modelling, that is, one that includes the full process of modelling
(Haines et al. 2003). The lecturer’s approach to provide a mathematical modelling
experience for students included the following learning goals: Develop techniques
formodelling;Acquire knowledge of the process ofmathematicalmodelling; Engage
in independent and critical thinking; Become familiar with skills for effective
group/teamwork; Understand the criteria for the assessment of modelling project;
Relate mathematics to genuine contexts; Participate in the modelling process as a
group, independent of the lecturer; Communicate thought processes. See Spooner
(2020) for additional details. These previously established learning goals were used
in this study to inform the interpretation of the student experience data.

As part of the development of techniques for modelling, a generic modelling cycle
was introduced during lectures and tutorials. This consisted of: Clarify the problem,
list and classify the factors, make assumptions, formulate the problem statement,
formulate the model, solve the model, interpret the model, and compare with reality.
The lecturer utilised this, alongwith a “keep it simple” principle when rolemodelling
the modelling problems and in assessment solutions.

Students enrolled in the course were invited to participate. Three male and five
female students, out of eighty students, took up the invitation. Student participants
were from five of the sixteen groups who participated in the open-ended activity. For
all students, this course is their first university experience ofmathematical modelling.

49.4 Data Collection and Analysis

The student participant data was collected through video recordings and field notes
of individual post-course interviews conducted within two weeks of course comple-
tion. Student interview questions were designed to provide insight into the learning
experience created for the students during the course, with a particular focus on a
student’s participation in the one-day modelling project. A large part of the questions
was directed at establishing the approach undertaken by the student group during the
modelling project and any associated challenges.

To gain insight into the students’ learning experience of the course, and in partic-
ular, the one-day modelling project, reflective thematic analysis was used (Terry
et al. 2017). This is an iterative method with an interpretative orientation where the
objective is to make sense of what is going on within the data rather than classifying
data into categories. The method involved first becoming familiar with the data set
by reading and rereading, followed by inductive coding, producing both descriptive
and analytical codes. Analytical codes encapsulate deeper meaning, and descriptive
codes are codes that capture the primary topic of the data extract (Gibbs 2007). “I
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went over to another group at some point and they were doing something else” was
coded as More than one way, and is an example of descriptive coding. For the data
extract, “With not having the pressure of having a right or wrong answer is nice”,
a deeper meaning is implied; consequently, this was coded within the analytical
code Freedom to explore. Once initial coding was carried out, the data were then
re-examined using the learning goals of the lecturer as deductive codes to enable
codes relevant to the lecturer’s learning goals to be examined. Draft mind maps were
then created to explore possible clusters and relationships between codes. A table of
candidate themes, including potential codeswithin themes, was created to help define
the themes, including their boundaries and how each theme might fit with others to
“tell an overall story of the data” (Terry et al. 2017, p. 28). Each candidate theme was
then checked to see if it truly captured the meaning of the coded data segments and
the theme was adjusted accordingly. This was repeated across the dataset until there
was coherency across the themes, associated data extracts and the story the themes
told. The reviewing of the themes was central to the credibility of the analysis (Terry
et al. 2017).

49.5 Findings

The findings are presented with the researcher’s voice interweaved with the partici-
pants’ voice to directly capture the student experience relating to the themes (Corden
and Sainsbury 2006). Students’ quotes have been selected to be representative of all
participants and pseudonyms are used. Themes, sub-themes, and codes are shown in
italics.

The lecturer used lectures, tutorials, and the one-day modelling project to provide
opportunities for students’ outcomes in response to his learning goals. The one-
day modelling project enabled students to participate in the modelling process as
a group, independent of lecturer, to use techniques for modelling, apply modelling
processes acquired to develop a model for the problem situation. Independent and
critical thinking combined with communicating thoughts effectively within a group
were characteristics of group work undertaken during the one day modelling project.
Lectures were used to teach students mathematical techniques, methods, and tools
and to give exposure to the process of mathematical modelling, including providing,
and frequently alluding to a generic modelling scaffold.

Results of data analysis from the student experience of the one-day modelling
project revealed three main themes (Table 49.1): giving students responsibility,
students need for reassurance and change of course culture. These all relate to a
fourth theme, students’ independent discovery of the modelling process. Table 49.1
includes both themes and their related codes. These will now be elaborated.
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Table 49.1 Student experience themes and related codes

Themes Giving students
responsibility

Students need for
reassurance

Change of course
culture

Independent
discovery of the
modelling process

Codes Freedom to explore
Student ownership
of the problem
Adult-like
responsibility
Discover their own
process

Unsure if it’s right
Unrealistic results
Querying learning
Correct information
Receive knowledge
from others

Exploration
Unrealistic first time
around
No model answer
No wrong or right
way of approaching
Everyone having
their own approach
Past culture of
getting things right

Responsibility
Change of course
culture
Student’s need for
reassurance
Key modelling
behaviours
Turning points

49.5.1 Giving Students Responsibility

Through the use of the one-day modelling project, the acquiring of knowledge and
techniques for modelling occurred by students being given the opportunity to be
responsible for their own modelling process. Responsibility gave students freedom
to explore, ownership of the problem and adult-like responsibility. Having the project
as a low stakes assessment “minimised competition” amongst students. This enabled
students to have “freedom to explore and not think too much about the end product”
allowing them to discover their own process with “not having the pressure of having
to get it right”. Being able to explore meant students “learnt to do it by themselves”
with all students saying this was how they learnt to formulate the model. “Doing the
question is more than we could learn from just watching the lecturer do it” (Sophie).
All students expressed that being given responsibility, through participation in the
open project, “developed confidence in their ability tomodel”.Student ownershipwas
apparent with groups “defining the problem”, “making [their] own assumptions” and
“making the question [their] own”. “We spent the first hour or so just really defining
or really thinking about how we were going to answer it” (Shelly). By being given
responsibility to work independently and “discover their own process”, the lecturer
was supportive of students “notwanting to be treated like a child”, as firmly expressed
by David.

The generic modelling cycle that was explicitly taught, used by the lecturer when
role modelling problems and in past standard assessment items, was utilised by
the students as a scaffold. “Because Peter had taught us beforehand, some of the
techniques, we knew what to do when things went wrong and we knew where to
start. So you need to have pre-learning, and another thing you’ve got to have is
freedom” (Drew). Steph commented that there had been exposure to the modelling
process during lectures such that it had become internalised “so it’s really engrained
after awhile”. “Keep it simple”, drawing diagrams, and planning were strategies
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used by students. “‘Cause you can access everything and like, it’s up to you to bring
it together in a way that makes sense, but that’s where the mathematic modelling
process is helpful, have some order, order all your thoughts, like a real structured
way” (Don).

49.5.2 Students’ Need for Reassurance

Results show that while students are being given responsibility for discovering their
own process they still expressed a need for reassurance.Unsure if it’s right, no model
answer, unrealistic results, unrealistic first time around andquerying learning correct
information come under this theme. The need for reassurancewas demonstrated, both
with reference to coursework and within the project. For coursework, one student
(David) expressed needing the assurance that the information he was receiving was
the truth. He liked to “receive knowledge from others” and did not like having to
explore answers himself saying when asked “No, because you’re not sure – you
kinda wanna be sure.” Interesting to note, this student’s preferred learning style was
from a textbook and he expressedwanting answers to assignments to “learn”while he
does the problem. “Give me the answer and I will figure out how you got it”. For the
project, even though students were demonstrating modelling behaviour within their
groups, there was doubt expressed that they were actually modelling. “I don’t know
if that’s what mathematical modelling is like really” was a representative student
comment. All students expressed there were times throughout the day where the way
forward was not always clear.

49.5.3 Change of Course Culture

Exploration, unrealistic model first time around, appreciation for not being right first
attempt, no model answer, no wrong or right way of approaching, everyone having
their own approach and “for something not to necessarily be a perfect fit” are all
part of modelling culture. This culture is different to that previously experienced by
New Zealand school and university students for mathematics. Students are used to a
mathematics culture of getting things right. “Changing that culture is hard ‘cause it
starts back at high school, I remember it’s all about getting the answers right” (Don).

49.5.4 Independent Discovery of the Modelling Process

This change of culture, where students take responsibility utilisingmaterials provided
by the lecturer outside of themodellingproject, allowed students todiscover their own
process. “We did some practice problems, but it’s not like that. The four or five steps
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helpedus bring it together” (Sophie). Specific turning points for groups in discovering
their process were: discovering to “keep it simple” by “making assumptions to focus
in on the most simplest way to get things up and running”. “We got stuck….so we
had to assume a lot. It was a case of simplifying things down” (Steph). For another
group, learning how to recognise when a model foundation would be useful was
key to being able to develop a useful model. They discovered that work that did
not necessarily produce a viable model was not wasted. “I think though it [our first
attempt] didn’t give us the right answer … it gave us more details about the question
and so you could understand it better” (Sophie). This was something that was not
apparent to students before participating in the project. All students experienced and
learnt to expect an unrealistic model first time around and observed that there was
no one ideal model for the situation. “I went over to another group at some point and
they were doing something else. But I didn’t feel bad that we were doing our thing,
‘cause you never feel like, ooa that’s the right way to do it” (Drew).

The analysis revealed key modelling behaviours include being mathematically
creative, having behaviours to cope with new unfamiliar territory, being open to
change, being able to draw on internal and external resources and utilising strategies
to go forward.

49.6 Discussion and Conclusion

An independent student self-discovery learning experience for developing mathe-
matical modelling competencies was provided by the lecturer through the use of the
open modelling project day. The modelling project used an authentic open-ended
problem (Caron 2019) and provided opportunities for students to work indepen-
dently of the lecturer in small groups (Maaß 2006), both conditions recommended
for the development of modelling competencies (Caron 2019; Maaß 2006). Students
working in groups explaining, sharing, and discussing their ideas with each other,
assisted each other in their discovery of the modelling process (Alfieri et al. 2011;
Kaiser and Stender 2013; Maaß 2006).

The results show that the support given externally during lectures and tutorials
was taken up by students and utilised during the modelling activity. Support utilised
was worked examples, a generic modelling process, and heuristic strategies. External
support is in contrast to someof the recommendations for secondary schoolmodelling
experiences (Kaiser and Stender 2013), though supportive of Klaher’s (2009) recom-
mendation for self-discovery learning where direct instruction firstly takes place to
aid future discovery. The students used past worked problems as guidance and they
used the generic modelling cycle provided during lectures for assisting self discovery
as recommended by Sweller et al. (2007) and as scaffolding for the process (Blomhøj
and Kjeldsen 2013). These activities provided external scaffolding (Klaher 2009) as
an alternative to the internal scaffolding for self-discovery learning, as suggested by
Alfieri et al. (2011). Students utilised heuristic strategies recommended formodelling
by Stender (2019) that included the saying “keep it simple”, and drawing and using
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diagrams to communicate ideas and planning. The results show that a combination of
the support given externally in class was taken up by students and utilised during the
modelling activity. This demonstrates that the lecturer’s learning objective to provide
an independent student learning experience for modelling, with support external to
the activity, was achieved.

Results show that the students discovered their own process, how to overcome
challenges, and had an adult-like experience, in which they were responsible for
their process and therefore learning from the experience. They discovered that their
first attempt of a model will not be their last, a known modelling behaviour of prac-
tising modellers (Drakes 2012). This change in working culture experience left some
students displaying modelling behaviour, though unsure if what they were doing was
modelling. This suggests that even though the modelling cycle was explicitly taught
and frequently alluded to during the course (as recommended by Caron and Bélair
2007), there is further need for the lecturer to expose the modelling behaviours of
uncertainty and unfamiliarity, and provide additional strategies for dealing with these
in lectures and tutorials. It is recommended that lecturers work through problems
unfamiliar to themselves during lectures in order to role-model these behaviours that
are integral to a modelling experience. This would involve a change of culture not
only for students but also for lecturers, that is moving from a culture of the lecturer
presenting pre-meditated solutions to one of role-modelling strategies for dealing
with uncertainty. Strategies could include exploration, heuristic strategies, and not
producing a perfect model to fit the situation.
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Chapter 50
The Red Book Activity—A Model
Eliciting Activity to Introduce
and Initiate a Section on Statistics
Focusing on Variability and Sampling

Jonas Bergman Ärlebäck and Peter Frejd

Abstract This chapter analyses and discusses nine groups of upper secondary
students’ work on the question “How many red books are there in the library?”.
The students devised and implemented a plan, collected data, calculated estimates
and reflected on what aspects and factors might have influenced their results caused
by their adopted strategy. The analysis of the students’ work focused on recon-
structing and categorizing the models the students devised and implemented, as well
as the sources and types of variability that the activity elicited. The results show how
the central statistical idea of variability is manifested in the models developed and
implemented by the students, and how these can be further explored and applied as
central and bearing ideas for organizing a whole section of statistics at the upper
secondary level.

Keywords Models and modelling perspective ·Model eliciting activities ·
Sampling · Statistics · Teaching · Secondary level · Variability

50.1 Introduction

Statistics and mathematical modelling have lately been promoted as increasingly
important for students to learn in order to be successful in society as well as in their
professional and everyday lives (Franklin et al. 2007; Gal 2002; Niss et al. 2007;
OECD 2013). Given the recent emergence of extremely large and complex data sets
and the growing interest in data science due to increased technological abilities to
collect and analyse data (Manyika et al. 2011), a critical understanding about the
use and role of statistics in our world is now arguably even more important. Indeed,
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Franklin et al. (2007) write that “[o]ur lives are governed by numbers. Every high-
school graduate should be able to use sound statistical reasoning to intelligently cope
with the requirements of citizenship, employment, and family and to be prepared
for a healthy, happy, and productive life” (p. 1). Numbers—or more specifically
data as “numbers with context”—in themselves do not provide any information or
knowledge, but rather require being organized and looked at using models in order
to result in useful insights and knowledge (Manyika et al. 2011).

Research has shown that students often learn statistics from a procedural point of
view with no or little understanding of what they do, why it works, or when to apply
a certain method or way of reasoning (Batanero et al. 2011; Shaughnessy 2007).
Horvath and Lehrer (1998) put forward that the essence of statistical thinking can be
thought of as centred around developing, testing, interpreting, and revising models
in order to understand our world and its diverse phenomena. Drawing on this view,
Ärlebäck et al. (2015) argued that there are many unexploited parallels between this
conceptualization of statistics and the on-going discussion on the use and role of
mathematical modelling in the teaching and learning of mathematics. Building on
the research suggesting that sequences of well-designed and structured modelling
tasks can provide students with rich opportunities to learn more productively than in
traditional settings (Doerr and English 2003; Lesh et al. 2003), we investigated the
potential in adapting a modelling approach to the teaching and learning of statistics.
Focusing on different types of variability in data (Franklin et al. 2007), we draw on
themodels andmodelling perspective on teaching and learning and analyse groups of
students’ work on a model eliciting activity, called The Red Book Problem, designed
to elicit students’ initial models of variability (Lesh and Doerr 2003; Lesh et al.
2000). The two research questions addressed in the chapter are: What models do
students develop and implement when solving The Red Book Problem? and What
sources and types of variability do students’ work on the task elicit?

50.2 Theoretical Background

50.2.1 Statistics and Statistical Inquiry

Statistics as a discipline can be conceptualised and understood in various ways (e.g.
Wild et al. 2018). Many frameworks for statistical investigation build on the PPDAC
framework (Problem, Plan, Data, Analysis, Conclusions) by MacKay and Oldford
(1994). For example, Wild and Pfannkuch’s (1999) four-dimensional framework
of statistical thinking in statistical enquiry is expressed in terms of the investi-
gated cycle, types of thinking, the interrogative cycle and dispositions. The data
modelling perspective on statistics (e.g. Lehrer and English 2018) also draws on the
PPDAC model. In both of these perspectives, variability is situated as a centrepiece
of statistical thinking.
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50.2.1.1 Variability

In Wild and Pfannkuch (1999), variability is portrayed as one of five fundamental
aspects in statistical thinking and is composed of four components: noticing and
acknowledging; measuring and modelling; explaining and handling; and developing
enquiry strategies. Adding to this list, Reading and Shaughnessy (2004) argued that
also describing and representing variability are needed to capture all critical and
important aspects of variability. In this chapter, we use the framework by Franklin
et al. (2007) who build on the aforementioned work and describe the nature of
variability in terms of measurement-, natural-, induced-, and sampling variability.
Measurement variability refers to the fact that whenever repeated measurements are
collected, the result will entail variability and depend on a number of factors such as
the precision of measuring devices used or changes in the system being measured.
Natural variability captures the idea that variability is inherent in the physical world
and nature. Individual and intrinsic differences in the objects being measured will
induce variability in collected data. Induced variability in contrast to natural vari-
ability aims at describing variability that are due to external factors influencing the
attributes being studied (such as an introduced treatment in a controlled experiment,
for example). Lastly, sample variability focuses on the variability in a sample statistic
arising as a consequence of the use of different sample sizes and sample strategies.

50.2.2 The Models and Modelling Perspective (MMP)

We situate our work with respect to the models and modelling perspective (MMP) on
teaching and learning (Lesh and Doerr 2003). In this perspective, a model is defined
as a general system consisting of elements, relationships, rules and operations that
can be used to make sense of, predict, describe or explain some other system. In
particular, a mathematical model focuses specifically on the structural characteristics
of the system in question. TheMMP is grounded in the ideas of Vygotsky, Piaget and
Dienes as well as the American pragmatists’ tradition represented by Mead, Peirce
and Dewey, and Kaiser and Sriraman (2006) discuss the MMP as an example of a
contextual perspective.

The MMP provides a framework to facilitate students’ development of models
towards a given learning goal through three different types of structurally related tasks
organized in so-called model development sequences (MDSs). These sequences are
purposefully designed to (i) elicit the ideas the students bring to the activity (MEAs—
model eliciting activities); (ii) focus on the underlying mathematical structure of
the models elicited by students (MXAs—model exploration activities); and (iii)
students applying their model in similar or new contexts (MAAs—model application
activities). In all of these tasks, students iteratively engage in exploring, expressing,
testing, revising and developing their models to make sense of different situations
and contexts (Lesh et al. 2003; Lesh and Doerr 2003).
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The motivation for the work presented in this chapter is our goal to design and
developMDSs focusing onmultiple key concepts in statistics. To this end, we sought
to design and use a type ofMEA thatwe are calling a grounding and anchoring MEAs,
that provides students with an experience that elicits an ensemble of different central
ideas within a givenmathematical area (rather than amore focused learning objective
as in the traditional use of MEAs). The goal of a grounding and anchoring MEA is
that students’ ideas and experiences elicited by the activity become both the basis
for learning the mathematical content at hand, and the basis for connecting back to
and tying the area of study together. In this chapter, we investigate the potential of
a grounding and anchoring MEA in the context of a model development sequence
focusing on statistics centred around sampling and variability.

50.2.2.1 Model Eliciting Activities (MEAs)

MEAs are tasks in which students are presented with a context where they need to
develop a model that can be used to describe, explain or predict the behaviour of
some situation or phenomenon (Lesh et al. 2000).MEAs have been used in a range of
disciplines and contexts to support and investigate students’ learning. The research by
Lesh et al. (2000) have resulted in the following six design principles for MEAs: (a)
the reality principle—the context should bemeaningful to the students and connect to
the students’ previous experiences; (b) the model construction principle—that there
is an inherent need for the students to develop a model when engaging in the activity;
(c) the self-evaluation principle—that the task permits the students to assess their
models andwork; (d) the model documentation principle—that the situation inwhich
the students are working requires the students to externally express their models;
(e) the model generalization and sharable principle—that the model elicited in the
MEA not is too narrow but rather is sharable, generalizable and applicable to similar
situations; and (f) the simplicity principle—the situation in, and the formulation of,
the MEA is as simple as possible facilitating that a focused model (learning goal) is
targeted (Lesh et al. 2000; Lesh and Doerr 2003).

50.3 Setting and Method

The study was carried out in collaboration with an upper secondary mathematics
teacher in her class of 28 11th-grade students (17–18-year-olds) taking their second
mathematics course in a social study programme. As part of themathematics courses,
Swedish students in grades 10–12 learn about randomness, probability, descriptive
statistics,measures of spread, correlation, causality, regression, and the normal distri-
bution (Skolverket 2011). The teacher participated in a research project aiming to
develop learning activities in statistics using a modelling approach, and the possi-
bility to use an MEA was suggested by the researchers in the project. Before the
intervention, the learning environment was typical for Swedish conditions, meaning
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that classes typically start with the teacher lecturing and presentingmaterial followed
by the students working in their textbooks on assigned problems.

50.3.1 The Red Book Activity

In designing the learning activity, the goal was to formulate an open and rich task
that could function as an anchoring and grounding MEA for a 6-week section of
statistics.Wedrewon a selection of the design principles ofMEAs, and in particularly
wanted the activity to facilitate the students to explore various approaches (the model
construction principle) aswell as have the students to express asmany statistical ideas
as possible explicitly (the model documentation principle). In addition, we wanted
the problem situation to be accessible to the students and to have an objective that
was easy to understand (the simplicity principle).We choose the context of the school
librarywhich facilitated a hands-on-experience for the students by going to the library
to collect real data (the reality principle):

The Red Book Activity
Find out how many red books are there in the library.
1. Devise and write down a strategy and plan for how to answer this question.
2. Carry out your plan and document your work and result.
3. Reflect on the process and write down factors that might influence the

answer.

Although this context does not present a realistic real-world problem situation per
se, it mimics and captures many central aspects of real-world modelling problems,
such as an ecologist’s problem to estimate wildlife population sizes. For example, the
task naturally forces the students to consider different types and sources of variability
such as how to define what should count as a red book, and in addition also naturally
elicits students’ ideas with respect to sampling, since it is not feasible to count and
examine all the individual books in the library.

The model generalization and sharable principle and the self-evaluation principle
were considered in designing the follow-up lesson where the students’ work on
the activity was discussed and built upon. This will however not be presented and
discussed in this chapter.

50.3.2 Data Collection and Analysis

For this study, our data consisted of students’ written work carried out by nine small
groups. The work on the task by one of the groups was video- and audio-recorded.
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We also video- and audio-recorded the teacher in the classroom; and the whole class
discussion following up the students’ work in the second lesson. In this chapter,
we limit the analysis to focus on the written work the students produced and the
key statistical concept of variability in terms of (i) using the models and modelling
perspective (Lesh and Doerr 2003) to reconstruct and categorize the models the
students devised and implemented; and (ii) identifying the sources of variability that
surfaced in the work and reflections of the students using open coding (Strauss and
Corbin 1998), and mapping these codes to the types of variability (measurement-,
natural-, induced- and sampling variability) from Franklin et al. (2007).

50.4 Results

The analysis of the students’ work shows that three principally different models were
used to determine an estimate of the number of red books in the library. We will now
elaborate on these in more detail.

50.4.1 Students’ Models to Determine the Number of Red
Books in the Library

The three different models the students used to answer to The Red Book Problem
were to (I) explicitly focus on the actual number of red books on each shelf; (II)
focus on the proportion of red books on one or more shelves; or (III) use an area–
density measure of red books (# red books per m2). Two of the groups developed and
implemented amodel focusing on the actual number of red books in each shelf (I), six
of the groups made use of a proportional approach (II), and two of the groups used an
area–density measure of red books (III). Group 7 solved the problem twice using first
model I and then model II. All three models developed entailed a sampling method,
and four of the groups further applied some type of stratification (here referring to
an explicit choice to gather information by considering different subsections of the
library) in their sampling process to achieve the numerical values they needed to
come up with an estimate for the sought-after quantity (see Table 50.1 for details).

The two groups who explicitly focused on the actual number of red books on each
shelf (model I) both used stratified sampling and calculated the average number of
red books per shelf. The groups used different sample size: one bookcase (group 7)
and three bookcases (group 4). The groups then multiplied their average number of
red books per shelf with the total number of shelves in the library to find the total
number of red books (see Fig. 50.1). The total number of shelves in the library was
either directly counted (group 7) or calculated for the three different types (sizes) of
bookcases found, by multiplying the (counted) number of shelves in each type of
bookcase with the (counted) number of bookcases of that type (group 4). Since the
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Table 50.1 Models, samples and answer the groups used/derived

Group Model Sample Estimated # red books

Samples selected/used Stratificationa

1 II—proportion 1 shelf No 1296

2 II—proportion 8 shelves Yesc 1231

3 III—area–density 4 areas of 1 × 1 m2 No 604

4 I—number on shelf 3 bookcases Yesb+c 600

5 II—proportion 541 books No 1109

6 II—proportion 12 shelves Yesb+c 1652

7 Both I/II 1 bookcase/5 shelves Yesc 512.6 or 513.56

8 III—area–density Area of 1 bookcase No 582

9 II—proportion 15 shelves No 431

aStratification here refers to an explicit choice to gather information by considering a subsection of
the library
bThe sample of red books stratified
cThe sample of total numbers of books stratified
b+cBoth the sample of red books and of the total numbers of books stratified

Fig. 50.1 Models based on the strategy of focusing on: (left) the number of red books per shelf
(model I); and (right) the proportion of red books per shelf (model II)

library had three different types of bookcases, and the model used by these groups
involve an estimate of the number of red books per shelf and the number of shelves
in the library, the model naturally induced stratification in the sampling process
regarding both quantities (number of red books per shelf and number of shelves in
the library respectively) needed to come up with an estimate. However, only group
4 realised this potential and divided the library into three separate sections/rooms.
Hence, this latter group sampled one whole bookcase, as well as counted the total
number of shelves, in each section.

Six of the groups built their models around finding the proportion of red books on
one or more shelves (model II). Five of these groups sampled between one and 15
shelves in the library, and counted both the total number of books on each shelf and
the number of red books on each shelf. From their sample, and after having counted
the total number of shelves in the library, they calculated the (mean-)proportion of
red books and the total number of books in the library, before multiplying these
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Fig. 50.2 Model based on
using an area–density
measure of red books (model
III)

quantities together to get an estimate of the total number of red books (see Fig. 50.1).
Three of the six groups adapting this type of model used some kind of stratification
in their sampling process by dividing the library into different section and to sample
and calculate the total number of (red) books in these individual sections. Two of the
groups based their stratification based on the different rooms in the library. One group
based their stratification on a division between fiction and fact/science literature,
arguing that there might be different “colour-trends” within the two genres, which
in addition prompted them to also sample the number of red books in the stratified
sample. Group 5 used the samemodel, but the actual number of shelves they sampled
is not explicitly specified in their written solution; only that they in total sampled
541 books (see Table 50.1).

Two groups created area–density models (model III) of the number of red books
in the library. One group sampled four different 1 × 1 m2 areas of bookcases in the
library and created a new measure: the mean area–density of red books per square
meter of bookcase by counting and averaging the number of red books in the four 1
× 1 m2 areas. The other group sampled one bookcase, counted all the red books in
the selected bookcase, took measurements of the bookcase, and then calculated the
area–density of red books per square meter. To find the total bookcase-area of the
whole library, both groups made measurements of all the bookcases, added these,
and then multiplied with their area–density of red books to find an estimate of the
total number of red books in the library (see Fig. 50.2).

50.4.2 Types and Sources of Variability Elicited
by the Students’ Work

The groups’ written answers to the question about what factors might influence their
answer were generally short such as “What one considers as ‘red’” or “There are not
the same number of books on each shelf”. In all, 23 sources of variability could be
identified in the students’ answers, and six themes were identified and connected to
the four different types of variability by Franklin et al. (2007); see Table 50.2.



50 The Red Book Activity—A Model Eliciting Activity … 603

Table 50.2 Sources of variability identified in the students’ reflections

Themes (nature of variabilitya) Student identified sources of variability
(# of groups expressing this source)

bTotal (# groups)

Basic definitions lacking (M) – What counts as a red book not
well-defined (5)

– What counts as a book more
generally not well-defined (1)

6 (5)

Physical variability (N) – Books come in different sizes (1)
– Bookshelves come in different
dimensions (1)

2 (1)

Population size unknown (I) – The exact number of books in the
library is not known (1)

– Don’t know how many books are
checked out (2)

3 (3)

Distribution of (red) books (I, N) – Different number of (red) books on
shelves (8 (= (4) + 4))

– Different trends/patterns different in
sections of the library (1)

8 (5)

Sampling (S) – Larger sample gives a greater/better
estimate answer (2)

– Selection bias: “You sort of
pre-scanned for red books…” (1)

3 (3)

Calculating (M) – Rounding when doing calculations
(1)

1 (1)

aHere M Measurement variability; N Natural variability; I Induced variability; and S Sampling
variability (c.f. Franklin et al. 2007)
bSome of the groups expressed more than one source as variability

In Table 50.2, the theme Population size unknown captures variability that mirrors
the uncertainty of books present in the library due to induced variability (I) from
people reading books on site and having checked out books. The students’ realization
that books and bookshelves come in different sizes in the theme Physical variability
focuses on the natural variability (N) within the population of books. Sampling
variability (S) is expressed in the theme Sampling, and with respect to measurement
variability (M) the students mentioned factors related to Calculating and the fact
that Basic definitions [were] lacking. The theme Distribution of (red) books can be
connected to both induced and natural variability (I, N) depending on what aspect is
emphasised.

50.5 Conclusions and Discussion

Our analysis of the students’ written work on The Red Book Activity shows that
(i) they based their models on three different sampling strategies (actual number
of red books on shelf, proportion of red books, and an area–density measure) and
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created novel mathematical constructs such as various counts, proportions and area–
density to find the number of red books in the library; and (ii) elicited all four types of
variability (measurement-, natural-, induced-, and sampling variability) discussed by
Franklin et al. (2007). Hence, we conclude that the key statistical idea of variability
is manifested in the models and sampling strategies developed and implemented by
the students, suggesting that these can be further explored and developed in a model
development sequence focusing on variability using The Red Book Activity as a
MEA. Indeed, many of the ideas and considerations (such as applying some kind of
randomized sampling) that influenced the students’ choices and work surfaced and
were further discussed in more detail in the whole class discussion that followed the
activity in the subsequent lesson.

The chapter also briefly introduces the notion of anchoring and grounding MEAs,
and besides showing that The Red Book Activity is promising for developing models
of variability, it in addition potentially also elicits other key statistical ideas: questions
and issues related to (the role of randomand stratified) sampling; the students’ various
estimated answers (see Table 50.1) might be used to develop models of distributions;
the collected data to introduce various graphical data representations; and, the whole
activity as such to discuss statistical problem solving or to start developing the ability
of making (informal) statistical inferences. This, however, needs to be studied in
future research.
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Chapter 51
Connections and Synergies Between
the Teaching and Learning of Statistics
and Modelling—A Pilot Study

Peter Frejd and Jonas Bergman Ärlebäck

Abstract We present a pilot study aiming at characterising the potential connec-
tions and synergies between the teaching and learning of statistics and modelling.
Using grounded theory and the software NVivo, we analysed the 17 ICTMA books
published to date and the books from ICME-6 and the 14th ICMI study. The results
present identified themes based on the contexts in which the notions of statistic*
are used in the books: teach and learn statistics/modelling; ICT; curriculum and
theory. The analysed literature provides suggestions for how to teach statistics using
a modelling approach, but seldom discusses the theoretical aspects of the relation-
ship between mathematical and statistical modelling. The results also describe the
potential of teaching and learning modelling using statistics as content and digital
technology. Limitations of the methodological approach and suggestions for how to
overcome these to develop a more robust methodology are also discussed.

Keywords Mathematics ·Mathematical modelling · Statistics · Literature review ·
Grounded theory · Statistical modelling

51.1 Introduction, Research Goal and Research Question

The teaching and learning of statistics and its applications are the focus of the research
field of statistics education, and substantial progress has been made in this area in the
last 20 years (Ben-Zvi et al. 2018). However, as pointed out and argued by Ärlebäck
et al. (2015), there aremany unexploited and potentially productive parallels between
the conceptualisations of statistics in statistics education and the ongoing discussion
on the use and role of mathematical modelling in the teaching and learning of math-
ematics. Crossovers between the fields exist, such as the work by Doerr et al. (2017),
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who used a modelling approach to develop students’ informal inferential reasoning.
However, in this chapter, we want to investigate what evidence can be found of these
alleged connections and synergies between the teaching and learning of statistics
and mathematical modelling in research on mathematical modelling. We do this by
developing and piloting a methodological literature review approach centred around
a computer-aided keyword search, and apply this to the books from the past ICTMA
conferences with the aim of characterising the themes that come to the fore in this
selection of modelling literature, alluding to the (potential) connections and syner-
gies between the teaching and learning of statistics and mathematical modelling.
The research question we explore is: In what contexts, and how, is the notion of
“statistics” elaborated on in ICTMA books?

In addition, we also discuss some limitations of the methodological approach
applied, and how this can further be developed in order to provide a more informa-
tive, adequate and accurate picture of connections and synergies in the teaching and
learning of statistics and mathematical modelling.

51.2 Statistical Models and Modelling from a Statistical
Perspective

In statistics education, the teaching and learning of statistics are often framed and
discussed in terms of statistical thinking, statistical literacy or statistical reasoning
(e.g. Gal 2004; Garfield 2002; Pfannkuch and Wild 2004). However, these notions
are not mutually exclusive. Statistical thinking is, according to Wild and Pfannkuch
(1999), “concerned with learning and decision making under uncertainty. Much of
that uncertainty stems from omnipresent variation. Statistical thinking emphasises
the importance of variation for the purpose of explanation, prediction and control”
(p. 227). Statistical literacy is related to the ability to interpret and validate quanti-
tative information found in different contexts, and the ability to communicate and
use statistical information to underpin opinions as well as personal and professional
decisions (Gal 2004).Statistical reasoning is an ability to interpret statistical informa-
tion, use statistical ideas in reasoning, explain statistical processes, connect statistical
concepts to each other and make sense of statistical results (Garfield 2002).

The research fields of modelling and statistics education both have strong connec-
tions to other disciplines and contexts outsidemathematics (Niss et al. 2007; Shaugh-
nessy 1992). Indeed, statistics as a discipline arose as a tool to be used in other
disciplines to cope with and handle statistical data (Cobb and Moore 1997), and the
notions of statistical models and modelling are central within statistical education
to make sense of our world (Shaughnessy 1992). Hence, statistical models foremost
consider aspects such as variability, uncertainty and context (Lehrer and English
2018), often visualised and communicated using different representations such as
regression lines, plots, diagrams, and algebraic and numerical expressions. Statis-
ticalmodelling is aworking process that uses statistical ideas and concepts to develop
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or use statistical models. Lehrer and English (2018) describe statistical modelling as
a cyclic process that involves posing (researchable) questions that can be answered
by designing and conducting investigations. This entails generating and selecting
attributes to investigate, as well as deciding how to measure the attributes, which
in turn gives rise to a sample representing the phenomena studied, but causing vari-
ability. In order to model the variability, it is important to organise and structure
data as well as measuring and representing data. After getting a grip on the vari-
ability, it is possible to make inferences and express uncertainty about the inferences.
So-called modelling cycles are also frequently used within the research literature
of mathematical modelling, referring to the iterative process of structuring an extra
mathematical problem situation, deciding on the use of suitable mathematics and
working mathematically within the problem, and then interpreting and evaluating
the results with regard to the extra mathematical situation (Niss et al. 2007).

51.3 Methodology

The method we developed to characterise the potential connections and synergies
between the teaching and learning of statistics and mathematical modelling essen-
tially follows the three basic steps for conducting a traditional qualitative literature
review, namely to (a) identify adequate research literature related to the research
question; (b) organise and analyse the identified research literature and (c) report the
outcomes of the analysis (Bryman 2004).

In piloting our methodology, we elected to analyse the past ICTMA books and the
official published outcomes from the 14th ICMI study and ICME-6.We acknowledge
that this is a non-exhaustive sample and potentially excludes much relevant research
and many authors, but for the purpose of testing our methodological approach, it is
considered adequate, since this relatively small selection is guaranteed to provide a
rich and varied selection of research on modelling from a multitude of perspectives,
understandings and foci.

Toorganise and analyse the chapters in the selectedbooks,wedeveloped amethod-
ological approach using the computer softwareNVivo. The ideawas to exploit aword
frequency query tool within NVivo, which automatically identifies and highlights all
words entered into the NVivo search string. To use this functionality in NVivo, we
defined a set of search words comprised of all notions and concepts related to different
definitions of statistics. This set of search words included words like mean, statistics,
statistical literacy, variability and t-test. The search words were then used to identify
sections of text in the chapters of the books in our selection that use and discuss these
statistical notions and concepts.

However, as single and isolated words by themselves do not provide any informa-
tion on use and intended meaning, we chose the segments of texts around the words
highlighted by NVivo as units of analysis to capture the contexts in which the words
were used. These segments of texts will be called context units in this chapter, and
each context unit typically contained one to three sentences or a small paragraph.



610 P. Frejd and J. B. Ärlebäck

To categorise and classify our identified context units, a two-step coding strategy
of open coding and axial coding (Strauss and Corbin 1998) inspired by grounded
theory was applied. First, the context units were iteratively classified and organised
into themes or open categories using the guiding question: What are the contexts
in which the words in the search set are used in the identified context units? Then,
the open codes were subjected to axial coding, which is the process of identifying
relationships and conditions to link and group the open coded categories together
into new and broader categories.

In this chapter, we present a pilot study of this method by focusing on a narrow
subset of the set of search words, namely the search words statistic* (where the
asterisk captures all words starting with “statistic”, such as statistics and statistical).
Given that the set of searchwords ismuch larger (containingwords and concepts such
as linear regression, distributions and t-tests), we know that this only will provide a
first indication and a partial insight with respect to our overall goal of characterising
the potential connections and synergies between the teaching and learning of statistics
and modelling. However, since the method of using NVivo together with context unit
analysis needs to be evaluated and validated, we wanted to systematically pilot the
method before undertaking the full analysis.

51.4 Results

The word frequency query in NVivo identified a total of 1300 words beginning with
“statistic-”. Figure 51.1 and Table 51.1 show the frequency of the words associated
with “statistic*” found in the analysed literature. The frequency varies from three
identified words in ICTMA12 to 218 words in ICTMA05. In all, 88 open codes
emerged during the analysis. However, due to space limitation, we mainly focus
and report on the results of the axial coding. Seven axial codes were identified:
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Fig. 51.1 Frequency of the words “statistic*”
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Table 51.1 Number of context units coded in relation to axial codes and books

Irre. Stat. Model Curr Metho Theory CT Total

ICMI06 31 40 23 14 2 1 4 115

ICMI14 12 16 26 23 7 0 7 91

ICTMA01 8 2 2 4 5 0 1 22

ICTMA02 19 10 21 5 0 1 0 56

ICTMA03 31 35 26 19 0 0 7 118

ICTMA04 5 2 15 10 4 0 0 36

ICTMA05 33 100 28 32 6 11 8 218

ICTMA06 4 4 8 7 2 0 1 26

ICTMA07 11 16 10 16 1 0 6 60

ICTMA08 11 7 5 8 4 0 4 39

ICTMA09 6 7 5 8 3 0 2 31

ICTMA10 5 4 3 2 1 0 5 20

ICTMA11 11 1 3 3 3 0 0 21

ICTMA12 0 1 2 0 0 0 0 3

ICTMA13 21 6 10 4 4 1 5 51

ICTMA14 21 20 13 5 12 20 3 94

ICTMA15 11 8 5 0 12 0 2 38

ICTMA16 43 31 19 8 0 43 2 146

ICTMA17 26 25 29 14 5 13 3 115

Total 309 335 253 182 71 90 60 1300

Irrelevant (Irre),Methodology (Metho), Teach and learn statistic (Stat), Teach and
learn modelling (Model), Theory, Computer Technology (CT) and Curriculum
(Curr), see Fig. 51.1 and Table 51.1.

Twenty-four per cent of the context units were coded as Irrelevant codes, which
include open codes where the search word appeared as part of References, Contents,
Name of course, Affiliations, Book titles, etc. Five per cent of the context units is
categorised as Methodology, encompassing aspects focusing on research method-
ology that captures context units discussing how statistical methods have been used
to validate the research results in the analysed literature. However, context units cate-
gorised as Irrelevant andMethodology do not contribute towards characterising the
potential connections and synergies between the teaching and learning of statistics
and modelling.

The axial code Teach and learn modelling (19% of the context units) captures
context unitswhere examples are given of how statistics is used as a content or context
within the teaching and learning of modelling, with an emphasis on the modelling
process. It entails context units that discuss the potential to introduce modelling
using the topic of statistics, as illustrated by Dyke (1987): “A good starting topic is
statistics, which all students realise is useful, leading up to simulation and the first
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modelling …” (p. 43). As suggested in this quotation, several context units show that
the modelling problems students worked on in modelling courses and project work
are of a statistical nature, and students often find statistics relevant for engaging in
mathematical modelling connected to real life situations. Other context units discuss
statistics as a tool in the modelling process. Some authors argue from a general point
of view that statistics as a tool is important in project work, claiming for example
that “Statistics is clearly a useful and necessary tool required by large numbers of
pupils for their project work in other subject areas” (Rouncefield 1989, p. 154).
Other researchers focus on specific parts of the modelling process where statistics
might be a useful tool. According to Jablonka (1997):

In surveys people possibly lie, are influenced by the way the question is posed or answer
what seems desirable… so that validity is not easily guaranteed, though the measurement
may be reliable. For assessment knowledge from statistics… as well as knowledge about the
process of collection and recording of the data may be needed… (p. 44)

Here, Jablonka discusses the process of validatingmathematical models and high-
lights a connection that knowledge in statistics is one of the key components in that
process.

The axial code Teach and learn statistics (26% of the context units), in contrast
to Teach and learn modelling, collects context units focusing on the teaching and
learning of statistics rather than on the learning ofmodelling. Not surprisingly, within
the analysed literature, suggestions for teaching statistics are frequently described
usingmodelling as a vehicle. In their chapter In-depth use of modeling in engineering
coursework to enhance problem solving, Clark et al. (2010) discuss a modelling
activity with an aim to develop students’ understanding of statistics, and write that
statistics is useful to

search for measurements or data… They could use this data to formulate and test statistical
hypothesis developed on their own. The benefit would be increased understanding of the
origins of data and the implications of using it… The students would be encouraged to make
full use of library resources, the internet, practitioners, and other experts, thereby making
the exercise more of a real-world, interactive, and multimedia experience. (Clark et al. 2010,
p. 185)

The students in the quotation participated in a designed modelling activity
which brings up aspects that are commonly addressed in statistical courses, such
as exploring data, formulating hypotheses and applying statistical tests. In addition,
the quotation connects to workplace mathematics, where statistics may be a useful
tool in situations such as estimating the efficiency of industrial processes (Bungartz
1991). Evidence is found in the literature that teaching and learning statistics using
a modelling approach develops students’ statistical competence, as displayed in the
following examples: “the students’ mathematical and statistical knowledge develops
over this period, they are able to draw upon a continuously widening range of material
and techniques necessary to back up the model building activities” (Hamson 1987,
p. 85); and “It shows that the data-oriented modelling approach in the applied math-
ematics course improved statistical thinking skills” (Engel and Kuntze 2011, p. 404).
These two quotations indicate that teaching statistics through modelling increases
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students’ understanding of statistics, pointing to synergetic outcome effects between
engaging in modelling for learning statistics and engaging in statistics for learning
modelling.

The axial code CT (Computer Technology, 5% of the context units) captures
context units involving the role of computers. Many context units in CT are found
in chapters explicitly focusing on ICT such as Teaching and Learning Statistics by
Computer (Kemme 1993), and often emphasise the use of computers for analysing
statistical data. In Hodgson’s (1997) study, “the students entered the data into a
spreadsheet, graphed the data, and identified best-fitting models using the statis-
tics capabilities of the spreadsheet” (p. 214), illustrating how students developed
mathematical models using regression. Different types of digital statistical toolkits
are identified in multiple empirical studies, like Microtab, calculators, Excel, SPSS,
Fathom, MATLAB, etc. The axial code CT also captures ideas of how students
may simulate professional practice using both technology and statistical data, with
a reference to so-called data-generated modelling, found in workplaces that include
the handling of statistics and statistical toolkits (Frejd 2017).

Curriculum (14% of the context units) is an axial code that collects context units
about statistical content or processes to be taught (as stated in curricula), standards for
assessment and issues about statistical skills. An example of a context unit explic-
itly concerning such learning goals is found in Hamson (2001): “The aims of the
module can be summarised as: (i) to formulate and develop mathematical models of
environmental processes (ii) to learn more advanced topics in the statistics of data
analysis” (p. 261). The two learning goals of the aforementioned module have the
explicit aims of developing students’ statistical and modelling abilities. Some of the
literature focused on standards for assessment and developing criteria for assessing
modelling in statistical enquiries (Izard 1997), whereas other literature focused on
statistical skills. As previously argued, statistical knowledge may be improved by
modelling activities (Engel and Kuntze 2011; Hamson 1987). However, concerns
about the lack of statistical abilities are also found in the analysed literature, together
with explicit suggestions that curriculums should focus more on these issues:

The information society requires its members to be prepared to be able to interpret informa-
tion…However, these audiences are in general not well prepared to handle these information
carriers. Descriptive statistics, especially its use andmore importantly itsmisuse, should have
a central part in the mathematics curricula. (de Lange 1993, p. 6)

As shown in this quotation, de Lange (1993) raises concerns about citizens’ statis-
tical abilities and argues that more learning activities about descriptive statistics
should be included in the classroom.

The axial code Theory (7% of the context units) collects context units focusing
on theoretical aspects of statistical modelling and its relationship to mathematical
modelling. The terms statistical models and statistical modelling are frequently used
in the reviewed literature, but are usually not explicitly clarified in any greater detail.
A few context units, however, explicitly discuss theoretical issues. Graham (1993)
sets out to “draw out three frameworks which underlie certain key features of statis-
tics, and [will attempt to] use these to make suggestions as to how the subject might
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be taught more effectively” (p. 177), and, for example, discusses a cyclic statistical
working process describing how to work with statistical enquiries. The notions of
statistical literacy and its relationship to mathematical modelling are discussed by
Engel and Kuntze (2011). They “look at the relationship between modelling compe-
tencies and statistical literacy and provide empirical evidence that proficiency in
these areas can be jointly improved” (p. 396), which presents some parallels between
statistics in statistics education (statistical literacy) and mathematical modelling
(modelling competence) in the teaching and learning of mathematics. Engel and
Kuntze (2011) draw on the signal–noise metaphor to explain the core of statistical
modelling and statistical thinking. Campos et al. (2015) include a theoretical section
dealing with statistical reasoning, statistical thinking and statistical literacy. These
authors also introduce a theoretical approach described as critical statistics educa-
tion, aiming to foster a productive disposition towards important social and political
issues, using realistic statistical enquiries together with ICT.

51.5 Conclusion and Discussion

In this chapter, we have developed and piloted a methodological approach to conduct
a literature review aimed at characterising the potential connections and syner-
gies between the teaching and learning of statistics and mathematical modelling
in research on mathematical modelling. By focusing on contexts in which the words
statistic* are discussed in the selected literature, the application of the method-
ology highlighted and revealed connections and synergies in terms of the teaching
and learning of statistics using modelling as a vehicle and teaching and learning
modelling using the content of statistics. In addition, the role of computers and other
information technology, aspects related to curriculum policy and assessment and
theoretical discussions were also topics identified in the analysis.

Regarding the methodological approach, the NVivo software proved to be helpful
in implementing the grounded theory-inspired approach, especially when finding
context units mentioning the word statistic*. However, implementing the two-step
analysis was complex and time consuming, since the context units could potentially
refer to different things. In particular, the axial coding was challenging when coordi-
nating different meanings within the same context units, and this uncertainty needs
to be considered when interpreting the relative frequency of context units within a
particular theme. However, the coding was discussed between the two authors to
arrive at a consensus on their meaning in order to increase reliability. An alterna-
tive method might have been to explore and categorise the identified chapters where
the word statistic* appeared most frequently, rather than coding all context units
containing the search words. Due to technological difficulties with the ICTMA12
proceedings, not all chapterswere fully readable byNVivo,which affected our results
but probably not to a significant extent.

The variation in frequency of the words statistic* within the analysed litera-
ture as depicted in Fig. 51.1 and Table 51.1 is partly explained by some of the
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books (ICTMA5, 16 and 17) having chapters that focus explicitly on the teaching
and learning of statistics. The earlier proceedings tend to include more examples
connected to courses in statistics, whereas more recent literature concerns other
aspects such as statistical literacy. Many references and quotations in this chapter
within the axial codes of the teaching and learning of statistics using modelling as a
vehicle, teaching and learning modelling using the content of statistics, and aspects
related to curriculum policy are from older ICTMA books highlighting the large
number codes connected to these books, as shown in Table 51.1. The axial code
theory includes references from more recent literature in this chapter, and the role of
computers is found to be discussed with a low frequency in most of the books, which
can also be seen in Table 51.1. However, our results also show that issues related
to deciding on attributes, sampling, variability and making inferences (e.g. Lehrer
and English 2018) are rather spares in the analysed sample, and it could be fruitful
to explore these areas further from a mathematical modelling perspective in future
research, based on the preliminary results from this pilot study. The next phase in
our research is to work on the limitations of our methodological approach and to
conduct a complete analysis with all the words in the full set of search words, and to
include more literature from the statistics education research community, to see how
this might alter our findings and to point out further research areas.

In summary, the results from this study show that the teaching and learning of
statistics and modelling have many things in common. For example, modelling can
be a useful tool to develop statistical competences (e.g. Engel and Kuntze 2011;
Hamson 1987), working with statistical enquiries can develop modelling ability (e.g.
Clark et al. 2010), and connecting modelling and statistics is part of a professional
modelling practice (Frejd 2017).We agree with Engel and Kuntze’s (2011) argument
that coordinating and stimulating these connections and synergies through a closer
collaboration between the research communities ofmodelling and statistics education
would benefit the development of both research fields.
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Chapter 52
System Dynamics: Adding a String
to the Modelling Bow

Peter Galbraith and Diana M. Fisher

Abstract This chapter illustrates system dynamics modelling as a means of real-
world problem-solving. Distinctive aspects are related to the familiar modelling
cycle.Differential equations are used comparatively,with simplemodels, to introduce
properties of software that enable solution by simulation; essential when equations
are simultaneous and non-linear. Examples of common structures (archetypes) are
used to demonstrate application to problems made tractable by software, newly free
and online. Increasingly national curricula emphasise the importance of students
being enabled to apply mathematics in the workplace, as citizens, and for private
purposes. We illustrate how system dynamics provides (now accessible) methods,
that are directly relevant to these purposes at secondary level and beyond.

Keywords Archetype · Causality · Delays · Feedback · Simulation · System
dynamics

52.1 Introduction

National curricula, including those of our respective home countries, emphasise the
importance of enabling students to use their mathematical knowledge in the work-
place, in their private lives, and as responsible citizens. In addition to contributing
to emerging demands to be expected in the first of these, a knowledge of system
dynamics (SD) adds skills that are directly relevant to the latter two purposes. System
dynamics exemplifies the role of mathematical modelling as real-world problem-
solving. Its recently extended accessibility adds a further dimension to the types of
modelling problems that can be addressed at secondary school level and beyond.
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Systemdynamics provides amethodology for analysing how actions and reactions
cause and influence each other, and how and why elements and processes in a system
change. As expressed, some time ago by Jay Forrester, the founder of the field:

Complex systems differ from simple ones in being ‘counter intuitive’, i.e. not behaving as
one might expect them to…They stubbornly resist policy changes. They contain influential
pressure points, often in unexpected places, which can alter system-steady states dramati-
cally…They often react to a policy change in the long run, in a way opposite to their reaction
in the short run. Intuition and judgment generated by a lifetime of experience with the simple
systems that surround one’s every action create a network of expectations and perceptions
that could hardly be better designed to mislead the unwary when he moves into the realm of
complex systems. (Forrester in Miller 1972, p. 50)

The behaviour of complex systems (and many simple ones) is non-linear, which
means that model equations require simulation for solution. While relevant icon-
based software has been available for a number of years, costs have restricted
opportunities to organisations, individuals and institutions with sufficient interest
and resources to purchase the software. Caron (2019) has commented usefully on
some earlier endeavours restricted in this way. Recently, free online versions of Stella
(ISEE Systems 2020), and Powersim Express (2020) have enabled the building of
models, which while small, allow a selection of genuine modelling contexts to be
explored. This availability means that a new family of modelling problems becomes
accessible to students, teachers, and others at secondary and tertiary levels. Of course,
it is necessary to invest some effort into understanding the software, so as to use
opportunities to advantage—in the same way that spreadsheet documentation needs
to be mastered before their potential can be realised. Anyone familiar with first-order
differential equations is equipped to fully understand and use the design properties of
the software, for which documentation is excellent. But additionally, with secondary
students in mind, essential skills can be developed directly to a productive level,
independently of an initial knowledge of calculus (Fisher 2011).

The focus of this chapter is methodological, geared to an audience familiar with
modelling. Distinctive components of systems dynamics are introduced and related
to familiar modelling processes. We illustrate how system dynamics modelling soft-
ware operates, beginningwith simplemodels, solvable alternatively and familiarly by
differential equations.We indicate how these models are equivalently solved through
simulation, and then move to non-linear problems where simulation is the only way
to proceed. Some examples of commonly occurring model structures (archetypes)
illustrate how systems dynamics modelling is used to provide access to widely occur-
ring real-world problems that persistently resist solution. The approach includes an
orientation for readers to characteristics of the freely available software that is refer-
enced in the chapter. These are introduced in Sect. 52.2 and further illustrated by the
examples in Sect. 52.4.
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52.2 Features of System Dynamics Models

52.2.1 Types of Problems Addressed by System Dynamics

There is indeed no call to cry over spilt milk as the spill is easily mopped up
without further implications; but a “spill” of pollutants is different—some major
problems being faced today are the result of toxic emissions by industrial processes
of past decades. Typified by this case, and fundamental to problems suited to system
dynamics analysis, is the identification of feedback systems (circular chains of cause
and effect) often containing substantial delays. An information feedback system
exists, whenever assessment of the environment leads to a decision resulting in
actions which in turn affect that environment, and thereby influence future decisions
and outcomes.

52.2.2 Model Structure

Noting that system dynamics addresses problems involving feedback, direct influ-
ences between variables are displayed by means of causal links (arrows). A ‘+’ sign
on an arrow means that a change in the value of the variable at the tail of the arrow
causes the variable at the head of the arrow to move (or tend to move) in the SAME
direction. A ‘−’ sign means that SAME is replaced by OPPOSITE. When a succes-
sion of arrowed links forms a closed chain one of two types of feedback loop is
formed.

52.2.3 Reinforcing (Positive) Feedback

Reinforcing (or positive) feedback is typified by structures that embody exponential
growth. Figure 52.1a contains a causal loop diagram (CLD) for the familiar situation
of a population growing at a constant net fraction per annum (say 5%). An increase

R

+

population   rate of change
  of population

+

    net 
growth rate growth_fraction

population

net_change_rat

a b

Fig. 52.1 a Causal loop diagram (+ve feedback), bModel diagram (+ve feedback)
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in population will lead to an increase in its rate of change, and this increase will
lead to a further increase in population and so on. This closed loop comprises just
two links, and the label ‘R’ indicates its reinforcing nature. A CLD is useful for
displaying and explaining the essence of a modelling system but is insufficient for
developing the mathematical model itself. For this purpose, model structure needs
to be built using components of the software being used: shown in Fig. 52.1b for
Powersim (e.g. Powersim Express 2020). Different software products use closely
similar imagery—rather like different spreadsheet versions in comparison with each
other.

52.2.4 Symbolism

The tank symbol (rectangle) in Fig. 52.1b is used for any quantity (stock) that accu-
mulates, rising and falling over time in response to inputs and outputs (flows). In
consequence of its measurable level (“height”) at any time, a stock is designated as
a level variable. Here the level variable is population, but in other situations, may
represent goods, buildings, dollars, food, sick people, timber reserves, and so on.
Flows are inrates and outrates that augment or deplete levels—symbolised by valves
as in Fig. 52.1b for net_change_rate.While we can see they are happening, we cannot
put a number on the instantaneous value of flow magnitudes through observation, as
we can in reading the value of a level. They are defined in terms of the known values
of other model components—here the net_change_rate is given by the product of the
level (population) and the constant annual growth_fraction. Constants (parameter
values) are fixed values of a model entity that apply throughout a given simulation.
They are characteristic of the system being modelled—symbolised by a diamond.
Here there is just one parameter: growth_fraction (5% per year).1 Other auxiliary
variables are usually present. Shown as circles, they are used simply to make life
easier, by enabling complex formulae to be entered as component parts of rate speci-
fications. Arrows are used to link variables that are directionally related in the model,
as they are in the real world.

Model output for the above is displayed in Fig. 52.2 below, depicting exponen-
tial growth—obtained alternatively using the familiar differential equation format
shown beside Fig. 52.2. This serves to demonstrate the equivalence of the two
representations. The way the software works is shown in the box following.

1The growth_fraction as employed here is the result of combining increases due to births plus
immigration and decreases due to deaths plus emigration.
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Differential equation (traditional) format
Consider a population (initially 100) 

growing at 5% per year.

dP/dt = 0.05P, P(0) = 100

Gives P = 100e0.05t

POSITIVE LOOP (POP)
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Fig. 52.2 Graphical output for positive loop structure

Sample computation of model output (generated using numerical integration and 
graphed by the software)
Beginning with the specified starting values, variable values are calculated iteratively at 
each timestep (defined by the chosen value of dt): Here 
population (0) = 100 (people)
growth-fraction = 0.05 (1/year)
time step dt = 0.25 (year)
net_change_rate (0.25) = 0.05*100 = 5 (people/year)
population (0.25) = 100+5*0.25 = 101.25 (people)
net_change_rate (0.5) = 0.05*101.25 = 5.06 (people/year)
population (0.5) = 101.25 + 5.0625* 0.25 = 102.52 (people) And so on.

52.2.5 Balancing (Negative) Feedback

Balancing feedback is typified by processes with inbuilt compensating mechanisms,
such as an air conditioning system set to adjust room temperature to a goal value.

The completed loop in Fig. 52.3a,which here consists of two positive links and one
negative link, is a balancing (or negative) loop, as indicated by the ‘B’ symbol inside
the loop. Such loops are “balancing” or “stabilising” since an increase (decrease) in a
loop variable leads via the closed path of causality to a decrease (increase) in the same
variable. (Balancing loops contain an odd number of negative links.) Figure 52.3b
contains the corresponding stock and flow model diagram.
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Fig. 52.3 a Causal loop diagram (−ve feedback), b Model diagram (−ve feedback)
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Software computations (heating)                       Differential equation (neg feedback) 
Goal_temp = 25  (deg)                                                              dT/dt = (25 - T)/3, T(0) = 15
Temp_adjust_time = 3 (min)                                                    ∫dT/(25 – T) = ∫dt/3

Temperature (0) = 15  (deg)                                                         T = 25 – 10e-t/3

Gap (0) = 10 (deg)                                      ‘T’ asymptotes to 25
dt = 0.25 (min)                 
Rate_temp_change (0) = 10/3 = 3.33 (deg/min)
Temperature (0.25) = 15 + 3.33*0.25 = 15.83 (deg) and so on. 
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Fig. 52.4 a Temp control (−ve feedback), b Temp control (−ve feedback with delay)

All negative loops have a common feature (a goal); and a gap between the goal
and the current state that is the source of action. The action aims to close the gap over
an adjustment time. Here the gap is the temperature difference between the setting
on the air conditioner (goal) and the current temperature, and the adjustment time is
determined by the power of the device. Illustrations of software computations and
the corresponding differential equation representation are shown below.

Figure 52.4a shows the asymptotic behaviour generated by the single negative
feedback loop controlling temperature—consistent with the differential equation
solution. Both heating and cooling situations are depicted.

52.2.6 Delays

Delays are the third principal entity responsible for influencing the behaviour of
systems containing feedback. Figure 52.4b illustrates the effect of inserting a delay
between the identification of a gap, and subsequent action in a heating system
(think adjusting the hot tap in a shower). The delay results in corrective activity
that successively overshoots and undershoots the desired target.

52.3 The System Dynamics Modelling Process

The process of mathematical modelling as real-word problem-solving is familiarly
represented as a cyclic process, summarised, for example, as in the box below. The
arrows indicate the logical order inwhich a problem solution develops and is reported.
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It is not a picture of an individual’s thinking processes, which typically move back
and forth between stages as a solution is developed and refined. In system dynamics
the same overall stages apply, but there are some distinctive features—for example:

Specify the mathematical modelling question formulate a mathematical model solve the mathematics 
interpret outcomes validate/evaluate the outcomes in terms of the real context revisit the solution 

process and/or document and report outcomes. 

• In SD, it is common practice to sketch representations of problematic behaviours
to act as evaluation criteria for model structure and output.Where such data do not
yet exist, as in modelling within an emerging system, there needs to be agreement
on the model representation of processes being set in train.

• System boundary is a specific SD concept. It needs to be drawn wide enough to
include all feedback processes judged important for addressing the problem.

• Feedback processes that contribute to model structure need to be specified fully—
this involves choosing variables, parameters and delays. In SD models, every
variable and parameter has a precise counterpart in the real world, and is labelled
accordingly.

• Model development features iterative rounds of formulation, solution (simula-
tion), interpretation and evaluation. Formulation is more structured (by feedback
processes) than is typical for modelling in general.

• Sensitivity testing features widely. In conventional modelling, it is typically used
to test the robustness of a solution in terms of its real-world usefulness. In SD,
it serves an essential purpose within formulation, by testing properties of an
emerging simulation model. For example, extreme parameter values are chosen
to check that even under extreme conditions, quantities that are never negative in
the real world do not so behave in simulations.

• Model output is obtained in terms of behaviour modes exhibited by variables
of interest, not in terms of point predictions. For example, persistent, wave-like
behaviour tells a useful story when the accurate pinpointing of peaks and troughs
is not possible due to imprecision of available data.

Software documentation provides illustrations and explanations of all features.

52.4 System Dynamics Modelling in Action

So, what kind of problems lend themselves to SD modelling? Typical problems
involve situationswhere outcomes for interacting variables are compromised by feed-
back compounded by delays. Investigating the future carrying capacity of planet earth
(IMMC 2019) is a problem-inviting SD analysis, with a past extensive modelling
enterprise using this approach documented in Meadows et al. (1992).

A second family of problems involves analysing archetypical behaviour of
simple systems. System archetypes (Senge 1990) are recurring structures that appear
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Fig. 52.5 a CLD (eroding goals) b Simulation output (eroding goals)

wearing different clothes in various real contexts. Recognition of a common model
structure, together with its behaviour, provides a basis for anticipating, or improving
or avoiding, consequences of potentially damaging decisions. It is risky to predict
behaviour from CLD structure alone—simulation is needed to test intuitions and
examine claims analytically (see Galbraith 2004). Once verified, there is a basis for
action to improve outcomes, in whatever domain the given structure is identified.
Three examples of archetypical behaviour are developed below. See Fisher (Chap. 3
this volume) for an illustration of system dynamics applied to an extended problem.

52.4.1 Eroding Goals (When Under Pressure Hold the Line)

When a gap exists between a goal and current performance, there are two sets of
pressures—to raise performance (bottom loop in Fig. 52.5a), or to lower the goal
and hence degrade future performance (top loop in Fig. 52.5a). Letting goals slide is
easy, particularly when we evaluate achievement in terms of previous performance
(well we did 90 per cent as well as last year!) instead of some external standard that
we hold to.

Differential Equations for eroding goals based on Fig. 52.5a.
If x1 denotes performance, and x2 denotes goal then:

(1) dx1/dt = (x2−x1)/T1, where x1(0) = X1 and T 1 is adjustment time for
performance

(2) dx2/dt = −(x2−x1)/T2, where x2(0) = X2 and T 2 is adjust time for goal: T 2

< T 1.

Although simple in form, these simultaneous non-linear differential equations can
only be solved by simulation.2 This is achieved by translating the structure intomodel
equations—as illustrated earlier for positive and negative feedback. Typical output is

2DEs are included for comparative methodological purposes—they are not needed for model
building. Model equations are input directly into a software-generated diagram.
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shown in Fig. 52.5(b), where reduced performance attains a degraded goal. Examples
include: governments meeting employment targets by weakening definitions of “full
employment”; universities graduating more students by shortening degree times and
pretending nothing has been lost; pass rates enhanced by lowering performance
standards; and companies maintaining sales by hiding cost increases (e.g. shaving
material from popular items such as chocolate bars).

52.4.2 Escalation (Anything You Can Do I Can Do Better)

American President: “There is a serious imbalance. The Soviets have the capacity to
destroy the world three times over—we only have the capacity to destroy it twice”
(Cold war cartoon).

Two parties in competition each see their respective well-being in terms of the
relative advantage of one over the other. If one gets ahead, the other feeling threatened
acts aggressively to re-establish its position. This in turn threatens the first, promoting
further aggressive activity, and so on. The resulting build up is damaging to both.

Differential Equations for Escalation based on Fig. 52.6.
For the left loop (1) and right loop (2) in Fig. 52.6(a), we have respectively:

(1) dx1/dt = (r1 − x1/x2)x1/T1; x1(0) = X1, r1 = (x1/x2) desired by A, T 1 =
time to close gap by A

(2) dx2/dt = (x1/x2 − r2)x2/T2; x2(0) = X2, r2 = (x1/x2) desired by B, T 2 =
time to close gap by B

Output from a software-generated model is shown in Fig. 52.6b, confirming
the escalating behaviour. Examples include the Arms Race; universities spending
increasingly on advertising efforts to outdo each other; price cutting by businesses
in competition; keeping up with the Jones’s; and wanting the last word in arguments.
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Fig. 52.6 a CLD (Escalation) b Simulation output (Escalation)
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Fig. 52.7 a CLD (Shifting the Burden) b Simulation output (Shifting the Burden)

52.4.3 Shifting the Burden (Scratching a Persistent Itch)

An underlying problem produces symptoms but the problem is far deeper than the
symptoms, requiring fundamental treatment to fix. As the fundamental treatment
involves more resources, the burden of “treatment” is shifted to the symptoms.

A side effect of the repeated use of these “quick fixes” is to weaken the capacity
of the fundamental solution (e.g. by starving it of resources or de-skilling workers).
By repeatedly applying a superficial remedy that alleviates symptoms, but leaves the
underlying problem unaddressed, the problem ultimately becomes worse, and more
seriously, the capacity to deal with it is impaired. Figure 52.7a contains a CLD for
shifting the burden, with output from the corresponding model shown in Fig. 52.7b.

Differential Equations for Shifting the Burden based on Fig. 52.7a.
If x1 denotes “symptoms”, and x2 denotes “side effect”:

(1) dx1/dt = g − [s + ( f −cx2)]x1 if x2 ≤ f/c; dx1/dt = g − sx1 if x2 > f/c,
where x1(0) = X1: g = generation rate of symptoms; s and f are the respective
fractional rates at which symptoms are normally eliminated by the symptomatic
and fundamental solutions (s < f ), c is a multiplier through which the side effect
impairs the normal effectiveness of the fundamental solution.

(2) dx2/dt = bsx1 where x2(0) = 0 and b is a multiplier translating repeated use of
the symptomatic solution to a growing side effect.

The graph in Fig. 52.7b illustrates how repeated use of an external (symptomatic)
solution results in short-term improvement. Ultimately, the capacity of the funda-
mental solution is degraded through the generation of an unwanted side effect. As
a result, symptoms increase again as the major controlling mechanism has been
damaged. Examples of shifting the burden are: repeated substance abuse that masks
the need to change a lifestyle damaged by other pressures; use of new credit cards
to pay debts on “maxed out” predecessors, generating a debt burden only effectively
addressed by budget discipline; and university faculties that address debt by sacking
staff, then wonder why debt returns, not comprehending the impact on earnings of
closure of specialist areas.
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52.5 Summary

System dynamics facilitates non-linear modelling problems involving feedback
and delays, where simulation is essential to solution processes. Specialised soft-
ware enables the formulation and solution of such models, bypassing otherwise
intractable differential equations. Many problem situations contain social content,
which connects with common experience of students at all levels (e.g. archetypes).
National curricula, including Australia and the USA, emphasise the importance of
students being able to use their mathematics to address problems in their living envi-
ronment. System dynamics provides skills directly relevant to this purpose. There is
renewed opportunity to develop and apply these modelling skills through the agency
of fully documented software, free versions of which are now available online (e.g.
Powersim Express 2020; Stella: ISEE Systems 2020).
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Chapter 53
The Extended Theoretical Framework
of Mathematical Working Space
(Extended MWS): Potentialities
in Chemistry

Laurent Moutet

Abstract The aim is to show how the extended mathematical working space
(extended MWS) theoretical framework can be used to analyse the tasks imple-
mented during a few stages of a modelling cycle in a chemical problem. This chapter
studies a teaching sequence, including an experimental session in chemistry and
graph construction for students in the last year of secondary school (grade 12)
in France. The extended MWS theoretical framework makes it possible to study
the multidisciplinary aspect of the different tasks that students must perform when
working on problem solving.

Keywords Modelling · Interdisciplinarity · Chemistry · Extended MWS ·
GeoGebra · Geometry

53.1 Presentation of the Task Given to the Students

Thework given to the students is centred on the notion of titration commonly taught in
the last year of high school (grade 12). It is the same teacher who teaches physics and
chemistry in France. A pre-test document is given to collect students’ conceptions of
equivalence and stoichiometry. The study concerns 16 grade 12 students of a public
high school situated in the north of France in Abbeville. One hour was spent in
the chemistry laboratory to perform the titration experiment. Two additional hours
are required in the computer room to work with GeoGebra, a dynamic geometry
software. The work is then to be finalised at home before being returned. The notions
of equivalence or stoichiometry seen the previous year are not remobilised (only by
2 students out of 14). This is only the last part of the teaching sequence that will be
presented with work using GeoGebra to model the situation.

An aqueous solution containing diiodine is placed in an Erlenmeyer flask, and an
aqueous solution containing sodium thiosulfate is placed in a graduated burette (see
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Fig. 53.1 Titration of a
diiodine solution

Fig. 53.1). A chemical transformation takes place between the diiodine molecule
I2 and the thiosulfate ion S2O3

2−. Equivalence corresponds to the moment when
both species have completely reacted. It is shown experimentally by changing the
colour of the solution containing a coloured indicator, previously introduced into
the Erlenmeyer flask containing the reaction mixture, when equivalence is reached.
Knowing the quantity of sodium thiosulphate introduced at equivalence, it is possible
to deduce from this, by using an algebraic relationship, the concentration of diiodine
initially present. That’s the purpose of this titration.

It is assumed that an expert visualises the equivalence of a titration by closely
associating it with the notion of stoichiometry. It could therefore be relevant to use in
this case a graphical construction using the reaction progress x(t)withGeoGebra. The
notion of stoichiometric relationship corresponds to the disciplinary work targeted
here. The equation for the reaction of the diiodine titration and the algebraic calcu-
lations necessary to find the CI2 diiodine concentration are presented below (see
Fig. 53.2). CS2O2−

3
corresponds to the thiosulfate ion concentration that is initially

known,VI2 corresponds to the volumeof diiodine solution initially introduced,VS2O2−
3

corresponds to the equivalent volume found during the experiment, nI2 correspond
to the quantity of diiodine matter and nS2O2−

3
correspond to the quantity of thiosulfate

ion matter. The only unknown is CI2 .
Using the modelling cycle proposed by Blum and Leiss (2005), the real situation

would correspond to the experimental titration with the observed colour change. The
model situation would be associated with understanding the existence of a chemical

I2(aq) + 2 S2O3
2

(aq) 2 I (aq) + S4O6
2

(aq)

; ; ;

Fig. 53.2 Algebraic calculations associated with the dosage of diiodine
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Fig. 53.3 Extended MWS model

reaction during this titration. The real model would be associated with understanding
the chemical equation of the titration, the chemical species that react and the relevant
parameters to be considered. This is the mathematical step usually involving an alge-
braic register that will be modified with a partially geometric register. It is suggested
that the task to be performed by students to find the unknown concentration could
be facilitated at the beginning of the learning process using an instrumental genesis
with a dynamic geometry software such as GeoGebra.

Students should check the mass percentage of iodinated polyvidone in a newly
manufactured bottle of betadine, a common antiseptic. They must perform a deter-
mination with a sodium thiosulfate solution and use GeoGebra to automate mass
titter calculation when the equivalent volume of sodium thiosulphate solution added
fluctuates. An aqueous solution containing a diluted solution of betadine is placed
in an Erlenmeyer flask, and a solution containing sodium thiosulfate is placed in
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a graduated burette. Calculations are performed in relation with the experiment to
determine the mass percentage of iodinated polyvidone in the betadine bottle using
the measurement of the equivalent volume of thiosulfate added and considering the
dilution factor. The task given to the students is described as follows:

You are part of a control laboratory in a pharmaceutical manufacturing plant and
youmust check themass percentage of iodinated polyvidone in a newlymanufactured
betadine bottle. To do this, you must make a titration with a sodium thiosulphate
solution 2 Na+, S2O3

2−. You must use software to automate the determination of this
mass titter.

1. Represent the quantities of matter of the reactants that have reacted at any time as
a function of a reaction quantity. Use GeoGebra to represent the corresponding
graphics.

2. Using GeoGebra’s “cursor” tool, locate the quantity of sodium thiosulfate solu-
tion matter introduced at equivalence and then display on the software the molar
concentration in diiodine of the diluted betadine extract.

3. Display on the software the mass titter in iodinated polyvidone of the analysed
betadine, conclude.

Two additional documents are given. They provide information on betadine, iodi-
nated polyvidone and reminders on titrations and equivalence. The chemical reaction
equation of the titration is also provided. There is a simplification of the parameters
relevant for understanding the phenomenon. The equation y = 2.x is associated with
the quantity of thiosulfate ion matter S2O3

2− and the equation y = x is associated
with the quantity of diiodine matter I2. Cursors are used to identify on the graph
using a horizontal line, the quantity of thiosulfate ion matter added to the equiv-
alence and then to infer the unknown concentration of diiodine. The construction
of graphs allows to work on the notion of stoichiometry. The link to download the
GeoGebra file is in the Appendix to this chapter (see Link 1).

53.2 Methodological and Theoretical Frameworks Used

A class sequence was designed using the methodological principles of didactic engi-
neering described by Artigue and Perrin-Glorian (1991). The preliminary analyses
consist in performing an epistemological study of the different concepts that will
be addressed in the teaching sequence and reviewing the difficulties of students that
may be listed in the literature. A priori analysis and conception consist in developing
a teaching sequence (with eventually one or more pilot sessions) and analysing the
different tasks that students will have to perform using an appropriate theoretical
framework. The experimentation phase makes it possible to describe the conditions
for data collection (audio recording, videos, interviews or analysis of paper and pencil
activities, etc.) as well as the context of the study (number of students, grade level,
type of school, etc.). Here the teacher is also the researcher involved in the study.
The researcher-practitioner approach with practice-based evidence is applied in this
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study (Fichtman Dana 2016). Research using classroom experiments generally uses
a comparative approach based on a statistical comparison of the results of experi-
mental and reference groups. Didactic engineering, on the other hand, is at the level
of case studies using a comparison between a priori and a posteriori analysis. The
tasks performed by the students to solve the given problem are analysed during a
posteriori analysis and validation stages. Comparison with the a priori analysis helps
validate or invalidate the hypotheses developed when the research questions were
established.

The extendedMWS theoretical frameworks (Moutet 2018, 2019a, b) were used to
carry out the a priori analyses. It makes it possible to specifically analyse interactions
by considering the cognitive aspect and epistemological aspects in chemistry or
mathematics. A problem in chemistry is studied (Moutet 2019a; Gauchon 2008). The
data collections consist of written questionnaires or GeoGebra files. The modelling
cycle proposed by Blum and Leiss (2005) is used to position the teaching sequence.
The real model can be considered here as an idealised model. The sequence dealing
with the chemistry of the solutions can be described by the steps: real situation →
real results.

Two research questions guided this work: (1) How does the extended MWS
framework allow the analysis of the sets of rationality frameworks between mathe-
matics and chemistry, during a sequence with students in the final year of secondary
school via a geometric approach? (2) To what extent does the analysis of the use of
dynamic geometry software by the extendedMWS framework show that it promotes
a conceptualisation in students?

53.3 Presentation of the Extended MWS Theoretical
Framework

Themathematicalworking space (MWS)was first developed byKuzniak et al. (2016)
to analyse mathematical work involved in teaching sequences. The MWS diagram
was transformed by Moutet (2018, 2019a, b) by adding an epistemological plane
corresponding to the rationality framework of physics or chemistry (Moutet 2019a)
and this theoretical framework was compared with the Anthropological Theory of
the Didactics (Moutet 2018). The extended MWS used in this chapter has three
levels: one of a cognitive nature in relation to the student and two others of an epis-
temological nature in relation to the mathematical content studied and that involving
chemistry (see Fig. 53.3). The cognitive plane contains a visualisation process (repre-
sentation of space), a construction process (function of the tools used) and a discur-
sive process (justification or reasoning). The epistemological plane contains a set of
representations (signs used), a set of artefacts (instruments or software) and a theo-
retical reference set (definitions and properties). The placement of the three planes
is not important here. Only the interactions between each epistemological level and
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the cognitive level are examined. Interactions within a plane as well as interactions
between two epistemological planes are not used.

The separation between the epistemological plane of mathematics and that of
chemistry depends on the task studied and the level of knowledge associated with it.
At elementary levels, a single epistemological plan involving concepts in chemistry
or mathematics will be enough to describe a school task. At more elaborate levels,
one epistemological plane of chemistry and another of mathematics may be pertinent
when the representamen, artefacts or theoretical referential are significantly different.
The student problem described in this chapter can be analysed here by an extended
MWSwith three planes because the tasks performed lead to two sufficiently different
epistemological planes. The theoretical referential associated with the epistemolog-
ical plane of mathematics studied concerns Euclidean geometry or algebra. The tasks
to be accomplished are associated with the construction of lines, segments, projec-
tions passing through a point and parallel to an axis, manipulation of quantities and
use of simple relations. The theoretical referential associated with the epistemolog-
ical plane of chemistry is associated with the chemistry of solutions, the notion of
stoichiometry, the quantity of matter as well as molar and mass concentration.

It was chosen to keep only one cognitive plane because mathematical or chemical
work are analysed by describing the articulations between the cognitive plane and
the two epistemological planes. There are thus specific geneses between each epis-
temological plane and the cognitive plane. They are represented by double vertical
arrows on the extendedMWSmodel (see Fig. 53.3). Three geneses can be described:
an instrumental genesis (operationalisation of artefacts), a semiotic genesis (based
on the register of semiotic representations) and a discursive genesis (presentation
of mathematical or chemical reasoning). It is possible to associate several geneses
by following the work of Kuzniak et al. (2016). The different phases of the mathe-
matical or chemical works associated with a task can be highlighted using vertical
planes on the extended MWS diagram. The semiotic-instrumental interactions lead
to a process of discovery and exploration of a given academic problem. Those of
the instrumental-discursive type lead to reasoning based on experimental evidence.
Finally, those of the semiotic-discursive type are characteristic of more elaborate
reasoning.

53.4 A Priori and a Posteriori Analysis of the Tasks

The epistemological plane of chemistry and the cognitive plane are mobilised during
the beginning of the resolution of the first question with semiotic-discursive interac-
tions because students should find that they need to use the reaction progress x(t).
The students should then construct with GeoGebra the lines x(t) and 2.x(t) corre-
sponding to the quantities of matter of I2 and S2O3

2−. The construction of these two
lines requires semiotic-instrumental interactions between the epistemological plane
of mathematics and the cognitive plane. The meaning of these two lines requires
semiotic-discursive interactions between the epistemological plane of chemistry and



53 The Extended Theoretical Framework of Mathematical … 637

Table 53.1 A priori analysis
of the different questions

Question-task Planea Genesisb

1–1 Chem-Cog Sem-Dis

1–2 Chem-Cog Sem-Dis

1–2 Math-Cog Sem-Inst

2–1 Chem-Cog Sem-Dis

2–1 Math-Cog Sem-Inst

2–2 Chem-Cog Sem-Dis

2–2 Math-Cog Sem-Inst-Dis

3 Chem-Cog Sem-Dis

Note aChem = Chemistry; Math = Mathematics; Cog =
Cognitive; bSem = Semiotic; Inst = Instrumental; Dis =
Discursive

the cognitive plane. The mobilisation of the different epistemological and cognitive
planes as well as the different genesis between the planes are summarised each time
(see Table 53.1, 1–1 and 1–2).

In the beginning of second question, students should construct a cursor to locate
the amount of S2O3

2− matter introduced using a horizontal segment cutting the line
y = 2.x(t) at a point A for example. Cursor and segment constructions are analysed
by semiotic-instrumental interactions between the epistemological plane of mathe-
matics and the cognitive plane. The need to construct segments intersecting the line
y = 2.x(t) and the determination of the quantities of S2O3

2− matter are analysed
by semiotic-discursive interactions between the epistemological plane of chemistry
and the cognitive plane. At the end of the second question, the students should
construct a vertical segment starting from point A and crossing the line y = x(t) at
a point B, for example. A last horizontal segment starting from point B allows to
find graphically the quantities of matter in I2. These different constructions can be
analysed by semiotic-instrumental and discursive interactions between the episte-
mological plane of mathematics and the cognitive plane. A reasoning is necessary
to realise the geometrical constructions. Finally, the concentration of the diluted
diiodine solution is calculated from the graphical determination of the quantities of
matter found. Semiotic-discursive type interactions are mobilised between the epis-
temological plane of chemistry and the cognitive plane because students should find
the concentration from the graphical method used (see Table 53.1, 2–1 and 2–2).

In the final question, students should find the mass of polyvidone-iodine in a
100 mL bottle of betadine to find and display the mass percentage of polyvidone-
iodine. The epistemological plane of chemistry and the cognitive plane are mobilised
with interactions of a semiotic-discursive type (see Table 53.1, 3).

A posteriori analysis of a group of two students was carried out using the extended
MWS theoretical framework (see Table 53.2). The GeoGebra file rendered shows
that the cursor is available and that the graphic construction is correct. This is
analysed using the extended MWS theoretical framework with tasks involving the
epistemological plane of mathematics and the cognitive plane that are correctly
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Table 53.2 A posteriori
analysis of the tasks
performed by a group of
students

Question-task Planea Genesisb Performed task

1–1 Chem-Cog Sem-Dis Correct

1–2 Chem-Cog Sem-Dis Correct

1–2 Math-Cog Sem-Inst Correct

2–1 Chem-Cog Sem-Dis Partially correct

2–1 Math-Cog Sem-Inst Correct

2–2 Chem-Cog Sem-Dis Incorrect

2–2 Math-Cog Sem-Inst-Dis Correct

3 Chem-Cog Sem-Dis Incorrect

Note aChem = Chemistry; Math = Mathematics; Cog =
Cognitive; bSem = Semiotic; Inst = Instrumental; Dis =
Discursive

performed. They are essentially of a semiotic-instrumental type. The whole geomet-
rical construction requires a slightly more elaborate reasoning characterised by an
interaction of the discursive type. Students use the reaction progress x(t) and they
construct with GeoGebra the lines x(t) and 2.x(t) corresponding to the quantities of I2
and S2O3

2− matters. This shows that semiotic-discursive interactions are mobilised
between the epistemological plane of chemistry and the cognitive plane. The quanti-
ties of S2O3

2− matter are incorrect because there is a conversion error in the volume
(mL–L) but it is well represented graphically. Errors are present in the determination
of the diiodine concentration of the dilute solution because they find incorrect quanti-
ties of I2 matter and they use a wrong volume for concentration determination. Errors
are also present in the determination of the iodinated polyvidone mass titter because
they did not consider the dilution of the betadine solution or the presence of iodinated
polyvidone in betadine. This is the reason why the semiotic-discursive interactions
mobilised between the epistemological plane of chemistry and the cognitive plane
are either partially or incorrectly realised. The link to download the GeoGebra file
proposed by the two students is available in the Appendix to this chapter (see Link 2).

The problem given to the students allows the stoichiometric relationship between
the chemical reagents to be treated geometrically, but the overall resolution of the
chemical problem here is relatively disappointing.

53.5 Conclusions

The theoretical framework of the extendedMWSallowed for amore detailed analysis
and evaluation of the types of tasks associated with certain stages of the modelling
cycle for a problem involving the chemistry of aqueous solutions. It considers the
mobilisation of the epistemological planes of mathematics and/or chemistry for each
of the required tasks. It also shows that GeoGebra develops specific genesis in rela-
tion to a paper–pencil activity. An additional semiotic genesis is highlighted by the
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dynamic character of the software. An additional instrumental genesis corresponds
to the manipulation of the dynamic geometry software with the cursor function-
ality allowing to simply change the experimental conditions. Finally, an additional
discursive genesis allows to conclude here on the relation between the quantities of
the reagentsmatter under stoichiometric conditions. The theoretical framework of the
extendedMWSpermits the study of themultidisciplinary aspect of the different tasks
that studentsmust performwhenworking on a problem-solving exercise. Preliminary
results tend to show that the genesis and epistemological planes of mathematics and
chemistry are not mobilised in the same way according to the stage of the modelling
cycle. This type of analysis will be used in future studies to develop assessments or
problem-solving training for beginning teachers.

Appendix

The GeoGebra files described in this chapter can be downloaded using the following
links:

1. https://drive.google.com/file/d/1DmeAGKjXWUHeWFJ3Gn17mS5QmSu2R
y0F/view?usp=sharing

2. https://drive.google.com/open?id=1I8CQux45Af9brSRBhn_cWH6uUa
uyY9hB
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Chapter 54
An Analytical Scheme to Characterise
the Mathematical Discourse of Biology
Tasks

Floridona Tetaj

Abstract The chapter describes an analytical scheme designed for investigating the
mathematical discourse of biology tasks. The scheme was developed in the context
of analysing tasks that are part of a fisheries management graduate-level course
at a Norwegian university. Grounded in the commognitive perspective, the scheme
focuses on the following aspects of the tasks: the mathematical content, its relation
to biology discourse and students’ expected engagement with both discourses. To
illustrate the potential of analysis, I present and justify the choice of the categories
included in the scheme, exemplify its use on one specific task and discuss some of
the limitations of this approach to task analysis.

Keywords Task analysis ·Mathematical models · Commognitive perspective ·
Mathematical discourse

54.1 Introduction

Mathematical models (MMs) play an important role in the field of natural resources’
management. Particularly, starting from the twentieth century, modern fisheries
management has been heavily dependent on mathematical methods which help to
understand how fish populations respond to exploitation and regulate the way fish-
ermen harvest fish population (Allen 1975). Despite the controversies and scepticism
sometimes expressed among fisheries biologists concerning the accuracy with which
the existing MMs describe and predict the real fisheries world (Kolding and van
Zwieten 2011), these models are taught in various fisheries management university
courses. This chapter which is part of a larger PhD project aimed at investigating
how biology students engage with MMs centres around a Norwegian graduate-level
course called Ecosystems and Fisheries Assessment Models (EFAM) that introduces
various MMs which describe the dynamics of fish population. Specifically, I focus

F. Tetaj (B)
Department of Mathematical Sciences, University of Agder, Kristiansand, Norway
e-mail: floridona.tetaj@uia.no

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
F. K. S. Leung et al. (eds.), Mathematical Modelling Education in East and West,
International Perspectives on the Teaching and Learning of Mathematical Modelling,
https://doi.org/10.1007/978-3-030-66996-6_54

641

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66996-6_54&domain=pdf
mailto:floridona.tetaj@uia.no
https://doi.org/10.1007/978-3-030-66996-6_54


642 F. Tetaj

on developing a scheme for characterising the mathematical discourse of biology
tasks which make use of MMs.

According to Lesh and Lehrer (2003), a MM is understood as the mathemat-
ical description of situations of particular system of practice, which has a purpose,
an underlying conceptual system and a medium in which the model is expressed.
Stillman (2019) separates MMs into descriptive models, describing the reality as it
is required for the problem; and normative models, defining a part of the reality.
Meanwhile, Smith et al. (1997) categorise MMs in the science of biology. First, they
distinguish between theoretical models, developing the biological understanding of
the underlying processes, and descriptivemodels, describing the phenomena as accu-
rately as possible. A second distinction is between ad hoc models, created to fit
the data, and first principles models, fitting known mathematical relationships to a
biological setting.

MMs introduced in university non-mathematics graduate courses are often
complex and sophisticated. These models make use of mathematical concepts that
often are not dealt with in the mathematics courses that non-mathematics students
take as part of their university studies. Therefore, it could be expected that these
MMs might be introduced briefly, without professors going very deeply into their
justification and mathematical details. The focus might be on the applications and
the limitations of the models rather than on explaining how they were developed.
In particular, this is the case in EFAM course. Although some insights into the
assumptions of the MMs are provided by the professor, little attention is given to the
mathematisation of the models. Students are mostly assessed on how well they can
apply these MMs and analyse the obtained results using statistical methods.

According to Vos (2013), when students are assessed on tasks that make use of
an already constructed MM and do not engage with the modelling cycle (Blum and
Leiss 2006), they skip important elements of the modelling process such as the struc-
turing, simplifying and mathematising. She argues that in such a case “students are
not owners of the model and they cannot demonstrate competencies such as simpli-
fying or structuring” (p. 485). On the other hand, mathematics education researchers
widely acknowledge the idea that tasks which students engage with can shape their
learning opportunities and their experience with the mathematics (Johnson et al.
2017). According to Rezat and Strässer (2012), a mathematical task can also act as a
tool in facilitating students’ learning of mathematics. Therefore, analysing the aims
of the tasks prior to analysing students’ work is of great importance particularly when
the researcher did not participate in their design.

Additionally, one of the principles of the commognitive perspective in which this
study is grounded claims that the discourse is situated in a particular context and prior
to trying to make sense of the discourse that students engage with, the researcher
needs to understand the context of the discourse, that is, where, when and how the
discourse is initiated. Various frameworks have been introduced with the purpose
of classifying and analysing mathematical tasks (Palm et al. 2011). However, little
research has emerged on how to address the nature and the role thatmathematics plays
in tasks designed for graduate biology (or indeed other non-mathematics) students.
Hitherto, the commognitive perspective has not beenwidely used for analysing tasks.
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Morgan and Sfard (2016) developed a discursive framework for tracing changes over
time in high-stakesmathematics examinations, building on social semiotics (Halliday
1978) and commognition (Sfard 2008). This framework analyses the mathematical
discourse of tasks in order to examine their mathematical content, level of difficulty,
guidance and support, the complexity of language, the use of diagrams and the
non-mathematical context in the tasks.

Following Morgan and Sfard’s example, Alshwaikh and Morgan (2013, 2018)
developed an analytical framework for examining the nature of mathematics and
mathematical activity in Palestinian and English textbooks. In their work, Alshwaikh
and Morgan focus on two main questions: “What is mathematics and what kind of
activity are construed asmathematical in schoolmathematics?” and “Towhat extent is
specialisedmathematical language used?” (ibid. 2018, p. 1044). These two questions
are then operationalised according to the properties of the mathematical discourse
by analysing the nature of verbal (written or spoken) text, particularly addressing the
multimodal nature of the textbooks.

Consistent with these two studies, and particularly with the work of Morgan
and Sfard (2016), here, a similar analytical scheme is presented with the purpose
of exploring the mathematical discourse of biology tasks. The scheme is built by
making use of the properties of discourse in order to characterise the mathematical
content of the tasks, investigate how MMs interact with biology discourse, and how
students are expected to engage with both discourses. In what follows, I present some
aspects of the commognitive perspective (Sfard 2008), elaborate the setting where
the tasks were used, introduce the analytical framework and lastly, discuss some
initial results and the limitations of this approach.

54.2 Theoretical Framework

In the commognitive perspective (Sfard 2008), the (mathematical) knowledge is
conceived through a community’s established modes of communication, called
discourses. Every discourse is distinguished by four characteristic features: words
and their use, visual mediators, narratives and routines. A discourse has specific
vocabulary or “common” words that are used in a specific way in this discourse,
i.e. catch, fishing mortality, recruitment. Visual mediators are visible objects and
artefacts that one operates upon while engaging in the discourse, for example, a
graph representing the relation between two variables such as catch (C) and effort
(f ). The term narrative refers to descriptions of objects, relations between objects or
processes with objects that are subject to endorsement or rejection by a discourse
community. For instance, an endorsed narrative in fisheries management discourse
is the following: “fishing mortality” refers to the removal of fish from the stock due
to fishing activities. The term object/s refers to “special discursive constructs created
by means of metaphorical projection from discourses on physical reality” (Morgan
and Sfard 2016. p. 101).
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Lastly, routines are defined using the notions of task situation, task and procedure
(Lavie et al. 2018). First, a task situation is understood as a setting in which “a person
considers herself bound to act—to do something” (ibid., p. 7). Second, a task is “the
set of all the characteristics of the precedent events that she (the person) considers
as requiring replication” (ibid., p. 9). The task refers to a person’s interpretation of
a task situation, and by precedent event is meant all that happened in the precedent
task situation. Third, a procedure is “the prescription for action that fits both the
present performance and those on which it was modelled” (ibid., p. 9). Building
on this, a routine is the task, as seen by the performer, together with the procedure
the person executes to perform the task in response to a given task situation. For
example, a routine for finding the value of fish survived in the next year (Ni+1)when
the number of fish in the current year (Ni ) and total mortality (Z) are known can be
applying the procedure Ni+1 = Ni · e(Fi+Mi ). Depending on their aims, mathemat-
ical routines can be separated into explorations and rituals. If the performance of a
routine is oriented towards the outcome then it is an exploration; if it is a process-
oriented performance, then the routine is a ritual.While an explorative routine aims at
producing a new “historical” fact about mathematical objects, a ritual is appreciated
for its performance and not for its product. According to Sfard (2008), exploration
routines are divided into three categories: construction (a performance resulting in
a new endorsable narrative), substantiation (deciding whether to endorse previously
constructed narratives) and recall (the process of citing a narrative that was endorsed
in the past).

In addition to stories about mathematical objects, Sfard (2008) also calls attention
to stories about people as an important factor that help the researcher to characterise
the nature of the discourse. She claims that the mathematical discourse involves
stories about the mathematical objects, which she refers to as the mathematising of
the discourse—doingmathematics, and stories about humans and their actions,which
she terms subjectifying—the performer of the mathematics. The aim of the analyt-
ical scheme presented in this chapter can now be more precisely stated: to analyse
the mathematisation of the discourse at the level of vocabulary, visual mediators,
narratives and their relation to fisheries narratives and routine use, and to investigate
some aspects of subjectification such as the autonomy of students in engaging with
the mathematical and fisheries narratives.

54.3 Setting and Methods

The EFAM course introduces the basic principles of modelling of natural fish popu-
lations to provide answers to management-related questions. Characteristics such as
age, growth, natural and fishing mortality, maturation and recruitment of fish popu-
lations are discussed together with the MMs describing these processes. Models for
estimating yield and abundance and their underlying assumptions are explained as
well. The course was designed for first year graduate students, and it is a compulsory
10 ECTS credits study unit for students who want to pursue career in marine or
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fisheries biology. EFAM is a lecture-based course with twice-weekly meetings over
one semester. During the lectures, new concepts are introduced and then, after each
chapter’s material is covered, students are asked to work individually or in groups on
home assignments. They are allowed seven to ten days (depending on the volume of
the assignment) to submit the solutions, which are then discussed by the professor
in the classroom during the next lecture session.

For this intended analysis, I use a case study approach (Yin 2013) and the main
source of data are the home assignments1 (seven in total, and each composed of
several tasks) with which the students enrolled in EFAM engaged during the spring
semester 2019. Secondary sources of data for the task analysis are an interview
with the professor of the course, who designed the assignments, together with video
recordings of the lectureswhere he discusses their solutions. These data, togetherwith
observations and video recordings of two groups of students (six students in total) in
which they engaged collaboratively in solving the assignments, are part of the larger
data set collected for the PhD project. The assignments differ in several respects,
for instance, the number of tasks posed, the particular content and the structure. The
use of Excel or FiSAT (a software package developed to conduct various fisheries
analyses) is an integrated part of the assignments, and all models and methods are
described in such a way that they can be implemented in a spreadsheet.

Specifically, the assignments cover methods or procedures that predict and
describe certain fisheries parameters, i.e. estimate the growth of fish population by
using length frequency distributions; or estimate the mortality by using linearised
length converted catch curves. Students are asked to engage with models such as:
the so-called yield-per-recruits, Beverton–Holt model, Richer model, VPA method
or biomass dynamic (also known as surplus production models). In order to engage
with theseMMs, first, students are asked to organise the data (to put them in columns’
sheet and organise them according to age or length of fish in Excel or FiSAT). Then,
they are asked to calculate various parameters by usingMMs, mathematical methods
such as linear regression, or by applying a given formula. After, students are asked to
find the fitness of the models. In the cases, when students use two equivalent models,
they are asked to compare which method or model fits the data best. Lastly, after
students have analysed the data and found the fitness of MMs, they are asked to
discuss the implications of their results and make certain fishery recommendations.

In order to illustrate the relevance of the analytical scheme and to help the reader
better understand the character of the assignments, the scheme is applied on an assign-
ment called the “VPA exercise”. This assignment was chosen since it compresses
various aspects of discourse that students are expected to engage with. VPA stands
for virtual population analysis and is a method for estimating the population of fish
(N) of a certain age (i). The idea behind this method is to analyse parameters that
can be measured (the catch C) and estimated through the biological properties of the
fish (the mortality M) in order to calculate the population that should be available in

1The “assignment” refers to the whole document provided by the professor to the students. An
assignment may include various questions and a question may contain more than one task, in the
sense of Lavie et al. (2018).
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the water to produce the measured catch. Due to space limitation, the details of the
model cannot be discussed here, but after some calculations (e.g. Sparre and Venema
1998), the catch equation, also known as the Baranov equation, is written as follows:

Ci =
[
1− Mi

ln(Ni )− ln(Ni+1)

]
(Ni − Ni+1).

This is a nonlinear difference equation that does not have an exact solution for the
variables Ni or Ni+1, thus iterative numerical methods (i.e. Newton–Raphson) are
used to find approximations of Ni or Ni+1, when Ci = f (Ni ). The VPA exercise is
distributed to students as a seven-page PDF document and it provides explanations
on how Baranov equation can be converted and applied into a macro in Visual Basic.
Students should mimic the procedure described in the document. After the number
of fish for each group-age has been calculated, students are asked to calculate other
parameters such as the totalmortality (Zi = ln(Ni )− ln(Ni+1)) andfishingmortality
(Fi = Zi − Mi ), and draw graphs representing their relationship. Then, students are
asked to use the so-called Pope’s approximation of the catch equation, which is
a linear simplification of the Baranov equation, and find all the parameters again.
Lastly, students are expected to compare the results of the two methods.

The intended data analysis is to be conducted in two stages. First, an overview of
possible solution paths of the tasks is made, building on the video recordings of the
lectures, the suggested literature and the (PowerPoint) slides used during lectures as
well as the transcript of the interview with the professor of the course. Then, using
the scheme elaborated below, the characteristics of the task discourse are categorised,
with the aim of exposing relationships betweenMMand their use in fisheries biology,
and how students are expected to engage with this relationship.

54.4 The Analytical Scheme

As mentioned earlier, the scheme introduced in this chapter is the result of an adap-
tation of the discursive framework of Morgan and Sfard (2016). In their framework,
Morgan and Sfard specifically focus on two aspects of the discourse: mathematisa-
tion and subjectification. For each aspect, they develop guiding questions and answer
thembyfinding corresponding textual indicators. The same strategywill be used here.
However, there are two important differences between the context of this study and
that ofMorgan and Sfard. First, in their case, the tasks are already given inmathemat-
ical discourse, and students are expected to show that they are able to execute certain
mathematical procedures. The tasks in this context, however, are strongly related to
the fisheries discourse. Students are expected to put much effort into elaborating the
non-mathematical descriptions of processes in mathematical discourse. Second, the
aim of Morgan and Sfard’s analysis was to compare and trace changes in the tasks
over time; meanwhile, although the evolution of the students’ expected engagement
with the task during the semester is one of the aims of this analysis, it is not the
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main focus. The analysis in my case is of a descriptive nature and is intended to
be used for further effort to analyse and assess students’ performance on the tasks.
Thus, considering these two differences, some of Morgan and Sfard’s categories are
excluded and some others are extended as will be visible in the rest of this section.

In order to investigate the mathematisation of the tasks, as suggested by Morgan
and Sfard, the focus is on three characteristics of the discourse: word use, visual
mediators and mathematical routines. Since the task discourse in the EFAM assign-
ments is understood as a synthesis of mathematical and fisheries discourse, the
scheme aims to understand the nature of the relation of these two discourses. To
this end, I draw on the work of Paxson (1996), discussing the modes of interaction
between two disciplines. He asserts that when two disciplines interact with each
other by exchanging ideas, techniques or perspectives, the nature and the depth of
this interaction influences the outcome in terms of scientific progress. In commogni-
tive terms, an interaction between two disciplines happens when there is an exchange
or combination of specific characteristics of these discourses, for example, when one
borrows the vocabulary or routines of one of the discourses and applies them in
another discourse. Paxson classifies four levels of interaction ranging from low-level
to high-level impact between two or more disciplines. In this work, his classifica-
tion is included in order to help us characterise the types of narratives that the tasks
contain. When the task discourse only “takes notice” of the mathematical discourse
but there is no engagement with it, then this interaction is categorised as first level.
Second-level interaction denotes situations where the endorsed mathematical narra-
tives are used to impact or change the narratives of the task discourse. The last two
categories involve more advanced interactions and they occur when a phenomenon
is analysed using the endorsed narratives of each discourse and this leads to a growth
in both discourses, respectively, or when fundamental endorsed narratives of one
discourse are used to change the endorsed narratives of the other discourse. These
two interactions usually involve the communities of experts of each discourse; thus,
they should not be expected to be present in the kind of tasks that the scheme aims
to analyse. Thus, while Morgan and Sfard’s framework sheds light on what kind
of mathematics emerges in the fisheries discourse, Paxson’s classification helps to
investigate how the mathematical and fisheries discourses are interacting. In what
follows, the categories of the mathematisation and subjectification of the discourse,
respectively, are presented and discussed.

The main aim of investigating the mathematisation of the tasks is to understand
what kind of stories about mathematical objects are present in the task discourse,
and how these stories are brought into the fisheries discourse. The question guiding
the analysis is: What kind of mathematical language is being used in the task? This
question is answered by finding two types of textual indicators. First, lexical items
that are used in accordance with mathematical definitions considered at the level
of vocabulary, sentence or text unit are found. Second, other lexical items that may
invite mathematical actions or refer to mathematical narratives are observed. In VPA
exercise, items such as: “analytical solutions”, “average”, “function” or “graph”
are examples of words of the first type. On the other hand, items such as: “fishing
pattern”—which refers to the graph representing the relation between the age and the
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number of fish, or “the survivors and the natural deaths in number”—which mean
the numerical values of these two variables, are examples of wordings that refer to
mathematical concepts.

Concerning visual mediators, the guiding question is: What kind of mathematical
mediators does the task make use of? Here, a distinction is made between mediators
such as tables, diagrams or algebraic notations and the spreadsheet as a mediator in
its own right. In the VPA exercise, the presence of tables or graphs demonstrating
the relation between variables seems to be essential. They are the initiators of the
engagement with the fisheries data collected in the field. It can be also noted that the
assignment makes use of different modes, i.e. from an algebraic version of Baranov
catch equation to amacro, or from a table to a graph in a spreadsheet. Thus, the second
question included in this category is: What transitions need to be made between
different mediators? This is answered by looking at the presence of or demand for
two or more equivalent mediators. For example, the change in the number of fish
calculated with the help of a table in the spreadsheet is expected to be presented
in a graph. Making evident the vocabulary and the transitions between different
mediators will be helpful for the future analysis of students’ work, particularly when
trying to understand how students engage with mathematical concepts and cope with
transitions from one mode to another.

Mathematical routines are the other characteristic included in the scheme. Since
every routine is a pair of a task and procedure, the focus of the analysis is on identi-
fying the task and thenfinding an associated procedure thatmaybe applied for solving
the task. For this purpose, I make use of video recordings of the professor (who is the
task setter) where he discusses his expected solutions to the assignments. Thus, the
question with respect to the nature of the task is: What is the task and what are the
characteristics of the procedures? To answer this question, a differentiation between
algorithmic procedures and heuristic procedures is made. In the first six pages of the
VPA exercise, all the tasks are given as step-by-step procedures which suggest that
they have an algorithmic nature. Meanwhile, the last part of the assignment requires
students to “compare the two methods” which might be interpreted as an invita-
tion to compare the results that one obtains using Newton–Raphson approximation
and Pope’s approximation graphically or to explore the mathematical differences;
thus, leaving the interpreter to believe in the heuristic nature of the task. It is worth
mentioning that an initial analysis of the assignments suggests that the tasks differ
quite a lot from each other with respect to the procedures required. The assignments
towards the start of the semester are more algorithmic in nature and the expected
involvement with mathematics is more ritualised, while the rest of the assignments
are more explorative. Thus, analysing these differences and how the assignments
evolve during the semester will help understand how students are expected to engage
and learn MMs.

After having identified the routines that students are expected to engage with,
the concept of endorsed narratives is used to investigate the interaction between
the mathematical and the fisheries discourses considering MMs as contributors that
help to make sense of the fisheries discourse. The question is posed: “how does
mathematical discourse interact with fisheries discourse?” which is answered and
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operationalised using the classification of Paxson (1996). In the VPA exercise, there
is a dynamic interaction between discourses. For example, the engagement with the
Baranov equation could be classified as first level interaction. In the assignment, it is
explained that the Baranov equation is aMMof the catch and it is “transcendental”—
meaning that it does not have analytical solutions. However, there is no explicit
request for engagement with any of the mathematics behind the model. Meanwhile,
students use mathematical narratives such as the formula of fishing mortality (Fi =
Zi − Mi ), and depending on their numerical values, students are asked to discuss if
there is overfishing or not.

Lastly, considering that the nature of the assignments was quite often very algo-
rithmic and other times would be more heuristically oriented, in the scheme a subjec-
tifying aspect of the tasks, such as, students’ autonomy is included. The following
question is asked: “what decisions are students expected to make, and what deci-
sions are already present in the task with respect to interpreting the task and to
design the path to follow?” To answer it, the complexity of mathematical procedures
and narratives that students are expected to produce and whether the tasks are indi-
cated explicitly are considered. In the VPA assignment, most of the decisions are
already given in the tasks and students are only asked to copy certain procedures.
However, in latter assignments, the task interpretations are more complex. This will
help to understand the decisions that students are expected to make with respect to
their engagement with MMs.

54.5 Final Remarks

The scheme presented in this chapterwas developed from a need for an analytical tool
that would allow the researcher to better understand the nature of the engagement that
biology tasks that make use of MMs demand from graduate students. The scheme
makes use of the characteristics of discourse and focuses on two main aspects. First,
it elaborates the nature of the mathematical content and its interaction with the
biology discourse. Second, it explores the ways that students are expected to engage
with the assignments. This choice was made having in mind the hypothesis that
with respect to the task discourse, these two concerns would be the main challenges
that biology students would face while engaging with the tasks. This said, I do
not exclude the possibility that during students’ work, other factors that influence
students’ engagement with the assignments may emerge. A pitfall of this kind of
analysis is that it can be time consuming since it requires a deep engagement with
the content of the tasks. It should also be recognised that this approach to task analysis
is interpretative and dependent on the researcher’s understanding of the context, yet I
claim that when the researcher is not part of the design of the task and the task setter
is the professor, such detailed analyses can only be helpful towards understanding
students’ engagement with the tasks.
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Chapter 55
Mandatory Mathematical Modelling
in High School: How to Implement
Within and Outside the Classroom
to Meet Students’ Diverse Needs

Xiaming Chen

Abstract This chapter focuses on studying the diverse demands of mathematical
modelling in secondary schools and strategies to meet those demands under the
new curriculum standard. This study analyses students’ learning needs and the hori-
zontal distribution of multidimensional modelling in compulsory conditions. Then,
it proposes a corresponding 5-direction modelling courses. It offers a curriculum
structure in mathematical modelling suitable for different levels of need, featuring a
core ‘three-person study community’ and an ‘echelon system’ for teaching mathe-
matical modelling at higher levels. A learningmethod of ‘mathematical modelling by
item’ has been developed, and satisfactory results have been achieved. A system to
evaluate mathematical modelling has been established and applied to daily teaching
and the Shanghai Joint Secondary School Mathematical Modelling Activity.

Keywords Diverse needs ·Mathematical modelling · Echelon system · Operating
mechanism · Core trio · Curriculum evaluation system

55.1 Introduction

The National Standards of Mathematics Curriculum for Regular High School
(2017 Edition) (Ministry of Education, 2018) in China incorporates mathematical
modelling as a compulsory element in the high school mathematics curriculum. This
requirement influences the entiremathematical modelling curriculum since the target
group for instruction has changed from a small group to all students, from students
who show keen interest and better performance in mathematics to students at all
levels.
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Research on teaching mathematical modelling has focused mainly on devel-
oping processes for mathematical modelling (Blum & Leiss, 2007), designing and
conducting empirical research on cases for teaching mathematical modelling (Blum,
2011; Blum&Ferri, 2009; Blum&Leiss, 2007), designingways to assessmathemat-
ical modelling (Frejd, 2013) and collecting specific cases and evaluation strategies
(Garfunkel & Montgomery, 2016). Ferri (2017) pointed out that an educator needs
abilities in mathematical modelling in four dimensions: theory, task, pedagogy and
diagnosis. Ferri then used case studies to explain these dimensions further. That work
established a theoretical basis for developing a system of mathematical modelling
education for students of all levels, allowing us to focus onmore prominent problems.

Thus, I want to focus on three problems:

(1) How to construct a mathematical modelling curriculum within the mandatory
high school requirements.

(2) How to construct an effective framework for mathematical modelling course
implementation.

(3) How to build a diversified mathematical modelling course that crosses campus
boundaries.

55.2 Theoretical Framework

55.2.1 Classification of Different Mathematical Modelling
Needs

Mathematicalmodelling is a graduation requirement enforcedby theChineseRegular
High School Mathematics Curriculum Standard (Ministry of Education, 2018). It is
also embodied in the heart of various subjects, including physics, chemistry, biology
and computer science. Since students have different career plans, we believe that
different students reveal different needs in their mathematical modelling education.
Those who plan to pursue a career in history or social studies need a less-detailed
understanding of the application of models compared to their peers. Their need is to
form basic cognitive competencies in mathematical modelling (dimension 1). Those
who plan to study business-related subjects must master mathematical modelling
principles and simple applications (dimension 2), since business and management
fields require the applications of different models to real-world problems. Those
who plan to take on a STEM career must understand the core ideas of mathematical
modelling (dimension 3), since STEM courses have stronger prerequisites on the
ability to derive and apply models. Those who plan to conduct actual scientific
research and/or mathematical modelling competitions would need to be able to apply
mathematical models to solve complex problems (dimension 4) because of the nature
of such activities.

This classification of student needs is certainly not absolute. In many circum-
stances, because of intrinsic interests, students may want to challenge themselves
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to take courses in higher levels of mathematical modelling. Maaβ (2006) pointed
out that mathematical modelling ability is positively correlated with mathematics
ability. Since it is clear that there are different levels of mathematical ability among
students, it is not appropriate to require students to exceed their own capabilities and
zone of proximal development when laying down course requirements for mathe-
matical modelling. Thus, it is feasible to use the four dimensions of student needs
above as a basis for developing course requirements.

55.2.2 Using the Division of Labour to Teach Mathematical
Modelling

According to Frejd (2016), mathematical modelling is a professional activity which
requires an appropriate division of labour. Earlier, Blum (2007) established a process
formathematical modelling, dividing the activity into the following segments: under-
standing or constructing, simplifying or structuring, mathematising, working math-
ematically, interpreting and validating. This gives rise to a possible division labour
among students. CCSSM (2010) introduced a segment of computer programming
into Blum’s process, which gave rise to the independent role of the programmer. In
fact, because of the high complexity and big data-driven nature of real-life prob-
lems, programming has come to be an increasingly important role in solving actual
problems. In the meantime, since CCSSM (2010) also defined an ‘interpretation
and presentation’ segment in the process of mathematical modelling and since the
primary way to present the results of mathematical modelling is by means of an
academic paper, the role of a paper writer is inevitable. That was also illustrated in
Blum’s (2007) definition of the professional process. Not only is ensuring an appro-
priate division of labour in a team required for comprehensive modelling, but it also
coincides with the opinion that atomic modelling can improve the effectiveness of
solving mathematical modelling problems (Kaiser & Brand, 2015).

55.3 Methods

55.3.1 Practical Frameworks and Operating Mechanism

Given the diversity of students, we divide the course into five elements:

1. In-class mathematical modelling activities to familiarise students with the basic
principles and processes of mathematical modelling by completing simple
modelling tasks under the guidance of teachers.

2. Advanced mathematical modelling courses that enable students to grasp the full
mathematical modelling skill set and accomplishing simple tasks independently
through self-study and group discussion.
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Table 55.1 Relationship of student needs to elements of a mathematical modelling curriculum

Need Element

Element 1 Element 2 Element 3 Element 4 Element 5

Theory

Task

Pedagogy

Diagnosis

3. Extracurricular clubs or societies for mathematical modelling, which mainly
involves independent study and group discussion.

4. Research-oriented mathematical modelling studies, with practice in mathemat-
ical modelling competitions.

5. Projects commissioned by the school or social agencies.

The relationships between needs and elements are shown in Table 55.1.
A mathematical modelling education system for all students must integrate

basic mathematical modelling (basicmodellingmindsets, basicmodellingmethods
for in-class applied problems and extended problems), advanced mathematical
modelling (advanced modelling mindsets, comprehensive modelling methods and
various modelling competitions with extended questions), student independent
development (specialised unique activities with individualised results facilitate the
course improvement in the school) and cultivation of social responsibility (realistic
needs of the school and problems of society addressed with a variety of mathematical
modelling approaches).

55.3.2 The Basic Mathematical Modelling Phase

In the basic mathematical modelling phase, taking regular applied questions as a
starting point and the questions that the students can study in the textbook as the
examples, we raise the standards of algorithm design and programming, so that
students can fully understand how to produce an academic paper. Students are encour-
aged to experience the charm of mathematical modelling, to apprehend the ideas and
methods ofmathematicalmodelling and to improve the understanding and answering
of applied questions in the class. This completes the first academic ‘baptism’. The
elements of the basicmathematical modelling phase are: amathematical essay (accu-
rately illustrate a problem, show reasonable analysis and process so that the model
and its conclusions are meaningful), applied questions in the mathematics class (e.g.
individual income tax problems, city taxi problems), junior high schoolmathematical
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modelling foundation courses (analysis of basic cases, trying to develop a program),
formal report from a modelling club (modelling analysis of some phenomenon,
e.g. programming simulation of dance moves) and a mathematics class assignment
(complete the modelling of a small problem).

Cases for teaching mathematical modelling are designed using different assump-
tions and simplifications of practical problems. Four levels of cases can be generated,
which are suitable for regular applied questions, small research topics, mathematical
short papers and advancedmathematicalmodelling problems, respectively. Preparing
advanced mathematical modelling cases can enhance teachers’ understanding of
basic mathematics modelling teaching cases and improve the teaching effectiveness
of in-class applied questions.

55.3.3 The Advanced Mathematical Modelling Phase

In the advanced mathematical modelling phase, the core trio study community is
constructed with the general courses and special projects as a setting and case
teaching as the principal teaching method. This community includes ‘1 modeller,
1 programmer and 1 paper writer’.

(Based on experience, as the number of hours dedicated to studying and practising
the skill set accumulates, every groupmember could undertake 2 or 3 roles at the same
time.) Using the ‘core trio’, we developed an academic growth and self-management
mechanism supported by a tutor systemwith accountable team leaders. This has been
successful in developing student teams. The structure of the advanced mathematical
modelling phase includes comprehensive and specialised training (case analysis
and discussion activities, self-learning or learning with a senior member), compe-
titions and oral presentations (paper writing, creating presentations and basic
requirements of presentation), topics and school missions (e.g. analyse traffic prob-
lems or conduct a feasibility study of the school’s strategy) and the study commu-
nity and tutor system (with the ‘core trio’ as the study community, build a student
tutor system and a leader responsibility system). This approach demands substantial
student mathematical modelling expertise and cooperation between teammates.

55.3.4 Objectives of the Curriculum and Implementation
Plans

The whole mathematical modelling education system has been reorganised to reflect
the practical needs of teaching. It is divided into the following four parts: regular
mathematical application questions with extensions, extended courses in mathemat-
ical modelling, mathematical modelling learning for students with special needs
including relevant practices and mathematical modelling clubs.
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Regular mathematical application questions with extensions. By selecting
appropriate word problems in the textbook to adapt and expanding the problem
according to the actual situation, students can understand the problems in relation to
modelling and establishing assumptions. Students can connect applied questions and
practical problems, and they can learn to use the modelling mindset to think about
and solve some small problems around them and to complete a small paper.

Extended courses in mathematical modelling. Students learn how to formulate
reasonable questions through case studies. They can gain a holistic understanding
of the problems that must be solved. They can make reasonable assumptions about
the problems, and they can adjust and correct them during the process of problem-
solving. Students try to analyse real-world situations around them mathematically
and report their analysis in a mathematical modelling paper.

Mathematical modelling learning for students of special needs including rele-
vant practices. Through mathematical modelling, students solve practical problems
such as the arrangement of a schedule to accommodate both the new college entrance
examination and the school examination arrangement under the 3 + 3 mode. By
participating in the InternationalMathematicalModellingChallenge (IMMC)finalist
presentation competitions and other activities, they gain a deeper understanding of all
aspects of the problem in preparing for the presentation, and they gain new insights
into the ways and methods of problem solving.

Mathematical modelling clubs. By developing these clubs, activities can spread
the seeds of modelling across the entire school. More junior high school students can
be introduced to mathematical modelling and to learn what it is all about. Through
reports from the club community, it is possible to use the power of the entire club
to disseminate the knowledge of modelling beyond the school walls. The all-round
growth of modellers is also better promoted with college students interacting with
high school students and the seniors talking with the juniors.

55.4 Results

55.4.1 Construction and Implementation of Evaluation
Systems

These systems have the following elements:
Paper presenting and reporting after modelling activities. After each

modelling event, a paper-sharing session is routinely held. Each group of students
has 20 min to introduce their thesis, analyse the major difficulties and ideas and give
a framework solution and a detailed explanation of the paper. During the process,
members of the audience can ask questions. This role facilitates the timely discussion
and sharing of ideas of modelling and the directions and methods of analysing prob-
lems. In this way, the abilities of students to solve practical problems are improved
in a substantial way.
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Self-reflection rules after modelling activities. Reflections mainly involve
discussing aspects of time management, basic discipline knowledge, teamwork,
literature review and reading ability, communication and expression skills, basic
modelling and specialised abilities. Students develop targeted reflections based on
their own development and the problems exposed in the modelling process. Routine
reflection features not only the combination of personal performance and team prob-
lems, which centres on personal faults, but also that of professional skills and coop-
eration. This is very effective for the improvement of the individual’s academic level
and the development of the team.

Reciprocal rating of team leaders and team members. The purpose of setting
up the team leader’s rating form and the participant’s rating form is to enable the
students in the group to and appreciate their teammates after the modelling activity.
When team leaders evaluate team members, the strength of team members can be
recognised, the problems and aspects that need improving can be pointed out and
the creative contributions of team members can be awarded. When team members
evaluate team leaders, they get an objective analysis of their performance, covering
both the specialised work and the leadership skills of the team leader.

A ‘cascade’ system of specialised ability and evaluation. Developing students’
mathematicalmodelling has an unusual feature—a ‘cascade’ of expertise fromhigher
to lower grades. The core trio study community (see Fig. 55.1) is the basis for teaching
modelling, and the leader responsibility system and student tutor system are estab-
lished. The training of the new team members is handed over to an older, more
experienced core trio. Each member is responsible for guiding new students. They

Fig. 55.1 Structure of mathematical modelling cultivation
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are responsible for day-to-day assignments, progress checks, procedural assessments
and interim reports. By establishing a cross-age study community and gradually culti-
vating the modelling expertise of lower-grade students, the leadership, cooperation
and communication skills and academic guidance of senior students can be improved.

In Fig. 55.1, we introduce two protective systems. The first is the group leader
system in the ‘core trio study community’. This system enables student leaders to
be in full control of various aspects of their team, including time management, task
allocation, construction of work environment and monitoring the implementation
of projects. It also enables teachers to switch their role from being a director to
that of an advisor and pivot their job from controlling students to supporting them.
The second is the upperclassmen responsibility system for newmember growth. The
personal improvement process of mathematical modelling members is special. Since
we base our mathematical modelling education on the ‘core trio study community’,
experienced upperclassman communities undertake the responsibility for training
new members. Each member of the trio is responsible for advising underclassmen
in the same role, including assigning daily tasks, monitoring progress, evaluating
procedures and preparing interim reports. The upperclassman assumes primary
responsibility for whether their advisee(s) could be trained to become an acceptable
member(s).

55.4.2 Evaluation of Mathematical Modelling Competence

After the success of a small-scale pilot project, we launched the Shanghai Joint
Secondary School Mathematical Modelling Activity (SJMMA) based on IMMC.
The aim was to build a more general Evaluation System of Regular High School
Students’ Mathematical Modelling competence and thus drive the development of
mathematical modelling activities in Shanghai. In this, we used a scoring table of
five ranks; every paper was judged by at least two judges on a 5-point scale. The
total rank distribution is shown in Fig. 55.2 for each aspect of performance.

We found that students scored low in ‘assumptions’ and ‘programming andmodel
evaluation’. Using surveys, we conducted further analysis of the underlying reasons

score(High to low) 5 4 3 2 1 Mini Average
Summary 21 33 46 43 37 2.77
Problem Analysis 21 37 43 51 28 2.84
Assumptions 5 36 49 46 44 2.51
Modeling Process 12 38 47 56 27 2.73
Programming & Model Evaluation 9 34 25 50 54 2.28

smroN cimedacA  17 25 39 66 36 2.61
Mini

Total Score  Distribution

Fig. 55.2 Distribution of SJMMA2019 paper score
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for the poor performance on those two indicators, and we discovered a critical factor
that contributed to this phenomenon.

For ‘assumptions’, the main factor was that in regular math classes, the descrip-
tion of problems is definite; the lack of open-ended questions traps students in
a closed system when solving problems. When students encounter problems that
require independent analysis and making assumptions, they are less prepared. As a
result, students lack understanding about the principles of making assumptions, so
they designate some problem variables as constants, making the model less credible.
For ‘programming and model evaluations’, the principal reasons were: (1) students
rarely had opportunities to do hands-on programming projects outside of mathemat-
ical modelling, resulting in a lack of practice; (2) even when some computer science
courses involved some level of programming, the problems were often artificially
simplified so they were very different from real-life problems; (3) because of the
complex nature of the models themselves, a high level of understanding and visuali-
sation of models was required, and this level can be hard to reach given the students’
current abilities.

55.5 Discussion

By analysing the resulting data of SJMMA, we saw that the mathematical modelling
ability of most students was low, especially in making assumptions and computer
programming.Wemade three recommendations for teachers. First, consider splitting
students into groups of core trio communities during initial training, such that at least
onemember of each team can accomplish each task. Thiswould ensure the successful
completion of a modelling project. Second, increase the weight of problem analysis
in teaching, such that each student can grasp the critical abilities required to make
appropriate assumptions and analyse problems independently. This would help them
translate real-life problems into mathematical problems, paving their way to success.
Third, emphasise computer programmingwithin themathematicalmodelling activity
and increase the proportion of computer program realisation in solvingmathematical
modelling problems. This would improve the students’ abilities to design algorithms
and implement programs.

55.6 Summary and Conclusion

By analysing the diverse needs formathematicalmodelling under the new curriculum
standard, the four-dimensional model of student needs for mathematical modelling
is refined, and the five elements of the curriculum system of mathematical modelling
are established. To reduce the barriers between normal mathematics curriculum and
mathematical modelling activities, a teaching system for mathematical modelling
covering all students is established. This links basic mathematical modelling and
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advanced mathematical modelling. By establishing the core trio study community
and modelling cascade system for across-grade peer-to-peer tutoring, a mathemat-
ical modelling training programme is developed to improve students’ mathematical
modelling competence in an all-roundway,whichhighlights a combinationof general
knowledge and specialised training.

By analysing data collected in school mathematical modelling teaching and
SJMMA, along with index analysis, the real difficulties of students in mathemat-
ical modelling activities are identified. In the analysis, the factors underlying student
difficulties and teaching strategies are clarified. In future research, we will track the
relevant teaching further and use the information gained in actual situations to make
timely adjustments.
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