International Perspectives on the Teaching and
Learning of Mathematical Modelling

Frederick Koon Shing Leung
Gloria Ann Stillman

Gabriele Kaiser
Ka Lok Wong Editors

Y| Mathematical
Modelling
Education in
East and West

@ Springer



International Perspectives on the Teaching
and Learning of Mathematical Modelling

Series Editors
Gabriele Kaiser, University of Hamburg, Hamburg, Germany

Gloria Ann Stillman, Australian Catholic University, Ballarat, VIC, Australia

Editorial Board

Maria Salett Biembengut, Pontifical Catholic University of Rio Grande do Sul -
PUCRS, Brazil

Werner Blum, University of Kassel, Germany

Helen Doerr, Syracuse University, USA

Peter Galbraith, University of Queensland, Australia
Toshikazu Ikeda, Yokohoma National University, Japan
Mogens Niss, Roskilde University, Denmark

Jinxing Xie, Tsinghua University, China



This book series will publish various books from different theoretical perspectives
around the world focusing on Teaching and Learning of Mathematical Modelling at
Secondary and Tertiary level. The proceedings of the biennial conference called
ICTMA, organised by the ICMI affiliated Study Group ICTMA (International
Community of Teachers of Mathematical Modelling and Applications) will also
be published in this series. These proceedings display the worldwide state-of-the-art
in this field and will be of interest for a wider audience than the conference partici-
pants. ICTMA is a worldwide unique group, in which not only mathematics educators
aiming for education at school level are included but also applied mathematicians
interested in teaching and learning modelling at tertiary level are represented. ICTMA
discusses all aspects related to Teaching and Learning of Mathematical Modelling at
Secondary and Tertiary Level, e.g. usage of technology in modelling, psychological
aspects of modelling and its teaching, modelling competencies, modelling examples
and courses, teacher education and teacher education courses.

More information about this series at http://www.springer.com/series/10093


http://www.springer.com/series/10093

Frederick Koon Shing Leung -

Gloria Ann Stillman - Gabriele Kaiser -
Ka Lok Wong

Editors

Mathematical Modelling
Education in East and West

@ Springer



Editors

Frederick Koon Shing Leung Gloria Ann Stillman

School of Mathematics and Statistics School of Education

Southwest University Catherine of Siena Centre

Chongging, China Australian Catholic University (Ballarat

Faculty of Education Campus), Ballarat, VIC, Australia

The University of Hong Kong
Hong Kong SAR
China

Ka Lok Wong
Faculty of Education
The University of Hong Kong

Gabriele Kaiser Hong Kong SAR, China

Faculty of Education
Didactics of Mathematics
University of Hamburg
Hamburg, Germany

ISSN 2211-4920 ISSN 2211-4939 (electronic)
International Perspectives on the Teaching and Learning of Mathematical Modelling
ISBN 978-3-030-66995-9 ISBN 978-3-030-66996-6 (eBook)

https://doi.org/10.1007/978-3-030-66996-6

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature
Switzerland AG 2021, corrected publication 2021

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether
the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse
of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and
transmission or information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland


https://orcid.org/0000-0003-1725-3883
https://orcid.org/0000-0002-6239-0169
https://orcid.org/0000-0002-0996-9120
https://doi.org/10.1007/978-3-030-66996-6

Series Preface

Applications and modelling and their learning and teaching in school and university
have become a prominent topic for many decades now in view of the growing world-
wide relevance of the usage of mathematics in science, technology and everyday
life. There is consensus that modelling should play an important role in mathe-
matics education, and the situation in schools and university is slowly changing to
include real-world aspects, frequently with modelling as real world problem solving,
in several educational jurisdictions. Given the worldwide continuing shortage of
students who are interested in mathematics and science, it is essential to discuss
changes of mathematics education in school and tertiary education towards the inclu-
sion of real world examples and the competencies to use mathematics to solve real
world problems.

This innovative book series established by Springer International Perspectives on
the Teaching and Learning of Mathematical Modelling, aims at promoting academic
discussion on the teaching and learning of mathematical modelling at various educa-
tional levels all over the world. The series will publish books from different theoretical
perspectives from around the world dealing with Teaching and Learning of Math-
ematical Modelling in Schooling and at Tertiary level. This series will also enable
the International Community of Teachers of Mathematical Modelling and Applica-
tions (ICTMA), an International Commission on Mathematical Instruction affiliated
Study Group, to publish books arising from its biennial conference series. ICTMA is a
unique worldwide educational research group where not only mathematics educators
dealing with education at school level are included but also applied mathematicians
interested in teaching and learning modelling at tertiary level are represented as well.
Six of these books published by Springer have already appeared.

The planned books display the worldwide state-of-the-art in this field, most recent
educational research results and new theoretical developments and will be of interest
for awide audience. Themes dealt with in the books focus on the teaching and learning
of mathematical modelling in schooling from the early years and at tertiary level
including the usage of technology in modelling, psychological, social, historical and
cultural aspects of modelling and its teaching, learning and assessment, modelling
competencies, curricular aspects, teacher education and teacher education courses.
The book series aims to support the discussion on mathematical modelling and its

v



vi Series Preface

teaching internationally and will promote the teaching and learning of mathematical
modelling and research of this field all over the world in schools and universities.

The series is supported by an editorial board of internationally well-known
scholars, who bring in their long experience in the field as well as their expertise
to this series. The members of the editorial board are: Maria Salett Biembengut
(Brazil), Werner Blum (Germany), Helen Doerr (USA), Peter Galbraith (Australia),
Toshikazu Ikeda (Japan), Mogens Niss (Denmark), and Jinxing Xie (China).

We hope this book series will inspire readers in the present and the future to
promote the teaching and learning of mathematical modelling all over the world.

Hamburg, Germany Gabriele Kaiser
Ballarat, Australia Gloria Ann Stillman
Series Editors
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Chapter 1 ®)
Mathematical Modelling Education oo
in the Cultural Contexts of West and East

Frederick Koon Shing Leung, Gloria Ann Stillman, Gabriele Kaiser,
and Ka Lok Wong

Abstract The title of this book is Mathematical Modelling Education in West and
East, arising from the ICTMA-19 conference with the same theme. It is argued
that since both mathematics itself and mathematics education are human products,
and solving problems in real-life context is at the heart of mathematical modelling
and its applications, mathematical modelling, and its teaching and learning should be
considered in their cultural contexts. Hence, consideration of issues about mathemat-
ical modelling in West and East will bring out the richness of mathematical modelling
education. In this regard, the hosting of ICTMA-19 in Hong Kong, a meeting point
of Western and Eastern cultures, has special significance for the discussion on math-
ematical modelling. After an introduction of the theme, the classification of the
chapters of the book and structure of the book are explained.

Keywords Mathematical modelling education - Pedagogical issues + Assessment *
ICTMA-19 - Confucian Heritage Culture (CHC) - International Mathematical
Modelling Challenge (IMMC)

1.1 Introduction

Mathematics is often perceived as universal truth (Ernest 2009), and as a corollary,
principles of mathematics education should be applicable irrespective of the culture
and tradition students are situated in. Mathematical modelling education, as a branch

F. K. S. Leung ()
School of Mathematics and Statistics, Southwest University, Chongqing, China
e-mail: frederickleung @hku.hk

F K. S. Leung - K. L. Wong
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of mathematics education, is perceived likewise. Based on this premise, a book on
mathematical modelling should cover topics on mathematics modelling activities
applicable to everywhere in the globe. However, research in mathematics education
in the past three decades has shown that both mathematics itself and mathematics
education are human products (Bishop 1988; Lerman 2000; Ellis and Berry 2005).
As such, it will be very valuable for scholars from different cultural traditions to
gather together in an international conference and share experiences on mathemat-
ical modelling education arising out of their own cultural tradition. In fact, it can be
argued that since solving problems in real-life context is at the heart of mathematical
modelling and its applications (Blomhgj and Carreira 2009), it is all the more impor-
tant for mathematical modelling and its teaching and learning to be considered in
its cultural context. Consideration of mathematical modelling in its cultural context,
and sharing and contrasting research and practices from different cultures, will bring
out the richness of mathematical modelling education. How boring it would be if
mathematical modelling were done in the same way in all parts of the world!

The theme of this book, and of the ICTMA-19 conference held in Hong Kong SAR,
China (https://www.ictmal9.org/), from which the chapters of this book are derived,
is Mathematical Modelling Education in West and East. China, a major country in the
East, has fostered a unique tradition of mathematical education, which has profound
influence on its neighbouring countries such as Japan and Korea throughout its history
(Martzloff 1997). Mathematics education in China is deeply rooted in its profound
culture established in a 5000-year history of civilization, particularly Confucianism,
and the related so-called examination culture (Leung 2006) and textual culture
(Cherniack 1994). As educators and policy makers around the world have come
to realize the importance of learning from experiences of other countries under a
different culture, the success of students in China and more generally in countries
under the influence of the Chinese culture (referred to as Confucian Heritage Culture
or CHC) (Biggs 1996) in international studies of mathematics achievement (Mullis
etal.2016; OECD 2016) has drawn attention from mathematicians and mathematical
educators and researchers all over the world. Educators and policy makers are partic-
ularly interested in issues relating to the curriculum and the teaching and learning
of mathematics, including the issue of integration of mathematical modelling in the
teaching and learning of mathematics.

There was a strong emphasis on algorithm and computation in the mathematics
tradition in China (Martzloff 1997), as illustrated in the Nine Chapters of Mathemat-
ical Art or Jiu Zhang Suan Shu (composed from tenth to second century BCE)
(Straffin 1998), and this emphasis has now seen a renaissance in mathematical
modelling and applications when China has made significant progress with economy,
science and technology. In recent decades, teaching and learning of mathematical
modelling as well as contests in mathematical modelling have been flourishing at
different levels of education in Greater China including Mainland China, Hong Kong,
Macau and Taiwan. Courses in mathematical modelling have become elective or
core courses in universities or vocational colleges in China. At the secondary school
level, in the forthcoming National High School Mathematics Curriculum in China
(MOE 2017), mathematical modelling is included as one of the core mathematical
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competencies for students and is a compulsory requirement in the curriculum, with
designated classroom teaching hours. Partly because of this emphasis, teachers and
researchers in China today become keener to learn from their western colleagues
in the teaching of mathematical modelling and its applications. And as pointed out
above, researchers and educators in the West are also interested to learn about what
is happening in the East in terms of the role played by mathematical modelling in
mathematics education. Hence, dialogue and communication between colleagues
from across the globe will provide new impetus and resources for mathematical
modelling education and its research in both West and East.

Alongside this increased attention to mathematical modelling, a number of compe-
titions related to mathematical modelling at various levels of the education system
have been developed. It is admitted that mathematics education is not about compe-
tition. In fact, some scholars denounce competition as having a negative effect on
mathematics teaching and learning. However, it should also be admitted that in
certain areas of mathematics education, competition does have its role in promoting
the learning of mathematics, unless it is overemphasized (Yao et al. 2012). Take the
International Mathematics Olympic (IMO) as an example. It has played an impor-
tant part in inculcating mathematics geniuses, but if the IMO type of competitions
is promoted in a universal scale, as is alleged of being done in China, it may pose
harmful consequences. As for mathematical modelling competition, it is argued that
if managed well, it will exert a positive effect on mathematical modelling education,
encouraging youngsters to solve complex modelling examples, which in turn will
contribute to mathematics teaching and learning more generally. Moreover, interna-
tional mathematical modelling competitions have a further effect of promoting the
interflow of ideas (and friendship) through interaction of the students participating
in the competitions.

In recent years, Hong Kong, the venue for ICTMA-19, has been paying increasing
attention to the role that mathematical modelling and its applications play in the
teaching and learning of mathematics, and one of the means through which this is
achieved is via mathematical modelling competitions. For example, an interschool
contest in mathematical modelling for secondary school students has been running
for more than 10 years, and in recent years, it is merged with another newly estab-
lished competition, International Mathematical Modelling Challenge (IMMC) in
Hong Kong. With the hosting of ICTMA-19 in Hong Kong, mathematicians and
mathematics educators and researchers from across the globe have been able to get
to know more about the development in the promotion of mathematical modelling in
Hong Kong and in the Greater China region more generally. Chinese educators and
researchers are also afforded the opportunity to learn and connect with the interna-
tional community of teachers and researchers involved in mathematical modelling
and its applications.

With a history of more than 150 years, Hong Kong is unique for blending the
eastern and western cultures. Hong Kong has played an important role in not only
ushering in western culture and education to China but also in introducing China
to the West. With the increasing awareness and efforts in mathematical modelling
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education all over the world, Hong Kong will continue to be a super-connector
between West and East.

As mentioned above, this book is a result of the ICTMA-19 conference held in
Hong Kong and is a means for providing dialogue and communication for researchers
and educators from both West and East across the globe who are interested in sharing
new ideas on modelling teaching and practices, inside and outside the classroom.
Unfortunately but perhaps not unexpectedly, not too many of the papers presented at
ICTMA-19 addressed the conference theme of Mathematical Modelling Education in
West and East, similar to the situation in many other education conferences. However,
the very fact that ICTMA-19 was held in Hong Kong sits very well with the theme
of the conference, and has encouraged attendance of participants from the Asian
region. In fact, compared to the past few ICTMA conferences, both the number of
participants from the Asian region and the number of papers presented by participants
of Asian origin are higher. And ICTMA-19 is only the second ICTMA conference
being held in Asia (the last time was ICTMA-10 held in Beijing in the year 2001), in
an international metropolis and educational and cultural hub known to be the meeting
point of Western and Eastern cultures.

The chapters in this book come from some of the papers presented at ICTMA-
19. At ICTMA-19, papers were roughly grouped under different themes such as
Teacher Education; Teaching Cases at Primary and Secondary Levels; The Process
of Modelling; Technology Use in Modelling; Teaching Methods; Students’ Perfor-
mance in Mathematical Modelling; Teachers’ Knowledge; Teaching Cases in Higher
Education; Cognition, Metacognition and Attitudes; Social and Cultural Influence on
Mathematical Modelling; Task Design; Context and Strategy; Curriculum; etc. Given
this wide classification, a more clear-cut classification is needed for the book. Instead,
considering the nature of the content of the papers submitted for this book, we can
easily find that a substantial number of papers addressed the standard issues of the
nature of mathematical modelling, and issues addressing the pedagogy and assess-
ment of mathematical modelling, and so the first three sections of the book cover
theoretical issues, pedagogical issues and assessment issues respectively. There are a
number of chapters on experiences of teaching practices in mathematical modelling,
with quite a number of papers reporting some innovative teaching approaches, and
these constitute the next two sections of the book. Some further examples on teaching
mathematical modelling are provided in the following section, and there are also a
number of chapters reporting experiences on mathematical modelling at the tertiary
level. The last section covers miscellaneous topics on mathematical modelling. The
chapters within each section are then arranged in alphabetical order.

1.2 Theoretical Issues

A number of theoretical issues in mathematical modelling are covered in the first
section of the book.
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Ang (Chap. 2) explores and explicates the role of computational thinking, one
of the key skill sets for the future, in mathematical modelling, and examines the
relationship between computational thinking and mathematical modelling. Examples
from different modelling approaches are provided to contextualize the relationship,
and to demonstrate that mathematical modelling may serve as a platform for the
practice and development of computational thinking.

Fisher (Chap. 3) argues for the importance of enabling secondary school students
to build models for analysing complex systems problems in order to increase their
understanding of nonlinear feedback systems they will encounter as professionals
and citizens in the future. Examples of the types of system models normally outside
the reach of the secondary school students are provided, and their advantages for
enhancing students’ ability in analysis of real-world mathematical problems, as well
as the use of technologies in solving these problems, are discussed.

Lewis (Chap. 4) establishes a theory for facilitating modelling tasks as a bridge
between modelling as content and modelling as vehicle. An example of how one
teacher vacillates between nurturing students’ development of modelling as content
and targeting curricular objectives through formalization of desired mathematical
content as vehicle is used to illustrate how the teacher navigates between these two
epistemological approaches to develop students’ mathematical modelling capacity.

Orey and Rosa (Chap. 5) argue that the combination of local (emic) and global
(etic) approaches in ethnomodelling research contributes to a holistic understanding
of mathematics. Local knowledge is essential for an intuitive and empathic under-
standing of mathematical ideas and procedures, while global dialogical knowledge is
essential for the achievement of cross-cultural communication. Acquisition of both
local and global knowledge is a goal of ethnomodelling research, which should be
conducted through respect, appreciation, dialogue, and interaction.

Rosa and Orey (Chap. 6) argue that ethnomodelling can aid in recording cultural-
historical forms of mathematical practices developed by members of distinct cultural
groups and bring in cultural perspectives to the mathematical modelling process.
Insubordination triggered by ethnomodelling may evoke a sense of disturbance that
causes conscious review of rules and regulations endemic to many curricula contexts.
This process enables educators to use positive deviance to develop pedagogical
actions that deal with content often disconnected from the reality of the students.

Seving (Chap. 7) provides a theoretical discussion on the epistemological content
of self-regulated and collaborative model development. Utilizing Piaget’s theory of
cognitive development as the foundation for the “models-and-modelling” perspec-
tive, a genre of activities called model-eliciting activities are produced. It is argued
that Piaget’s reflective abstraction and series of successive approximations support
the cyclic and self-regulatory nature of model development, which occurs as a series
of assimilations, accommodations, and (dis)equilibrium.
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1.3 Pedagogical Issues

This section of the book includes chapters related to pedagogical issues in
mathematical modelling.

Ay and Ostkirchen (Chap. 8) present the pilot study of a project entitled Diversity
in Modelling (DiMo+) which analyses how 15-year-old students in Germany handled
mathematical modelling tasks. Different patterns of action in modelling are found
among students of different social backgrounds. It is argued that compared to many
other countries, educational success in Germany is strongly determined by social
background. This is especially the case for success in mathematical modelling, where
modelling tasks involve authentic use of extra-mathematical content.

Borromeo Ferri (Chap. 9) argues that teacher education in mathematical modelling
is necessary so that modelling lessons can be realized in schools. The historical
development of teacher education in mathematical modelling is then discussed, and
an empirical study on measuring teacher competencies for mathematical modelling
is presented. This is followed by the presentation of a case study on the views of
university educators after teaching a mathematical modelling course as to what school
teachers need to know in modelling.

Ferrando, Segura and Pla-Castells (Chap. 10) report a study in which 224 Spanish
pre-service primary school teachers analysed students’ written solution plan of a
sequence of modelling tasks involving estimations. The results show that there is a
relation between the solution plan used by the students and the characteristics of the
context of the real estimation task. Conclusions regarding the characterization of this
kind of modelling tasks and the potential use of this sequence of tasks to promote
problem solving flexibility are then derived.

Geiger, Galbraith and Niss (Chap. 11) report the interim findings of a national
project in Australia that aims to promote effective teaching and learning practices
in mathematical modelling through attention to implemented anticipation. From the
findings, a Design and Implementation Framework for Modelling Tasks (DIFMT) is
generated. The study suggests that specific pedagogical practices can act as enablers
of students’ attempts to appropriate the process of mathematical modelling.

Guerrero-Ortiz (Chap. 12) reports a study on the relationships between the
mathematical modelling processes adopted by pre-service teachers while designing
modelling tasks and the knowledge in relation to content, technology, and pedagogy.
A way to integrate modelling and Technological Pedagogical Content Knowledge
(TPACK) into an analysis framework is demonstrated, which deepens the current
understanding of teachers’ knowledge and development of resources to support the
integration of modelling and technology as a part of teaching practice.

Hartmann and Schukajlow (Chap. 13) examine whether students are more inter-
ested in and feel more enjoyment and less boredom while solving real-world problems
outside than inside the classroom. Results of the study indicate that location does not
influence the development of students’ interest and emotions. The authors argue for
the importance of authentic problems for students to develop interest and emotions.

Hearne (Chap. 14) explores the use of mathematical modelling to enhance grade 6
learners’ understanding of fractions. It is found that learners’ understanding improves
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as effective connections are made between and within their intra-mathematical and
extra-mathematical knowledge, and they benefit by connecting symbols and their
referents and procedures and their underlying concepts rather than focusing on the
surface features of Arabic notation.

Huang, Lu and Xu (Chap. 15) employ a qualitative text analysis approach to
analyse the mathematics curricular syllabi or standards at primary, middle and high
school levels in China in order to investigate the historical development of mathe-
matical modelling in the country. A number of interesting observations are made,
e.g., the term “modelling” might not appear in syllabus, but the idea of mathemat-
ical modelling rooted in the tradition of “solving real-world problem” has been in
existence for a long time.

Schmitz and Schukajlow (Chap. 16) study the role of pictures in solving mathemat-
ical modelling tasks through assessing the picture-specific utility value and modelling
performance of upper secondary school students. The picture-specific utility value
reflects the perceived usefulness of a picture for understanding the problem, students
assign a lower utility value to the pictures that contain additional superfluous numer-
ical information. However, no significant differences in the students’ modelling
performance are found.

1.4 Assessment Issues

Issues related to assessment in mathematical modelling are covered in this section
of the book.

Alagoz and Ekici (Chap. 17) validate a mathematical modelling assessment with
the input of content expert from multiple disciplines in building, defining, and clari-
fying the interdisciplinary competencies involved in the modelling tasks. The valida-
tion process involves scoring, interpretation and uses, and consequences of interdis-
ciplinary mathematical modelling assessment results. Confirmatory factor analysis
indicates construct validity for an assessment with two higher-order factors indi-
cating conceptual and procedural dimensions of interdisciplinary learning enacted
by mathematical modelling.

Frenken (Chap. 18) presents the construction of a test instrument for assessing
metacognitive knowledge of mathematical modelling based on a theoretical defi-
nition of the term “metacognitive knowledge” and its domain-specific connec-
tion to mathematical modelling. The scalability and possible reduction of items
of the instrument are analysed, and the item construction and evaluation process is
described.

Goksen-Zayim, Pik, Dekker and van Boxtel (Chap. 19) explore the mathemat-
ical modelling proficiency in both primary school and lower secondary school in
the Netherlands. Two modelling tasks on three difficulty levels are administered,
and it is found that learners encounter difficulties when constructing a meaningful
representation of the described modelling problem or may even fail to understand
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the problem. Representation problems are qualitatively analysed and are shown to
be partially related to learners’ language problems.

Wang (Chap. 20) investigates the mathematics modelling competency of pre-
service mathematics teachers in 4 universities in China. A scoring framework of the
mathematical modelling steps in solving a modelling item is used, and a questionnaire
on modelling competition experience is administered. The results show that there is
correlation between the modelling competition experience of student teachers and
their modelling competency.

Wess, Klock, Siller and Greefrath (Chap. 21) present a theory-based development
of a structural model and an associated test instrument to measure the competence of
teachers in their skills and abilities for teaching mathematical modelling. The extent
to which the proposed conceptualization of the structural model can be empirically
confirmed is discussed, and insights into the test instrument are presented and results
of the structural equation analysis of the model are presented.

1.5 Teaching Practice

This section of the book includes chapters on teaching practices in mathematical
modelling.

Czocher and Hardison (Chap. 22) present a theoretically coherent methodological
approach for understanding the situation-specific attributes students find relevant in
mathematical modelling tasks, and when students’ situation-specific meanings for
inscriptions change while engaged in modelling. The utility of this approach is illus-
trated by analysing the modelling activities of a purposefully selected undergraduate
student.

Hansen (Chap. 23) analyses the procedural choices and assessments the pre-
service teachers let their pupils make and how they facilitate critical thinking during
a practice period. It is found that although the pre-service teachers often empha-
size mathematical exploration, they tend to offer specific tasks to assist pupils with
the exploration, and pupils are not often given the opportunity to narrow down the
mathematical modelling problem and decide how to collect and represent data.

Ikeda and Stephens (Chap. 24) survey pre-service mathematics teachers on the
kinds of educational effects gained when addressing a task from the perspective that
mathematical modelling can be used to enrich students’ knowledge both in the real
world and in mathematics. The results suggest that pre-service teachers are able to
appreciate that modelling can not only enrich students’ ability to solve real-world
problems, but also deepen their ability to develop further mathematics.

Vargas and Jara (Chap. 25), in order to identify the implicit and explicit features in
the practices of teachers in mathematical modelling, design a questionnaire consisting
of two categories which emerge from a theoretical analysis using an onto-semiotic
approach: epistemic and didactic. The questionnaire is administered to 30 ninth-
grade mathematics teachers in Bogotd, Colombia who have extensive experience
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in teaching mathematical modelling. The data are collected using the Google Docs
platform and analysed in relation to the theoretical framework.

Yvain-Prébiski (Chap. 26) presents an epistemological study to investigate the
possibilities of giving students the responsibility for mathematical work that makes
it possible to make an extra-mathematical situation accessible through mathematical
treatment. A situation for teaching and learning mathematical modelling based on
an adaptation of a professional modelling problem is designed, implemented and
analysed.

1.6 Innovative Teaching Approaches

This section of the book reports some innovative teaching approaches in the teaching
of mathematical modelling.

Brown (Chap. 27) investigates teacher noticing and novice modellers’ developing
conceptions of noticing during a primary school mathematical modelling task through
teachers observing Year 3/4 students attempting the task. It is argued that to achieve
success in solving real-world tasks, students must notice what is relevant and decide
how to act on this to progress their solution, and teachers must also discern what is
relevant and nurture student capacity to notice.

Buchholtz (Chap. 28) reviews findings on mobile learning with math trails and
presents the results of a study on digital support of the mathematical modelling
processes of 11th graders when doing math trails. It is argued that math trails contain
tasks that promote essential elements of mathematical modelling such as mathema-
tising, and the fact that math trails are more and more supported by digital media
affects students’ motivation and achievements.

Burkhardt (Chap. 29), based on his 55 years of experience as a researcher in
mathematical modelling education, introduces some core concepts in mathematical
modelling, and then focuses on the design strategies and tactics that are learned
in the projects that he has been involved in, including the roles for technology. The
difficulties of achieving improvement on a large scale are discussed, based on specific
design issues in teaching modelling, and elements of a way forward are outlined.

Garfunkel, Niss and Brown (Chap. 30) contrast the opportunities for mathematical
modelling offered to students in their normal classroom versus extra-curricular events
in terms of the support available from a more knowledgeable other. Such support
within the classroom is usually provided by the classroom teacher, while support
for extra-curricular modelling opportunities is sometimes non-existent. Using the
International Mathematical Modelling Challenge as an example, it is argued that the
learning environment of such challenges is conducive to student engagement with
mathematical modelling.

Jung and Lee (Chap. 31) explore the integration of group creativity into mathe-
matical modelling in a ninth-grade class, grounded in a sociocultural perspective.
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Findings from lesson observation and interviews with participants indicate that
group creativity contributed to simplifying the situation and elaborating models,
and to get a more elaborated model, group composition reflecting cognitive diver-
sity and teacher’s guide for interactions based on mathematical grounds should be
emphasized.

Kawakami and Mineno (Chap. 32) examine ninth-grade students’ data-based
modelling to estimate previous and unknown Japanese populations. The results show
that the data-based modelling approach can be used to construct, validate, and revise
various models while flexibly combining mathematical, statistical, and contextual
approaches generated by using data from real-world contexts. It is argued that data-
based modelling can be a pedagogically dynamic and flexible approach for balancing
the development of generic modelling proficiency and the teaching of mathematics
and statistics through real-world contexts.

Manzini and Mhakure (Chap. 33) explore the implications of using mathematical
modelling as a framework for the teaching and learning of mathematical concepts
such as proportional reasoning in some under-resourced schools in low socio-
economic areas of South Africa. The results show that the initial apprehension that
students experienced when exposed for the first time to a model-eliciting activity is
soon transformed into a diverse range of creative mathematical approaches, when
they learn that the activity is open-ended by default.

Mhakure and Jakobsen (Chap. 34) investigate the mathematical thinking style of
Grade 11 students in two schools from low socio-economic areas in South Africa
when they are working on a modelling task involving a real-world problem on
geometrical constructions. It is found that although students are able to find solutions
to the scaffolded questions, they have problems with identifying the key mathematical
concepts required during the mathematization process and the assumptions required
to solve the modelling task.

Passarella (Chap. 35) presents a teaching case in a primary school class on multi-
plication as iterated sum during regular mathematics lessons, where the researcher
designs a model-eliciting sequence with the aim of bringing out formal mathemat-
ical concepts from students. It is argued that the implementation of model-eliciting
activities can foster emergent modelling, i.e., the students’ attitude to discover and
(re-)create new mathematical concepts.

Sokolowski (Chap. 36) reports a study of 21 high school students in a mathematical
modelling activity involving the topic of the Fundamental Theorem of Calculus (FTC)
that utilizes scientific reasoning to support the learning of mathematics concepts,
based on research on and recommendations about designing effective exploratory
STEM modelling activities. The students’ responses show positive effects of this
activity in understanding FTC.

Tangkawsakul and Makanong (Chap. 37), following a context-based approach,
report the design of some mathematical modelling activities which emphasize
authentic situations that are closely related to the real life of ninth-grade students.
The aim is to encourage students to integrate mathematical knowledge, skills and
processes in the creation of mathematical models to understand and solve problems.
Itis found that most of the students engage in mathematical modelling processes with
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their friends during the activities, which allows them to use and practically connect
mathematics with real situations and problems encountered during their daily lives.

Zhou, Li, He and Li (Chap. 38) explore how to infiltrate mathematical modelling
in calculus teaching (such as including definition introduction, theorem application
and practice training) from the perspective of teachers. Three examples are presented
in detail as illustrations. It is argued that integrating mathematical modelling into a
calculus course teaching is an effective way to cultivate students’ innovative and
practical abilities.

1.7 Examples on Mathematical Modelling

This section of the book provides some further examples on teaching mathematical
modelling.

De Bock, Deprez and Laeremans (Chap. 39) argue that instead of taking examples
and contexts exclusively from physics or other natural sciences in learning about
mathematical applications and modelling, applications from economics, business, or
finance in secondary school mathematics should be more utilized. To study the role
of such applications, all Proceedings of past ICTMA conferences are scrutinized.
It is found that economic applications are indeed not well represented, however a
positive trend is revealed since ICTMA 12, the first ICTMA whose conference theme
explicitly refers to economics.

Ekici and Alagoz (Chap. 40) report on design-based research experiments that
extend the modelling of circular motion to advanced periodic orbits from a series of
trigonometric functions. Inquiry-based orbital modelling allows students to exper-
iment with modelling of periodic orbits with technology-rich tasks in interpreting
the connections of periods and amplitudes of circular functions and the emergent
patterns. The results show that learners experience coherence while interpreting,
comparing, and validating their orbital models in circular, functional, and complex
trigonometry with connections in between.

Greefrath and Vos (Chap. 41) discuss a variety of issues relating to the increasing
use of digital tools and media in mathematical modelling tasks. A classification
system for ICT-based mathematical modelling tasks is developed, and the classifica-
tion is validated with three example tasks. A visual presentation based on the clas-
sification system enables the evaluation of qualities of a given ICT-based modelling
task and can give insight into potential adaptations.

Kacerja, Cyril, Gierdien, Herheim, Lilland and Smith (Chap. 42) present a study
in which Norwegian and South African prospective teachers discuss critical issues
relating to a task on the mathematical model of the Body Mass Index. Four themes are
identified, and the themes are discussed in relation to prior research on mathematical
models in society and teacher education. The potential of such modelling examples
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to promote critical discussions about the role of mathematical models in society is
argued.

Steffensen and Kacerja (Chap. 43) study how lower secondary school students
reflect when using a Carbon Footprint Calculator (CFC) in their work with climate
change in the mathematics classroom from a socio-critical modelling-perspective.
The findings show that students reflect on various issues such as making sense of the
use of CFC and global emissions. It is argued that CFCs have the potential to bring
about critical reflections on mathematical models with the power to impact people’s
lives.

1.8 Issues at Tertiary Level

A number of issues on mathematical modelling at the tertiary level are covered in
this section of the book.

Aragon and Delgadillo (Chap. 44) contrast the problems presented by a professor
in an engineering course and the mathematical modelling project developed by
students in the practical section of said course. It is argued that there is evidence
of modelling competence in engineering being promoted and developed and that it is
possible to consider it as a connector between the various training cores, identifying
mathematical models that will allow us to understand and establish relationships
between such training cores.

Durandt, Blum and Lindl (Chap. 45) report a study about the influence of two
different teaching designs on the development of first-year engineering mathematics
students’ modelling competency. One is an independence-oriented teaching style,
aiming at a balance between students’ independent work and teacher’s guidance,
while the other is the more traditional teacher-guided style. The results show that
all groups have significant learning progress, but the group taught according to the
independence-oriented design has the biggest competency growth.

Julie (Chap. 46) reports a study in which a group of practising teachers in an
introductory immersion course on mathematical modelling construct a model for
funding and ranking of universities and present their model to other members of
the participating cohort of teachers. Data analysis is anchored around the notions
of internal and external reflections occurring during the interactions between the
group who construct the model and their peers. The analysis renders four themes
of which two are distinctly aligned to internal reflections, and the other two are an
intertwinement between the external and external reflections.

Rogovchenko, S. (Chap. 47) analyses engineering students’ written reports on
a mathematical modelling assignment. A commognitive framework is used in the
analysis of students’ mathematical discourse in written solutions and oral discussions,
and analysis of students’ narratives indicates the development of exploratory routines
in the process of solving mathematical modelling tasks. It is argued that teaching of
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mathematical modelling at the university does not only contribute to the development
of mathematical competencies and motivates the interest to mathematics but also
plays an important didactical role in promoting mathematical thinking of engineering
students.

Rogovchenko, Y. (Chap. 48) reports a study on the extra-curriculum activities of
biology undergraduates, focusing on the selection of mathematical modelling tasks
with different levels of cognitive demand and the level of teacher’s guidance during
students’ collaborative work on the tasks.

Spooner (Chap. 49) studies the experience of first-year university students in a
mathematical modelling course. Using reflective thematic analysis, student interview
data are inductively analysed to identify themes relating to their collective learning
experiences. The results show that through guidance during lectures, students are
able to have an independent modelling experience. To further enhance this, it is
recommended that lecturers work through problems unfamiliar to themselves during
lectures.

1.9 Other Subjects

A number of other subjects related to mathematical modelling are covered in this
last section of the book.

Arlebiick and Frejd (Chap. 50) report a study where upper secondary students
devise and implement a plan for tackling a mathematical modelling question, and
reflect on the aspects and factors that might have influenced their adopted strategy and
results. The analysis focuses on students’ reconstruction and categorization of the
models, modelling strategies, and the variability that the activity elicits. The results
show how the central statistical idea of variability is manifested in the models and
strategies developed and implemented by the students.

Frejd and Arlebcick (Chap. 51) analyse the 17 ICTMA books published to date
and the books from ICME-6 and the 14th ICMI study in order to characterize the
potential connections and synergies between statistics and mathematical modelling
education. The results show synergies in terms of some identified themes on the
teaching and learning of statistics and modelling. The context units analysed often
provide suggestions for how to teach statistics using modelling approach, but seldom
is the relationship between mathematical and statistical modelling from a theoretical
point of view discussed.

Galbraith and Fisher (Chap. 52) provide illustrations on system dynamics
modelling as a means of real-world problem solving relevant to secondary level and
beyond. It is argued that national curricula around the world increasingly emphasize
the importance of students being enabled to apply mathematics in the workplace, as
citizens, and for private purposes. Examples of common structures (archetypes) are
used to demonstrate application to problems made tractable by free online software.

Moutet (Chap. 53) reports a study on the teaching sequence for chemistry students
in the last year of secondary school (grade 12) in France. The study aims to show how
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the extended Mathematical Working Space (extended MWS) theoretical framework
can be used to analyse the tasks implemented during a few stages of a modelling cycle
in a chemical problem. It is argued that the extended MWS theoretical framework
makes it possible to study the multidisciplinary aspect of the different tasks that
students perform on problems solving.

Tetaj (Chap. 54) describes an analytical scheme designed for investigating the
mathematical discourse of biology tasks. The scheme is developed in the context
of analysing tasks that are part of a fisheries management graduate-level course
at a Norwegian university. Grounded in the commognitive perspective, the scheme
focuses on different aspects of the tasks. The choice of the categories included in
the scheme is justified and its use on one specific task is exemplified to illustrate the
potential of analysis.
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Part 11
Theoretical Issues



Chapter 2 )
Computational Thinking st
and Mathematical Modelling

Keng Cheng Ang

Abstract Computational thinking has been a subject of much discussion in educa-
tion in recent times and is regarded by educators and policy makers as one of the key
skill sets for the future. Many schools have introduced coding and programming to
students, sometimes very early in their education years, in a bid to help them develop
computational thinking. In this chapter, we explore and explicate the role of compu-
tational thinking in mathematical modelling, and examine the relationship between
them. Examples from the different modelling approaches will be used to contextu-
alize this relationship, and to demonstrate that mathematical modelling does indeed
provide an excellent platform for the use, practice and development of computational
thinking. In addition, these examples will also illustrate how computational thinking
fits into mathematical modelling naturally in some modelling situations.

Keywords Computational thinking - Coding - Mathematical modelling -
Programming - Simulation models

2.1 Introduction

There is a growing interest in computational thinking among educators and educa-
tional researchers, and its importance in K-12 education has been the subject of much
discussion in recent years. The idea of computational thinking is gaining attention
worldwide partly due to the perception and belief that the attitude and skill set
involved are essential in tackling problems, and partly because of the widespread use
of technology, and computing tools and devices for work and pleasure in the world
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today. Indeed, computational thinking is often seen as an important twenty-first
century skill for “everyone” (Mohaghegh and McCauley 2016).

Because coding, or computer programming, is considered as one of the key skills
required in computational thinking, various initiatives to teach coding have been
taken in different parts of the world to reach out to students, and the general public.
However, these are relatively new and recent initiatives, and their impact on problem
solving in general has not been studied extensively (Denning 2017; Yasar 2018).

While the use of Information and Communication Technology (ICT) in mathe-
matical modelling as well as in the teaching of mathematical modelling has been
discussed extensively, the role of computational thinking in mathematical modelling
is not as well studied. Indeed, being able to use a technological tool, no matter
how sophisticated, does not equate to being able to formulate a problem or design a
solution through a computational thinking process. The intent of this chapter, there-
fore, is to examine and explicate the relationship between computational thinking
and mathematical modelling through the use of tested modelling tasks. Throughout
the chapter, we will view mathematical modelling from the educational perspective,
and the examples discussed will present and illustrate the different approaches to
modelling that can be experienced in the classroom.

2.2 Computational Thinking

In his book, Mindstorms: Children, Computers and Powerful Ideas, published in
1980, Seymour Papert envisioned how the computing machine could help children
learn and think in ways different from the traditional modes, the key idea being
that learners construct knowledge with the help of computers. Further, one of the
perspectives offered by Papert is the possibility of integrating what he suggests as
“computational thinking” into everyday life (Papert 1980, p. 182).

Central to Papert’s proposition was the use of “turtle geometry”, which he
describes as a computational style of geometry. In this environment, children can
give simple commands to a “turtle” and make it draw geometrical shapes. So, instead
of the computer teaching the user, the user is giving instructions to the computer to
do something. As the shapes that one wishes to draw become repetitive or complex,
one may then need to invoke the use of loops, iterations, mathematical formulae,
procedures and sub-routines. Gradually, one begins to think in terms of steps and
algorithms, and to solve problems systematically and in an organized manner.

Although there have been attempts to explain what computational thinking is,
a precise and yet universally accepted definition has yet to emerge. Wing (2006),
perhaps in an attempt to promote the study of computer science, suggests that “com-
putational thinking is a fundamental skill for everyone” and that it can be used
to solve any problem (p. 33). However, others argue that this may be over-selling
computer science and raising expectations that cannot be met (Tedre and Denning
2016). Nonetheless, it seems fair to say that it is possible to recognize the different
aspects and characteristics of computational thinking, and how these can be used or
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observed in the process of problem solving. Here, we adopt a more specific rather
than generic view of computational thinking so that the discussion on its relationship
with mathematical modelling may have a sharper focus.

For the purpose of the ensuing discussion, we shall adopt the notion that compu-
tational thinking is a process of designing, constructing and executing solutions to
problems with a view to implementing them on the computer or using a computing
tool. The key idea, therefore, is to think about problems in such a way that computers
can help us solve the problems. In general, the skills or habits involved in this thinking
process include the following:

e gathering important information to scope the problem and discarding non-
essential parts or components (abstraction);

¢ studying and analysing the problem to see if there are trends or repeated sequences
that may fit some known or familiar solution method (pattern recognition);

e breaking a large, complex problem into smaller parts so that these may be solved
more effectively or efficiently (decomposition); and

e developing a set of step-by-step instructions that lead to a solution (algorithm).

The above four problem solving skills or approaches have been accepted by the
community as the four “cornerstones” of computational thinking (ISTE 2011; Wein-
trop et al. 2016). However, it would seem that these ideas are not entirely new and
are in fact what one would have normally observed as characteristics of mathemat-
ical problem solving. One might then ask, what is so special about computational
thinking that makes it different from other forms of “thinking”, such as mathemat-
ical thinking? In addition, how are these four skills, habits, or characteristics linked
to computational thinking? One possible answer could lie in the one skill that is
commonly taught in computer science courses—computer programming, or coding.

2.2.1 Habits Developed Through Coding Exercises

Itis widely believed that one effective way of developing the skills stated above would
be through learning computer programming or coding, and through the practice of
solving problems that require some form of coding (Ho and Ang 2015). It is perhaps
this belief that has led to growing interest in coding schools and classes, both formal
and informal, in many parts of the world. Coding lessons are available freely at
websites such as code.org, Hour of Code, Code Academy and FreeCodeCamp. In
some European countries such as England, Greece and Estonia, programming is
included in the school curricula as a compulsory subject and children are exposed to
coding at a young age (see Mannila et al. 2014).

Certain useful and critical habits are gradually developed through the process
of problem-solving with coding. Typically, one needs to think through the solution
process in a logical and systematic manner, and develop an algorithm. The coder
may make use of a flowchart to visualize the flow of the process. Sometimes, there is
a need to break a big problem into smaller parts, and employ a “divide and conquer”
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strategy in solving the problem. This is equivalent to simplifying or decomposing a
problem, and constructing procedures and sub-procedures in the code.

To write code, one has to follow and obey the syntax of the language used, and
keep to certain rules. This is, in fact, a form and practice of abstraction since only the
most important and relevant pieces of information will be extracted and used, just
like in the model formulation phase in mathematical modelling. In addition, coding
requires one to use variables as representations of factors involved in a problem. Quite
often, the code will involve iterating through loops, or managing and manipulating
data sets. There is also the opportunity or need to think numerically or in terms of
actual numerical instances in solving the problem, especially when empirical data
sets are involved. Such exercises help one develop a sense of pattern and pattern
recognition in tackling modelling problems.

However, does coding necessarily lead to computational thinking? If computa-
tional thinking is seen to be a habit of mind, then coding is part of the strategy used
to develop such a habit. In other words, while necessary, it may not be sufficient.
That is, simply being able to write code does not mean that one will be able to
solve a problem using a computational method. Computational thinking involves
analysing a problem, examining the context, studying available data, simplifying the
situation, designing an algorithm and finally, writing the code, if applicable, during
implementation.

In the next section, we will discuss three examples of modelling tasks. The
approach used in each case is one that involves a computational strategy, either
in the model or in the solution method. These examples show that indeed, those
aspects of computational thinking discussed earlier do manifest themselves in many
mathematical modelling activities and tasks.

2.3 Examples

2.3.1 Example 1: From Data to Model

In this first example, we discuss how publicly available data on the outbreak of a
contagious disease could be used to construct a model for its spread. Although the
problem is not new or current, it provides a rich context for a discussion on the
influence of computational thinking in constructing mathematical models. Here is
the problem statement.

The SARS epidemic

In 2003, a deadly and contagious disease called the Severe Acute Respiratory
Syndrome, or SARS, descended upon the world. Some countries in the Asia—
Pacific region, in particular, were heavily hit and Singapore was one of them.
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Table 2.1 Number of individuals infected with SARS during the 2003 outbreak in Singapore (Heng
and Lim 2003)

Day |Number |Day |Number |Day |Number |Day |Number |Day |Number
n |® (ORRIS) ®  |® ®n  |® n  |®
0 1 15 25 29 101 43 163 57 202
1 2 16 26 30 103 44 168 58 203
2 2 17 26 31 105 45 170 59 204
3 2 18 32 32 105 46 175 60 204
4 3 19 44 33 110 47 179 61 204
5 3 20 59 34 111 48 184 62 205
6 3 21 69 35 116 49 187 63 205
7 3 22 74 36 118 50 188 64 205
8 5 23 82 37 124 51 193 65 205
9 6 24 84 38 130 52 193 66 205
10 7 25 89 39 138 53 193 67 205
11 10 26 90 40 150 54 195 68 205
12 13 27 92 41 153 55 197 69 205
13 19 28 97 42 157 56 199 70 206
14 23

During the 2003 SARS outbreak in Singapore, 33 lives were lost within a span
of about 70 days.

Using the data shown in Table 2.1, construct a mathematical model to
describe the outbreak of the SARS epidemic.

One of the modelling approaches that can be used in this case is to examine the
data carefully, and see if we can find an existing model that may be suitable. It is
perhaps more convenient to study the data set visually and so the first step would
be to plot a graph. Obviously, this would be a graph showing how the number of
infected individuals varies with time, as shown in Fig. 2.1.

From the graph in Fig. 2.1, it is evident that the number of infected individuals
increases slowly at first, and then rapidly from about Day 15-55 before slowing
down again towards the end of the epidemic episode. One could recognize that this
is generally how a sigmoid curve would behave and a suitable function that could be
used to represent this behaviour would be the logistic function.

From a population dynamics perspective, it is known that in such a compart-
mentalized model can be represented by a logistic equation in an “S-I” epidemic
model, where “S” and “T” represent the susceptible and infected individuals in the
population, respectively. Using this model, we may construct the equation
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where x and y are the number of infected and susceptible individuals at time, 7, and
B is a constant. Further, if we assume a closed community of N individuals, then,
+y = N. The equation may be rewritten as

()

where the constant k represents the rate of transmission. Solving the differential
equation with the initial condition, x (0) = x, yields the solution,

NX()

1) = ,
YO = TN —r)e ¥

which may be rewritten as

N
1+ (ﬂo - 1)e—kt

The parameter k may be estimated from the dataset in a variety of ways. We could,
for instance, define an “average error” between the data points and the model, and use
the method of least squares or a computing tool, such as the Solver Tool in Microsoft
Excel to minimize the error. For a description of this method, as well as explanation
of how the Solver Tool is used to find estimates of &, the reader is referred to article
where this example first appears (see Ang 2004).

Using this method with xo = 1 and N = 206, we obtain k = 0.1686. The graph
of the model is plotted and compared with the data points in Fig. 2.2a. It can be
seen that the model generally compares well with the actual data. However, there are
certain parts with obvious deviations. In fact, by examining the figure carefully, we

x(t) =
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Fig. 2.2 Comparison of

[}

SARS data and logistic curve 200
models: a SARS epidemic ®
. P <
model using one logistic =
curve b SARS epidemic = 1507
model using two logistic E
curves E 100 -
Q
&
g
5 50
)
Z
04 T T T T T T 1
0 10 20 30 40 50 60 70
Time (days)
200 4
4
<
'_a 150
2
S
|
= 100 7
Q
5]
&
£ 50
G
=]
2
0 4 T T T T T T 1

(=1
—_
(=}
I3
(=1

30 40 50 60 70
Time (days)

observe that in fact two logistic curves may better describe the situation, as shown
in Fig. 2.2b.

This example demonstrates that when dealing with data to construct an empirical
model, the specific skill of observing and recognizing patterns in a dataset proves
useful in formulating the mathematical problem. The resulting model is solved and
refined using a computational method implemented on a computing tool such as an
electronic spreadsheet. This habit of pattern recognition is one aspect of compu-
tational thinking that will further develop and expand a student’s competencies in
mathematical modelling.

2.3.2 Example 2: From Processes to Model

Consider the situation where a certain organization needs to hire a secretary by
choosing the best person from a group of possible candidates through walk-in
interviews. The specific conditions are described in the problem statement below.
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The Secretary Problem

K. C. Ang

A company needs to hire the top-ranked candidate for a secretary’s position

under the following conditions.

The total number of candidates, 7, is known.
The candidates are ranked with no ties.
Candidates are interviewed sequentially and in a random order.
Relative ranks of interviewed candidates are known.

The candidate is either accepted or rejected right after the interview.
Rejected candidates may not be recalled or accepted.

The task is to develop a strategy so that the best candidate is chosen.

In order to have a better grasp of the problem, one could construct a simulation
of the hiring process. The steps involved can be written out as a flowchart as shown

in Fig. 2.3.

The flowchart helps one to think through the process of the simulation in a system-
atic and organized manner, keeping track of the variables involved and going through
the steps of the process. The flowchart therefore serves as a guide or algorithm for
one to write the code. Using the flowchart, the code for simulating the hiring process
based on the conditions of The Secretary Problem can be written. Coding often helps
one understand the process even better, and in this case, it helps in providing a way for

(START)

Initialise
p(i) array

Last

YES

Candidate?

Display next
candidate’s r/rank

Assign rank values
to p(i) for all i

y

Obtain
User Decision
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r/rank set to 1

J

Process Decision

YES @ NO

Fig. 2.3 Flowchart for the hiring process

Display outcome

END
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one to think about what might be a good and consistent strategy to adopt. Randomly
determining when to accept or reject a candidate would lead to nowhere.

With this simulation, the process is basically constructed for exploration. After
a few simulation rounds, it is not hard to realize that one strategy would be that of
always rejecting a certain number, say, k, of candidates, and then accepting the next
one with a highest relative rank.

We can investigate this strategy by automating the hiring process with different
values of k. For each value, we run the simulation many times and calculate the
experimental probability of successfully picking the best candidate. A flowchart for
this simulation is shown in Fig. 2.4.

Implementing the simulation using the steps detailed in the flowchart shown in
Fig. 2.4, and running the simulations with 100 candidates and k = 0 to 99, and 10,000
trials for each k, the experimental probabilities can be found. These are plotted against
k and compared with the theoretical probabilities in Fig. 2.5. The simulation results
show that an optimal strategy would be to reject the first 37%, approximately, and then
accept the next top candidate, which agrees with the theoretical optimal probability
of 1/e. The theoretical optimal probability has been derived and discussed by several
other authors (e.g. see Ferguson 1989).

Running the simulation many times to obtain experimental probabilities to repre-
sent the actual probabilities is an application of the law of large numbers and a
common approach in simulation models. The ability to think through the process and

START Set success = 0 NO YES

(Initialise success)
Set No. of \L Display
Candidates (C) Outcome
Initialise Trial No.
\l/ Setr=1 Increment k
Set No. of Trials YES END
(D lse p
Initialise p(i)
\l/ Assign rank values NO
Stk =1 to p(i) for all i
(Reject first k — 1
candidates)

Find first top rank
after rejecting first
(k — 1) candidates

Increment Trial No.,
Sett=t+1

Istop =

best of p(i)? Increment success

Fig. 2.4 Flowchart for simulating runs of hiring process for all possible values of k
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to write the code for the simulation algorithm will certainly enhance one’s ability to
design, construct, and solve simulation models.

This example demonstrates how an algorithm for a simulation can be constructed
by examining a process in detail, studying each step and the conditions for moving
to the next step, and checking of the status of critical variables along the process.
Flowcharts are commonly used by computer programmers to aid their coding process
and in this case, the use of flowchart helps one think through the simulation model
more systematically. Being systematic and abstracting only the essential information
to formulate the simulation is another aspect of computational thinking that will also
develop one’s competency and acumen in mathematical modelling.

2.3.3 Example 3: From Decisions to Model

In this example, we discuss the problem of allocating funds to members of a depart-
ment for the purpose of staff development. In particular, we consider the problem
given below.

Resource Allocation Model

The Head of a department in an academic institution is allocated a fixed annual
budget, based on “headcounts” (number of members in the department), to
provide financial support to members of the department for staff development
(such as attending or presenting at a conference) for that year. This could be,
say, $x per person. Staff members will then indicate their staff development
plans and apply for funding. However, because some may need more than $x,
while others may request for less (or do not plan to use the funds at all that
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year), the amount eventually allocated to each staff member will generally
differ.

What would be a fair way of distributing the allocated budget while
maximizing the utilization rate?

This is a real-life situation that may arise in many institutions and organizations;
an annual budget is allocated for a purpose, and the expectation is to maximize
utilization of the budget so that the funding authority will continue to fund and
support the purpose. Should the utilization rate be low, the institution or organization
risks having the budget reduced the following year as it may be deemed that a lower
amount is actually required.

In this current situation, suppose at the beginning of the year, a budget of amount
B is given and, obviously, the total funds allocated to staff must not exceed this
amount. Suppose there are n requests for funding, and each amount requested is A;
wherei =1,2,...,n.

For simplicity, we make the following assumptions:

(1) each staff member can only make or submit one request for funding per year;
and
(i) the department head may approve up to the full amount requested.

Based on assumption (ii) above, suppose for each requested amount of A;, the
department head aims to approve u; A; where u; € (0, 1), then the objective would
be to minimize the quantity,

n
X=B-— ZMiAi
i=1

subject to the condition,Z?=1 uiA; < B. In other words, what is required in this
model is to find the set of u; for each i so that X is minimized.

In addition, it would not be unreasonable to take into consideration two other
factors when deciding the amount of funding each staff member should be allocated.
Firstly, the amount that one has been given the previous year should have some
bearing on the amount that one ought to be allocated in the current year. Secondly, if
the purpose of funding is for staff development, then the stages of academic career
of the staff members should also play a role in the decision. Assuming that these are
part of the objectives of the model, then we could impose the conditions that more
support should be given to those staff members who:

(a) were allocated smaller amounts the previous year; and
(b) are junior in academic rank or are in more need of development.

If these two factors are to be considered in allocating the funds, then they must
somehow be built into the model and be taken into account when determining all
the w;. As a first step, a simple model would be to place each staff member into a
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’sIl‘il;]:Zr%fzor l:tzlf?;‘;eerf;;l: ionf Career stage (C) | Previous support (P)

different categories Low (1) Medium (2) | High (3)
(1) Junior 5 4 2
(2) Middle 4 3 1
(3) Senior 2 1 0

certain category or group for each of the two factors. For instance, for condition (a),
the amount given to staff members in the previous year could be classified as “Low”,
“Medium” or “High” corresponding to the actual low, medium or high levels of
financial support obtained. The known or given data would have to be the previous
year’s allocated amount to each staff member and based on these data, each staff
member will be placed in the appropriate category.

To incorporate the second condition, we could also categorize the staff member
based on their academic ranks. Here, one’s academic rank is used as a proxy to repre-
sent one’s need for professional development. For instance, a more junior member is
probably more in need of such development and therefore ought to be better supported
compared to a more senior member of staff. For simplicity, we could use three cate-
gories, “Junior”, “Middle” and “Senior”. For instance, in a typical university setting,
a newly appointed Assistant Professor or Lecturer could be placed in the “Junior”
category, while the “Senior” group would include tenured Full Professors.

Based on these simple, discrete categories, one could draw up a table or matrix
with cells where the value in each cell indicates the relative level of support that a
staff member emplaced in that cell should receive, with zero as the baseline. Here,
we assume for a senior member of staff who had received a high level of support the
previous year, the allocation this current time would be the baseline from which the
rest will take reference. In other words, an application for funding from a member
in this category should have the lowest value of 1;. The other values in the cells are
assigned, while arbitrarily in some sense, with the intention of satisfying conditions
(a) and (b) above. An example of such a table is shown in Table 2.2.

Each staff member’s application for funding will then be assigned a value based
on where it is found in the table. Let this value be w;. With this graduation of level of
support assigned, the problem of finding all the p; can be simplified. In the simplest
case, we adopt the following linear, stepwise model,

Hi=pn+wAu

where u is a base value (between 0 and 1), and Ay is a “step” from the base. The
problem then reduces to finding Au that will minimize the quantity, X.

As an illustration, consider the following situation. Suppose a budget of B =
$27,000 has been approved, and ten staff members of various appointment ranks
have applied for funding for different amounts listed in the last column in Table 2.3.
The total requested amounted to $38,900, which the budgeted amount will not be
able to meet. The fund given to each individual in the previous year is shown in
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Table 2.3 Illustrative example of ten staff members and their applications for funding

No Name Career stage Previous grant wi |A i ni X A
Rank C | Amount ($) P
1 Aidel Asst P 1 0 1 |5 3990 | 0.79 |3140.37
2 Bala Assoc P 2 12950 3 11 3990 |0.64 |2543.27
3 Chen Lecturer 1 3680 3 12 5230 |0.67 |3529.33
4 Dharna | Full P 3 12100 2 |1 5230 |0.64 |3333.66
5 Emery Assoc P 2 2820 311 3990 | 0.64 |2543.27
6 Faharna | AsstP 1 950 1 |5 1800 |0.79 |1416.71
7 Godfrey | AsstP 1 2250 2 |4 1200 | 0.75 899.58
8 Haiyue |Full P 3 0 1 |2 5230 |0.67 |3529.33
9 Ingham | Snr Lect 2 | 2410 2 |3 3010 | 0.71 |2143.83
10 Jiale Assoc 2 | 1500 1 |4 5230 |0.75 |3920.66
Total 38,900 27,000.00

Column “Previous Grant”. The respective weights, w, are determined by the values
of Cand P.

Setting u = 0.6 (that is, everyone should get at least 60% of what is requested),
we can proceed to use Excel’s Solver Tool to find A by minimizing X. In this case,
it turns out that the optimal value for Ap is 0.037. Using this value, we can then
compute the allocated amount pu; x A for each application i as shown in Table 2.3.

This example demonstrates the need to reduce a complex problem, and hence
the skill of decomposition shown in computational thinking. Decisions have to be
made, and in this model, we consider logical factors and build rules into the model.
In the process, we also make assumptions to simplify the situation, and to reduce
to problem to a manageable size. Decomposition and tackling smaller bits to build
a more complete model is a modelling skill students develop through this kind of
computational thinking exercises.

2.4 Discussion

As can be seen in the examples described, modelling can be greatly enhanced if
one possesses and is able to apply certain computational skills and a certain way
of thinking such that these skills can be effectively applied to tackle the problems.
In other words, the ability to think of problem solving strategies that make use of
computational tools or programming constructs is a valuable modelling competency.

In Example 1, the use of data in the empirical model is evidently an opportunity for
one to observe the pattern and determine if a known or existing model can be used to
describe the disease outbreak. In addition, there is a need to first simplify the situation,
and later refine the model. Certain important computational tools (such as the Solver
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Tool in Excel) are used in the solution process. A computational thinker would likely
study the data set, and explore ways of making use of it after observing the pattern.
Of course, beyond that, one has to have some inter-disciplinary knowledge— in this
case, knowledge in population dynamics or epidemics. To construct a model and
realistically produce a plausible solution, however, such knowledge is necessary but
not sufficient. Some computational skills are still required, as can be seen in the
solution process in this example.

In Example 2, simulation models are developed, guided by step-by-step algorithms
to first understand the problem situation and then to tackle the problem. Constructing
the solution requires one to think computationally in terms of writing out the steps
for the simulation, as well as the code for the simulation programs. Developing a step
by step algorithm is a common practice in coding exercises or programming courses.
The essential skills of identifying variables required in the problem, simplifying the
process, recognizing the need to perform certain tasks in a certain sequence or order,
and so on, are all part of computational thinking. When all these become a habit of
mind, developing a simulation to model a process can be another useful and effective
modelling competency.

In Example 3, some assumptions are first made to simplify a rather complex
real-life problem. These assumptions also help in abstracting the real situation into
a mathematical formulation, from which a model, which is essentially a decision-
making model, can be constructed and subsequently solved. In a decision-making
situation, a computational thinker would gather and consider the factors that would
lead to the decision, turn them into variables and find a way to connect them to provide
the necessary information to make the decision. Again, such situations arise quite
often in coding exercises or computer programming problems, and over time, these
exercises help one develop both the skill and the habit of systematically identifying
and connecting variables in a real life problem. This aspect of computational thinking
is well illustrated in this example.

Clearly, as discussed above, the skills involved in handling the modelling tasks in
all three examples are not dissimilar to those that are closely related to computational
thinking. To reiterate, these skills, which can be acquired through exercises such
as coding or computer programming, serve to support the mathematical modelling
process and provide additional tools for developing appropriate models. It is also
important to point out that while skills can be taught and learnt in a short period
of time, the habit of mind that makes one a computational thinker takes longer to
develop.

Nevertheless, with additional computational skills, one could enhance one’s
competency and ability in tackling mathematical modelling tasks. At the same time,
mathematical modelling tasks or situations provide an excellent platform for one to
practise and apply one’s computational skills and thinking.
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2.5 Conclusion

In this chapter, we discuss three modelling tasks, and in each case, we use a compu-
tational approach to solve the problem posed. Using these examples, we identify the
various computational skills that are useful in modelling and explain the compu-
tational thinking process that has led to the model. These skills are also devel-
oped through computational thinking tasks, such as coding exercises. It is clear that
there is, therefore, a connection or link between computational thinking and certain
approaches of mathematical modelling.

There are several questions that one could address to further examine the link
between mathematical modelling and computational thinking. Some of these are
listed below as further work that can be taken up by interested researchers.

e How do we “recognize” computational thinking? In other words, how can we tell
when someone is “thinking computationally” when solving a problem? Does the
use of a computational tool necessarily mean that computational thinking is part
of the process?

e While coding is certainly a useful skill, how does it help in developing compu-
tational thinking and mathematical modelling competencies? Is there any way of
determining the impact of coding on the development of computational thinking
and competencies in mathematical modelling?

¢ If modelling activities are useful in developing computational thinking, how do
we design activities targeted at doing that?

e How can we strategically and intentionally develop computational thinking
through mathematical modelling?

e [for when we are able to design tasks that develop computational thinking through
mathematical modelling, how do we detect and measure such development?

Given the digital world we now live in, computational thinking will remain an
important and relevant concept in education for some time. Its usefulness and poten-
tial in the area of mathematical modelling has been demonstrated and explicated
through the examples described in this chapter.

In conclusion, understanding the importance and relevance of the relationship
between computational thinking and mathematical modelling could lead to better
design of tasks in both computational thinking and mathematical modelling. Better
and more meaningful tasks could in turn lead to enhanced learning and develop-
ment of the relevant competencies and skills in both computational thinking and
mathematical modelling.
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Chapter 3 ®)
Global Understanding of Complex oo
Systems Problems Can Start

in Pre-college Education

Diana M. Fisher

An invasion of armies can be resisted, but not an idea whose
time has come.
Victor Hugo

Abstract In this chapter, an argument is made for the importance of enabling
secondary school students to build models for analyzing complex systems prob-
lems, to increase understanding of the myriad nonlinear feedback systems they
will encounter as professionals and citizens. Secondary school students in some
schools in the USA have been building such models for over 20 years. A sequence
of natural resource depletion models is presented to demonstrate the types of system
models secondary school students can and have built. Advantages such activities
have for enhancing the mathematical analysis of problems normally outside the
reach of the secondary school curriculum are discussed. It is argued that the time
is ripe for secondary school students to experience instruction which, using current
technologies, can provide a wealth of applications rich, real-world, relevant problems.

Keywords System dynamics + Complex systems - Modelling *+ Secondary school
students - Algebra + Technology

3.1 Introduction

The conceptual basis of complex systems ideas reflects a dramatic change in perspective that
is increasingly important for students to develop as it opens new intellectual horizons, new
explanatory frameworks, and new methodologies that are becoming of central importance
in scientific and professional environments. (Jacobson and Wilensky 2006, p. 12)

There has been a dramatic increase in the scope of applications of mathematics
over the past few decades due mostly to an ability to create computer simulations,
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perform digital computations, and analyze large volumes of data (National Research
Council of the National Academies 2013). Moreover, there has been a corresponding
“explosion” over approximately the same time period in complex system science.
Problems most commonly expressed in closed form, that required the assumptions
of “smoothness” (in calculus), or independence (in statistics) are sharing space with
problems that have multiple causes, interdependence, and nonlinearity (Bar-Yam
2012).

While facility with and creation of closed-form equations to represent functional
relationships has served us well as guiding principles for secondary school courses in
the past, it is no longer sufficient preparation for students in today’s world. Emerging
problems faced in business, science, engineering, politics, medicine, psychology,
economics, management, and interdisciplinary pursuits require an understanding of
complex, dynamic, systemic behavior (e.g., Galbraith 2010). For this purpose, an
understanding of closed-form equation representation alone falls short. Technology
provides new methods of observing and generating dynamic behavior, compressed
in time, through which students can be prepared for future challenges in work
contexts, and as responsible citizens. Examples of the serious issues facing our global
community are described or displayed in the news every day.

One such “new” analytical method facilitated by the computer, system dynamics
(SD), uses numeric solution of differential equations to enhance understanding
of complex systems. This methodology was created by Jay Forrester at the
Massachusetts Institute of Technology (MIT), in the mid-1950s, to model systemic
problems. Recently, a free, web-based (basic) version of the software (Stella Online)
has been created, allowing educators to bring this model building representation of
dynamic systems into any web-accessible classroom.

This chapter will demonstrate, in a sequence of increasingly sophisticated models,
how secondary school students can build (and have built, for over 20 years) models
of complex, dynamic, feedback systems using the method of system dynamics.

3.2 Introduction to the SD Software

There are four primary icons that are used to create models using SD.

A stock (rectangle, see Fig. 3.1) is used to represent the main function variable
whose value the modeler wants to track over time. It is an accumulator, an integral.
A simple example of a stock variable might be the deer population in an ecosystem.

Stock
el e 1) i
Flow Converter Connector

Fig. 3.1 Four main icons used to create SD models
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Table 3.1 Recursive

Y D lati i
calculation of deer population et cer poptation (recursive
calculation)
Initial deer population 30
Deer pop. after 1 year 30 - (0.1)30 4+ (0.3)30 = 30 +
(0.2)30 = 36

Deer pop. after 2 years 36 4+ (0.2)36 =43.2

Deer pop. after 26 years 2861.9 + (0.2)2861.9 = 3434.3
Recursive equation P + (0.2)P,_; =P,

A flow (see Fig. 3.1) is a unidirectional' pipe with a valve that is drawn with the
arrowhead either pointing toward the stock (increasing the stock value) or pointing
away from the stock (decreasing the stock value). The combination of all flows
attached to a stock represents the rate at which the stock value changes over time,
hence represents the first derivative of that stock variable. For the previous deer
population stock, an inflow might be designated deer births, while an outflow could
be designated deer deaths.

A converter is a circular icon that holds additional parameters, variables, or
simple arithmetic combinations of variables. For our previous example, a converter
could hold the deer birth fraction.

A connector is a thinly shafted arrow that sends numerical information from
one icon to another within the model. It shows dependencies of each variable upon
parameters or other variables.

A simulation time unit, a fractional interval® of the time unit (DT) for updating
model values, integration method (Euler or Runge—Kutta 4), and simulation dura-
tion can be specified by the modeler. The model engine uses recursive numerical
calculations to update model values, recalculating each time step (DT).

Graphs and tables® can be produced to show the output of the model over the
simulated time specified by the modeler.?

3.3 A Basic Deer Population Model

Consider an ecosystem containing 30 deer. Without a predator, we assume that deer
normally have a 30% reproduction rate (birth fraction) and a 10% mortality rate
(normal death fraction) each year. Assume that there is ample vegetation over the

I Bidirectional flows are permitted but are not used in any examples in this paper.

2The DT of the simulation software is like the “dt” of a calculus integral, or more accurately like a
Riemann Sum or Simpson’s Rule approximation of a calculus integral.

3Tables are not available in free Stella Online software, but one can read values from graph.
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Fig. 3.2 a Equivalent Stella diagram representing this deer population, with icon values superim-
posed on each icon in the diagram, and b graphical output for the Deer Population

simulation time of 26 years. We want to track the number of deer in the environment
over time.

Table 3.1 shows the recursive calculations that would occur within the simulation
software given the data in the previous paragraph and, for simplicity, assume the time
step (DT) is 1 year and the integration method is Euler.

After placing an icon in the modeling window, one double clicks on the icon
and designates the value for that icon and its units in the panel that appears. So the
stock, Deer Population, is set at 30 {deer}, birth fraction is set at 0.3 {deer/deer/year
= l/year}, normal death fraction is set at 0.1 {1/year}, births are defined as Deer
Population * birth fraction {deer/year}, and deaths are defined as Deer Population
* normal death fraction {deer/year}.

3.4 A More Realistic Deer Population Model

Resource availability places a constraint on any animal population. We will assume
that the environment within which our deer are living can support at most a constant
4000 deer. The previous model can be modified by adding a component, carrying
capacity, defined as 4000 {deer}. We will compare the current Deer Population to
the carrying capacity each time step. As the Deer Population value grows toward
the carrying capacity value, fewer resources are available per deer so the deer death
rate begins to increase.

In the model, one uses a graphically defined converter, here labeled effect of
carrying capacity on death fraction, to create the mechanism that increases the death
rate as the Deer Population grows. See Fig. 3.3.

The effect of carrying capacity on death fraction usually has an independent
variable axis definition represented as a ratio. Here, the independent variable is
defined as Deer Population/carrying capacity (DP/CC). This ratio has domain values
from O to 1. The vertical axis represents a unitless numeric value, designated as a
multiplier (with a range from 1 to 3). As the Deer Population grows, the ratio DP/CC
grows larger, moving the simulation to the right on this graphically defined function.
As the simulation moves the DP/CC ratio to the right horizontally, the output value
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. 4000
a b 1+ %—1%—0-%
Deer
Population Or
Po=30
O— SO p
o3 births ‘ E=0.3*P—0.1*P*f(r)
’ 2xr+1, 0<sr<1
birth ormal _ , sSrs
focaon j dearn | Where f(r) {3 r>1
effect of actual
@ho carrying capacty fdeat;hI r = Deer Population / carrying capacity
carnying capacity So, = P(0.2 — 0.00005P)

Fig. 3.3 a Deer Population with fixed carrying capacity of 4000 deer. Defining values are super-
imposed on the appropriate icons. b An equivalent closed-form logistic representation and also
calculus initial value problem representation for this scenario

(vertical axis value) is increasing, linearly (for this example).* This dimensionless
output value is then multiplied by the normal death fraction value to create the value
for the actual death fraction component. The actual death fraction is the value used
to calculate deaths in the model. The actual death fraction grows larger and larger as
the Deer Population approaches the carrying capacity, until, when Deer Population
= carrying capacity (and the ratio DP/CC = 1), the multiplier is 3, so the actual
death fraction becomes 0.3, matching the birth fraction. At this point, the model
achieves steady state (or dynamic equilibrium).

3.5 Modeling a Real-World Scenario

Problem: In 1944, the US Coast Guard brought 29 reindeer to St. Matthew Island
in the Bering Sea, about 200 miles off the coast of Alaska. They brought them as
a potential supplement for their food supply. The US Coast Guard abruptly left St.
Matthew’s Island a few years later but left the reindeer behind. The reindeer ate
mostly lichen on the island, which can take decades to regenerate. There were no
reindeer predators on the island. In 1963, there were about 6000 reindeer on the
island and the reindeer population collapsed so that only about 42 reindeer remained
in 1965.

To replicate the behavior described in this scenario, we would not want to create
a model with a constant carrying capacity but rather have the reindeer population
depend upon a food source that is being depleted over time. Since it takes lichen so
long to regenerate, we could model this food source as non-renewable.

We do not know how much original vegetation was on the island but we can
estimate it using trial and error as we try to reproduce historical data. Reindeer

“The linear “effect of carrying capacity ...” graphical shape, sketched as part of the definition by
the modeler, is only one of many possible shape choices.
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normally produce one offspring per year, so increasing the birth fraction to 40% may
be a reasonable modification of our previous model.

Notice that the carrying capacity shown in Fig. 3.3a has been replaced by a stock
of vegetation (lichen) (see Fig. 3.4a) which is consumed by the reindeer each year,
and which takes so long to regenerate that it can be assumed to be a non-renewable
resource. Hence, the Vegeration stock only has an outflow, consumption (by reindeer).
Assume that each reindeer consumes one packet of Vegetation per year (the “needed”
vegetation, we assume, reindeer must have to survive).

In preparation for designing the graphical converter that alters the death fraction
based upon available vegetation, we need first to establish an appropriate ratio for
the independent variable for this graphical definition. The death fraction value will
be influenced by the ratio of Vegeration/Reindeer Population compared to needed
vegetation per reindeer. Needed vegetation per reindeer is constant.

The graphical converter effect of vegetation per reindeer on death fraction will not
change the normal death fraction—until the ratio of Vegetation/Reindeer Population
drops below the needed ... amount. Then, the actual death fraction value increases
very quickly. Note that death fraction = 1/lifespan, so a larger death fraction indicates
that the lifespan of the animal is reduced. A death fraction of 0.1 indicates a lifespan
of 10 years. A death fraction of 1.5 = 15/10 means a lifespan of 10/15 or 2/3 of a
year.

The graphical converter definition is shown in Fig. 3.4b.

Unfortunately, the output of the model shown in Fig. 3.4a does not replicate the
desired historic output for the Reindeer Population as well as we would like. We
need the population collapse to be more pronounced. Lack of food would not only
influence the actual death fraction of the reindeer, but also influence the ability of
the female reindeer (cows) to reproduce. Weak or starved cows do not come into
heat.

Assume the ratio of Vegetation/Reindeer Population compared to needed vege-
tation per reindeer also influences the birth fraction. A new graphically defined

Reindeer

a Population b 15
=]
52
deaths a9
ratio vegetation per .g i=}
reindeer to needed B
. N s
X 151
birth nonded vegetation per reindeer (death %u
fraction  yegetation Z?:ti' > 5
i o
per reindeer fraction S 8
effect of ]
- . Fg=|
vegetation per reindeer i
2

on death fraction

Ratio vegetation per
reindeer to needed
vegetation per reindeer

Vegetation

consumption
per reindeer

Fig. 3.4 a Current version of the SD model. b Graphical definition of how the current Vegeta-
tion/Reindeer Population compared to needed vegetation per reindeer affects the death fraction of
the reindeer population
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Fig.3.5 aFinal model for St. Matthew Island Reindeer Population. b Graph of Reindeer Population
starts with 29 reindeer in 1944, shows 1500 in year 1957, and 94 reindeer at end of 1965. The herd
reaches a maximum of 5751 reindeer in year 1962. ¢ Historic reindeer population for St. Matthew
Island. Retrieved from www.geo.arizona.edu

converter should reduce the birth rate dramatically if the Vegetation per Reindeer
ratio falls below what is needed.

This model is not a perfect replication of the problem with the Reindeer Population
on St. Matthew Island over the years 1944—1966 but it is a close approximation and
something that secondary school mathematics students (ages 15+) can build and
understand. The focus of SD model building is to design a stock/flow structure that
includes the most important elements and (feedback) relationships of the systemic
problem under study. As a guiding principle for the model design, the modeler
will often have a behavior pattern she/he will want the model structure to replicate.
Sometimes these behavior patterns are historical (as in the case of St. Matthew
Island reindeer), or intuited from conversations with stakeholders of the problem.
SD modeling is not designed to reproduce or capture specific data points. The focus
is on behavior patterns over time and identifying characteristics of the problem that
produce those patterns (allowing the modeler to test policies that might mitigate the
problem).

Secondary school students have built models similar to Figs. 3.2a and 3.3a in
regular (non-honors) algebra classes’ and built original models (Figs. 3.4a, 3.5a and
3.6a) in a modeling class.

5The models in Figs. 3.2 and 3.3 have been built by secondary school algebra students using guided
discovery where students are then asked to modify and explain the model.

%Models of the types shown in Figs. 3.4a, 3.5a, and 3.6a (and other similar student original modeling
projects) require additional time (10 weeks) for secondary school students (aged 15-18) to research,
build, debug, and explain (by writing technical papers and giving presentations and/or producing
posters).
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Fig. 3.6 a Model of a sustainable reindeer population (growing from 29 to about 265) and sustain-
able vegetation (growing from 25,000 to about 26,000 vegetation units) over 26 years, if reindeer
are managed so they consume only the vegetation that can be regenerated each year. b Output of
the model shown in part Fig. 3.6a

3.6 Can We Sustain the Reindeer Population?

We could modify Fig. 3.5a to allow Vegetation to be renewable. Such a modifica-
tion would add an inflow to the Vegetation stock identified as regeneration, with
some appropriate regeneration fraction per year (here 0.01). Here, the ratio (used
by the two graphical converters) should be created to compare the regeneration of
vegetation/reindeer to needed regeneration per reindeer per year.

3.7 Discussion

Interweaving SD model building representations with the traditional closed-form
equation approach used in secondary school mathematics courses reinforces the
basic characteristics of the functions studied in those courses. For example, taking
an exponential function, as shown in Fig. 3.2a, the simplest closed-form equa-
tion representing the value of population over time would be P = 100(1 + 0.3 —
0.1)" = 100(1.2)". While we simplify the closed-form equation, there can be advan-
tages to keeping the growth rate separate from the decay rate (as demonstrated in
Figs. 3.3a, 3.4a, 3.5a and 3.6a). Assessment questions regularly required students to
move between closed-form equation and SD model representations, where possible.
Similar closed form versus stock/flow representation arguments can be made for
quadratic, logistic, and sinusoidal functions. As function equations become more
complicated, the equivalent SD diagram can be very useful in displaying the problem
structure, component relationships, and feedbacks that produce the characteristic
behavior patterns.

Another advantage of having students build stock/flow models is that almost all
of the interpretation of model behavior is done graphically. Students are expected
to anticipate the model behavior, graphically, and then explain any discrepancies
between their prediction and the model output. As we know, students’ ability to
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correctly interpret graphs is problematic (Shah and Hoeffner 2002). Moreover,
students are often asked to graph the flow behavior as well as the stock behavior on
the same grid requiring that they use the flow behavior to explain the stock behavior.
This is advantageous for two reasons: (1) Having students draw connections between
flow behavior and stock behavior is a conceptual preparation for fundamental prin-
ciples of calculus, at a level where the interpretation is clothed in application, repeat-
edly connected to the real world, without the overhead of complicated calculus
notation, and (2) Calculus students have difficulty interpreting correlational graphs
(Carlson et al. 2002). Carlson et al. (2002) indicate that understanding covariational
reasoning, especially involving rates of change, is fundamental to “understanding
major concepts of calculus... and for understanding models of dynamic function
events” (p. 374). In addition to more practice interpreting graphs, these two addi-
tional attributes move students forward in mathematical understanding of dynamic
phenomena while still at the early secondary school mathematics level of equation
manipulation.

Now let’s turn to the fact that a visual representation of the structure of a problem,
using full words and phrases, allows other students and teachers to more easily
understand the modeler’s mental model, and hence to more naturally interact with
the modeler to modify or enhance her/his model. This characteristic is valuable in
helping to identify misconceptions a modeler may have about the problem being
analyzed. (Models are built first to analyze a problem, but then to communicate the
insights gained by the modeler after having built the model). So a more natural,
visual, and descriptive representation of the problem is an aid to the modeler and the
modeler’s audience.

The visual nature of the model enhances not only communication but allows the
modeler to move beyond what he/she would have been able to build using closed-form
equations. The modeler can now represent more realistic situations (as is demon-
strated by Figs. 3.3a, 3.4a, 3.5a and 3.6a). While the model shown in Fig. 3.6a
represents a “first world” problem, it could be modified to represent a human popu-
lation and food supply or potable water problem. SD models could involve topics
of epidemiology, criminal justice, social services, causes of poverty, etc. Not only
can students work on more sophisticated problems using scripted lessons, but the
less abstract representation seems to increase their mathematical bandwidth of under-
standing, thereby allowing students to create a wide variety of original models, which
they are able to make operational and explain’ (Fisher 2011).

Students adapt much more quickly to using stock/flow representations than
teachers do. Students are allowed to communicate with each other as they build
SD models. One concern for teachers includes students’ increased ability to ask
questions for which teachers may not know the answers (Fisher 2016).

Finally, system dynamics modeling software environments support the ability
to capture nonlinear relationships between variables—see many of the graphically

7 A sample of over 20 secondary school student model diagrams, student technical papers explaining
their models, and some student videos explaining their models can be found at: https://ccmodelin
gsystems.com.
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defined components in Figs. 3.4a, 3.5a and 3.6a. Secondary school students have
shown a facility with developing these nonlinear definitions for models, allowing
them to cross the threshold to building models of complex, nonlinear, dynamic,
feedback systems. Moreover, students can build SD models that capture material
and information delays that occur in many real-world systems.

3.8 Conclusion

Arguably, the time has come for secondary school mathematics and science educa-
tors to supplement the emphasis given to the exclusive manipulation of closed-form
equations, with approaches that teach students to understand and model the dynamic
behaviors occurring everywhere in the world. To the extent that these abilities support
students to become more active and competent global citizens, they will be better
enabled to develop and test policies needed to tackle difficult problems. One of our
current challenges is to intellectually fortify students, allowing them to retain hope
that there is still time to effect the changes needed to secure human futures, personally
and globally.
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Chapter 4 ®
Theorizing ‘Modelling as Bridge’ oo
Between Content and Vehicle

Stephen T. Lewis

Abstract In this paper, a theory for facilitating modelling tasks as a bridge between
modelling as content and modelling as vehicle is established. Drawing on data from
a micro-ethnographic study of one classroom, I outline one teachers’ mathemat-
ical modelling practice when facilitating tasks. I examine how the teacher vacillated
between elaborating on student mathematical ideas, nurturing the development of
modelling as content, while simultaneously targeting curricular objectives through
formalization of desired mathematical content in modelling as vehicle. Through her
implementation, I identify how the teacher navigated between these two epistemo-
logical approaches to developing modelling capacity and use this analysis to establish
a theory for modelling as bridge between content and vehicle.

Keywords Modelling as content - Modelling as vehicle + Discourse analysis -
Scaffolding

4.1 Introduction

Achieving a balance of rigorous mathematics content, cultural competence and crit-
ical consciousnesses through mathematical modelling is a complex endeavour, yet
an attainable goal that merits much scholarly attention (Anhalt et al. 2018). Cai et al.
(2014) argued for additional research to help in characterizing the essential features
of mathematical modelling, document what instruction looks like when modelling is
facilitated in modelling contexts, determine what factors motivate task selection by
teachers of modelling, and further to examine classroom discourse in mathematical
modelling that supports modelling practice. This study addresses these epistemo-
logical, mathematical, and pedagogical issues in a theoretical nature by examining
interactions that occur in mathematical modelling contexts. In particular, I explicate
a teachers’ particular view of mathematical modelling and consider how her socio-
mathematical modelling practice, or sociomodelling practice (Lewis 2018), resides
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as a bridge between modelling as content and modelling as vehicle (Julie and Mudaly
2007).

It is known that there are institutional, mathematical, cultural, and pedagogical
barriers that exist that prevent the implementation and facilitation of modelling tasks
with fidelity (Anhalt et al. 2018; Manouchehri et al. 2018), and further that there
exists a need for additional scholarly reports on existing efforts aimed at improving
specific pedagogical capacities among teachers (Manouchehri et al. 2018). Further,
facilitating modelling cognition involves attention to cultural backgrounds, life expe-
riences, intuitions, and prior mathematical knowledge that learners draw upon (Cai
et al. 2014; Manouchehri and Lewis 2017; Orey and Rosa 2015; Rosa and Orey
2010). Yet, a productive method for bridging the gap between mathematics and the
realities of learners within modelling contexts is still unknown (Anhalt et al. 2018).
This study takes up the calls to action and examines the particularities of classroom
practice when facilitating modelling tasks.

Two questions guided my research of classroom practice, (1) How are social
practices in mathematical modelling contexts developed through implementation
of modelling tasks? (2) How does teacher scaffolding within these tasks promote
development of modelling capacity in learners? In this paper, I will focus primarily
on the initial question and articulate how the teachers’ practice in itself acted as a
bridge between mathematical modelling as content and mathematical modelling as
vehicle, which I characterize as modelling as bridge.

4.2 Background Literature

While various definitions of mathematical modelling may exist (Lesh and Fennewald
2010), agreed-upon processes in mathematical modelling involve assumption-
making, mathematizing, parameterization, the selection of variables, simplification
of a system, decision-making, and validation of the model (Blum and Leiss 2007;
Lesh et al. 2000; Niss 2010; Niss et al. 2007). It is how these aspects of mathematical
modelling emerge across definitions that one ought to consider. Regarding teacher
practice in mathematical modelling, one cannot necessarily assume a teacher has
a particular conception of mathematical modelling that necessarily coincides with
one epistemological view of mathematical modelling, but rather that their defini-
tion is informed by their realities of teaching, background mathematical knowledge,
knowledge of modelling, and that these definitional components emerge across their
practice. Across the literature, two predominant epistemological views of modelling
instruction exist, modelling as a content, and modelling as a vehicle (Galbraith et al.
2010; Julie and Mudaly 2007).
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4.2.1 Teaching Mathematical Modelling

Galbraith et al. (2010) argue that modelling as vehicle focuses on developing
prescribed mathematics and is used as a means for learning new concepts, proce-
dures, ways to conjecture, or use context-driven justifications to solve problems. This
they argue affords the use of modelling to service curricular needs of mathematics.
Within modelling as vehicle, problems are pre-formulated and typically involve a
particular real-life context. Through the use of these contextualized examples, the
study of mathematics is motivated. The real-life situation is used primarily in this
way, as a basis for abstraction.

Within modelling as content, mathematics is the outcome of the model develop-
ment process (Galbraith et al. 2010; Julie and Mudaly 2007). These authors argue that
modelling as content entails scrutiny, dissection, critique, extension and adaptation of
existing models for the purpose of assessment and evaluation. Modelling as content
is motivated by genuine real-world contexts and is anchored in the processes used
for solving these problems. This view of modelling affords access to critical issues
or inequities that people face through assumption-making to articulate a problem
statement within the real world, and then develop models to address it.

While Julie and Mudaly (2007) argue that these epistemological views of math-
ematical modelling are not mutually exclusive, but rather a spectrum of presen-
tation and dissemination, research in mathematical modelling has predominantly
treated them as such. Tasks are most often characterized as modelling as content OR
modelling as vehicle. However, in order to consider this spectrum at greater depth, a
view of how tasks are facilitated in actual classrooms and by actual teachers needs
to be established. In this way, I turned to discourse analysis (Bloome et al. 2010) to
robustly analyse the implementation of modelling tasks and consider how practices
pertaining to mathematical modelling emerged.

4.3 Methods

The overarching program of research aims to analyse interactions in mathematical
modelling contexts, and focuses dually on teacher scaffolding mechanisms through
reflexive discussion (Qualley 1997), as well as ways students interpret and respond
to tasks drawing on their contextual and mathematical knowledge (Manouchehri
and Lewis 2017). The data for this study comes from a micro-ethnographic study
of an 11th-grade pre-calculus class at a private academy in the Midwestern United
States that occurred during the 2017-2018 academic year. The teacher of this class
was in her 11th year of teaching and had a focus on implementation of mathemat-
ical modelling tasks on a regular basis over the course of the year. She indicated
that aside from her major curricular goals of teaching concepts in pre-calculus,
she wanted to help her students understand the applicability of mathematics, and
viewed modelling and applications as the means to accomplish these objectives.
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In observing her teaching, I attempted to characterize those sociomodelling prac-
tices which established activity within mathematical modelling from both a local
and dialogic perspective thus establishing cultural models for enacting mathematical
modelling.

Prior to my formal data collection, I had attended the participating teacher’s classes
over the previous two years observing her instruction and developing a friendship as
well as a professional relationship with the teacher. Targeted data collection for this
study involved video and audio recording subsequent lessons across a 12-week period
during the 2017-2018 academic year. Daily event mapping (Hennessy et al. 2016)
was used to identify broadly what transpired across teaching sessions. These event
maps were drawn from both video data and detailed fieldnotes transcribed during
the class itself. Particular modelling events were selected, transcribed into utter-
ances and analysed using line-by-line discourse analysis (Bloome et al. 2010). Key
components of the teacher’s mathematical modelling practice emerged across these
observations and coded according to their social functions. The frequency of these
codes occurrence was compared and those that appeared most often were deemed
significant. They were then validated by the teacher through reflective discussions.
Subsequent and previous class sessions were also observed to look for intercon-
textual links to these key events, and evolution of practice was considered. This
triangulation of observations and reflective interviews establishes validity of inter-
preted results (Bloome et al. 2010). In order to establish reliability of the coding
process and data, multiple coders examined the data and feedback were provided on
particular components of practice, and their social functions. This was done so that
the reported data accurately reflected the practice of the teacher and her intent.

4.4 Results

Analysis of data examined four deliberate modelling and application experiences:
The Answer Is, a problem-posing task where students generated increasingly complex
problems whose answer was $73.13. Measure the Height, a trigonometric geom-
etry problem where students determined the height of selected objects using three
different methods, and then results were compared and validated. Shortest Path to the
Lunchroom, a task where students determined which buildings on campus yielded the
shortest path to the cafeteria using both physical measurement and an aerial map of
the campus. Lastly, Trig Whips, a task where students investigated rotational motion
and angular velocity by linking arms and moved in a circle and determining the rate
that the outward most person would have to move to maintain a solid chain.
Analysis of these sessions revealed that the teacher vacillated constantly between
building modelling capacities, or the skills needed for effective modelling practice,
and linking these capacities to targeted mathematical concepts of her curriculum. This
vacillation was made apparent through the enactment of components of her prac-
tice. Twenty-three interrelated but distinct components were identified across these
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sessions' that targeted the advancement of mathematics, two of these components,
in particular, and their interrelationship made the teachers’ view of modelling trans-
parent—elaborating student mathematics and formalizing curricular mathematics.
Elaborating student mathematics marked instances where the teacher acknowledges
the conceptual tools that the learners drew upon and supported their elaboration
in mathematical ways. This involved attending to student views of particular prob-
lems and building on THEIR solutions mathematically, not those linked to a desired
curricular outcome.

While the teacher’s long-term goals involved developing modelling capacity in
learners, she was also concerned with formalizing the curricular concepts mandated
by the course. Formalizing curricular mathematics involved enculturating students
into mathematical concepts through direct instruction or problem-solving as opposed
to modelling. When she recognized the connection between contextual problems
and her overarching content goals, she was more likely to include modelling in
her instruction. During these instances, the teacher would start with modelling or
contextual problem-solving, allow students to explore their ideas and intuitions, then
link student solutions or ideas to deliberate mathematics during discussion. Often
this involved selecting particular student solutions of which to expand.

Figures 4.1 and 4.2 document the vacillation between elaborating student mathe-
matics and formalizing curricular mathematics across those specific tasks. Across all

Event Phases Elaborating | Formalizing
Student Curricular
Mathematics | Mathematics
. Introduction of problem posing task X
% | Discussion of Task Interpretation X
| Establishing Solution Criteria X
E Student work on problem posing activity X
2 | Teacher Monitoring and Group Scaffolding X
Z | Sharing Solutions X
2 | Elaboration of Solutions X
& | Teacher Summary of Task and Solutions X
Introduction of Task and Demonstration of Inclinometer X
Establishing solution criteria X
Student work to determine height of three objects in X
three different ways
é Teacher monitoring and supporting solution strategies X
& | Debrief discussion of measure the height task X
h | Sharing and discussion of solutions X
E’ Formalizing Sine, Cosine, and Tangent as way of X
2 determining height
> | Students practice using Sine, Cosine, and Tangent on X
S | exercises
§ | Validation of measurements for task using Sine, Cosine, X X
= |and Tangent

Fig. 4.1 Elaborating and formalizing interrelationship: The Answer is and Measure the Height

ISpecific components of teacher practice are elaborated in detail in Lewis (2018).
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Event Phases Elaborating | Formalizing
Student Curricular
Mathematics | Mathematics
Shortest path task pre-discussion and task overview
Teacher monitoring of student solutions X
Shortest path debrief discussion with whole class X
Connecting shortest path to calculating triangle concepts X
o Determining contextual angle measurements with X
% | protractor
& | Comparing measurements to calculated solutions X X
§ Problem posing exercise using aerial map of campus X
& | Summary of shortest path task and solution outcomes X
§ Sharing strategies used for determining length of X
— | triangles
_9_:’ Validating measurements by remeasuring physical X
2 | distances (error analysis)
£ | Comparing calculated and collected values of distances X X
& | Averaging measured distances and comparing calculated X
é outcomes
S | Teacher introduces Law of Sines Calculator Activity X
“ | Law of Sines Exploration X
Introduction of angular speed and task overview X
Teacher monitoring and supporting student work on task X
Trig whip debrief discussion and sharing of solutions X
Formalizing angular speed (introduction of formulas) X X
Applying angular speed to trig whips task X
. Derivation of angular speed from linear speed and arc X
% | length
E Teagher rn(.)n.itoring of using angular speed on trig whip X X
‘= | Inquiry activity
2 | Trig Whip extension overview X X
-2 | Angular speed and extension wrap-up discussion X X
& | Angular speed practice exercises X

Fig 4.2 Elaborating and formalizing interrelationship: Shortest Path and Trig Whips

problem-solving tasks, the teacher began the discussion by elaborating on students’
mathematical ideas, and then transitioning into formalization of those ideas in some
capacity. Formalization involved connecting the discussion to the mathematical and
curricular goals of the lesson. In this way, the teacher was able to anchor the devel-
opment of her intended curricular goals grounding these formalizations on students’
mathematical ideas. Drawing on learners’ ideas, intuitions, and solutions, she was
able to portray them as a means for solving the problem, not the means. Thus,
she was able to maintain the validity of learners’ solutions along with ideas in the
modelling process, while at the same time, advance her own curricular agenda. Some
instances were dominated by formalization, while others elaboration, but consistent
across encounters was a deliberate dance between facilitating tasks as modelling
and content coupled with modelling as vehicle bridging the gap between these two
epistemological views of modelling instruction.
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4.5 Discussion and Conclusions

While the literature outlines and distinguishes between the epistemological views
of modelling as content and modelling as vehicle, the teacher’s view of modelling
acted as a bridge between modelling as content and modelling as vehicle. On the one
hand, the teacher adopted a holistic view of modelling as the interaction between
mathematics and real life (Kaiser 2007). On the other hand, she also supported
the organization of social practices to establish arguments and support their deci-
sions, adopting a socio-epistemological perspective (Cantoral et al. 2018). In this
way, the curricular objectives alone did not drive her teaching process of mathemat-
ical modelling, but are bridged with the stance that learners should be equipped to
consider real-world problems through the lens of their own experiences and draw
on conceptual tools to support the development of well-conceived solutions. In this
way, she was able to reconcile both goals of advancing curricular knowledge and
supporting learners’ real-world problem-solving and decision-making.

Analysis further revealed that in establishing her sociomodelling practice, the
teacher relied on her professional vision and pedagogical resources (Goodwin 1994;
Schoenfeld 2009) when planning for facilitating modelling tasks. Professional vision
is characterized as those particular ways that members of a group examine events of
interest and affords a means to notice and interpret actions, and further is the driving
force for what transpires across interactions around a professional agenda. Resources
are considered to encompass both the conceptual and physical tools at one’s disposal.

Figure 4.3 reflects the relationship between the teacher’s sociomodelling prac-
tice, components of that practice, and its relationship to her epistemological view of

Sociomodeling Practice

" Modelling as Vehicle ™
/ Political & Curricular Goals \\

,/ Formalizing curricular mathematics

— \,

- -
rd \‘\

/" Modelling as Content
; Personal & Ideclogical Goals

Elaborating student mathematics

Modelling asl,.-""bridge

| '} —— .
| P e W Assumption making |

) S < 7

. _// N ‘L - _,_ — > Validating

\ f Teacher Vision

\. |' and Resources | /
\ "-\\ Teacher knowledge & beliefs y,

Fig. 4.3 Modelling as bridge
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teaching mathematical modelling. At the heart of sociomodelling practice is profes-
sional vision, informed by her contextual knowledge, mathematical knowledge and
her beliefs about practice. With the teacher’s agenda in developing modelling capacity
in her students, there exists evidence of both modelling as content and modelling as
vehicle, and components of her practice emerged in each phase of the modelling
process. Elaborating student mathematics drawing on their experiences is inter-
twined with modelling as content from a definitional standpoint, and formalizing
curricular mathematics to modelling as vehicle. In this capacity, her overarching
practice was observed to vacillate between these two epistemological views of math-
ematical modelling linking the development of student mathematical ideas to her
curricular objectives. This phenomenon I characterize as Modelling as Bridge, as
the teacher attempts to bridge these two epistemological views of mathematical
modelling in and across her instruction.

In contemplating the significance of these findings, it was only in those instances
where the teacher recognized a link between her curricular goals and contextual
problems that mathematical modelling was initiated. It was her vision that afforded
modelling tasks sensitive to learners’ ideas while keeping an eye on curricular objec-
tives. The teacher had to reconcile her short-term instructional goals of mastering
particular mathematical concepts and her long-term goals of developing modelling
capacity.

Anbhalt et al. (2018) argued that teachers need to become fluent with the nature of
the mathematical modelling cycle as an approach to solving open-ended problems
in familiar contexts (p. 558) and further to promote creativity in solutions should
resist steering learners’ towards pre-determined approaches but rather support their
own thinking (p. 560). However, generic talk about implementation of mathemat-
ical modelling tasks or even showing examples of modelling is necessary, but not
sufficient. Rather the skill of facilitating modelling tasks demand a bridge between
curricular mathematics and learner unique solutions need to be further developed. In
this sense, one could revisit curricular resources and elaborate on productive methods
of facilitation through the development of curriculum guides that highlight how to
promote both modelling and mathematics. Further, these guides need to find produc-
tive ways to expand on multiple solution paths and how each path might target a
particular curricular or contextual outcome. Without guidance of this nature, it is
not likely that the breadth of our research in mathematical modelling and tasks will
come to fruition in classroom settings.

The ways in which teachers vacillate between elaboration of learners’ ideas and
formalization of mathematical concepts to accomplish curricular needs strengthen
the argument for facilitating modelling tasks as modelling as bridge. More studies
of this nature ought to be facilitated in order to gain a better conception in the
particularities of these types of mathematical modelling practices.
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Chapter 5 )
Glocalization of Cultural Mathematical oo
Practices Through Ethnomodelling

Daniel Clark Orey and Milton Rosa

Abstract In this chapter, the authors share how the acquisition of both local
(emic) and global (etic) knowledge forms an alternative goal for the implemen-
tation of ethnomodelling research. Local knowledge is essential for an intuitive and
empathic understanding of mathematical ideas and procedures developed throughout
history. Global dialogical knowledge is essential for the achievement of cross-cultural
communication that demands standard analytical units and categories. It is used
for conducting ethnomodelling research that applies both local and global knowl-
edges through respect, appreciation, dialogue, and interaction. Our main objective
is to share the combination of local and global approaches in which ethnomodelling
research looks at how diverse ideas and procedures contribute to the acquisition of a
holistic understanding of mathematics.

Keywords Ethnomodelling + Glocalization + Local - Global - Cultural practices -
Cultural approaches

5.1 [Initial Considerations

A challenge for investigators is to develop methodological procedures that assist in
perceiving or understanding what is often deemed as culturally bound mathematical
ideas, procedures, and practices that have been developed by members of distinct
cultural groups without letting their culture interfere with the cultural background
of these individuals. In this context, as it is often based on philosophy, assumptions,
and values that are strongly influenced by colonization, modern Western civilization,
and technological advancement. Thus, it is necessary to deconstruct the notion that
mathematical ideas and procedures are uniquely European in origin.
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There are investigators who believe that mathematical practices are unique to
Western science and are the same for all cultures, and that their techniques are equally
applicable to everywhere. At the same time, many non-Western cultures developed
their own interpretation of the local environment (emic approach) opposed to the
outsiders’ global interpretation (etic approach) of that specific cultural group (Rosa
and Orey 2019). An important goal of research in ethnomodelling is to understand
and explain existing variations found in diverse mathematical ideas, procedures, and
practices that often vary due to influences of history, context, culture, race, ethnicity,
gender, sexual orientation, and other sociocultural traits.!

This context enables ethnomodelling to become a tool in the translation of daily
experiences that apply mathematical ideas and practices within a culture. It is also a
fluid and dynamic research tool that incorporates both culturally universal and cultur-
ally specific mathematical practices that often lead to new discoveries and innova-
tive pedagogical actions in the development of inclusive approaches in mathematics
education.

5.2 Developing Three Cultural Approaches
to Ethnomodelling

When working with ethnomodelling, it is possible to identify at least three approaches
that have come to help us investigate, study, and further understand mathematical
ideas, procedures, and practices developed by the members of any given cultural
group.

Global (etic) refers to the outsiders’ view on beliefs, customs, and scientific and
mathematical knowledge developed by the members of distinct cultural groups. Glob-
alization has reinforced the utilitarian approach to school mathematics, as well, it
has helped to globalize pervasive mathematical ideologies, including the view that
mathematics is the same for everyone everywhere. Particularly, traditional school
mathematics is a culturally homogenizing force, a critical filter for status, a perpet-
uator of mistaken illusions of certainty, as well an instrument of power (Rosa and
Orey 2015). In this approach, comparativist researchers have attempted to describe
differences among cultures, and thus are considered, for better or worse, culturally
universal (Sue and Sue 2003).

Local (emic) refers to the insiders’ view of their own culture (how we do this),
customs, beliefs, and scientific and mathematical knowledge. Local knowledge is
important because it has been tested and validated within the local context (Cheng

ISociocultural traits are considered as socially learned system of beliefs, values, traditions, symbols,
and meanings that members of a particular cultural group develop throughout history. These traits
identify members of a specific culture because they are deposits of knowledge, experiences, actions,
attitudes, hierarchies, religion, notions of time, roles, spatial relationships, universe concepts, and
artifacts developed by the members of distinct cultural groups from generation to generation through
consistent acknowledgment and valorization of individuals and their collective efforts (Samovar and
Porter 2000).
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2005), and creates a framework from which members of cultural groups are able
to understand and interpret the world around them (Barber 2004). In this approach,
members of distinct cultural groups describe their culture in its own terms and values
(Rosa and Orey 2013). Currently, many investigators recognize the importance of
local perspectives to the development of scientific and mathematical knowledge.
They are considered as culturally specific individuals (Sue and Sue 2003).

Glocalization (emic-etic/dialogical) represents a cultural dynamism between two
or more cultures in continuous and ongoing interaction between globalization and
localization. It offers a perspective that both approaches (emic-etic) are elements of
the same phenomenon (Kloos 2000). It involves blending, mixing, and adapting two
processes in which one component addresses the local, as well the outside system of
values and practices (Khondker 2004). In a glocalized society, members of distinct
cultural groups must be “empowered to act globally in their own local environment”
(D’ Ambrosio 2006, p. 76). Therefore, it is necessary to work with different cultural
environments and, acting as ethnographers, describe mathematical ideas and prac-
tices of other peoples. As well, it is crucial to give meaning to both these mathematical
findings (D’ Ambrosio 2006).

Itis necessary for us to first focus on the local knowledge and then integrate global
influences in order to create individual and collective views rooted primarily in local
experiences and contexts. This approach is equipped with a glocal knowledge that
creates a sort of localized globalization (Cheng 2005). It goes deeper than traditional
multicultural views of mathematical practices. In this regard, ethnomodelling allows
researchers to move beyond what is in danger of being relegated to the curious or
exotic findings and focuses on creating deeper understanding toward how members
of distinct cultural groups actually use, or came to use, mathematics to solve their
own problems within their own local communities.

For example, can researchers agree with imposed cultural universalities (global) of
mathematical knowledge or they might take on techniques, procedures, and practices
of its cultural relativism? Thus, researchers seeking to link universal (global) and
community-specific (local) approaches face the classic dilemma of scientific goals
conflicting with investigations in ethnomodelling (Rosa and Orey 2019). Yet, both
local and global approaches are often perceived as incommensurable paradigms. We
beg to differ. While these approaches are often thought of as creating conflicting
dichotomies, in the context of ethnomodelling they are considered complementary
viewpoints.

However, rather than posing a dilemma, the use of both approaches in ethnomod-
elling research deepens our understanding of cross-cultural scientific and mathemat-
ical investigations (Rosa and Orey 2013). Since these two approaches are comple-
mentary, it is possible to delineate forms of synergy between the local and global
aspects of mathematical knowledge through the development of ethnomodelling
research. Hence, a combined local-global approach requires researchers who first
attain local knowledge developed by the members of distinct cultural groups. This
approach may allow them to become familiar with relevant cultural differences in
diverse sociocultural settings (Rosa and Orey 2015).
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Similarly, the resurgence of debates regarding cultural diversity has also renewed
the classic global/local or emic/etic debate since investigators need to comprehend
how to build scientific generalizations while trying to understand the role of sociocul-
tural diversity. Yet, attending to the unique mathematical interpretations developed
in each cultural group challenges fundamental goals of mathematics in which the
main objective is to build a theoretical basis that helps to describe the development of
mathematical practices in academic ways through ethnomodelling (Rosa and Orey
2019).

In this context, local observations seek to understand culture from the perspective
of internal dynamics and relationships as influenced within a specific cultural group.
A global approach is a cross-cultural contrast or comparative perspective that seeks to
comprehend or explain different cultures from a worldview best described as from the
outside (Rosa and Orey 2013). Local worldviews clarify intrinsic cultural distinctions
while the global viewpoints seek objectivity as an outside observer across cultures
(Anderson 2007). This local approach helps to examine native principles of classi-
fication and conceptualization from within each cultural system. Local knowledge
and interpretations are essential to emic analyses.

In this regard, it is from the viewpoint of the participants that will convey messages
about sociological and behavioral dimensions for the understanding of cultural
contexts. Therefore, it is important to highlight that “what is emphasized in this
approach is human self-determination and self-reflection” (Helfrich 1999, p. 133). A
global analysis has a cross-cultural approach. Many etic-oriented investigators have
examined the question of a cross-cultural perception so that their observations are
taken in accordance with externally derived criteria. This context enables for compar-
isons of multiple cultures where “both the objects and the standards of comparison
must be equivalent across cultures” (Helfrich 1999, p. 132).

Accordingly, in the conduction of ethnomodelling research, the cultural, social,
linguistic, political, religious, and ethnic affiliations are integrated into a unified
holistic solution. This approach allows for a deeper examination of ethnomathe-
matical ways from what has been in the past considered as a study of the strange,
simplistic, curious, or exotic mathematical ideas and procedures developed by the
many others. In this manner, the intended mathematical practices are given a stake in
the overall process and not just its mere result, or traditional competitive comparisons
related to: this is nice, but we do it better.

5.3 Tree Trunk Cubing: An Example of a Glocal
Ethnomodel

Because mathematics is a culturally bound social construct, the authors define
ethnomodelling as the study of mathematical phenomena within a culture, which
brings the cultural aspects of mathematics into the modelling process. The objective
of this ethnomodel is to share the combination of local and global approaches where
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ethnomodelling research takes ethnomathematics beyond the study of the exotic or
curious to look at how diverse ideas and procedures contribute to the acquisition of
a holistic understanding of mathematical practices developed in distinct contexts.

Some ethnomodelling investigations have revealed sophisticated mathematical
practices that include geometric principles in craft work, architectural concepts, and
practices in the activities of many native and indigenous peoples, local, and vernacular
cultures. These mathematical practices are related to diverse numeric relations found
in measuring, calculation, games, divination, navigation, astronomy, and modelling,
as well in a wide variety of mathematical procedures and techniques found in cultural
artifacts.

In investigations conducted in Brazil, it was proposed that the elaboration of
mathematics activities related to the determination of the volume of tree trunks
with participants of this movement (Knijnik 2006; Rosa and Orey 2019). These
activities were related to the method of cubagem (cubing) of the tree trunk, which is a
traditional cultural practice used by the members of the Landless Peoples’ Movement
(Movimento dos Sem Terra—MST), which allows them to estimate the volume of a
tree trunk in their settlements (occupation sites).

In this regard, wood cubing processes are associated with the sociocultural envi-
ronment of members of this cultural group. Cubing is used by these members to
determine how many cubic meters of woodcutters use in the construction of sheds,
houses, and animal shelters (Knijnik 1993). In this context, one of the M ST members
provided an example in which she used a tree trunk found on the ground to determine
her method in determining the volume of a log (Knijnik 1996), which we consider
as an emic ethnomodel:

To begin with, we mark here in the middle of the tree trunk, because it is thicker there at the
end of the log and it is thinner at this end of the trunk. So, the middle of the trunk gives, more
or less, its average. Now, I take a string and I go around it. Now, I have the measurement of
the trunk outline at its middle. Then, I fold the string into four parts. After that, I measure it
to see how many centimeters are there. It is 37 cm. Now, [ multiply 37 by 37, which gives
1369. Then, I measure the length of the tree trunk. It is 1 meters and 64 centimeters. Now, I
multiply the length of the log by 1369. It’s 199874 cubic centimeters of wood. It’s the same
as doing side times side times length.

This emic mathematical knowledge can be represented by an etic ethnomodel
applied in the cubing procedure used to estimate the volume of a given tree trunk
(Amorim et al. 2007).

(a) First, it is necessary to estimate the center point of the tree trunk, so that the
diameter is taken at half the length of the log (Fig. 5.1).

(b) From this point, by using a string, the perimeter of the tree trunk (circumference)
is determined (Fig. 5.2).

(c) Then, the string related to the perimeter that was previously determined is folded
into four equal parts (Fig. 5.3), which gives: 2 r = 4 sides or 2 r = 4s.
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Fig. 5.1 Estimation of the
center point of the tree trunk

Fig. 5.2 Determination of
the perimeter of the tree
trunk

Fig. 5.3 Division of the
string into four equal parts
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Fig. 5.4 Squaring the S
quarter of the string

(d) Then, the measure of the quarter of the string (circumference) is squared

(Fig. 5.4).
- (3)

(e) And, finally, the value of the quarter of the string (circumference) is multiplied
by the height of the tree trunk in order to obtain the volume in cubic meters (m?)
of the wood. The volume is calculated as if the log was a cylinder.

In the glocal (dialogical) ethnomodel shown in Fig. 5.5, members of MST approx-
imate the truncated cone (tree trunk) by a cylinder. This approximation is given as
perimeter by determining the average between the perimeters of the smallest and the
largest bases of the tree trunk.

The minor difference at the top of the tree trunk is compensated by the major
difference at its bottom. By dividing the string into four parts and raising it to the
square, the members of MST then calculate the area of a square by transforming the
circle into a square (Fig. 5.6).

Although the perimeters are the same, the areas are different (Fig. 5.7).

Subsequently, the volume of a square prism is calculated by multiplying its area
of the base by its height. The volume calculated in this way is relatively accurate if
the shape of the tree trunk approaches a cylinder (Fig. 5.8).

Fig. 5.5 Approximation of
the truncated cone to a
cylinder
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Fig. 5.8 Volume of a square prism

This method used to determine the volume of a tree trunk basically consists of
two steps. In the first step, a tree trunk (essentially a cylinder) was identified through
a mathematization process in which its circumference coincides with the middle part
of the tree trunk. In the second step, a tree trunk (again a cylinder) was identified
as a square prism whose side measurement is equal to a quarter of the perimeter
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of the cylinder base in this mathematization process. This method of cubing wood
(cubagem) finds the volume of the trunk as the volume of a square prism whose side
of the base was obtained by determining the fourth part of its circumference, which
corresponds to the base of the cylinder, and was obtained through an ethnomodelling
process, that is, as part of the elaboration of a dialogical ethnomodel of the tree trunk.

The representation of this cultural practice can be explained by the ethnomodel
that transforms the trunk of tree into a cylinder. The authors believe that the emic
approach, such as found in this example, may be considered an attempt to understand,
translate, discover, and describe a mathematical system used by this specific cultural
group, inits own terms, and by identifying its units and structural procedures, whereas
an etic approach is primarily concerned with characteristics pertaining to academic
mathematics.

The particular type of mathematical knowledge used and developed by MST
members consists of socially learned and transmitted mathematical practices, which
are represented in the elaboration of ethnomodels taken from sociocultural systems
that are part of their own daily life. In the glocal (dialogical) approach, the emic obser-
vation sought to understand the cubacdo of the tree trunk from the perspective of the
internal cultural dynamics and relations of this movement with the environment in
which they lived while an etic approach provided a cross-cultural contrast, employing
comparative perspectives with the use of academic mathematical concepts.

5.4 Final Considerations

Across human history, members of many different cultural groups have come into
close contact often through colonization, conquest, and/or trade. In some cases, these
cultural encounters sought for a mutual understanding in terms of the culture to which
one belongs as well in terms of the specificity of cultural knowledge pertaining to
the cultures encounters (Iser 1994). As a “result of these encounters, no culture
can call itself static and definitive” (D’ Ambrosio 2006, p. 76). It is necessary to
present alternative approaches to hegemonic views of globalization (etic-outsiders)
by arguing for a contextualization guided by localization (emic-insiders).

In this context, ethnomodelling can be seen through the lens of glocalization,
which provides an approach that looks at ethnomathematics as expressions of glocal
(dialogic) relations between local and global procedures and practices. This dialogue
provides the development of glocal mathematical knowledge that has the potential to
generate empowering synergies between localization and globalization. This process
enables to conceive ways to articulate mathematical knowledge in more inclusive
and synergistic modes.

Glocal (dialogic) approaches help us to create synergistic spaces of interde-
pendent, reflexive, and co-arising relationships between global and local processes
(Kloos 2000) for the development of glocal mathematical knowledge. However, it is
necessary that global mathematical practices adapt themselves to local cultures and
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vice versa. According to D’ Ambrosio (1998), contact of local knowledge with other
external knowledge systems provokes the development of cultural dynamism.

In this regard, intense cultural dynamics caused by globalization may produce
innovative mathematical models, perspectives, ideas, and thinking developed in
diverse contexts (D’Ambrosio 2006). Similarly, glocal mathematical knowledge
helps us realize how objectivity and subjectivity, global and local, transcendental
and cultural, universal and specific, and Western and non-Western can peacefully
coexist side-by-side (Robertson 1995), and indeed can support each other in the
development of new mathematical ideas, procedures, and practices.

Therefore, if we look at glocalization as a useful tool for creating dialogue and a
curriculum for local and global knowledge systems, we obtain a better understanding
of the challenges and potential benefits of this dialogue. By using ethnomodelling
to describe the relation between these two interdependent and mutually consti-
tutive approaches, we help individuals explain how members of distinct cultural
groups experience their world in multi-scalar sociocultural terms, and to connect
local communities to play important roles in developing and sustaining global
mathematical practices (Rosa and Orey 2019).

In this context, the term glocalization is a process by which a culture easily absorbs
foreign (outside) ideas and/or the best practices that meld those with their own points
of view, needs, and traditions without the loss of ancient practices or self-esteem.
This approach provides a voice and context for understanding the ethnomodelling
process, how the group identity is constructed, and how processes of globalization
and localization work in tandem to create innovative scientific and mathematical
knowledge through the development of unique cultural forms.
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Chapter 6 )
Positive Deviance in the Pedagogical oo
Action of Ethnomodelling

Milton Rosa and Daniel Clark Orey

Abstract An impasse in mathematics education is related to its often lack of
acknowledgment of local mathematical practices in its research theoretical basis.
Pedagogical action of ethnomodelling can aid in recording cultural-historical forms
of mathematical procedures and practices developed by members of distinct cultural
groups. Ethnomodelling adds cultural perspectives to the mathematical modelling
process without attempting to replace academic mathematics during the develop-
ment of this process. Hence, insubordination triggered by ethnomodelling is creative
and often evokes a sense of disturbance that causes conscious review of rules and
regulations endemic to many curricula contexts. This process enables educators and
investigators to use positive deviance to develop pedagogical actions that deal with
content often disconnected from the reality of the students.

Keywords Ethnomodelling + Ethnomodels - Mathematization + Method of
cubagdo - Pedagogical action -+ Positive deviance

6.1 Initial Remarks

Ethnomodelling is a form of pedagogical action that offers a contrast to traditional
academic curricula by challenging the view that members of local and/or distinct
cultural groups only develop exotic and/or simplistic mathematical ideas, procedures,

IThe concepts of creative insubordination (Crowson and Morris 1982), responsible subversion
(Hutchison 1990), or positive deviance (Zetlin et al. 1990) are equivalent as they relate to the
adaptability of rules and regulations in order to achieve the welfare of the members of distinct
cultural groups. However, there are subtle conceptual differences that must be discussed during the
development of investigations.
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techniques, and practices. According to Rosa and Orey (2017), the development of
ethnomodelling is related to the concept of positive deviance' (Zeitlin et al. 1990)
as it relates to the flexibility of rules and regulations that helps these members to
achieve a deeper understanding of their mathematical thinking and reasoning.

The concept of positive deviance refers to the practices of researchers and educa-
tors that, in an insubordinate, creative, subversive, and responsible way, and with
discernment, are opposed to educational practices that no longer make any real peda-
gogical sense, especially in regard to the educational bureaucracies and traditions of
public policy (Rosa and Orey 2017). This approach refers to actions assumed in
relation to norms and institutional rules that aim at better commitments to the needs
of students who compose the school population.

Researchers and educators who are able to create innovative pedagogical alterna-
tives, such as ethnomodelling, are conscious in relation to the achievement of better
results for the common good of the community that is constituted by their colleagues,
students, parents, and school administrators. In this context, these professionals can
be candidates for positive change in their communities. This action is often in oppo-
sition and, generally, represents a challenge to established authorities and long-held
school traditions, even if they are related to, or cause unintentional exclusion and/or
discriminatory school policies.

For example, a wide variety of mathematical procedures and techniques chal-
lenge primitivist> views held by members of distinct cultural groups as ideas that
possess mathematical knowledge they use to explain the world around them, navi-
gate, and create remarkable architectural monuments, and to solve problems faced
in their communities. Positive deviance also challenges epistemological stereotypes
most damaging to these members. Thus, a sense of positive deviance becomes an
important source for adaptive transformational capacities by members of distinct
cultural groups that produce non-conformist actions. Its main objective is to modify
these norms and rules by applying inclusion, innovation, creativity, and adaptability
through ethnomodelling (Rosa and Orey 2017).

Positive deviance means that researchers and educators gain awareness about
when, how, and why to act against established procedures or guidelines that are unjust,
racist, homophobic, or unfavorable to any member of a school community. This
means that individuals who are positively deviant because they assume that members
of distinct cultural groups are unfinished human beings who take criticality, creativity,
responsibility, and curiosity as the foundation of an ongoing and transformative
process in the production of mathematical knowledge (D’ Ambrosio and Lopes 2015).

Ethnomodelling can be considered both a positive and deviant pedagogical action
because it causes a certain disruption to the existing order in academic mathematics
by encouraging and developing the study of the mathematical ideas, procedures,

2Primitivism refers to cultures believed to lack cultural, social, technological, or economic sophisti-
cation or development. Historically, primitivism has been used to justify conquering the members of
other cultural groups. In cultural terms, primitivism means a deficiency in those qualities that have
been used historically in the Western world as indicators of so-called civilized cultures (Rhodes
1995).
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techniques, and strategies found locally, which includes diverse mathematical prac-
tices that are in accordance with the emic® perceptions of the members of distinct
cultural groups (Rosa and Orey 2017).

Through ethnomodelling, it is possible to recognize divergent ways, as well as
value the diverse modes that mathematical knowledge is produced by other cultures
and environments (Rosa and Orey 2015). It is necessary to reclaim contributions of
the conquered, minority, or marginalized peoples in the development of mathematical
knowledge through the elaboration of ethnomodels in the ethnomodelling process.
Ethnomodelling generates a new respect for diverse forms of mathematical knowl-
edge and assists members of distinct cultural groups in resolving ethical dilemmas
involved in these investigations.

Thus, positive deviance can be triggered by initiating a disturbance that causes a
review of school mathematical knowledge by increasing the potential for growth and
the emergence of new opportunities for the discussion of the nature of the mathe-
matics curriculum. For example, Rosa and Orey (2015) affirm that positive deviance
contributes to the confrontation of taboos toward assumptions suggesting that math-
ematics is a field of study without traditions and cultural roots. Mathematical knowl-
edge is acquired through unequal cultural interactions and conflicts, which reflects
the dynamics of the cultural encounters.

6.2 Aspects of Positive Deviance in Ethnomodelling
Research

Researchers in ethnomodelling have revealed cultural influences in the evolution
of mathematical knowledge through the study of real-life contexts. This approach
helps the analyses of mathematical ideas, procedures, and practices developed locally
by offering innovative views about the nature of this knowledge (Orey 2000). This
context enables a posture of positive deviance to be developed because the traditional
trajectory of learning, norms, and rules applied in academic mathematics are often
found to be inconsistent with the mathematical knowledge developed in terms of the
local realities, customs, and needs of the learners and their realities. Investigations
in mathematics education have often ignored connections between academic math-
ematical knowledge and the practices developed locally by the members of distinct
cultural groups.

However, in order to reduce the gap between theoretical and practical mathe-
matical knowledge, there is a need for both researchers and educators to look for
possible connections between mathematical practices developed in diverse cultural

3The emic and etic approaches were developed by Pike (1967) from a distinction in linguistics
between phonemic and phonetic. In their original meanings, phonemics refers to examination of
sounds for their meaning-bearing roles in a particular language, while phonetics denotes study on
universal sounds covering all languages.
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contexts and mathematical modelling. The positive deviance aspect of ethnomod-
elling recognizes both the uniqueness and diverse perspectives of members of
distinct cultural groups by emphasizing the relevance of emic knowledge systems
(Rosa and Orey 2015). Unique combinations of geography, climate, language, reli-
gion, politics, economic, and social, cultural, and environmental contexts influenced
the way members of distinct cultures counted, ordered, patterned, measured, and
mathematized and modelled their own realities.

In this regard, Lloyd (2011) suggests the development of actions that search for
creative and innovative solutions to these challenges because research on these prac-
tices can be regarded as a form of resistance toward the imposition of academic
mathematical knowledge and as pedagogical actions, which value the development
of local mathematical knowledge. According to D’ Ambrosio (2011), members of
distinct cultural groups, in their search for transcendence and survival, develop expla-
nations for problems they face, as well as they collect information that makes for the
creation of their own myths and mysteries, which help them to explain their socio-
cultural and natural environments by developing cultural artifacts. Ongoing inves-
tigations in ethnomodelling describe the ideas and procedures implicit in locally
developed mathematical practices.

Material representations of reality (artifacts), which are organized in the form
of spirituality, language, procedures, strategies, and techniques, are observable and
can be interpreted by the use of codes and symbols, which are created through
the development of mental images that are shared by these members through the
use of diverse artifacts that help them to constitute their cultural background (Orey
2000). Mathematical artifacts are first generated by the members of distinct cultural
groups who try to both cope and deal with natural, social, economic, political, and
sociocultural environments in order to solve problems, and to explain and understand
mathematical facts and phenomena that occur in their day-to-day life (D’ Ambrosio
2011).

In this regard, Rosa and Orey (2017) emphasize the importance of community for
schools, as it seeks to connect academic mathematical practices to mathematics devel-
oped locally. It is necessary that the development of school curriculum be designed
to value and promote the valorization of local knowledge and practices developed
by communities who integrate school contexts. This perspective provides a neces-
sary balance to mathematics curriculum since it integrates cultural components into
the mathematical modelling process. This approach aims at the humanization of
mathematics through the elaboration of contextualized activities by applying the
pedagogical action of ethnomodelling.
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6.3 Land Demarcation: An Example of a Positive Deviance
Ethnomodel

Ethnomodelling proposes a dialogue between local and academic approaches to the
construction of mathematical knowledge through cultural dynamism. The develop-
ment of ethnomodelling processes increases the potential for continual growth in the
debate related to the nature of mathematical modelling and how it relates to culture.
This process enables the development of concepts for positive deviance that offers
a basis for decision-making processes in the elaboration of diverse ethnomodels.
The acknowledgment of local mathematical knowledge as well as its implications
for social justice, cultural empowerment, and political transformation encourages
debate about the true nature of mathematics as it relates to culture and society by
analyzing cultural artifacts (Rosa and Orey 2017).

In this context, Rosa and Orey (2013) discussed an example of land demarca-
tion used by members of the Landless People’s Movement (Movimento dos Sem
Terra—MST) in Southern Brazil. This “demarcation activity examined the method
of cubagdo of the plots, which is a traditional mathematical practice applied by the
participants of this movement” (p. 80) Thus, Rosa and Orey (2019) argue that the
daily necessities of these movement members caused them to capture the procedures
of these techniques, showing that, despite their low level of schooling, they were
able to develop procedures and techniques related to the methods of cubagdo of
land, which is one of the tools they used to solve problems related to the measure-
ment of land with irregular shapes by applying distinct methods to determine this
area.

This method met the specific needs of the members of this movement because they
applied it to determine land areas related to the delimitation of planting sectors as well
as to demarcate the plot of land of each family in the settlement (Knijnik 1996). The
access to a plot of land and to live and produce on it makes the practices of measuring
the land to be a central activity of the members of this movement, mainly because
of the importance placed on sustainability and planning of agricultural production
(Rosa and Orey 2019). The validation of this method within agricultural communities
and settlements results from the development of informal agreements of signification
that results from a cumulative process of generation, intellectual organization, social
organization, and diffusion of this knowledge.

For example, mathematical practices investigated in the study conducted by
Knijnik (1993) consisted of a method that was called by her students in the classroom
as Addo’s Method. This chapter presents a further development of this method, which
was briefly described by Rosa and Orey (2013). In this context, Adao, one of the
members of MST movement, explained how to determine his method that transforms
the shape of an irregular quadrilateral into a rectangle (Knijnik 1993):

Well folks, this is the most common formula that is used on the countryside, up there on the
farm, right? And, let’s assume that I am the owner of a crop and I lent this frame here to a
friend to mow and I told him that I will pay three thousand by the fourth. Then, he mowed
this land and he even passed the rope himself to find its area. Then, he measured this wall
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here, 90 metres, the other, 152 metres, 114 metres, 124 meters. Did you notice that there is
no wall, no base, and no height that has the same measure, right? The two landmarks that
are lying down are the bases and the heights are those that are standing up. Ok, so, I did the
following here, right: I added the two bases and divided the sum by 2. I found 138. So, the
base is 138 here and 138 there, understood? So, I have here the two heights, 114 plus 90. I
found 204 and divided it by 2, 102, right? So, now we just need to multiply the base times
height, Ok? I think the answer is 14076 square metres, right? This is the area that he mowed.

According to Rosa and Orey (2019), it is important to state that, during his narra-
tive, Adao used jargons that are specific expressions locally relevant to the members
of MST cultural group, such as:

(a) Walls (paredes) that mean the landmarks of the land.

(b) Frame (quadro) that means the area of a land with a quadrilateral shape.

(c) To mow (carpir) means to clean or to prepare the land for planting.

(d) Fourth (quarta) that means an area measurement used in the Brazilian rural
context, which is equivalent to a quarter of a Paulista bushel used in the state of
S#o Paulo, Brazil, that measures 24,200 m?.

(e) Pass the rope (passar a corda) means to measure the land by using a rope (p. 21).

These terms are the jargons used by these members to describe the procedures of
the development of their local mathematical practices (Rosa and Orey 2019). Table
6.1 shows Addo’s method of determining an area of a land with irregular shape.

The representation of this mathematical practice can be explained by the following
etic ethnomodel procedures: (a) transform the shape of the irregular quadrilateral in
a rectangle the area of which can be determined through the application of the area
formula, (b) determine the dimensions of the rectangle by calculating the average of
the two opposite sides of the irregular quadrilateral, and (c) determine the area of the
rectangle by applying the formula: A = b x h.

According to Rosa and Orey (2013), the “mathematical knowledge of the landless
can be represented by a model that transforms the shape of the given land into a
rectangle of 138 m x 102 m with an area of 14,076 m?” (p. 81). Figure 6.1 shows

Table 6.1 Adao’s method of determining an area of a land with irregular shape (Adapted from
Knijnik 1993, p. 24)

Adao’s explanation (Emic knowledge) Academic explanation (Etic knowledge)
This is a piece of land with four walls This is a convex quadrilateral
First, we add two of the opposite walls and First, we find the average of two opposite sides

divide them by two

Second, we add the other two opposite sides Second, we find the average of the other two

and also divide them by two opposite sides

Third, we multiply the first obtained number by | Third, we determine the product of the two
the second one average numbers previously determined
That is the cubagdo of the land This is the area of the rectangle whose sides

are the average of the two pairs of opposite
sides of the convex quadrilateral
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124 metres
a

138 meres

d

114 metres

b Area = 14076 square meters | 102 metres
90 metres

C
152 metres

Fig. 6.1 Representation of an ethnomodel that transforms an irregular quadrilateral into a rectangle
(Adapted from Rosa and Orey 2013, p. 81)

a representation of an ethnomodel that transforms an irregular quadrilateral into a
rectangle.

Thus, this mathematical knowledge can be represented by the elaboration of an
ethnomodel that transforms the shape of the given land into a rectangle of 138 m x
102 m with an area of 14,076 m?.

Area = ate X b+d
2 2
124 + 152 90+ 114
Area = > + 5

276 204
Area=| — | x| —
2 2

Area = 138 x 102

Area = 14,076 m®

Indeed, it is relevant here to state that there is historical evidence that the method
of cubagdo in which a quadrilateral is transformed into a rectangle was used with the
purpose of land taxation in Ptolemaic and Roman periods, as well in ancient Egypt
(Peet 1970). This method is also used in Chile and Nepal, and in the Brazilian states
of Bahia, Pernambuco, Rio Grande do Norte, Rio Grande do Sul, Sdo Paulo, and
Sergipe (Silva 2012). It is also important to state that positive deviance related to
the development of this method was orally transmitted and diffused to MST family
members by their ancestors across generations.

In this context, Knijnik (1996) has affirmed that the method used by Adao is
a mathematical practice that rural workers in Southern Brazil employ in order to
transform irregular figures into regular ones. This method demonstrates procedures
that rural workers in this distinct cultural group employ in order to transform figures
with irregular shapes that represent their land into squares and rectangles, which are
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well known geometric figures. The choice of the quadrilateral geometric shape used
by these members is due to the fact that it is the one that is similar to the configurations
of the agricultural areas in Southern Brazil.

This method is used to calculate the total area of a region, after its occupation,
in order to calculate the amount of money needed to be paid or received for the
cleaning work of the property or for the preparation of the land for planting as well
as the demarcation of areas to be cultivated, to plan, and to delimitate areas for the
construction of houses and shelters for animals. It is important to emphasize that
this method can be related to the development of the positive deviance concept in
the teaching and learning process in regards to the use of local techniques in solving
problems faced by members of distinct cultural groups in their daily lives.

According to Rosa and Orey (2019), mathematical knowledge involved in this
local method is also related to productive activities that members of this specific
cultural group performed in their daily routines. For example, the need for the devel-
opment of cubagdo of land with irregular shapes was in accordance with its acces-
sibility depending on its topology and the quality of desired agricultural products.
In the study conducted by Knijnik (1993), it was proposed for the elaboration of
curricular mathematics activities related to the demarcation of land with participants
of this movement. These activities were related to the method of cubacdo of land,
which is a traditional mathematical practice applied by participants of this specific
cultural group to measure and determine the area of the land in their settlements.

Itis important to emphasize that positive deviance in the context of ethnomodelling
research refers to behavioral, cultural, political, economic, environmental, and social
changes premised on the observation that when members of distinct cultural groups
confront similar challenges they employ uncommon, yet successful mathematical
ideas, procedures, and strategies that enable them to find solutions to the problems
they face in their own communities (Rosa and Orey 2017).

Consequently, D’ Ambrosio (2011) discusses how cultural artifacts provide neces-
sary material tools that help in the development of clothing, shelters, navigation and
defense, and transportation, which have come to assist members of distinct cultural
groups to solve daily problems by using their own scientific and mathematical tech-
niques and strategies. These artifacts are considered as tools, devices, and instruments
of observation.

This is one concrete example of how it is possible to apply local mathematical ideas
in the context of teaching mathematical content. It is important, as well as enjoyable
to seek the construction of effective bridges between the method of cubagdo of land
and academic mathematics. This context is an example of why we can state that
this approach can be used as a pedagogical action in the mathematics classrooms
in order to help students to (re)discover mensuration relationships by developing
ethnomodels.
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6.4 Final Remarks

The example shared in this chapter has enabled the use of positive deviance in
conducting research in ethnomodelling. For example, mathematical thinking is devel-
oped and used in distinct sociocultural contexts with specific needs and ways of life.
Thus, it is important to analyze the relation between culture and mathematics by
questioning the predominant view that mainstream mathematics is culture-neutral.
It is also necessary that both researchers and educators are willing to, indeed, be
supported in taking risks associated with the decision of exploring local mathemat-
ical knowledge in the formal mathematics curriculum. For example, D’ Ambrosio
(2006) affirms that one important pedagogical action for the development of math-
ematical modelling is related to the transformation of mathematics into a living
knowledge that integrates real situations through questionings, analysis, and critical
reflection of phenomena that occur in the everyday life of the students.

This approach can be understood as a fight against the dehumanizing effects of
bureaucratic authority that occurs during the conducting of research and investiga-
tions related to ethnomathematics as a program. By developing systematic studies by
using ethnomodelling, it is possible to comprehend new contexts and perhaps skills
that allow us to observe mathematical phenomena on more inclusive and broader
wavelength (Rosa and Orey 2017). Thus, ethnomodelling can be considered as the
study of mathematical phenomena within a culture, and it differs from the traditional
conception that considers it as the foundations of one kind of mathematics that is
constant and applicable to everyone and everywhere. Mathematics then becomes a
social construct because it is culturally bound.

This chapter discussed concepts of positive deviance from the perspective of
ethnomodelling. This specific form of pedagogical action helps students to over-
come the use of disassociated techniques and formulas often blindly memorized. As
well, it allows them to develop strategies and techniques in order to give access to
diverse mathematical representations in a new formative dimension of the mathe-
matical nature. This pedagogical action transcends physical environments in order to
welcome knowledge and procedures developed in the diverse sociocultural contexts
of students (Rosa and Orey 2015). This approach recognizes that it is in the school
community itself that researchers and educators can easily find didactic elements
of mathematical content necessary in the development of mathematics curriculum
(D’ Ambrosio 2006).

In the context of ethnomodelling, positive deviance can be considered as a tool to
combat the dehumanizing effects of curricular and bureaucratic authority by decol-
onizing mathematical ideas, procedures, and practices in a search for peace. For
example, Rosa and Orey (2017) argue that the objective of this deviance is to ensure
that curricular bureaucracies do not disservice students when public policies and
institutional procedures have no real connections within the school communities. In
this regard, positive deviance aims to reduce prejudice, inequity, and harm due to
disconnections between mathematical knowledge as practiced in the academy and its
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practical use in everyday life. Ethnomodelling may then lead us to new viewpoints
in the development of mathematical modelling process in order to improve cultural
sensitivity in the development of teaching practices.
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Chapter 7 ®)
Models-and-Modelling Perspective oo
Through the Eyes of Jean Piaget

Serife Seving

Abstract Models-and-modelling perspective has produced a genre of activities
called model-eliciting activities. Many researchers addressed American pragmatists
for the evolvement of the central premises of the models-and-modelling perspec-
tive. In this chapter, I focused mainly on Piaget’s theory of cognitive development
as a foundation of this modelling perspective and employed document analysis
that incorporated thematic analysis. In-depth analysis of Piaget’s ideas and models-
and-modelling literature indicated that Piaget’s reflective abstraction and series of
successive approximations supported the cyclic and self-regulatory nature of the
model development that occurred as a series of assimilations, accommodations,
and (dis)equilibrium, in Piagetian terms. Thus, this chapter provided a theoretical
discussion on the epistemological content of self-regulated and collaborative model
development through the eyes of Jean Piaget.

Keywords Models-and-modelling perspective + Model-eliciting activities -
Accommodation - Self-regulation + Social interaction - Document analysis

7.1 Introduction

Models-and-modelling perspective is one of the modelling perspectives and catego-
rized under contextual modelling (Kaiser and Sriraman 2006). This perspective is
centered on model-eliciting activities in which students develop a model as a solution
to the given problem and through which the models are elicited. These activities are
constructed using the following six design principles:
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1. reality or personal meaningfulness principle—involving a realistic and mean-
ingful problem situation,

2. model construction principle—requiring the construction of a model that express
students’ mathematical interpretation,

3. construct share-ability and reusability principle—requiring the construction of
a model that would be shareable with other people and applicable in similar
situations,

4. model documentation principle—encouraging students to document their
evolving ways of thinking,

5. self-assessment principle—asking for self-evaluation and validation of the
model, and

6. effective prototype principle—providing an effective prototype for students’
future modelling processes (Lesh, Hoover et al. 2000).

Model development in these activities requires students to go through several cycles
of expressing, testing, and revising the model. More specifically, these modelling
cycles involve an understanding of the problem situation, developing a mathematical
model as a solution to the given problem, expressing the model via some form of
representations such as tables, graphs, and equations, testing the usefulness of the
model and revising/refining the model if needed (Lesh and Lehrer 2003).

Since model-eliciting activities aim to motivate students to work in groups and
develop a mathematical model that is based on their own resources and competen-
cies rather than authoritative directions (Lesh et al. 2003; Zawojewski et al. 2003),
it was seen in “the realm of psychological concept development” and as possessing
“promising aspects associated with both socio-cultural theories and theories of situ-
ated cognition” (Kaiser and Sriraman 2006, p. 306-307). Furthermore, a number
of researchers investigating models-and-modelling perspective have addressed the
theoretical underpinnings of this perspective (e.g. Lesh and Doerr 2003; Lesh and
Lehrer 2003; Lesh and English 2005; Lesh and Sriraman 2005). According to these
researchers, this perspective evolved primarily out of Piaget, Vygotsky, and the Amer-
ican pragmatists such as William James, Charles Sanders Peirce, Oliver Wendell
Holmes, George Herbert Mead, and John Dewey (English et al. 2008; Kaiser and
Sriraman 2006). In this regard, models-and-modelling perspective presuppositions
have been summarized as follows:

e Conceptual systems are human constructs, and so they are fundamentally social in nature
(Dewey and Mead);

e The meanings of these constructs tend to be distributed across a variety of representational
media ranging from spoken and written language, to diagrams and graphs, to concrete
models, to experience-based metaphors (Pierce);

e Knowledge is organized around experience at least as much as around abstractions—and
the ways of thinking which are needed to make sense of realistically complex decision
making situations nearly always must integrate ideas from more than a single discipline,
or textbook topic area, or grand theory (Dewey);

e The “worlds of experience” that humans need to understand and explain are not static.
Because they are, in large part, the products of human creativity, they are continually
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changing, and so are the knowledge needs of the humans who create them (James)
(Kaiser and Sriraman 2006, p. 306).

Albeit their discussions addressed the theoretical essences, they have drawn a general
rather than a detailed picture (e.g. Lesh and Harel 2003; Lesh and Lehrer 2003). In
this chapter, I intended to provide a theoretical discussion of Piagetian roots serving
as a foundation of the models-and-modelling perspective. Specifically, I addressed
the following research question: What are the Piagetian roots of the models-and-
modelling perspective?

7.2 Methods

For this theoretical investigation, I employed document analysis that incorporated
thematic analysis as a method of qualitative inquiry. Document analysis is a system-
atic and analytical review of printed and/or electronic documents (Bowen 2009).
As Merriam and Tisdell (2016) stated, “[d]ocuments of all types can help the
researcher uncover meaning, develop understanding, and discover insights relevant
to the research problem” (p. 189). Document analysis starts with selecting and orga-
nizing the data that can be “excerpts, quotations, or entire passages” (Bowen 2009,
p. 28) and follows by the analysis of the data that often takes place as content
analysis and/or thematic analysis. Thus, for this investigation, I first carried out a
comprehensive reading of the selected documents, including the books of Piaget
and his followers, to understand Piaget’s ideas in depth. I also examined models-
and-modelling literature to identify fundamental features of this perspective and to
articulate the features that are rooted in Piaget’s theory of genetic epistemology
and cognitive development. Although there are a variety of modelling perspectives
(Kaiser and Sriraman 2006), the scope of this investigation was limited to the models-
and-modelling perspective, and therefore the related literature was included in the
data corpus.

To make sense with the size of the data corpus, chapter-sized documents (i.e.
book chapters and/or journal manuscripts) were identified as the units of the docu-
ment analysis. Thus, the data corpus involved 182 book chapters on Piaget’s theory
of cognitive development, and 104 book chapters and 21 journal manuscripts on
models-and-modelling perspective. All the documents in the data corpus were read
several times. The first round of reading resulted in the selection of the relevant
passages and recording them as block quotations into MAXQDA (VERBI Software
2017), a qualitative data analysis software, for coding. The index pages of the books
and keywords for the manuscripts were utilized to identify the relevant passages.
The unit of analysis for coding varied from a single sentence to a paragraph or an
entire document. In other words, in the second round of selective reading, any mean-
ingful unit indicating a characteristic of the models-and-modelling perspective was
identified as a segment to attribute a related code. Then, I grouped the codes into
broader categories through focused coding and then into themes through theoretical
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Fig. 7.1 Coding path of the thematic analysis

coding (Saldafia 2009). This pattern recognition process is the core analytical act
of the researcher in the thematic analysis (Bowen 2009). Figure 7.1 below shows a
simplified version of the thematic analysis path from codes to categories and themes.

In this thematic analysis path, circles and squares represent the codes derived from
Piaget’s theory and the models-and-modelling perspective, respectively. I used the
black-filled squares to indicate the cognitive aspects and the gray-filled squares to
designate both the cognitive and social aspects of the models-and-modelling perspec-
tive. As seen in Fig. 7.1, this thematization process resulted in four fundamental ideas
of the models-and-modelling perspective, all of which were found to be based on
Piaget’s theory of cognitive development. To triangulate the themes and codes, I
consulted with another researcher who had extensive research experience in both
Piaget’s theory and the models-and-modelling perspective. We discussed the themes
and the codes that produced the themes and resolved the disagreements through a
series of meetings.
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7.3 Piagetian Roots of the Models-and-Modelling
Perspective

According to the models-and-modelling perspective, a model informs teachers and
researchers about students’ cognitive processes that are elicited through their group
work in model-eliciting activities (English et al. 2008), indicating that the modelling
process involves both cognitive and social aspects. During the thematic analysis, I
articulated the following aspects of the model development:

1. Model development has a cyclic and self-regulatory nature.

2. Models are the result of a series of assimilations, accommodations, and
(dis)equilibrium.

3. Modelling involves social interaction that could cause accommodation in the
models.

4. Modellers are cognizant problem solvers.

Considering Piaget’s assertion of experience and social transmission as two of
the four basic factors (along with maturation and equilibrium) in explaining chil-
dren’s knowledge formation (Piaget 1964), these aspects were found primarily based
on Piaget’s theory of genetic epistemology and cognitive development. Thus, the
following sections present the results of the document analysis; that is, histori-
cally, philosophically, and theoretically important ideas in the models-and-modelling
perspective, through the eyes of Jean Piaget.

7.3.1 Modelling as a Series of Assimilations
and Accommodations

This section presents the first two aspects listed above; that is, model development is
a cyclic and self-regulatory process and involves a series of assimilations, accommo-
dations, and (dis)equilibrium. Lesh and Lehrer (2003) pointed out Piaget’s view that
complex conceptual systems are formed using primitive-level systems. However, to
reach a complex level system, simply gathering lower-level systems is not sufficient.
Instead, itrequires evaluating the fitness of a variety of systems and reorganizing them
through reflective abstraction (Piaget 1977/2001). This continuous self-evaluation
has roots in Piaget’s notion of reflective abstraction (Piaget 1970). Piaget (1985)
explained reflective abstraction as follows:

Reflective abstraction includes two indissociable activities. One is “reflecting” or projecting
onto a higher level something borrowed from a lower level... The other is more or less
conscious “reflexion” in the sense of cognitive reconstruction or reorganization of what is
transferred. (p. 29)

Both ways of reflective abstraction are related to cognitive development involving
“reorganization” of concepts and “reconstruction” of the ones that were already
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present in the conceptual structure. Similarly, in the models-and-modelling perspec-
tive, conceptual changes occur when an existing conceptual structure fails to fit a
new experience (Lesh and Lehrer 2003). Students start model building with intuitive
and primitive level conceptual systems and then develop new systems:

..., emergent properties at higher-level systems evolve from (and are reflectively abstracted
from) systems of interactions at more primitive/concrete/enactive/intuitive levels; and, these
conceptual reorganizations occur mainly when models fail to fit the experiences they are
intended to describe, explain, or predict. (Lesh and Lehrer 2003, p. 120)

When problem solvers realize the inadequacy of their models, they feel the pertur-
bation or disequilibrium, in Piagetian terms, which motivates them to continue to
revise and refine their models until they overcome the disequilibrium. During this
process, problem solvers experience a series of what Piaget called assimilation,
accommodation, disequilibrium, and equilibrium in successive modelling cycles.
As Inhelder et al. (1974) explained, “Piaget holds that objects can only be known by
a series of successive approximations constructed by the subject through his various
activities” (p. 6). Piaget’s “series of successive approximations” parallel with the
series of modelling cycles of expressing, testing, revising, and refining, and the activ-
ities ensuring the continuity of modelling cycles rely on the self-assessment principle
of the model-eliciting activities. Lesh and Doerr (2003) expressed the importance of
this principle as follows:

... students themselves must be able to judge the relative usefulness of alternative ways of
thinking. Otherwise, the problem solvers have no way to know that they must go beyond their
initial primitive ways of thinking; and, they also have no way of judging the strengths and
weaknesses of alternative ways of thinking—so that productive characteristics of alternative
ways of thinking can be sorted out and combined. (p. 18)

Thus, it is not surprising to articulate that continuous modelling cycles are aligned
with the continuous knowledge development proposed by genetic epistemologists:

For genetic epistemologists, knowledge results from continuous construction, since in each
act of understanding, some degree of invention is involved, in development, the passage from
one stage to next is always characterized by the formation of new structures which did not
exist before, either in the external world or in the subject’s mind. The central problem of
genetic epistemology concerns the mechanism of this construction of novelties which creates
the need for the explanatory factors which we call reflective abstraction and self-regulation.
(Piaget 1970, p. 77)

Likewise, the model development process includes expressing ideas, testing, and
revising them based on the feedback from the continuous self-evaluations. There-
fore, models-and-modelling perspective views the modelling process as interacting,
self-regulating, and continually adapting (Lesh, Lovitts et al. 2000), and perceives
the problem solvers as evolving, self-regulating, and adapting organisms (Lesh
and Lovitts 2000). Von Glasersfeld (1995) affirmed the cyclic and self-regulatory
nature of thought development through assimilation and accommodation: “As Piaget
himself has occasionally suggested, action schemes are like feedback loops, because
their inherent dual mechanism of assimilation and accommodation make them self-
regulations and therefore circular in that specific sense” (p. 73). Thus, the cyclic and
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self-regulatory nature of the modelling process, as well as the continuity of modelling
cycles during model construction, have foundations in Piaget’s theory of cognitive
development.

7.3.2 Modelling Involves Social Interaction as Well
as Cognition

This section presents Piagetian foundations of the latter two aspects of the models-
and-modelling perspective that were drawn from the thematic analysis. These two
aspects consider the modelling as involving social interaction that could cause
accommodation and the modellers as cognizant problem solvers.

Smith (1996), a Piagetian researcher, argued that “social experience is stated to be
necessary—but not sufficient—for intellectual development from cradle to the grave”
(p- 110). Not only his followers but also Piaget, himself, addressed the role of social
interaction in cognitive development even though his theory has often been criticized
for the lack of a specific social component. As von Glasersfeld (1995) stated, “Piaget
has stressed many times that the most frequent cause of accommodation is interaction,
and especially linguistic interaction, with others” (p. 66). Doise (1985) also pointed
out that social interaction is a cause of “socio-cognitive conflict” and subsequent
accommodation that is a component of the modelling process, as mentioned in the
above section.

Similarly, Brown et al. (1996), Piagetian researchers, explained the role of social
interaction in producing perturbations: “The conflict arising from group disagreement
creates disequilibrium and the resulting adjustment to this state is a primary cause
of cognitive development” (p. 146). Piaget (1962) emphasized that not only hearing
other people’s ideas but also understanding the differences among ideas can trigger
accommodation:

... if an individual A mistakenly believes that an individual B thinks the way A does, and if
he does not manage to understand the difference between the two points of view, this is, to
be sure, social behavior in the sense that there is contract between the two, but I call such
behavior unadapted from the point of view of intellectual co-operation. (p. 8)

Piaget called the communication that builds intellectual cooperation as a social-
ized speech that involves cognitive position-taking. This position-taking, which
entails understanding and evaluating each other’s perspectives, is also a key element
in modelling cycles because collaborative work on model-eliciting activities allows
for entertaining different perspectives, selecting the most appropriate and the most
useful ideas, eliminating irrelevant ideas, and combining the relevant ones (Lesh
and Carmona 2003; Lesh and Yoon 2004). As Zawojewski et al. (2003, p. 342)
stated, “by placing our discussion of small group work in the context of model-
eliciting activities, we can focus on understanding the processes that lead to the
potential for mathematical power in collaboration.” This mathematical power is
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enhanced by peer interaction during the work of understanding each other’s perspec-
tive because each student brings his/her own potential. Furthermore, thinking from
different perspectives and/or being challenged by others and other situations serve
for the construct share-ability and reusability principle of model-eliciting activi-
ties. To produce models that are shareable with other people and applicable in other
situations, modellers need to consider different perspectives and different situations,
which could be achieved by welcoming group members’ ideas and taking them into
account during the model development. Thus, Piaget’s views about the role of indi-
viduals’ communication with others in cognitive development set a foundation for
small-group model development in the models-and-modelling perspective.

Given the centrality of language in human communications, Piaget commented
that “one of the ways in which environment influences cognitive development is
through language” (Inhelder et al. 1974, p. 17). Language has a central role in cogni-
tive development because it is the tool used by “the mind of the thinker,” in not only
interpersonal communication (with others) but also one’s intrapersonal communi-
cation. On the one hand, the power of the small-group work in the models-and-
modelling perspective signifies the role of language in one’s interpersonal commu-
nication with others. On the other hand, language as a tool in one’s intrapersonal
communication indicates that the modelling process demands a cognizant problem
solver who experiences a series of accommodations toward a particular goal given in
the real-life modelling problem. Piaget (1959) also mentioned that cognitive devel-
opment is a conscious goal-directed activity, and the language plays a significant role
in that activity:

Directed thought is conscious, i.e. it pursues an aim which is present to the mind of the
thinker; it is intelligent, which means that it is adapted to reality and tries to influence it; it
admits of being true or false (empirically or logically true), and it can be communicated by
language. (p. 43)

Similarly, the models-and-modelling perspective describes mathematical models
by emphasizing the purposeful nature of problem-solving:

Mathematical models are conceptual systems that are: (a) expressed for some specific purpose
(which John Dewey referred to as an “end-in-view”), and (b) expressed using some (and
usually several) representational media. (Lesh and Lehrer 2003, pp. 111-112)

Therefore, the language mediates the modelling process toward a particular goal,
and the use of language both depends on and is limited with the cognizant modellers.
Because of the primary role of the subject, Piaget’s theory has been characterized
as “the child’s theory of mind,” referring to children as active seekers of knowl-
edge through constructing ideas within their social world (Brockmeier 1996). Von
Glasersfeld also described Piaget’s conceptualization of knowledge as “the organi-
zation of the experiential world, not the discovery of ontological reality” (p. 18), in
which the organization involves a series of modifications and transformations of the
cognizant subject.

Language plays an essential role both in Piaget’s cognitive development and in the
models-and-modelling perspective. It is because, on the one hand, it functions as a
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purposeful tool of the cognizant problem solver in model development as mentioned
above, and on the other hand, it functions as a tool used to express the models that
are sharable and re-usable. Models-and-modelling researchers described the models
as conceptual systems that are developed and expressed through media (Lesh and
Doerr 2003; Lesh and Lehrer 2003). The media used to express a model could be in
the form of spoken language, written language, diagrams, graphs, or any concrete
models, or any way of expressing ideas. Language is thus one of the most important
resources for collaborative model development, model documentation, and model
share-ability and reusability (Lesh, Hoover et al. 2000).

7.4 Conclusion

This chapter provided a document analysis indicating that Piaget’s theory of cogni-
tive development provided a robust foundation for the cognitive and social aspects of
the modelling process. Specifically, during the model development, problem solvers
work in groups, interact and communicate with others, and experience a series of
assimilations, accommodations, and equilibrium. Modellers create communities of
mind that invite different perspectives to the model development process. Not only
interaction with others but also self-assessment and self-regulation aspects of the
modelling contribute to cognitive development. Thus, this chapter provided a theo-
retical discussion on the epistemological content of self-regulated and collaborative
model development in the models-and-modelling perspective through the eyes of
Jean Piaget.

I consider this chapter as one of the steps in deepening the epistemological under-
standing of the models-and-modelling perspective, and therefore found worthwhile
to inquire about the links between this modelling perspective and Piaget’s theory of
cognitive development. Such investigations are important to understand the theoret-
ical orientation of modelling-based research that is strongly related to educational
psychology. However, this investigation was limited to accessible documents that
articulated Piaget’s theory of cognitive development. Therefore, incorporating other
theories such as Vygotsky’s socio-cultural theory of development and carrying out a
comparative analysis would extend the epistemological understanding of the models-
and-modelling perspective. While this can be one path for future research, another
one can be articulating the epistemological roots of other modelling perspectives,
which will open a gateway to the exchange of knowledge within the community of
mathematical modelling researchers from East to West.
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Chapter 8 ®)
Influence of Social Background oo

on Mathematical Modelling—The DiMo*
Project

Ilja Ay and Friederike Ostkirchen

Abstract Educational success in Germany is—compared to many other coun-
tries—strongly determined by social background. Therefore, teachers and educa-
tion systems need to consider these social disparities. Naturally differentiating tasks
may help to create learning environments, where students themselves decide on the
difficulty of their approach and benefit from on their individual level. Especially
mathematical modelling tasks have a strong potential considering their authentic use
of extra-mathematical content. Still, there seem to be different patterns of action
in modelling among students of different social backgrounds. The aim of this pilot
study of the project Diversity in Modelling (DiMo") is to analyse individual charac-
teristics of 15-year-old students in terms of social background and show how their
handling of modelling tasks differs. This chapter presents the operationalization of
social background and first video analyses.

Keywords Mathematical modelling - Mathematical performance + Natural
differentiation + PISA - Qualitative content analysis + Social background

8.1 Introduction

PISA and many other studies have shown relations between mathematical perfor-
mance and the social background of children (e.g. Organisation for Economic Co-
operation and Development [OECD] 2013). Comparing German children from more
and less privileged parental homes the Institute for Quality Development in Educa-
tion (IQB) found a discrepancy of three years between those two groups regarding
their mathematical competencies (Pant et al. 2013). In his international meta-study,
Hattie (2008) found that socio-economic status plays an important role in students’
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learning (d = 0.52). Since the effect size, d, is higher than 0.4, Hattie refers to
socio-economic status as being within the “zone of desired effects”, which repre-
sents the zone of greatest importance. Thus, students’ school success depends on the
income, education level and profession of their parents. Considering these findings
and that “families from different social classes are not equally equipped to support
their children’s learning” (Calarco 2014, p. 25), it stands to reason that the OECD
(2016) concludes that the “Socio-economic heterogeneity in student populations
poses another major challenge for teachers and education systems” (p. 63).

Hence, the educational system needs to create conditions that reduce social dispar-
ities, to give all children opportunities to benefit from their school education. One way
is to differentiate in mathematical teaching such that it is manageable for teachers.
Therefore, tasks are crucial that can be solved “by using different processes or strate-
gies but also [...] allowing for students at different stages [...] to benefit” (Small
2017, p. 7) from them. These tasks transfer the responsibility and opportunity of
differentiation to the students naturally since they decide on the complexity of their
approach (Krauthausen 2018). Modelling tasks might fulfil these characteristics.

Yet, it is little studied how social background influences students’ modelling of
real-world problems and thereby, partly contradictory findings emerge. While Cooper
and Dunne (2000) point out that socio-economic status is more strongly related to
the resolution rates of items with realistic content than to the resolution rates of
purely mathematical items, Schuchart et al. (2015) could not confirm these findings.
Concerning the handling of modelling tasks, according to Cooper and Dunne (2000)
students from less privileged homes tend to get stuck in context and thus overlook
the mathematical core of the task. These students seem to overemphasize everyday
experiences. Whereas according to Leufer (2016) these students tend to use offi-
cial methods (e.g. formulas) to resolve uncertainties. Thus, they are more likely to
overemphasize the mathematical context. What the studies have in common is that
these students tend to make wrong decisions, with regard to the intended scope of
use of mathematics, when processing modelling tasks.

The investigation being reported focusses on this issue to connect—and to
contribute to—the debate on social background and mathematical modelling. First,
the concept of social background and its determination will be presented. After-
wards, mathematical modelling and the modelling task used will be explained with
regard to the German Educational Standards (KMK 2003). This chapter aims to illus-
trate a statistically safeguarded operationalization of social background and presents
connections between education, occupation and wealth of parental homes within the
given sample. Furthermore, first tendencies will be presented of how students with
different social backgrounds handle mathematical modelling tasks.



8 Influence of Social Background on Mathematical Modelling ... 95

8.2 Theoretical Background

According to Bourdieu’s habitus (1984), social background summarizes opportuni-
ties, restrictions, preferences and aversions, which were internalized during child-
hood. Hence, certain resources and values are firmly anchored in identities and,
thus, lead to various ways of thinking. As a consequence, typical approaches and
behaviours during modelling processes may occur. Identifying these could thus
lead to new ways of dealing with social, cultural and economic diversity. However,
social background is a broad theoretical concept (OECD 2016), which cannot be
queried comprehensively. Hence, it will be reduced to the quantifiable PISA Index
of Economic, Social and Cultural Status [ESCS] (OECD 2017).

8.2.1 ESCS—Index for Economic, Social and Cultural Status

The ESCS is a composite score built by three indicators (OECD 2017): (1) The Inter-
national Socio-Economic Index of Occupational Status (ISEI), (2) the Index for the
parental education in years of schooling (PARED) and (3) the Index of home posses-
sions (HOMEPOS). Figure 8.1 visualizes the computation of the ESCS through the
example of Linda (see also Sect. 8.4.2).

Linda’s father is a medical doctor. To compare his occupation with others, it is
transferred into the ISEI measure. The ISEI captures the socio-economic status of an
occupation by putting it on a one-dimensional hierarchical scale (Ganzeboom et al.
1992). This measure focusses on knowledge, expertise and income and is scaled
from 10 (e.g. kitchen helper) up to 89. Linda is attributed 89 as highest ISEI of
her parents (HISEI) since her mother is a nurse (ISEI: 48). Secondly, in order to
find indicators for the education level of her parents, “education programmes and
related qualifications” (OECD et al. 2015, p. 9) are scaled. For every country, school
education and vocational training are coded differently into the PARED by estimating
the parental number of years of schooling (OECD 2016). Since one of Linda’s parents
holds a university degree, her PARED yields 18 in Germany (OECD 2017, p. 435).
Thirdly, the students are asked about several home possessions. It is believed that
data about household possessions “capture wealth better than income, because they

Medical doctor

Post-secondary school diploma & 18 years

universitary degree

A room of your own, musical
instruments, E-Books, ...

Fig. 8.1 Computation of ESCS through the example of Linda (based on OECD 2017, p. 340)
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reflect a more stable source of wealth” (OECD 2005, p. 283). The HOMEPOS is
an index for the equipment of the parental home. Included are cultural, educational
and other home possessions (OECD 2017). On this basis, the person parameters can
be estimated on a one-dimensional dichotomous Rasch Model to obtain a metrical
measure for the home possessions (Warm 1989). After standardizing the indicators
HISEI, PARED and HOMEPOS, so that the population has average scores of zero
and standard deviations of one, the ESCS can be constructed via principal component
analysis [PCA] (e.g. Izenman 2008). Overall, the ESCS “is judged to be a valid and
comprehensive index of social background” (Ehmke and Siegle 2005, p. 1).

The research aims to combine these thematic areas and find new ways of dealing
with this diversity. As pointed out in Sect. 8.1, modelling tasks have the potential to
address this diversity, therefore, mathematical modelling will be presented briefly.

8.2.2 Mathematical Modelling

As one of six general competencies described by the German Educational Standards
(KMK 2003), mathematical modelling requires students to translate a situation into
mathematical terms, structures and relations, to work within the respective mathe-
matical model and to interpret and check results with respect to the corresponding
situation. Modelling tasks are reality-related and initiate these activities. Addition-
ally, good modelling tasks should contain relevant problems for students’ daily life
or future. They should include authentic use of extra-mathematical context and math-
ematics in the particular situation and, furthermore, should be open, that is to say,
allow multiple possible solutions (e.g. Maaf3 2010).

An example of a modelling task used in the study is the Fire brigade Task (see
Fig. 8.2). The decisive factor in this modelling task is, that there is more information
given than necessary to solve the task. Students have to decide, which information
is imported for the solution. The task can be solved, for instance, with Pythagoras’
Theorem.

8.3 Design and Method

The pilot study of the DiMo* project explores the following research questions:

Q1: Can the ESCS be constructed statistically safeguarded within this sample?
Q2: How does the handling of modelling tasks among students differ in terms of
social background?

This study was conducted in the summer of 2019. Sixty-four students, as well
as their parents, participated in the survey. The participants from two different high
schools were, on average, 15.3 years old. Moreover, both, the students and their
parents completed questionnaires, querying indicators of their social background (see
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Fire-brigade

In 2004, the Munich fire-brigade got a new
fire engine with a turn-ladder. Using the
cage at the end of the ladder, the fire-
brigade can rescue people from great
heights. According to the official rules,
while rescuing people, the track has to
maintain a distance of at least 12 metres
from the burning house.

The technical data of the engine

Engine model: Daimler Chrysler AG Econic 18/28 LL — Diesel
Construction year: 2004

Power: 205 kw (279 PS)

Capacity: 6374 cm?®

Dimensions of the engine: length 10m; width 2.5 m; high 3.19 m
Dimensions of the ladder: 30 m length

Weight of unloaded engine: 15540 kg

Total weight: 18000 kg

From which maximum height can the Munich fire-brigade rescue persons with this engine?

Fig. 8.2 Modelling problem Fire brigade (according to Schukajlow et al. 2015)

Fig. 8.1). From this sample, eight students participated in a video study. Four students
were selected according to their ESCS, whereby two were from the upper quartile, one
from the middle quartiles and one from the lower quartile. These students were free
to choose a partner and then, four pairs were filmed while solving the modelling task
Fire brigade (see Fig. 8.2). The basis for the data evaluation is Mayring’s (2014) qual-
itative content analysis. Here, the deductive category system for the analysis of the
processes is based mainly on the following modelling sub-competencies according
to Blum and Leiss (2007): understanding, simplifying/structuring, mathematizing,
working mathematically, interpretation, validation and presenting.

8.4 Results

The following subsections will present the determination of the ESCS in the
conducted study and, subsequently, first quantitative and qualitative results.

8.4.1 Determining the ESCS

For measuring the HOMEPOS the students were asked about 17 possessions in
their home environment, based on PISA and IQB studies (among others OECD
2017). Conducting reliability analysis and a PCA, the most important independent
factors were extracted. The Kaiser—-Meyer—Olkin Test (KMO = 0.56), the significant
Bartlett’s Test of Sphericity (p < 0.001) and MSA > 0.5 for each variable indicate
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Table 8.1 Factor loadings and reliability [Cronbach’s alpha (1951)]

Hisei |Pared |Homepos | reliability
Factor loadings [this survey] 0.89 0.80 0.75 0.75
Factor loadings [Germany] (OECD 2017, p. 340) |0.83 0.81 0.74 0.70

a good factor analysis (Hartas 2010). After removing five critical items, the person
parameters of the home possessions were estimated for every participant (Warm
1989). Andersen’s (1973) Likelihood Ratio Test evidenced the validity of the Rasch
Model (LR value = 19.01, p = 0.061). For determining the estimated number of
years of schooling (PARED), the parents were asked about their school education
and their vocational training. The professions of the parents were queried in the
student’s as well as in the parent’s questionnaire by asking them to describe the
parental professions in detail. This double-check helped coding the professions into
the socio-economic status ISEI (Ganzeboom 2010). Comparing 48 coded descrip-
tions of occupations the Intra-Class-Correlation (0.973) indicated excellent relia-
bility (Koo and Li 2016). Thus, the highest socio-economic status of the parents
(HISEI) can be interpreted purposefully and statistically safeguarded. In this popu-
lation it yielded approximately 54 on average, which, for example, corresponds to
trade brokers or police inspectors (Ganzeboom 2010).

Finally, the Index for Economic, Social and Cultural Status (ESCS) was deter-
mined via PCA of the three z-standardized variables (Izenman 2008). This analysis
retained one factor, including all three components, which accounted for 66.8% of
the total variance. The factor loadings were close to each other and thus, of similar
importance for the construction of the ESCS and they, furthermore, deviated only
slightly from the loadings of the German population (see Table 8.1). The determined
standardized ESCS scores lie within a range of —3.07 and 1.54. ESCS scores higher
than 0.74 were assigned to the upper quartile and scores lower than —0.79 to the
lower quartile.

Comparing those variables in this survey, the HISEI correlated strongly with the
PARED (r = 0.61, < 0.001; Cohen 1988) and the HOMEPOS (=0.50, <0.001).
There was also a moderate correlation between the HOMEPOS and the PARED (r =
0.33, p < 0.001). Thus, students—whose parents work in skilled occupations—had
on average more cultural and educational possessions in their home environment
and were wealthier. Most of these socio-economically advantaged students (highest
25% of the population) had highly educated parents with 87% completing at least
university level tertiary education.

8.4.2 Video Analysis

Eight students participated in the video study. All of them read the task, identified
what they considered to be important information, mathematized their real model
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Fig. 8.3 Student solutions: a Christine and Linda. b Mark

using Pythagoras’ Theorem and worked mathematically. Two student pairs drew a
real-world sketch (real model) as well as an inner-mathematical sketch (mathematical
model). These students developed an adequate mathematical model by setting up the
term of Pythagoras’ Theorem correctly and considering the height of the fire brigade
vehicle (see Fig. 8.3a). The other students did not draw a sketch and additionally
developed a wrong mathematical model (see Fig. 8.3b). Exemplarily, two solutions
will be presented briefly.

Christine (ESCS: 1.52) and Linda (ESCS: 1.37) approached the problem after
reading the given information by selecting important data such as height, length and
width of the vehicle and the length of the ladder. Their first sketch plotted elements of
the real world (such as the house, the ladder and the fire vehicle) based on Pythagoras’
Theorem. By drawing the sketch, they discussed which length was unknown and that
the height of the vehicle had to be added in the end. Afterwards, they identified the
right angle and confirmed their decision to use Pythagoras’ Theorem. During this
mathematization, they also converted the information into an inner-mathematical
sketch of a triangle to identify the sides and the hypotenuse. The following fragment
of the transcript shows a validation of their solution.

Christine: About 20 Point ...

Linda: 396.

Christine: Okay, great. And well ... eh ... shall we just write down the answer?
Linda: Yeah. Let’s do it.

Christine: Well it ... wait. May I have a look?

Linda: Ah! Plus the height of the vehicle.

They validated, that they have calculated the height of the house without the
vehicle height and, therefore, summed up their solutions.

After reading the task, Mark (ESCS: —1.72) immediately started a process of
mathematization by deciding to use Pythagoras’ Theorem. He did not draw a sketch,
rather he developed the term of Pythagoras’ Theorem by using the formula. Without
any discernible considerations, he indicated values for the formula. It may be assumed
that he has not developed an adequate situation model of the real-world problem.
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Afterwards, he explained his solution to a classmate (ESCS: 0.12) and noticed his
mistake:

I did it completely stupid, because ... OK, I notice my mistake. I have looked wrong, and
instead, the length of the ladder would have been 10 m and I have not seen, that the length
of the ladder is 30 m. (Mark)

His classmate groaned and they consensually decided to take the wrong solution
anyway.

8.5 Discussion and Conclusion

First quantitative analysis of the questionnaires shows, that the socio-economic status
can be determined from descriptions of occupations, with good inter-rater reliability.
Thereby, querying parents and students turned out to be useful to extract the most
important information. Also, the ESCS could be constructed statistically safeguarded
via PCA, whereas the factor loadings of the three components HISEI, PARED and
HOMEPOS are similar to the German populations’ (see Table 8.1) and, summarized
in a single factor, accounted for 66.8% of the total variance. For this population,
it could be shown, that parental occupations and home possessions are strongly
connected. Following Zhu (2018), the results show that most parents with high skilled
occupations are highly educated as well. Also, students from socio-economically
advantaged families have better access to cultural and educational resources in their
home, as stated by Calarco (2014).

Within this sample, exploring students’ processes showed that students who did
not draw a sketch developed a wrong mathematical model (see also Rellensmann et al.
2017). Regarding modelling sub-competencies, these students were more likely to
begin a process of mathematization after reading the task instead of communicating a
spatial idea of the problem. The analysis suggests that these were more often students
from less privileged parental homes. Therefore, findings, that children from less
privileged homes tend to argue non-formally referring to their everyday life (Cooper
and Dunne 2000), have not become apparent (yet). Rather, only students from more
privileged homes drew real-world sketches as well as inner-mathematical sketches.
The findings rather support the assumption that students from less privileged homes
were more likely to look for the “right” formula to solve the task compared to their
more privileged peers. Considering these results, it may rather be presumed that less
privileged students tend to overemphasize the inner-mathematical context, as Leufer
(2016, p. 242) pointed out.

However, some limitations of the study need to be considered. Within this pilot
study, analyses of four modelling processes only allow the drawing of tendencies
so interpretations of preliminary results should be viewed with great caution. More-
over, there is no evidence that the patterns of action found can be traced back to
social background. Therefore, a standardized mathematics achievement test should
be carried out, to take the impact of achievement into account. Also, a larger sample
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allows better monitoring of gender-specific patterns of action. Further, this requires
a stringent selection of the sample with pairs as homogeneous as possible in terms
of social background. For future surveys, students should be given possible partners
with similar ESCS and similar mathematics achievement from which they can then
choose. That way the advantages of free choice of partners can be combined with the
advantages of homogeneous groups and the impact of achievement can be controlled.

Nevertheless, this study shows the need to address social disparities in mathemat-
ical modelling. First analyses suggest that there could be different patterns of action in
modelling among students of different social backgrounds. Analysing these patterns
could help to reduce social disparities in mathematics education, such as through
targeted interventions and awareness-raising among teachers. To give one example,
Hoadley (2007), among others, suggests being more explicit about evaluation criteria
to promote the participation of all students. To explore connections between perfor-
mance, social background and the way of dealing with modelling tasks, taking also
natural differentiation into consideration, more investigations are necessary and will
be presented in the future.
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Chapter 9 ®)
Mandatory Mathematical Modelling i
in School: What Do We Want

the Teachers to Know?

Rita Borromeo Ferri

Abstract Defining mathematical modelling as mandatory content within school
curricula is taking place in many countries around the world. Teacher education in
modelling is necessary so that modelling lessons can be realized in schools. Within
the international discussion, one finds best practice examples of teacher education
in modelling, which differ concerning regional, national and cultural aspects. What
do we want the teachers to know? This chapter sheds light on this difficult ques-
tion. The aim is mainly to present the historical development of teacher education
in mathematical modelling. In addition, an empirical study on measuring teacher
competencies for mathematical modelling is presented. This is followed by a case
study, which gives insight into the views of university educators after teaching a
mathematical modelling course and their opinion as to what teachers need to know.

Keywords Assessment - Comparative study - Historical overview - Modelling
course - Modelling teaching competencies - Teacher education

9.1 Introduction

Mathematical modelling in the sense of Pollak (1969), that means linking mathe-
matics to real world situations and problems, is presently a strong and internation-
ally well-recognized research field in mathematics education. This becomes evident
through various international groups and research programs such as the Interna-
tional Conference on the Teaching of Mathematical Modelling and Applications
(ICTMA), the Congress of European Research in Mathematics Education (CERME)
or the International Congress on Mathematical Education ICME). Also, it is evident
through regional meetings, for example, in Latin America, the modelling and tech-
nology strand within the framework of the Latin American Meeting of Educational
Mathematics (RELMEin Spanish).
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Furthermore, this is clearly a result of the strong research discussion, modelling is
seen as a necessary practice for learning mathematics and it helps to prepare students
for their daily and professional lives (see, e.g., Hernandez-Martinez and Vos 2018).
Thus, in some countries earlier (e.g. Germany) and in some more recently (e.g.
South Korea), educational policy makers have decided to implement mathematical
modelling as a mandatory part of the school mathematics curriculum. This represents
a great success but at the same time presents a challenge. Far more than before it
becomes clear that we need teachers who are able to teach quality mathematical
modelling with professionalism. What do we want the teachers to know?

This chapter tries to shed light on this difficult question. At first, the historical
development on teacher education in mathematical modelling is discussed. This
overview shows that it took a long time before today for teacher education in
mathematical modelling, and competencies for teaching mathematical modelling,
to become an explicit focus for research.

But what is meant by teaching competencies for mathematical modelling? There
is currently no general characterization for the term “teaching competencies for
mathematical modelling”. However, based on current studies (Borromeo Ferri 2019;
Klock et al. 2019), the competencies for teaching mathematical modelling would
include Pedagogical Content Knowledge (PCK) (e.g. Ball et al. 2005) for modelling.
These are expressed as dimensions or facets in current models, for example, knowl-
edge about the modelling cycle, diagnostics, assessment, knowledge about modelling
tasks and their development, planning and conducting modelling lessons or teacher
interventions. Furthermore, teaching competencies for modelling are not the same
as modelling competencies. According to Blomhgj and Jensen Hgjgaard (2007),
modelling competency is the ability to construct and to use mathematical models by
carrying out appropriate steps, as well as to analyse or to compare given models.
Without going into discussion about modeling competency at this point, it quickly
becomes clear that modeling competency is a part of the teaching competencies to
be acquired.

In Sect. 9.2, an empirical study is shown as an example of a current research
emphasis, in which the teaching competencies for mathematical modelling were
assessed before and after a university course. The development and the evaluation of
university courses and workshops for teaching modelling have been dealt with in the
past 20 years within the modelling discussion. However, there was little knowledge
gained about how and whether one can measure teacher competencies for modelling.
The empirical study presented in this chapter is therefore, amongst other things, a
way of showing which teacher competencies for mathematical modelling are seen
as necessary and which instruments can be used to measure these competencies.

In addition to the measurability of teacher competencies for modelling, there is
the fundamental question of how teaching at university should be designed so that
teachers are appropriately educated for the implementation of quality modelling in
school. Therefore, when an overview of research in mathematical modelling teacher
education is presented in the second section of this chapter, the term “teacher educa-
tion” is clarified in terms of the chapter focus. Many years ago, Allen (1940) indi-
cated that terms like teacher education and teacher training refer to the policies and
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procedures designed to equip (prospective) teachers with the knowledge, attitudes,
behaviours and skills required to perform their tasks effectively in the classroom,
school and wider community. This kind of definition is used by the author as a basis
by specifying this for mathematical modelling:

Teacher education or training in mathematical modelling means to equip (prospective)
teachers with knowledge and competencies that they require to teach modelling qualitatively
and effectively in school, which include Pedagogical Content Knowledge for modelling.

If prospective teachers at university are to be adequately trained to teach math-
ematical modelling, then also good lecturers are needed. So far, there is not much
empirical evidence about the views of lecturers, what prospective teachers and educa-
tors of the educators should be able to do, and how they subjectively assess such
outcomes after their modelling course. This important aspect rounds off the chapter,
in which a case study with university educators from Germany, Spain and Japan is
presented. This qualitative study gives insight into the level of achievement of some
competencies for teaching mathematical modelling, which the university educators
consider to be particularly important. Finally, to end the chapter, an outlook on further
research in teacher education in mathematical modelling is presented.

9.2 Historical Overview—Teacher Education
in Mathematical Modelling

Learning and teaching go hand in hand, and thus one can assume that research
on teacher education should always and automatically be a part of both from the
beginning. In order to confirm this hypothesis to a certain degree for the field of
mathematical modelling education, an analysis of ICTMA proceedings in particular
(but also of journals like ZDM) was conducted. The goal was to find studies that deal
with research on developed courses and research on the development of courses for
teaching mathematical modelling for prospective and practicing teachers. Further-
more, studies were sought that show, based on reliable test instruments, the degree
of learning success of the teachers after a course in mathematical modelling.
Because research on teacher professionalism in modelling up to the present day is
along-term development process, achievements are made transparent by considering
three time periods. The first before the year 2000, the second from then until 2019,
while the third offers an outlook for possible future research topics in this field. The
justification for the three time periods resulted from the literature search. Research on
teacher education or on developed and evaluated modelling courses was not really in
focus until about the year 2000. From the year 2000, professionalization of teachers
generally came to the fore in education policy in most countries of the world. Many
international comparative studies focusing primarily on mathematics have benefited
from this. This mainstream focus affected various areas of mathematics education
as well as mathematical modelling. This development continues to this day, but
in 2019, new knowledge regarding the measurability of teacher competencies for
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mathematical modelling can be gained. The time periods are described in more
detail below, as far as this is possible for reasons of space.

Period 1 (before year 2000): In contrast to the topic of modelling competency,
which has been a continuing research area until today (e.g. Kaiser 2006), research on
teacher education and professionalism was rarely to be seen before year 2000. There-
fore, itis not comparable in terms of the number of empirical studies that can be found
on modelling competency. Before 2000, many empirical studies showed insights into
the effects of using strategies when teaching modelling, which had a positive effect
on the modelling competency of learners (e.g. Mevarech and Kramarski 1997). These
aspects illustrate that while there have been studies on teaching modelling, little atten-
tion has been paid as to how the associated approaches are to be taught to the teachers
who implement them. For a long time, the focus relied heavily on the learners’
perspective and the teachers’ involvement was more implicit. In terms of the effect
chain, “teaching competencies=>quality teaching=> student learning” (Borromeo
Ferri 2018), until the year 2000 we were more at the end than the beginning.

Period 2 (since year 2000): The development of teacher education as a research
field in modelling since the year 2000 was strongly influenced by the fact that teacher
education received more attention in general through large-scale studies. Through the
findings of international comparative studies on teacher professionalism, in partic-
ular TEDS-M (e.g. Blomeke et al. 2011) the national German study, COACTIV
(Kunter et al. 2013), and also the meta-analysis from Hattie (2009), teacher educa-
tion became more important both in general and for educational policy in the sense
of “Teacher matters most!”. In turn, this leads to deeper thinking about what teacher
professionalism means specifically for mathematical modelling.

From the beginning of 2000, the importance of teacher education increased—
somewhat slowly—but one landmark was set by the ICTMA 10 book (Ye et al.
2003). Zhonghong et al. (2003) presented modelling courses which they conducted
for preservice teachers. They made clear that the overall goal was to encourage the
teachers to solve real-life problems and to understand what mathematical modelling
means. Furthermore, a contribution from Holmquist and Lingefjard (2003) showed
that prospective teachers could acquire modelling competency through modelling
activities. However, solving modelling tasks is not the only competency that teachers
need for teaching modelling at school. The types of modelling courses mentioned
above often did not make the connection to practice, which is of great importance.
With practice, the author means conducting modelling at school with learners and
reflecting on their own teaching.

Between 2000 and 2019, the field became much broader, featuring several ideas
for modelling courses and empirical research in teacher education. Since 2005, many
modelling courses for pre- and in-service teachers have become visible in the liter-
ature, and thus, the list of cited researchers in this time period is incomplete to a
degree. Pragmatically one can subdivide the developed teaching approaches into three
categories: (1) modelling days/weeks; (2) modelling courses at university/training
courses; (3) distance/online courses. In the following, they are described in a more
detailed way.
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Modelling days/weeks normally connect theory with practice. The goal of
modelling days is that pre-service teachers who are prepared through university
courses to solve complex modelling problems, then coach students in modelling in
school for three or more days. The school component not only focuses on solving
complex modelling problems, but also in particular on other aspects, such as teacher
interventions, which are introduced, deepened and discussed using, for example,
videos (e.g. Blomhoj and Hoff Kjeldsen 2006; Borromeo Ferri 2018; Bracke 2004;
Kaiser and Schwarz 2010).

The second approach, modelling courses, also mostly connects theory with prac-
tice. The difference from the modelling days/weeks is that the prospective teachers
do not supervise a group of learners for several days in school. As part of learning
about the teaching competencies, the prospective teachers are required to develop a
modelling problem in groups, to plan and carry out corresponding lessons in school,
and to present and reflect on their results. In the literature, one can find many different
ways that these courses are structured and also where the focus lies (e.g. Borromeo
Ferri 2018; Borromeo Ferri and Blum 2010; Huincahue et al. 2018; Schorr and Lesh
2003).

The planning and implementation of digital learning in many educational areas
is currently a much discussed and researched topic. Especially when educational
institutions are closed due to crises, digital learning is the saviour for home schooling.
However, digital learning is also used when teachers cannot personally attend training
programs or when a topic is not part of the curriculum in teacher training. Distance
learning through e-learning tutorials allows people to continue education. E-learning
courses specifically for learning and teaching of mathematical modelling for school
purposes are still rare, but they exist and are important for those teachers who have
no other possibility for being educated in modelling, but wish to do so (Biembengut
and Faria 2001; Maaf} and Gurlitt 2011; Orey and Rosa 2018).

In addition to the development and evaluation of these courses for teachers,many
empirical research studies concerning teachers’ roles within learning and teaching
of mathematical modelling have been conducted. The results of these studies offer
the opportunity to integrate them into courses for mathematical modelling teacher
education over the time. Aspects like teacher interventions and scaffolding (e.g.
Leif3 2007; Stender and Kaiser 2015), formative assessment (e.g. Besser et al. 2013),
teacher noticing (e.g. Galbraith 2015), relevance of multiple solutions (e.g. Schuka-
jlow and Krug 2014), teachers’ beliefs, aspects of quality teaching and technology
(e.g. Blum 2015; Brown 2017; Greefrath et al. 2018) etcetera are seen as relevant
content in addition to the central competency of solving modelling problems. So, the
listis very long if all achievements are to be included. Although many teaching mate-
rials and modelling problems are available now, for teachers, there are still barriers to
teach modelling, because in their view, they do not have the right materials. Further-
more aspects of time and limited knowledge about assessing mathematical modelling
from a teachers’ view are challenges as well (Borromeo Ferri and Blum 2014). We,
as educators of the educators, still have to take this into account.
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9.3 Teaching Competencies for Mathematical Modelling
and Their Measurement

Papers addressing the conceptualization and measurement of teacher competencies
for mathematical modelling have been recently published (Borromeo Ferri 2019;
Klock et al. 2019). This section gives a brief overview of how one model for teacher
competencies for mathematical modelling was developed. See Borromeo Ferri (2018)
for more details. The development of a test instrument based on this model, geared
to measuring the PCK of prospective teachers in an intervention study is described.

The author started developing and conducting modelling courses for prospective
and in-service teachers in the year 2004. At that point, the main questions were, if
and how future teachers (for all school types) can be prepared in tertiary courses for
teaching modelling at school, and in particular, what contents and methods would
be appropriate. Additionally, a focus was to investigate how prospective teachers’
processes of learning and understanding develop during such courses, to identify the
main difficulties and problems, and investigate how progress can be observed.

The question “what do teachers need to know?” should be answered through a
long-term process approached through design-based research (DBR) (Collins 1990),
so that finally a suitable structure, specific content and several teaching methods can
support the development of a course for pre- and in-service teachers (Borromeo Ferri
2018). Such a modelling course taught all over the world (e.g. Turkey, USA, Spain,
Chile, etc.) can enrich teaching through the development of cultural perspectives. In
2010, a first model for teaching competencies was conceptualized (Borromeo Ferri
and Blum 2010) which mainly reflected the structure of the modelling course being
described. The model was further modified to its current form as shown in Fig. 9.1
(Borromeo Ferri 2014, 2018; Borromeo Ferri and Blum 2010). In the meantime,
further research groups have developed other approaches, which include facets of
teacher professionalism in mathematical modelling (e.g. Klock et al. 2019).

a) Moedelling cycles
ITheoreticaI dimension I b) Aims & perspectives of modeling
c) Types of modeling tasks

a) Multiple solution of modeling tasks
I Task dimension I b) Cognitive analyses of modeling tasks
c) Development of modeling tasks

a) Planning lessons with mod. tasks
| Instruction dimension I b) Carrying out lessons with mod. tasks
¢} Interventions, support and feedback

a) Recognising phases in mod. process
I b) Recognising difficulties and mistakes
¢} Marking modeling tasks

| Diagnostic dimension

Fig.9.1 Model for teaching competencies for mathematical modelling PCK (Borromeo Ferri 2018)
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Using a design-based research approach over several years, with continuous eval-
uation of the course, and through the written learning diaries of the prospective
teachers, it became evident on a qualitative level that teaching competencies increased
with respect to the four dimensions as shown in Fig. 9.1. At a certain point, however,
the question arose as to how these teaching competencies could be measured empiri-
cally, in order to assess the effect of the modelling course. This represents a challenge
when recognizing the complexity of the model with its four dimensions and several
sub-facets.

Within the first approach of test development and evaluation, most of the items
were open ended. However, the decision to use a multiple choice format with closed
items was finally made for measuring declarative and conceptual knowledge in a
balanced and economic way across all dimensions. Concretely, one has to choose a
correct answer according to a given statement, or for example, on the basis of the
analysis of a written dialogue produced by learners while modelling. Options varied
between two or five possibilities, depending on the item—respondents were required
to select the right answer, or to write down the correct response for the question being
asked. The answer format offers the possibility for dichotomous coding, which means
0 for incorrect and 1 for correct answer. The final test version was rated and discussed
with experts during construction, and then piloted intensively with several cohorts of
prospective primary, secondary and high school teachers in their fourth semester at
university. Thus, a reliable test instrument was ready for use. In order to make items
more transparent, some examples are shown. Within the theoretical dimensions for
example, the testing of declarative knowledge with 26 items was in the foreground.
Two of them are presented in Fig. 9.2. Within the scale “instruction dimension”, 14
items cover declarative and conceptual knowledge. Two items of this scale are shown
in Fig. 9.3. For more details concerning the test instrument with examples of items,
see Borromeo Ferri (2019).

Here, your theoretical knowledge is asked. Choose, if the statement is right (yes) or wrong (no):

yes | no
The basis of mathematical modelling are problems from real life D D
The “Complexity” describes one criterion of a modelling problem D D

Fig. 9.2 Example items of the scale “theoretical dimension” (Borromeo Ferri 2019, p. 1157)

Here, your knowledge about teaching modelling is asked. Choose, if the statement is right (yes) or wrong (ne):

yes no
The introduction of modelling activities works with over-determined problems |:| D
Responsive interventions lead back to the teacher I:l I:,

Fig. 9.3 Example items of the scale “instruction dimension” (Borromeo Ferri 2019, p. 1157)



110 R. Borromeo Ferri

In the following, results of an intervention study with N = 66 prospective
secondary, high school and vocational teachers in their third year at university are
presented. In order to measure the increase of teaching competency, a pre- and post-
test design was used, where the modelling course was the treatment. This modelling
course had four blocked sessions each of three hours, taught by the author, based on
the PCK for modelling shown in the model as shown in Fig. 9.1. Between the third
and fourth session, the prospective teachers taught a modelling lesson in school and
observed learners during modelling activities.The pre-test was administered at the
beginning of the first session, and the post-test at the end of the fourth and last day
of the course. Before starting with the modelling course, the participants had only
limited knowledge about mathematical modelling, acquired from one lecture in their
first semester. In Table 9.1, an overview of the number of items per scale (teaching
dimension) and the corresponding Cronbach’s Alpha measure is given. Following
the well-known rule of thumb for Cronbach’s Alpha (e.g. George and Mallery 2003),
the reliabilities of the scales are acceptable—with 0.69 for the instruction dimension
close to the notional value of 0.70.

For analysing the data, a r-test was carried out for related samples. The four scales
formed by the sum score were examined in a pre-post comparison. Cohen’s d was
calculated as the effect measure. Looking at Fig. 9.4, the values of the x-axis are the
mean values in comparison and on the y-axis are the four dimensions.

Table 9.1 Number of items per scales (four teaching dimensions) and Cronbach’s Alpha

Teaching dimensions

Theoretical Task Instruction Diagnostic
Number of test items 26 11 14 14
Cronbach’s Alpha 0.86 0.71 0.69 0.71

' I
p<0.01
diagnostic dimension i d=0.697
: p<0.01
instruction dimension | d=0.707
| = MW post
| MW pre
p<0.01
task dimension ' d=0.754
|
' p<0.01
theoretical dimension d=0.303

0,00 200 4,00 6,00 800 10,00 12,00 14,00 16,00 18,00

Fig. 9.4 Results of the intervention study for teaching competencies
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When looking at the means in Fig. 9.4, one can see already visual differences for
pre- and post-tests. These are confirmed by the statistical calculations. The Cohen’s
d statistic for each dimension shows a strong effect. Thus, the difference from pre-
to post-test was significant in all four dimensions and interestingly most of all in the
theoretical dimension.

The test results are encouraging, however, of great importance is that modelling
courses with all their activities are being conducted in mathematics teacher education
in many international locations. This test instrument helps to make more visible, the
possibility that teacher competencies can be measured. Other test instruments exist
(e.g. Klock et al. 2019). These test instruments can be used for several aims, for
example, by teacher educators in order to evaluate their teaching or for offering
(prospective) teachers some kind of additional certificate—because such modelling
courses are mostly not in the curriculum for teacher education. Such a certificate
could be seen as a further and necessary qualification, and finally, it could be a good
argumentation base for policy makers.

Nevertheless, what results can be expected, when the test instrument presented in
this chapter is used in other modelling courses? ““You get what you test!” The test
instrument can, in principle, be used worldwide, but it will certainly work best, if
the content of the modelling courses is very close to the one presented here—with
the four dimensions of teaching competencies covered. Taking this as a challenge,
a comparative study was conducted with Germany, Japan and Spain. The teacher
educators were offered the course slides including all materials, which were trans-
ferred, modified and implemented to fit the possibilities and circumstances in their
countries.

The further focus in this chapter will not lie in the presentation of the quantitative
results of the prospective teachers from Germany, Japan and Spain, but on qualitative
results of a case study on the views and challenges of university teacher educators
in these three countries. Regarding the question “what do we want the teachers to
know?”, it is important to think about what is possible in our teacher education in
mathematical modelling right now in several countries, especially when modelling
is mandated in the school curriculum.

9.4 Views of the Educators of the Educators for Teaching
Modelling

Due to the fact that altogether only four teacher educators participated, (because
they taught the courses in their countries), the presented insights are results of a
small qualitative case study and thus limited concerning generalization, particularly
in regard to cultural comparisons. However, the written responses from four expe-
rienced teacher educators, one each from Japan and Germany and two from Spain,
offer interesting insights and subjective views, on the questionnaire developed by
the author. These may be used to plan further empirical studies. The questionnaire
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consisted of 19 open and closed items, which the teacher educators answered in a
written form after teaching the modelling course in their countries. The following
sections give an idea of the broad range of information that was included:

(a) Educator background (e.g. since when they taught modelling courses),

(b) Course preparation (e.g. if they used only author’s slides or other material),

(c) Course conduct/conditions (e.g. number of course lessons, time restrictions for
teaching modelling),

(d) Participants/feedback/testing (e.g. opinion of active involvement of partici-
pants),

(e) Teachers’ knowledge—educators’ of educators knowledge (e.g. opinion which
knowledge, competencies are needed).

The data were analysed according to the principles of grounded theory (Strauss and
Corbin 1998), a social science approach for the systematic processing of primarily
qualitative data with the aim of generating theory. In order to come to a theory,
the procedure is to use open, axial and selective coding for all data. The starting
point of open coding is reading the texts and marking text passages using short,
concise and comparatively abstract concepts (codes) that characterize the content
of the respective text passage. Axial coding is about working out the context and
conditions that make it possible to identify actions or omissions, strategies, routines
and their consequences in their respective social frameworks. Selective coding is
becoming increasingly compact, and key categories are being worked out.

The core purpose of the analysis was firstly to identify the views concerning
teachers’ necessary knowledge, and secondly to access university educators’ knowl-
edge. However, feedback from all parts of the questionnaire was included in the
analysis for these purposes. In the questionnaire, the educators were asked to answer
in addition, two central questions regarding their focus:

(1) “What do you think teachers need to know (which competencies do they need)
for teaching modelling?”’, and

(2) “Which knowledge/competencies should the educators of the educators possess
for teaching how to teach modelling?”

When thinking about what knowledge and skills university educators must have in
order to be able to train teachers in teaching modelling, there are already assumptions
from theory. One assumption is, for example, to offer a clear structure of the course
with aims and goals; another is to be able to offer a balance between theory and
practice in the course for participants (Lesh and Doerr 2003).

At first, the comparison of questions (1) and (2) above revealed that the differences
between the knowledge and competencies that the teacher educators and prospective
teachers should have were not great. It was argued of course that the teacher educators
especially should have knowledge and experience of how to teach a modelling course
effectively with appropriate methods. The focus is on good preparation for amodeling
course, which is clear from the following quote: “What I have to have with me is a
well-prepared script for each session and give my students all the support they need
to believe that they will be able to do mathematical modelling in their future classes.”
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Besides this aspect, both teacher educators and (prospective) teachers, should have
theoretical knowledge of modelling, a central point being that teachers should be able
to create their own modelling problems. This competency is seen as very important
within all responses, because in doing this, a person will understand what modelling
means, and how to implement this in the lesson. For example, one of the educators
wrote: “I think that one of the essential competencies is the ability to develop suitable
modelling problems for students”.

To compress the outcome statements to a more abstract level, which is the goal
of grounded theory, the result of the analysis can best be visualized in a causal chain
as a theoretical approach as shown in Fig. 9.5. The analysis showed that many of
the competencies required for teaching mathematical modelling at university or in
training courses correspond to what is needed by the teachers they are educating.
The intuitive idea that teachers teach modelling better if they are properly trained is
obvious, but the analysis made it increasingly clear that the quality of the training
for future teachers depends on the personal and external conditions of the teacher
educators. In the following, Fig. 9.5 is explained more in detail.

Personal conditions refer to the individual conditions of the teacher educator,
which can influence the qualitative training and education of teachers. Not everyone
who trains teachers for teaching modelling is also a researcher in the field and there-
fore has a lot of background knowledge. Therefore, aspects such as professional
background and previous knowledge of mathematical modelling education play a
role. Educators with a strong mathematical background can focus differently on a
course development than a teacher who has been in practice for a long time. There is
also the point, which should not be underestimated, as to whether the educators are
required to give a course, or whether they like to do it out of interest. For this reason,
affective characteristics in relation to modeling are included. General experience
with teacher training and further education gives the teacher educator an advantage
in their individual planning and implementation. Finally, the teacher educator’s own
further training for teaching modelling should also be noted. This can be by way of
reading the literature or participating in a webinar or e-learning course.

External conditions include factors that the teacher educator can only influence to
a limited extent for the implementation of her/his course. Notably, the time available
for a course differs within a country, but also between countries. Mostly, this depends

PERSONAL CONDITIONS
- personal professienal background
= pre-knowlege about modelling
- affect relation to modelling
- teaching training experience
- further education in modelling

INITIAL SII.I.MIION OPTIMIZATION EXECUTION CONSEQUENCE | CONSEQUENCE Il
teacher educator ﬁ e — filtering the s teaching, loy| increase of teacher L} increase of

for modelling and | evaluating, | educator’s PCK for teacher’s PCK for
EXTERNAL CONDITIONS planning process | reflecting | modelling | modelling

- time for the course due to curriculum |

- cuftural setting

- course participants background

- amount of tasks and materials

- type of modelling course/training

Fig. 9.5 Conditions for qualitatively taught modelling courses through teacher educators
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on whether modelling is a part of the teacher education curriculum or not, and
how important modelling is seen to be for teacher training. The cultural setting
can influence the teaching methods on the one hand and the focus of the course
on the other. The background of the participants can also be different and must be
adjusted according to the situation. Dealing with teachers who have been teaching
for 20 years requires a different approach from that taken with young prospective
teachers. Another aspect to consider is the extent to which a university is equipped
with books and materials for mathematical modelling so that course participants can
use them. Finally, the question is what type of modelling course is needed by the
teacher educator, who then requires preparation accordingly. Personal and external
conditions are in constant interaction.

The optimization phase then follows, in which the conditions are “filtered”. This
means that the teacher educator uses the best results of this interaction as a basis
to plan the course. Then follows an executed plan, which should always include
evaluation and reflection. This leads to consequence [—namely that the teacher
educator increases their own competencies through progressive iterative interactions
between execution and optimization. The professionalization of the teacher educator
ultimately benefits the teachers—as consequence II—with an increase in teaching
competencies for mathematical modelling.

9.5 Summary and Outlook

Mathematical modelling is becoming a mandated part of the school curriculum in
more and more countries across the world. This requires that teacher education
in mathematical modelling starts at university. The historical overview shows that
since the year 2000, teacher education in mathematical modelling has come more
into focus through large-scale international assessment studies in teacher education
and other types of courses. There has been a corresponding increase in research.
Finally, models for teaching competencies for mathematical modelling could be
developed. Existing test formats can be used to show that teaching competencies
for modelling can be improved significantly by participating in a modelling course.
Such test successes are particularly important as an argument for the importance of
mathematical modelling in the current educational policy debate for STEM. They
show that teachers and learners can obtain enough background to create realistic and
desirable interdisciplinary lessons.

Following the historical timeline from Sect. 9.1, at this point time period 3 is
described by presenting interesting research questions, which can form a basis for
work in the coming years on teacher education in mathematical modelling. A central
research question could be, whether teaching competencies have an effect on the
quality of teaching of modelling in the classroom. From an empirical perspective,
this is not an easy task. To actually measure empirically whether the modelling
competence of learners has increased due to better teaching competence of the teacher
in a given course requires good test instruments and strict test conditions. Adding a
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control group (i.e. teachers who did not take part in a modelling course) would make
the differences visible.

A crucial point is still the question of the assessment of modelling processes of
the students in all school classes. There, we need much more research, for example,
what evaluating competence means, and how this form of evaluating competence
can be conceptualized and measured with teachers. A first approach can be found by
Strauch and Borromeo Ferri (in press).

To sum up, the knowledge and the power of teacher competencies should be used
for further research with the goal of increasing teacher professionalism in mathe-
matical modelling. What do we want the teachers to know? Although it is a difficult
question, this contribution aims to give some first answers. There is a consensus that
our mathematical modelling teachers need to get the best education or training from a
likewise well-trained educator. It has become clear that a combination of external and
personal influences on teacher educators ultimately leads to teachers who are well
trained to teach mathematical modelling. Additionally, teachers should be motivated
to recognize how great modelling lessons can change their minds and also those of
their learners.

Let me end with a citation of Socrates:

“I cannot teach anybody anything, I can only make them think”. (Socrates)
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Chapter 10 ®)
Analysis of the Relationship Between e
Context and Solution Plan in Modelling

Tasks Involving Estimations

Irene Ferrando, Carlos Segura, and Marta Pla-Castells

Abstract In this chapter we analyse students’ written solution plan of a sequence
of modelling tasks involving estimations. Our research objective is to statistically
analyse whether there is a relation between the solution plan and the characteristics
of the context of the real estimation task. From previous work, we have identified
some task variables that are directly related to the context. In this study we have
designed a sequence of modelling tasks and we have analysed the productions of
N = 224 Spanish pre-service primary school teachers. The results show that there
is a relationship between the variables of the task and the solution plan used by
the students in each case. From the results of this study, we derive conclusions
regarding the characterisation of this kind of modelling task and the potential use of
this sequence to promote problem solving flexibility.

Keywords Context variables - Estimation - Modelling * Pre-service teacher - Task
variables - Solution plan

10.1 Introduction

Different researchers have shown that the approach of modelling tasks based on real
contexts make mathematics meaningful and motivating for students (Blum 2011;
Kaiser and Sriraman 2006). In this work we use problems that focus on making esti-
mates of a large number of elements enclosed in a bounded area, such as knowing
the number of people who fit in a public square. These real estimation tasks are
contextualised problems that students can solve by introducing modelling elements
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(Albarracin and Gorgori6 2014). It has been shown that students often have difficul-
ties when they have to consider aspects of the real context that are described in the
task statement (Greer 1993). Indeed, students’ written productions when faced with
modelling tasks are a key source of information for understanding aspects linked to
the teaching and learning processes of mathematics.

In previous studies we have analysed students’ written productions when faced
with solving tasks consisting of obtaining a reasoned estimate of the number of
elements that can fit into a rectangular region and we have observed that students’
productions are diverse (Ferrando et al. 2017; Gallart et al. 2017). Although these
problems are similar and ask the same question (How many can fit?), the diversity
of student solutions has led to the question of whether different contexts in which
the number of elements in a rectangular region must be estimated promote one type
of solution (a model or a strategy) more than another. In order to characterise the
different contexts of these problems, five context variables have been considered
in this research: size of the region, size of the elements, shape of the elements,
arrangement of the elements and shape of the region. These context variables have
been used to design a sequence of four problems with different real contexts. A
total of N = 224 students have solved this sequence and their productions have
been categorised in four different solution plans. A mixture of analysis combining
qualitative and quantitative techniques is the key to answer the research question:
Is there a relationship between the context of the problem and the solution plan
proposed by the student in this type of modelling task?

10.2 Theoretical Framework

A particularity of real context problems is that they often do not contain all the infor-
mation needed to obtain a solution. These problems, known as problems with missing
information, foster skills such as estimation, considered important and useful for
students (Arlebick 2009). Arlebick (2009) defines Fermi problems as open, non-
standard problems requiring the students to make assumptions about the problem
situation and to estimate relevant quantities before engaging in, often, simple calcu-
lations. Certainly, there is a strong connection between the Fermi problem solving
process and the work developed during the modelling cycle for the development of
a mathematical model (Arlebick 2009; Borromeo Ferri 2006).

The development and creation of mathematical models intended to describe or
abstractly represent a given phenomenon or reality is a complex process (Blum,
2011). Following the definition proposed by Lesh and Harel (2003), a mathematical
model is a system formed by mathematical concepts, symbolic representations of
reality, relations, regularities or schemes, as well as the procedures, mathematical or
not, associated with its use. In Achmetli et al. (2019), the authors established three
ways to differentiate solutions of a real context problem. The first one is to fix different
assumptions when solving real-world problems with vague conditions and generally
leads to different results. The second one results from applying different mathematical
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strategies to solve a problem and generally leads to the same mathematical result.
Finally, the third one is the combination of the two above. In previous work, based on
this third way and Lesh and Harel’s model definition, we have developed the notion
of a solution plan for the analysis of student productions when they solve modelling
tasks (Gallart et al. 2017). The solution plan has been the key to identify differences
between the productions of students with experience in modelling with respect to
novices.

The solution plan is formed by two components (that are dependent on each other):
an emerging model that corresponds to the conceptual component of the model, and
a solution strategy that corresponds to the procedural component of the model. In the
following we will give a complete definition of these components for Fermi problems.
In order to delimit our research, we focus on problems involving estimation of the
number of elements in a bounded enclosure.

The emerging model refers to the initial model that includes different assumptions
related to the configuration and the distribution in the space (e.g. a carpark) of the
elements (e.g. cars) whose number must be estimated. Indeed, when we have to
obtain a reasoned estimate of the number of objects that fit into a bounded enclosure
(e.g. a porch), the first step is to fix the distribution of the objects (e.g. people) in
space. One way to do this is to assume that the elements are arranged in rows and
columns; this leads us to reduce the initial problem (of areas) to a problem of lengths.
This one-dimensional emerging model corresponds to what Albarracin and Gorgorié
(2014) call a “grid distribution model”. Otherwise, the elements can be distributed
directly on the surface and this necessarily implies that the solver will argue from the
estimated value of the total area using two possible strategies that will be described
later. This configuration corresponds to a two-dimensional emerging model.

Once an emerging model has been set, it is necessary to use some strategy to obtain
the estimated number of elements. The most elementary—but the least efficient—
strategy is the direct count. Another way is to argue from the space (area or length)
occupied by an element and get the result by dividing the total area (or length) by the
area (or length) occupied by an element. This corresponds to the base unit procedure
established in Gallart et al. (2017). Finally, it is possible to argue from density,
estimating the number of elements in a given unit of area (or length) and multiplying
this value by the total number of units of area (or length). Different combinations of
emerging model and strategy produce different solution plans. Section 10.3 presents
a categorisation of the solution plans based on the productions of the students who
participated in this experience.

When we present tasks to students it is important to identify which elements of
the task can influence the solving process. Kilpatrick (1978) studied and classified
the characteristics of a task as possible values of what he called “task variables”.
Following the definition established in the book edited by Goldin and McClintock
(1984):

Task variable will mean any characteristic of problem tasks which assumes a particular value
from a set of possible values. A task variable may thus be numerical (e.g., the number of
words in a problem) or classificatory (e.g., problem content area). (Kulm 1984, p. 16)
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Kilpatrick (1978) included three classifications of these variables: context vari-
able, format variable and structure variable. In the present work we will focus on
context variable understood as the physical characteristics of the real context of the
task. Since we are interested in those tasks involving an estimation of the number of
elements in a bounded enclosure, we identify five context variables: the size of the
elements, the size of the area, the elements’ shape, the distribution of the elements
and the shape of the enclosure.

These variables allow designing a sequence of this type of task in which some
values of the variables change. Through this sequence it is possible to analyse whether
the values of the context variables foster the choice of a solution plan. A positive
answer will allow us to study in further work whether this sequence promotes students
to change their solution plan from one problem to another, that is, what Elia et al.
(2009) call inter-task flexibility. Therefore, the present work is a first step towards
a systematic investigation of flexibility in the framework of real context problem
solving.

10.3 Method

In this section we will describe the methodological design of the experience in three
parts: description of the sample of students who participated in this experience,
justification of the design of tasks and the procedures used, and the data analysis.

10.3.1 Sample

The experience was developed throughout the academic years 2017-2018 and 2018—
2019. The N = 224 participants were students in their last year of the Degree in
Primary School Education at the University of Valencia (Spain). This is an incidental
sample that includes 25% of the total population: prospective teachers in the last
year of their formation in the biggest Faculty of Education of the region of Valencia.
The choice of conducting the research with prospective teachers is based on the
fact that subject-related teacher competencies have a strong influence on students’
performance (Baumer et al. 2010).

10.3.2 Procedure and Tasks

First, we designed a sequence of problems that request students to describe a solution
plan to obtain a reasoned estimate of the number of elements in a bounded enclosure.
The criteria for the design were the following: the sequence should include four
problems; all problems consist of obtaining an estimate of a number big enough that
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it cannot be effectively solved by counting; all problems are contextualised in the
immediate student environment.

Since our objective is to identify if there is a relationship between the context
variables of the tasks and the solution plans, it is important to clearly identify the
variables and the possible values they can take. As we have already remarked in the
theoretical framework, when a task consisting of estimating the number of elements in
abounded enclosure is posed, the following context variables and their corresponding
values are identified:

e size of the elements: big (more than 1 m?), medium (between 1 cm? and 1 m?) or
small (less than 1cm?);

e size of the area: big (about 100> m?), medium (about 10> m?) or small (about 12
m?);
shape of the elements: homogeneous or heterogeneous;
distribution of the elements: there’s a regular pattern, there’s no regular pattern;
shape of the enclosure: the enclosure can be a simple shape (rectangular, triangular,
...) or it can be the combination of different simple shapes.

Since we only want to set four tasks, we will fix some values of the context
variables and some will not be considered. The variable “shape of the enclosure”
has been set as rectangular in all the problems of the sequence. Aware that this
implies a limitation of the scope of the study, this decision has been taken to simplify
students’ calculations and to be able to observe, in this case, the influence of the other
variables in the choice of the solution plans. In Table 10.1 we present the combinations
considered with respect to the sizes of the elements and of the area. We have shaded
the problems where there is homogeneity in the shape of the elements, and we have
used bold letters in those in which the elements are arranged following a regular
pattern. The four problems are:

PI-People. How many students can stand on the faculty porch when it rains?
P2-Tiles. How many tiles are there between the education faculty building and
the gym?

P3-Grass. How many blades of grass are there in this space?

P4-Cars. How many cars can fit in the faculty parking?

Table 10.1 Combinations of context variables considered in the sequence design

Area size Element size
Less than 1 cm? 1 cm? to 1 m? More than 1 m?
About 1 m? P3 XXX XXX
About 10> m? XXX Pl P2 XXX
About 100? m? XXX XXX P4

Note A shaded cell indicates homogeneity of the elements in the problem. Bold indicates elements
are in a regular pattern
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During the experience, we provided each student with the written problem state-
ments and a small image for each one. We allowed a half page blank space for
each problem so that the students could write down their solution plan. One of the
researchers was present during the experience at each group classroom. The students
worked individually in the usual classroom. The working session lasted 45 min.
During the first 10 min, it was explained to the participants that they were going
to face a sequence of four tasks. The following aspects were emphasised: in each
problem they should raise a possible solution plan indicating the measures they
would need to obtain the estimation; the work should be done individually; they
should explain their procedures in written form and may use drawings or diagrams;
and, finally, they were not expected to obtain a solution but rather only to explain
how to get the requested estimate.

The experience included a second part in which the students, in groups, had to
choose one of the solution plans proposed in the first part and, taking data in situ, they
had to carry out the strategies. In this second part of the experience, the mathematical
work, interpretation and validation phase were dealt with. However, for the present
study we will focus only on the data collected during the first part because our aim
is to study the relationship between solution plans and context variables.

10.3.3 Data Analysis

The data analysis has two phases: first a qualitative analysis was done and then
we conducted the quantitative one. In this section we will first describe the criteria
and the procedures of the qualitative analysis. The collected data were qualitatively
analysed at the end of each academic year. Following Van der Zee and Rech (2018),
we consider that interpretation of qualitative data depends on the stances adopted by
the researchers before the analysis. Therefore, in order to ensure use of fixed criteria
for the qualitative analysis of the productions, we split the codification process into
two phases. For the 2017/18 academic year productions, one researcher made a first
analysis followed by a revision of the other two researchers and by discussion in
case of discrepancies. For the 2018/19 academic year productions, the analysis was
done directly by pairs. We have classified students’ productions in five categories.
We illustrate some categories with transcriptions of students’ answers to P1-People,
How many students can stand on the faculty porch when it rains?

Incomplete resolution: is the one where not enough detail to obtain the estimate is given as
shown in this student example:

We need to know the size of the porch as a whole. We would have to measure the width and
the length to be able to obtain the total square metres.

Counting: In this case, students just propose a direct exhaustive counting procedure to get
the estimation.

Linearisation: This corresponds to the productions that propose a one-dimensional emerging
model. For example, a student wrote:
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This problem can be solved by using the width and length of the porch. Once we have these
measures, we take another, which corresponds to the measure of a person. Imagine that a
person occupies about a half metre, with this measure we can know how many people fit in
each row and multiply by the number of rows that can be made in total. Example: in each
vertical row — 30 people. 30 x 120 rows — 3600 people.

In this case, the student assumed that people stand up in rows and columns, thus
we consider that he based the resolution on a one-dimensional emerging model.
Regarding the strategy, the student used a base unit procedure. Nevertheless, in the
present work, all the written productions based on a one-dimensional emerging model
will be in the same category regardless of the strategy used.

2D-Base unit: This corresponds to the productions based on a two-dimensional
emerging model. In all the cases, students proposed, from one side, to obtain the total
area of the rectangle, and from the other side, to obtain the estimate by dividing this
area by the area occupied by an element. For example, a student wrote:

First of all, with the measurements of width and length, I would calculate the space inside.
Then I would calculate the space occupied by one person. Finally, you would get the number
of people by dividing the total measure by the measure of one person.

2D-Density: this corresponds to the productions based on a two-dimensional
emerging model. In all the cases, students proposed, from one side, to obtain the total
area of the rectangle, and from the other side, to obtain the estimate by multiplying
this area by the estimated density. A student example is:

To begin with I would measure the width and length of the covered porch, then I would
change to square metres. Thirdly, I would measure several times how many people fit in
a square metre. Then I would take an average and multiply it by the square metres of the
covered porch.

Once the qualitative analysis of the students’ productions has been carried out, we
proceed to count the number of productions in each category for each problem. From
the contingency table, we perform an inferential statistical analysis to determine
whether there is a significant relationship between the categories identified in the
solution plans and the problem variables. In the following section we will show the
results of these analyses.

10.4 Results

Table 10.2 contains the absolute frequency and the percentage of use for each solution
plan for each problem.

In order to determine whether there is a statistical relationship between the context
variables of the problems and the categorised solution plans proposed by the students,
we have performed an inferential analysis based on the Chi-Square Test for inde-
pendence (df = 12, N = 896). We have assumed as null hypothesis that there is
no relationship between the context variables of the problems and the categorised
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Table 10.2 Classifications and frequency of student productions for each problem (n = 224)

Task Incomplete Counting Linearisation 2D-base unit 2D-density
P1 People 34 (15.2%) 1(0.4%) 28 (12.5%) 110 (49.1%) 51 (22.8%)
P2 Tiles 34 (15.2%) 6 (2.7%) 92 (41.1%) 71 (31.7%) 21 (9.3%)

P3Grass |44 (19.6%) |2 (0.9%) 15 (6.7%) 67 (29.9%) 96 (42.9%)
P4 Cars 28 (12.5%) | 4(1.8%) |31 (13.9%) 160 (71.4%) | 1(0.4%)
Total 140 (15.6%) |13 (1.5%) | 166 (18.5%) | 408 (45.5%) | 169 (18.9%)

solution plans. We fix @ = 0.001, and the test gives us a result for x> = 269.92
and p-value = 0.000 that led us to reject the null hypothesis. Since Chi-Square Test
for independence may not provide a reliable guide to measure the strength of the
statistical relationship between the variables, we used a Cramers’s V (see Acock and
Stavig 1979). A value of Cramer’s V close to 1 means that the relationship between
the variables is very strong and if it is close to O, the relationship is very weak. In
this case V = 0.31, which is considered a medium to large effect (Leppink 2019).

10.5 Discussion and Conclusions

Inferential analysis indicates that there is a statistically significant and moderate
relationship between the context variables of the tasks and the components that have
enabled us to categorise the solution plans: emerging models and strategies. Based on
the DISUM model of the modelling process (Blum 2011), in this experience students
are working on constructing the situation model, simplifying/structuring the situation
model in order to obtain the real model of the problem and, finally, mathematising.
In the second step of this process the identification of variables of interest is crucial
(see, for instance Houston 2007). This process is deeply related to construction of
the emerging model.

From Table 10.2 we can infer some effects from the four context variables consid-
ered in the sequence design (as shown in Table 10.1) in the construction of the
emerging model and, particularly in the identification of variables. The regularity in
the distribution pattern of the elements whose number is being estimated increases
the occurrence of one-dimensional emerging models (i.e. linearisation): we observe
that this happens when the regular arrangement pattern of the elements is evident
(as in the case of the P2-Tiles problem). Indeed, although the percentages of one-
dimensional and two-dimensional (i.e. base unit and density) emerging models are
equal in this problem, the proportion of one-dimensional emerging models is signif-
icantly higher than in the other problems. However, in problem P4-Cars only 14%
of productions are based on a one-dimensional emerging model. In fact, although
the distribution of elements could be regular, it is not as evident an assumption for
students as in problem P2-Tiles: in the parking there are large empty spaces and the
sizes of vehicles are irregular. Perhaps, in this case the students do not consider that
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the value of the variable “distribution” can be a “regular pattern”. On the contrary,
the irregular distribution of the elements fosters, as we see in problems PI-People
and P3-Grass, emerging two-dimensional models.

In two-dimensional emerging models there is another context variable that is
identified by the students and, therefore, leads to particular solution strategies: the
size of the elements. This variable will influence the mathematisation phase of the
modelling cycle. Indeed, in the problem P4-Cars we find a significant proportion of
solution plans that include the strategy that corresponds to the base unit procedure.
In fact, considering the average size of a vehicle, it is more natural to argue from its
dimensions (in this case, the estimated area) than from the number of vehicles that
fit into a given area. Moreover, the high proportion of solution plans that include the
density strategy in the P3-Grass problem confirms that it is a more natural strategy
than the base-unit when the size of the elements is small.

Nevertheless, in order to confirm whether relative size of the elements also has
effects on the strategies associated with the one-dimensional model, it would be
convenient to analyse in more detail the productions categorised here as “Linearisa-
tion” or even to design an alternative sequence with problems involving lengths and
not areas (e.g. estimating the number of students needed to surround the perimeter
of the yard or finding the number of cars parked along an avenue). This, together
with the fact that we have only focused on the first phases of the modelling process,
is a limitation of the present work.

Although there is a significant relationship between the context variables of the
problem and the categorised solution plan, in almost half of the analysed productions
the students posed a two-dimensional emerging model associated with the base unit
strategy. This, together with a high ratio of incomplete solutions, leads us to suggest
a possible reason might be students’ flexibility, that means: to what extent students
know different solutions for this type of modelling task and are able to adapt them
according to the context? This requires further investigation.
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Chapter 11 ®)
Generating a Design and Implementation | oo
Framework for Mathematical Modelling

Tasks Through Researcher-Teacher
Collaboration

Vince Geiger, Peter Galbraith, and Mogens Niss

Abstract How to support student in applying the mathematical modelling (MM)
process is an ongoing line of research enquiry. This chapter outlines interim find-
ings from an Australian national project that aims to promote effective teaching and
learning practices in MM through attention to implemented anticipation. This effort
gained focus through attention to the generation of a Design and Implementation
Framework for Modelling Tasks (DIFMT). The DIFMT was the result of collabora-
tion between teachers and researchers aimed at the effective design and implemen-
tation of MM tasks in upper secondary classrooms. The study suggests that specific
pedagogical practices can act as enablers of students’ attempts to appropriate the
process of MM.

11.1 Introduction

In keeping with a number of countries, Australia has been stressing the importance of
equipping students to apply their mathematics in real-world settings (e.g., ACARA
2015). Such abilities are necessary for (1) successful participation in other school
subjects where the use or interpretation of models is important; (2) gaining access to
mathematics, science, technology and engineering (STEM) careers or other profes-
sions based on applied mathematics (e.g., economics); and (3) for informed partic-
ipation in personal, civic and work life. In this chapter we outline our efforts to
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address these needs within a curriculum context in which mathematical modelling
(MM) is a mandatory element of mathematics assessment within the final years of
schooling (Years 11 and 12). Despite the requirement that Years 11 and 12 students
engage with MM, experience and expertise in instruction for this element of the
curriculum is varied—from very capable designers of MM tasks through to novices.
Even among those that were capable task designers, we found a dearth of expertise
in the implementation of MM activities. Our response to this theory/practice gap
has been to work in collaboration with teachers to develop effective principles for
instruction embedded in a Design and Implementation Framework for Modelling
Tasks (DIFMT) within a nationally funded project. Central to the development of
this framework was an understanding that the capacity to anticipate, is an essential
meta-cognitive facility in both the deployment of the modelling process by students
and teachers’ capability with its instruction. Consequently, the aims of the project
are to:

(i) describe the nature of anticipatory metacognition and identify and describe the
enablers necessary for students to translate real-world situations into successful
mathematical models;

(i) design modelling tasks that support the development of students’ anticipatory
metacognition, and/or allow for the identification of issues that are problematic
for that development;

(iii) develop, trial, and refine teaching practices that support the growth of students’
anticipatory metacognition while working on effective modelling tasks.

In the section which follow, we focus on the theoretical perspectives that underpin
the DIFMT and describe other enablers of MM which emerged when teachers
attempted to align their instructional practices with this framework. Evidence for
the efficacy of these enablers are drawn from teachers’ commentaries on their
implementation of tasks.

11.2 The Nature of Mathematical Modelling

Given the plethora of interpretations within the field of modelling in education we
provide clarification of our meaning of the term. Consistent with statements in the
opening paragraph, we are concerned to nurture qualities that enable students to
apply mathematics to solve problems in domains outside itself (see Niss et al. 2007,
p. 4). In the following we outline sequential stages in the modelling process; as an
analytical reconstruction of a modelling/problem-solving process, remembering it is
neither a lock/step approach, nor a detailing of moves made by individual modellers.
In the diagrammatic representation below (Fig. 11.1a), the heavy clockwise arrows
(1-7) depict the modelling process as a problem-solving activity, connecting stages
(A-G). The double headed arrows indicate that in pursuing a solution there will be
intermediate transitioning/revisiting, within and between any of the stages. This will
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the question (involves making assumptions, solution to theoriginal problem(s)
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inputs etc.) recommendations, or make adjustments and
4. Solve the mathematics try for a better solution

Fig. 11.1 a Representation of the modelling cycle (Galbraith 2013), b Transitions between
modelling phases (Galbraith 2013)

include meta-cognitive and anticipatory activity. (These arrows are incomplete for
clarity—they potentially connect any of the stages).

11.3 Anticipatory Metacognition

Implemented anticipation, as formulated by Niss (2010), is a process by which
students anticipate and carry out within the act of modelling: (a) actions that they
perceive as potentially useful context-wise and mathematically in subsequent steps;
and (b) decision making that brings those steps to fruition. Implemented anticipation
is central to a modeller’s ability to mathematise and to undertake the mathematical
processes entailed, and then complete a modelling problem successfully.

The term anticipatory metacognition describes an associated construct that also
includes the additional capabilities of ‘modelling oriented noticing’ and strategic
planning, e.g. with regard to seeking and gathering information and data and deciding
whether to involve statistical analyses of the data collected. This applies before
and during a modelling experience. It represents the capacity to recognise possible
avenues to pursue during the modelling process when engaging with an unstructured
real-world problem by taking cues from progress made in other contexts and situ-
ations. Both require an ability to think forward and are applicable to learners and
teachers.

For teachers it represents thinking along the lines “Where, in the modelling
process, will this group of students be likely to encounter obstacles? And what
can/should I do to help them move forward?” It involves reflecting on student thinking
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as intermediary to the problem itself. Resulting prompts direct students to use the
modelling process to resolve an impasse, rather than giving direct hints as to the
solution itself.

11.4 Anticipation and Modelling

Because modelling proceeds through ideal—-typical stages, an attribute for success is
the ability to look forward and to anticipate what may be needed at a later point in the
process, requiring that the modellers project themselves into subsequent modelling
steps before taking them; and implement such anticipation throughout the modelling
process (Niss 2010; Niss, Martin 2017; Jankvist and Niss 2020).

Implemented anticipation as an essential component of anticipatory metacogni-
tion pertains to all necessary steps in the modelling process: pre-mathematisation
(e.g., posing questions, assumptions, simplifications), mathematisation, mathemat-
ical treatment, interpretation, and model evaluation. This capability is significant for
individual modellers, but also for teachers and mentors, who seek to promote the
development of modelling abilities in their students. Examples are listed below:

e Anticipating features that are essential in mathematising a feasible problem from
the real situation being currently considered; anticipating mathematical repre-
sentations and mathematical questions that, from previous experience, or present
analysis, seem likely to be effective when forming a mathematical model.

e Thinking forward about the utility of the selected mathematisation and the
resulting model to provide a mathematical solution to the questions posed.

e Thinking forward to identify related problems and refinements that are suggested
by progress. Some of these may not have been thought of at the outset of the
problem.

11.5 Enablers of Implemented Anticipation

Enablers of implemented anticipation, developed previously (Niss 2010), were
directed specifically at features central to developing individual modeller capabilities.
Their European origins paid attention to contexts where the worth of modelling could
not be taken for granted, for example, where only pure mathematics is considered an
approved subject for study by the education system, or by students. Australia has a
history within which applied mathematics has occupied an accepted role. However,
ways in which respective preferences (e.g., pure versus applied) impact on teaching
and learning remain a continuing influence. In theoretical terms these are impacted
by considerations of socio-mathematical norms (e.g., Yackel and Cobb 1996) and
didactical contracts (e.g., Brousseau 2002). Bearing in mind the Australian context,
adaptations of Niss’ original modelling enablers (ME) have been developed and an
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Table 11.1 Niss’ enablers adapted for Australian contexts

MEI1: (Adapted for Australia): Students believe that the inclusion of modelling activities is a
valid component of mathematical coursework and assessment

ME2: Students possess mathematical knowledge able to support modelling activities (e.g.,
possess mathematical knowledge and skills, and ability to manage abstraction)

ME3: (Additional): Students possess an understanding of a systematic modelling process that
includes successive stages from problem question to model evaluation

MEA4: Students are capable of using their mathematical knowledge when modelling. (This
implies a core understanding of and engagement with the modelling process (Formulate, Solve,
Interpret, Evaluate) so that the right questions can be asked and pursued systematically)

MES: Students have perseverance and confidence in their mathematical capabilities (e.g.,
continue to follow through, or try new directions within a problem if necessary)

Table 11.2 Implementation enablers

IE1: The mathematical demand of problem tasks does not exceed the mathematical capabilities
of the student group

IE2: Problem tasks are introduced so as to engage the students fully with the task context, while
ensuring that goal of the task is understood

IE3: Assistance provided during modelling sessions (measured responsiveness) is geared to
helping students use the modelling process to reach a solution, rather than treat a problem as an
individual exercise

IE4: Students are encouraged/required to organise and report their work using headings/sections
consistent with the modelling process

IES: Productive forms of collaborative activity are used to enhance and hold to account the
quality of on-task progress. Effective use of digital technologies. Students’ interest in a problem

additional enabler, to do with knowledge of the modelling process, has been added
to the original set of modelling enablers—ME3 (Table 11.1).

In terms of the project, the centrality of effective implementation means that
teaching (or implementation) enablers (identification and description) have been
added to the originals that were directed at enhancing the modelling process itself. See
Table 11.2. In reviewing the developing enablers framework, after initial classroom
observations, we became aware of factors, that while not exercising a gatekeeping
role, could facilitate (or not) the success of modelling activities. We have designated
them Catalytic Enablers (IES).

11.6 Approach to Developing the DIFMT

The project has been conducted over a three year-period. Data for this chapter are
drawn from the engagement of three teachers from different schools and one class of
their students per year (Years 9—11). The project coincided with a time of curriculum
revision which included new course content and greater scrutiny of assessment prac-
tices, including a component devoted to MM. Two of the teachers had extensive
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prior experience in developing and implementing modelling tasks, while the third
had only superficial familiarity.

The research design was based on an iterative process of design-implement-
reflect as the basis for researcher/teacher collaboration in developing the DIFMT.
This process was effected through three whole-day researcher/teacher meetings and
two classroom observation visits per year. Classroom visits took place between
researcher/teacher meetings. The purpose of researcher/teacher meetings was to:
develop MM tasks; plan for their implementation in classroom; reflect upon the
design of tasks and their implementation after each successive round of implemen-
tation; draft and refine the DIFMT. Classroom observation visits were conducted
to generate data related to the effectiveness of: tasks, for specific classroom condi-
tions; and teachers’ approaches to task implementation. Initial tasks and advice on
implementation was provided by researchers, with teachers becoming increasingly
involved, moving towards autonomy, in the development of principles for the design
of tasks and their implementation—Ileading to the drafting and successive refinement
of the DIFMT as the project unfolded [for detail of this approach see Geiger et al.
(2018)].

Data collection methods included video-recorded classroom observations of small
groups of students during observation visits, teacher pre- and post-lesson interviews,
student post-lesson interviews and student video-stimulated recall sessions following
each visit. Students who were likely to articulate their approaches to a task clearly
and without a sense of reserve were invited to participate in both video and interview
sessions on the basis of teacher advice.

11.7 The DIFMT

In this section we provide an outline of the DIFMT. Word limit prevents a full
discussion of its development; thus, the purpose of the following description is to
provide the reader with sufficient background to link the DIFMT to implementation
enablers for which we provided illustrative excerpts.

The DIFMT consists of three overarching structural dimensions—Principles for
modelling task design, Pedagogical architecture, and Completion under which sit
defining elements and their descriptions. While this chapter focuses on the Pedagog-
ical Architecture dimension of the framework, a condensed version of the whole is
presented in Table 11.3.

The dimensions and defining elements of the DIFMT are aligned with the imple-
mentation enablers. For example, IE1, which relates to the articulation of students’
mathematical capabilities and the embedded challenge within a problem, is an impor-
tant element of fask design. The students’ introduction to a problem (IE2) requires
careful attention during the pre-engagement/initial problem presentation phase. The
type of assistance students should receive when engaged with a problem (IE3) is
captured in the body of the lesson descriptors. Responses to a problem will need to
be reported in a structured manner (IE4), as outlined in the completion element of
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the DIFMT. Productive collaboration (IE5) is seen as a catalytic enabler and is also
included in the body of the lesson descriptors.

11.8 Emergent Enablers

During task implementation, using the DIFMT as a guide, other aspects that
promoted or constrained students’ attempts at ‘modelling problems’ emerged. These

Table 11.3 Integrated modelling task and pedagogy framework

Principles for modelling task design

Nature of problem Problems must be open-ended and involve both intra- and
extra-mathematical information

Relevance and motivation There is some genuine link with the real world of the students

Accessibility It is possible to identify and specify mathematically tractable

questions from a general problem statement

Feasibility of approach Formulation of a solution process is feasible, involving (a) the
use of mathematics available to students, (b) the making of
necessary assumptions, and (c) the assembly of necessary data

Feasibility of outcome Solution of the mathematics for a basic problem is possible for
the students, together with interpretation

Didactical flexibility The problem may be structured into sequential questions that
retain the integrity of the real situation

Pedagogical architecture

Pre-engagement Understand of the modelling process and its
application—illustrate what the modelling process. Support
materials include a modelling process diagram

Modelling process review Reviewing pre-engagement as required

Initial problem presentation | ¢ Teacher provides brief general description of the problem
scenario

* Students organised into small groups and provided with time

to read the task description and ask questions of clarification

Students in groups discuss how to approach the problem

(including defining a mathematical question?) and report back

to whole class via a group representative

* Teacher orchestrates discussion of mathematical question(s)

towards consensus

Students in groups consider assumptions and variables

relevant to the agreed mathematical question. Outcomes

reported back to whole class by a group representative

 Teacher synthesises/prioritises students’ initial assumptions
and variables sufficient to begin modelling process for an
initial model (As students gain experience teacher scaffolding
in this section can be greatly reduced and perhaps eliminated)

(continued)
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Table 11.3 (continued)
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Principles for modelling task design

Body of Lesson Students Teachers
* Proceed in groups to create | * Help bring to student
model, solve, interpret, etc. consciousness those things
in terms of their that are implicit
mathematical question.  Activate teacher meta-meta
» Engage in productive cognition: (a) How will the
student—student students be interpreting what
collaboration. I as a teacher am
* Identify and make use of doing/saying at this point?
technology where applicable (b) What should the students
(e.g., source relevant be asking themselves at this
information, check point in the modelling
calculations and/or generate process?
solutions)  Structure mathematical
* Develop a report of their questions that promote a
progress in terms of the viable solution pathway
stages of the modelling * Support students with
process (e.g., formulate, making progress through the
solve, interpret, evaluate) modelling process
 Anticipate where students
might have problems, e.g.,
interpreting the problem
* Employ measured
responsiveness—rather than
providing specific advice
about the problem, students
should be prompted to think
about where they are in the
modelling process
* Encourage the use of tools
(digital or other)
* Support student progressive
development of a report (e.g.,
guidelines on report writing)
Completion

Present findings and
summary

* A representative from each group shares their findings with
justification. Findings should be reported in a succinct fashion

(e.g., 3—4 min video)

arguments

Teachers/students ask questions of clarification or to test

Report

» Students communicate their findings via a succinct, coherent,
systematic report. The report must make use of appropriate

mathematical language

 Teacher checks for the validity of the solution and supporting

justification
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included: actions related to teachers’ personal engagement with a modelling task
and its implementation; influences upon the teaching/learning environment (e.g.,
socio-mathematical norms and/or aspects of the didactical contract); and teachers’
own anticipatory actions. We now present illustrative examples of such emergent
enablers—supported through references to teachers’ comments recorded during
interviews that followed task implementation sessions.

11.8.1 Core Teaching Enabler: Utilising the Modelling
Process

It became apparent that teachers’ thorough understanding of both the modelling
process and the detail of any modelling problems they implemented was fundamental
to their students’ success in modelling. Teacher A was adamant that the modelling
process must be understood by teachers themselves if instruction was to be effective.

Teacher A: [Teachers need to] go through the framework. Not just the problem but the process
itself.

Teacher B comments on the importance they placed on developing a thorough personal
understanding of a problem before implementing it in their classroom.

Teacher B: It was actually quite challenging for me to figure out exactly what I would do. I
spent a fair bit of time researching.

11.8.2 Learning/Teaching Environment

The degree to which teachers took advantage of opportunities to engage their students
with modelling tasks was influenced by their perception of factors that shaped class-
room socio-mathematical mathematical norms and/or the didactical contract. For
example, teachers perceived both opportunities and constraints related to their state-
wide curriculum context. This perception inhibited or provided encouragement for
how often they were prepared to implement tasks. Comments by Teacher C indicate
he saw the demands of a new syllabus as limiting his opportunity to engage students
with modelling activities because of expectations about developing student mastery
of content objectives in a limited period of time. This was despite a strong emphasis
in the syllabus on mathematical modelling.

Teacher C: We don’t do [modelling] as much as we used to...because we just don’t have
time. The new syllabuses just don’t allow that sort of stuff.

Teacher B, working within the same curriculum context, saw no such impediment.

Teacher B: I think it’s a good task for Year Ten because we do all that volume and money
exchange too, there’s a little bit of that... It’s good for Methods [ Year 11] and General Maths
[Year 11].
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These differing commentaries on opportunities to implement modelling tasks
point to in-school expectations about which aspects of mathematics should be priori-
tised—in this case, fluency with mathematical techniques versus open-ended math-
ematical learning experiences in the form of modelling tasks. How the influences
of curriculum requirements are perceived can become manifest as school specific
socio-mathematical norms and the didactical contract that, in turn, trickle down to
student expectations of what should take place during mathematics instruction—their
interpretation of the didactical contract. Thus, such influences can act as enablers or
dis-enablers of student opportunity to engage with modelling tasks. Another inter-
esting observation was that some of the teachers tended to scaffold students’ work
rather tightly by teaching them what to do and how to do it, thus extending traditional
mathematics teacher behaviour to contexts where this is likely to impede students’
independent modelling work—thus another potential dis-enabler.

11.8.3 Teacher Anticipatory Capability

Also emergent from classroom observations was the importance of teachers’ own
anticipatory capabilities as these related to looking forward into a lesson to where
students might experience difficulties or blockages. This form of anticipation enabled
teachers to plan for how to scaffold students’ modelling efforts in a measured but
effective fashion. For example, Teacher A anticipated that some students might find
challenge in the selection of essential information from a larger list.

Teacher A: It will be interesting to see if they can pick out that information from the table
that’s there. I think that will be a stumbling point for some of them ...And they might be
seeking a little bit of clarification there.

Teacher A did not see this challenge as a negative experience for students but rather an
enabler of their development as modellers provided adequate support was in place—thus
reinforcing the important role of their own anticipatory capability.

Teacher A: I think that students need a bit of struggle and challenge. . .but with bringing them
back together and just getting that clarification before we go on, I think then they’ll be right,
and they’ll run with it.

11.9 Conclusion

This chapter reports on interim findings from a national project, conducted in
Australia, that aims to promote the effectiveness of both teaching and learning in
mathematical modelling through a focus on teachers’ and students’ anticipatory
capabilities. Both teacher and student practices, as syntheses of previous scholarly
work or observed during initial implementation phases of the project, are repre-
sented in the form of the DIFMT—developed in an iterative fashion as a collabo-
ration between teachers and researchers. Identifying other enablers or dis-enablers
of students’ opportunities to learn to model is ongoing. These include factors such
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as teachers’ preparatory practices before engaging students with modelling, socio-
mathematical norms and the didactical contract, and the development of teachers’
own anticipatory capabilities. Our future work, within this study, will continue to
focus on the identification of enabling factors, related to both students and teachers,
that promote or inhibit students’ efforts to employ mathematical modelling effec-
tively when solving real-world problems and in particular those that impact on the
pre-mathematisation and mathematisation phases of the modelling process.
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Chapter 12 ®)
Pre-service Mathematics Teachers’ Gzt
Technological Pedagogical Content
Knowledge: The Case of Modelling

C. Guerrero-Ortiz

Abstract In this chapter, the process of modelling task design for teaching math-
ematics in digital environments developed by secondary school mathematics pre-
service teachers is examined. A way to visualise and integrate modelling and Tech-
nological Pedagogical Content Knowledge (TPACK) into an analysis framework
is demonstrated to describe pre-service teachers’ knowledge using an empirical
study. This is followed by a qualitative case study highlighting the relationships that
emerged between the modelling processes adopted by pre-service teachers while
designing a task and their knowledge in relation to content, technology, and peda-
gogy. Findings yielded by this investigation deepen current understanding of pre-
service teachers’ knowledge and development of resources to support the integration
of modelling and technology as a part of teaching practice.

Keywords Technology - Mathematical modelling -+ Technological pedagogical
content knowledge - Simulation - Dynamic geometry software

12.1 Introduction

In recent years, use of digital tools in all life domains has increased dramatically,
transforming the way in which we carry out daily activities (Santos-Trigo 2019).
This shift is evident in the school context as well, necessitating that teachers provide
instruction using different types of technologies for different purposes (Santos-Trigo
2020). To expand the opportunities for mathematical modelling in the classroom, it is
essential that teachers know how to take advantage of modern technology to promote
learning processes. In particular, when teaching modelling, teachers need to identify
the types of tasks that promote modelling activity (Maafl 2010) and the processes
that can be developed (Borromeo Ferri 2006). They also need to be able to modify
modelling lessons in line with anticipated student difficulties (Borromeo Ferri 2018).
The role of the teacher for teaching mathematics in environments permeated by
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technologies has been explored from different perspectives (Drijvers et al. 2010).
Thus, the aim of the research reported in this chapter is to gain a better understanding
of pre-service teachers’ technological pedagogical content knowledge (TPACK), and
to enhance the learning of mathematical modelling in digital learning environments.
To meet this aim the research question guiding this study is: What elements of
mathematics pre-service teachers” TPACK are present when designing modelling
tasks?

TPACK is the knowledge that teachers must possess in order to effectively
use technology while teaching (Koehler and Mishra 2009). In particular, for the
case of mathematics, Guerrero (2010) observed that this involves the management
of technology, instruction, and pedagogical knowledge. She thus identified some
key components of TPACK for the use of technology in the mathematics class-
room, namely Conception and Use of Technology, Technology-Based Mathematics
Instruction, Management and Depth, and Breadth of Mathematics Content. More
recently, Koh (2019) examined the type of knowledge needed to support the design
of technology-integrated lessons for mathematical inquiry with authentic problems.
However, although some aspects associated to teacher’s knowledge in the case of
modelling and technology with teachers in service have been explored (Brown 2017),
studies into pre-service teachers’ TPACK in the case of mathematical modelling are
less prevalent. This gap is addressed in the present study. For this purpose, mathe-
matical modelling is understood as a process involving repeated transitions between
reality and mathematics (Borromeo Ferri 2018). Special attention is paid to modelling
as an instrument for analysing the processes that future teachers adopt when designing
a modelling task. This is shown with an example of how the TPACK framework and
the modelling cycle can be integrated to study the knowledge of pre-service teachers
of mathematics.

12.2 Modelling, Technology, and Teacher Knowledge

In pertinent literature, some elements related to the use of technology that teachers
must take into account for the teaching of mathematics are defined, including types
and uses of digital tools, class management in a digital environment, affordances
and constraints, digital tools as mediators of learning, and beliefs about the use
of technology (Guerrero 2010; Santos-Trigo 2019). However, there is little empir-
ical evidence with respect to the affordances and constrains of using technology in
modelling activities, and some questions remain unanswered (Borromeo 2018), even
though the benefits of introducing modelling and technology in pre-service teacher
education are widely recognised (Villareal et al. 2018).

In mathematics classrooms, modelling has been positioned from two different but
complementary perspectives—modelling as a content to be taught, and modelling
as a means of learning and developing mathematical skills. Thus, modelling can be
considered as a didactic strategy or as a mathematical practice. In any case, it has
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become part of many national curricula, and teachers are responsible for its imple-
mentation. In extant studies, development of the competences that a teacher must
possess to teach modelling effectively has been addressed through four dimensions
(Borromeo Ferri and Blum 2010): theoretical dimension, tasks dimension, instruction
dimension and diagnostic dimension. The first dimension considers knowledge about
modelling cycles, goals/perspectives for modelling, and types of modelling tasks. The
second dimension involves the ability to solve, analyse, and create modelling tasks.
The third relates to the ability to plan and execute modelling lessons and knowl-
edge of appropriate interventions during the pupils’ modelling processes, while the
fourth dimension includes the ability for recognising phases in the modelling process,
as well as recognising student difficulties and mistakes. Modelling task design is
one of the key factors of teacher’s knowledge, and different aspects of this knowl-
edge become stronger when creating modelling tasks (Guerrero-Ortiz 2019). In the
case of modelling task design in technological environments, Geiger (2017) showed
how relationships between student, teacher, task and digital tools become dynamic,
requiring the teacher the ability to adapt the task according to the students’ solution
processes. In this research, the changes to the modelling cycle introduced by the
technology (Greefrath et al. 2018) are considered as having a potential impact to
keep in mind in modelling task design.

In their study on the influence of technology on modelling processes, Greefrath
et al. (2018) considered, in addition to the real world and the mathematical world, a
technological world. These authors point out that digital tools are used after math-
ematical expressions have been translated into a language that is understood by the
tool, and then after working in the technological world the results offered by tech-
nology are translated back into mathematical language. Moreover, they identified
the potential of the use of technological tools in the modelling cycle as a means
of better understanding the problem through simplification and mathematisation.
Specifically focusing on the case of a dynamic geometry software, Greefrath and
Siller (2017) characterised the uses of digital tools when students work on modelling
tasks as drawing, visualising, constructing, measuring, experimenting, calculating,
and researching. Other researchers have shown how pre-service teachers use tech-
nology to find and filter information, and how technology influences the process
of mathematical problem-solving and solution validation (Villareal et al. 2018).
Although these studies shed light on the interaction of technology and modelling
processes, in the present investigation, modelling tasks design is examined from the
teacher’s knowledge perspective, focusing on the modelling process developed by
pre-service teachers when designing a teaching task and on their knowledge about
technology, pedagogy, and mathematical content. For this purpose the notion of
TPACK is now introduced.

The definitions presented here are based on more general descriptions of TPACK
framework offered by Koehler and Mishra (2009), which were refined in the light of
the findings put forth by Guerrero (2010) and Koh (2019) to specifically relate them
to the teaching of mathematics. Pedagogical Content Knowledge (PCK) considers
aspects related to the learning of mathematics, such as students’ conceptions and
what may be challenging or interesting for them. It also includes the knowledge
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teachers must possess to plan a lesson, along with the consideration of students’
previous knowledge, errors and difficulties, different representations of objects and
characteristics of teaching tasks. Knowledge of the content (CK) involves knowing
mathematical concepts and their definitions, sequencing or nesting of mathematical
concepts, proof, demonstration and approaches to the development and generation
of mathematical knowledge (Ball et al. 2008). For analysis development, the term
EMK has been introduced to refer to extra-mathematical knowledge. Technolog-
ical Content Knowledge (TCK) involves the knowledge and mastery of a variety
of technological tools (TK) that can be used to process information, represent and
manipulate mathematical objects, solve problems, and interpret and communicate
results (Santos-Trigo and Moreno-Armella 2016). It also involves decision-making
regarding the ways in which content can be addressed depending on the advan-
tages and disadvantages imposed by the tools. Technological Pedagogical Knowl-
edge (TPK) includes knowledge of the pedagogical affordances and constraints of
the tools, such as the implications that different tools have for the design and strate-
gies for teaching mathematics in digital environments. The teacher must know which
technologies are best suited for learning, and how teaching is modified depending on
the choice of technological tools (Santos-Trigo and Moreno-Armella 2016). He/she
must also be aware of the ways in which students perform actions such as exploring or
building a mathematical object or even how to save information (Koehler and Mishra
2009). TPACK subdomains will be explored in mathematics pre-service teacher’s
modelling task design.

12.3 Method and Context

To know what elements of TPACK are present when designing modelling tasks,
pre-service mathematics teachers were required to design a task for teaching in
secondary school (aimed at students aged 15—-16 years). This was the final product of
a course, where participants should integrate their content and pedagogy knowledge
by creating a modelling task. The mathematical content should be freely chosen
and related to the curriculum. The participants were in a course, at the third of four
years of study, where the author was the teacher. All had a general understanding
of problem-solving and modelling strategies and were at an intermediate level in
terms of practical experience with the dynamic geometry software, Geogebra, used
for completing the task. Moreover, for about 1.5 months, the participants worked in
small groups (2-3 members) on the modelling task design, after which each group
made oral presentations on their progress. At the end of the course, fifteen groups’
written reports were received, along with an electronic file containing the modelling
task. In the reports, each group described how the real situation chosen by them
was studied, simplified, and adapted to become a teaching task. The lesson plan
and a priori analysis of the expected students’ answers were also included. In the
following section, the work of one group is analysed. This group consisted of three
participants, two of them very interested in exploring different forms of teaching, and
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the other one proficient in the use of Geogebra. In order to better identify the content
knowledge, tasks where the mathematical concept to be taught was clearly defined
and related to the dynamic configuration given in a simulation were chosen. This was
the selection criterion for choosing this group. Written reports, electronic files, and
researcher’s file notes were the data sources that were subjected to content analysis
(Bardin 1986) by the author. For data analysis, the design stages were characterised
according to the phases of the modelling cycle of Greefrath et al. (2018). Then, the
content of selected paragraphs from the written report was coded according to the
subdomains of TPACK (Koh 2019). The analysis of the record resulting from the
Geogebra construction processes complemented this coding. In the analysis, focus
is given to the initial design formulation, without considering its implementation
(Guerrero-Ortiz 2019). Finally, to ensure reliability, the coded and interpretations
were discussed and refined in a seminar with a group of researchers.

12.4 Analysis of Task Design

The task analysed here was intended for introducing the concept of ellipse to
secondary students. The learning objective was to recognise the ellipse as a geometric
locus, and according to the definition, the ellipse is the locus of all points on a plane,
such that the sum of the distances to two other fixed points, called foci, is constant. The
task was presented in its entirety in the Geogebra environment (Fig. 12.1), where
the movement of comets is observed, without initially showing the graph of their
respective trajectories. Hence, those that find the solution should communicate their
findings, along with their reasoning regarding the movement of the corresponding
point (Item 1). In Item 2 (Fig. 12.1), the objective was directed to measuring the
distances between individual comets and the Sun, as well as a fixed point, or “focus”.
Intending to introduce the definition of ellipse as a geometric locus, students should
explore when the sum of different distances is constant.

S . Questions raised:

1. Describe the movement of the
comet around the Sun. What
geometric locus is it?

2. Is there a relationship between
its distance to the Sun and to
the focus?

Fig. 12.1 Movements of Comets. Task designed by pre-service mathematics teachers
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12.4.1 Elements of TPACK Emerging in Task Design

In this section, elements of TPACK that emerged in the task design carried out by
secondary school pre-service mathematics teachers are identified. When analysing
the written report to obtain information of the design process, their knowledge of
physics (EMK) was evident, as the pre-service teachers correctly concluded that the
movement of comets is governed by Kepler’s laws of planetary motion. The first
law states that planets move in elliptical orbits around the sun, while the second
law states that the radius vector that connects the planets and the sun sweeps equal
areas in equal time periods. In other words, when the planet is furthest from the
sun, its speed is minimal, but it is greatest when it is at the point closest to the sun.
On the other hand, the definition of ellipse as a geometric locus was recognised
in the activity intended for students (PCK). Therefore, the pre-service teachers’
knowledge of physics and mathematics is associated to CK and was put into practice
when designing the activity in the Geogebra environment. During this process, CK
underwent a transformation, emerging as TCK. In relation to this subdomain, in the
analysis of Geogebra’s record of the construction, three tool domain levels (TK) were
identified: basic, intermediate, and technical. Participants that are at the basic level of
proficiency recognise the Geogebra interface, know how to use dependent and non-
dependent basic objects, and are able to modify properties of the graphical interface.
In particular, the participants who designed this task used the dot object to represent
comets, the Sun, and stars. They used point on object to fix the movement on an
elliptical path, where the sun is represented by one of the foci. The use of the tool to
measure lengths was also observed. At the intermediate level of proficiency, the use
of buttons to control the animations of several objects simultaneously is expected.
In addition, to visually simulate the non-constant speed of movement of the points
when they are in different positions on the elliptical path, participants modified the
properties of the point to define speed as an inverse of the distance of a moving point
on the elliptical path around another fixed point.

Next, when analysing the activity intended for secondary students, it can be
observed that the objective and the questions denote that the focus is placed on
the exploration of the ellipse as a geometric locus to later relate it to its algebraic

representation 2—2 + ;—Z = 1. On the other hand, pre-service teachers’ knowledge
of physics, such as an approximation of Kepler’s third law—which postulates that
the square of the orbital period T of a planet is directly proportional to the cube of
the semi-major axis r of its orbit, T? = k r*—while used for the construction of the
dynamic configuration, was not demonstrated to the students. In other words, models
pertaining directly to physics were integrated into the construction of a dynamic simu-
lation, but the learning objective for students was restricted to the introduction of
mathematical concepts. The next paragraph, extracted from the pre-service teachers’
group report, confirms this observation:

To simplify the task, we focus on the ellipse [...]. In other words, Kepler’s second law was
only used in the creation of Geogebra [dynamic configuration] to show that comets move
faster near the Sun.
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Table 12.1 Classification of

. In relation to the simulation In relation to the expected
the elements observed in the

activity from the students

task design
Content Knowledge Content Knowledge
Model of Kepler’s laws Ellipse definition
Ellipse definition Technological Pedagogical
Technological Content Knowledge
Knowledge Use of a simulation to
Drawing an ellipse given two | introduce mathematical
foci concepts

Point on object

Measure distances

Control

Defining the velocity of the
movement of a point

In relation to the TPK, this task can be pedagogically interesting for secondary
students as it would motivate them to visualise different types of movement through
technology. However, it is necessary to identify contexts in which such activities
would be cognitively enriching for them. Technology, in this task, was used solely
as a means to simulate a physical phenomenon and explore related mathematical
concepts. Table 12.1 summarises the elements associated with the TPACK subdo-
mains that were identified in the task. The left column shows elements referring to the
use of software tools, along with the physical and mathematical concepts identified
in the pre-service teachers’ task design. The right column shows elements identified
in the activity intended for secondary school students.

When this group of pre-service teachers designed a task aimed at introducing
secondary school students to the concept of ellipse as a geometric locus in tech-
nological environments, elements of their TPACK were evidenced, as previously
explained. In order to complement the previous analysis, now is described how the
work on the task design highlights their progression through the modelling cycle
(Greefrath et al. 2018). Where the CK and EMK could be expanded when the pre-
service teachers investigated published literature and online sources to gain insight
into the phenomenon to be studied. This strategy allowed them to develop a model
of the situation that was subsequently associated with Kepler’s laws and the concept
of ellipse (CK). With the definitions of these concepts as models from the fields of
mathematics and physics, the group built a dynamic configuration to simulate the
movement of comets, thereby transitioning to the world of technology. In the world
of technology, future teachers experimented with the dynamic configuration to antic-
ipate the actions of students. In this process, aspects related to their TCK, such as the
use of software tools to experiment, recognise, describe, measure, and test elements
related to the ellipse, were enhanced. In Fig. 12.2, the continuous line shows the path
traced by this group in the design process in relation to the modelling phases. Using
a dotted line, the activity intended for students is identified within the same cycle,
revealing intentions in the promoted activity (Fig. 12.3).
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Fig. 12.2 Modelling cycle followed by the pre-service teachers when designing the task
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As shown in Figs. 12.2 and 12.3 since the task was designed to be solved in
a simulation environment, the activity intended for students starts from a situation
created in the virtual world, and the proposed activities are fully developed in the
same virtual environment. Pre-service teachers described this as follows:

We plan that students trace the points associated with comets in order to realise that they
follow a fixed path, governed by the relationship between the point representing the comet
and the sum of the distance from this point to each focus. Once students conjecture about
these aspects, the teacher will explain the definitions and equations.

12.5 Discussion and Conclusion

The extended modelling cycle of Greefrath et al. (2018) allows one to systematise
the analysis of mathematical, pedagogical, and technological knowledge of pre-
service mathematics teachers when designing a modelling task. In adopting this
strategy, it was possible to elucidate how elements of their TPACK are present
in the design process. Moreover, pre-service teachers’ pedagogical intentions were
expressed through the activities intended for secondary students when they expect
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students to measure the distances between planets and the sun, recognise and describe
the locus, experiment when measuring different varying distances and realise that
the sum is constant; something they can mathematically prove. Detailed analysis
supported on the modelling cycle showed which phases of the design process encour-
aged pre-service teachers to use different types of knowledge (see a summary in
Table 12.2). The findings revealed that, in exploring the situation chosen by them,
knowledge about planetary motion emerged (CK, EMK). Then, in the construction
of dynamic simulation (TPK), models from physics and mathematics were used as

Table 12.2 Modelling cycle phases and TPACK subdomains
TPACK

Modelling processes Description

Real situation TK—~Use of technology to
search for relevant information
EMK—Extra-mathematical
knowledge associated with
planetary motion
PCK—Choosing a situation to
motivate secondary school
students

EMK—Extra-mathematical
knowledge associated with
planetary motion

Exploration of several real-life
situations takes place, one of
which is selected for teaching

Situation model A mental representation of the
situation is formed depending

on the PCK

PCK is built from idealisations
influenced by teaching
objectives

PCK—Considerations about
understanding the situation,
such as simplifications,
idealisations, and teaching
objectives

Real model

Mathematical and physical
model

CK—Identification of relations
between mathematical objects
and objects from physics
PCK—The mathematical model
is built according to the
curriculum and teaching
objectives

Constituted by the
configuration of mathematical
objects that represent elements
of the situation

Computer model

TCK—Construction of a
geometric configuration using
the ellipse object; defining the
velocity of the movement of a
point on object, use of point on
object and control tools
TPK—Using a simulation to
motivate student learning

Comprises the geometric
configuration that simulates the
situation

Computer results

TCK/TPK—Measure distance
between points for students to
conjecture about the ellipse
definition

The work with the simulation
could allow students a better
understanding of the ellipse
definition
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tools (TCK). However, in the activities intended for students, the focus was restricted
to the concept of ellipse as a geometric locus (TPK).

The main contribution of this study stems from the analysis of the modelling
process performed by pre-service teachers when designing the task and the activity
intended for the students. When pre-service teachers designed the tasks, their mathe-
matical and extra-mathematical knowledge was enhanced, particularly in relation to
drawing upon knowledge of other sciences, as was previously shown by Guerrero-
Ortiz (2019). In this case, the physics models remained hidden behind the dynamic
configuration proposed for the work secondary students were expected to perform,
and the objective was to motivate the learners to explore the concept of ellipse through
a simulated situation in virtual reality. This observation confirms the need to rethink
the learning scenarios included in prospective teachers’ training programs to allow
them to learn in an interdisciplinary way and better understand how the use of tech-
nology influences content design and teaching (Santos-Trigo and Moreno-Armella
2016). The relationships between the modelling phases and TPACK subdomains
reveal those elements of the teacher’s knowledge that should be improved when
designing modelling tasks in digital learning environments. Therefore, it can be a
tool for teacher training. Further research with a broader range of data to deepen
in other characteristics of TPACK that could appear in different modelling tasks
design is required. It is also necessary to explore what secondary students learn
about modelling with this type of task, which was a limitation of this study. Finally,
further empirical research needs to be developed in order to contrast the subdomains
of TPACK stemmed from the design and those that can be seen in the pre-service
mathematics teachers’ practice.
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Chapter 13 ®)
Interest and Emotions While Solving Guca i

Real-World Problems Inside and OQutside
the Classroom

Luisa-Marie Hartmann and Stanislaw Schukajlow

Abstract Solving real-world (or modelling) problems outside the classroom can
link students’ real lives with mathematics on the basis of an authentic experience
with the subject matter. This may trigger students’ interest and positive emotions and
diminish their negative emotions. In the present study, we examined whether students
are more interested in and feel more enjoyment and less boredom while solving
real-world problems outside than inside the classroom. To answer these research
questions, students (N = 43) were randomly assigned to two groups, an outside
group and an inside group. Our results indicate that location does not influence the
development of students’ interest and emotions. We hypothesise the importance of
authentic problems for students’ development of interest and emotions and suggest
to examine this hypothesis in future studies.

Keywords Real-world problems - Math trail - Teaching methods - Interest *
Enjoyment - Boredom

13.1 Introduction

Interest and emotions are important for students’ learning. However, students tend
to feel more boredom than enjoyment in mathematic classes (Goetz and Hall 2014),
they are often not interested in mathematics, and their interest in mathematics even
tends to decrease from grades 5 to 10 (Pekrun et al. 2007). What are possible reasons
for these findings? Although mathematics is a part of our everyday lives (Niss 1994)
and mathematical knowledge fosters the understanding and development of aspects
of diverse extra-mathematical areas (e.g., medicine, pharmacy, architecture, security
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of online banking, or email encryption), students often do not recognise the connec-
tion between mathematics and reality. They perceive real-world problems in their
lessons as artificial and do not link their everyday or future lives to the contents of
mathematics lessons. As a result, students might not be interested in mathematics
and might thus feel bored in or fail to enjoy their mathematic classes. In order to
strengthen the connection between the real world and mathematics, school tasks
sometimes include photographs of real-world objects or videos of real-world situa-
tions. However, the typical mathematic class takes place inside the classroom. Given
that no one said that mathematics classes must take place inside the classroom, we
hypothesised that solving real-world problems outside the classroom as offered by
a math trail might motivate students more than solving the same problems inside
their regular classrooms. Following these considerations, we aimed to investigate
the effects of this teaching method on students’ interest and emotions.

13.2 Theoretical Background

13.2.1 Interest, Enjoyment, and Boredom

Interest describes a relationship of a person (e.g., a student) and an object or activity
(e.g., solving a mathematical problem) (Hidi and Renninger 2006). Theories of
interest have distinguished between situational and individual interest. If the student
enjoys solving the problem and values the problem, he or she will experience
high situational interest. This type of interest can be triggered by environmental
stimuli and can fluctuate from moment to moment (interest as a ‘state’) (Hidi and
Renninger 2006). However, if this situational interest is maintained over time, it can
change into individual interest (interest as a ‘trait’). Students with a high level of
individual interest look for mathematics in their environment, solve mathematical
problems in their free time, and discuss mathematical problems with other people
(Schukajlow et al. 2017). In the present study, we focussed on task-specific interest
(i.e., situational interest) because of its importance for the early stage of interest
development. According to the theory of interest, learning environments that provide
meaningful activities that have personal significance can trigger students’ interest
(Hidi and Renninger 2006). Students might perceive solving real-world problems
with an authentic experience with the subject matter of their everyday life as a mean-
ingful activity with personal significance, and therefore, this activity might improve
students’ situational interest.

The construct of interest and the construct of emotions are closely related to
each other. Emotions can be described as a complex, multi-dimensional construct
that comprises motivational, expressive, physiological, and cognitive parts (Pekrun
2006). In the present study, we focussed on the emotions of enjoyment and boredom
because these emotions are two of the most frequently reported emotions in the
context of learning (Pekrun et al. 2002). According to the control-value theory of
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achievement emotions, an emotion can be activating or deactivating and have a posi-
tive or negative valence. For example, enjoyment is a positive-activating emotion. If
students enjoy a situation, they will want to continue task processing and will feel
happy. Boredom is a negative-deactivating emotion. If students are bored, they will
not want to continue task processing and will not like the situation (Pekrun 2006).
In the control-value theory of achievement emotions, enjoyment occurs with high
control appraisals (e.g., high perceived competence in solving a problem) and high
value appraisals (e.g., the perceived importance of a learning activity) (Pekrun 2006).
Boredom occurs with too high or too low control appraisals and low value appraisals
(Pekrun 2006). Control appraisals are too high, for example, if the presented task is
too easy for the student, and they are too low, for example, if the presented task is
too difficult. Value appraisals are low, for example, if students do not consider task
processing to be important for them. An authentic experience with the subject matter
while solving real-world problems might improve students’ perceived importance
of task processing and therefore their perceived value. Thereby this activity might
affect their enjoyment and boredom.

13.2.2 Real-World Problems in the Context of a Math Trail

Real-world (or modelling) problems require demanding transfer processes between
reality and mathematics. Students begin to solve real-world problems by constructing
a model of the situation in the real world. Then they translate this model into a
mathematical model and switch from the real world to the mathematical world.
After that, calculations can be made in the mathematical world, and the mathematical
results have to be interpreted and validated with respect to reality.

Real-world problems are usually complex, open-ended, and authentic (Maaf}
2006). The authenticity of a problem can be determined by the presented context
or the learning environment. The present study focusses on authentic learning envi-
ronments because increasing authenticity can strengthen the relation of a problem
to the real world (Vos 2015). An example of a real-world problem is The Climbing
Frame task.

In Fig. 13.1, we present a real-world problem that can be offered to students in
the classroom. To solve a problem with missing information (also called a Fermi-
Problem), students must notice the missing information and make realistic assump-
tions, including identifying and supplementing the missing quantities (Krawitz et al.
2018). Photographs or videos can be helpful for estimating the missing information
and can make the relation between the problem and the real world more obvious.
However, real-world problems can be offered not only in the classroom but also
outside. Kleine et al. (2012) suggested that working on real-world problems outside
the classroom is more motivating than working with photographs or videos in the
classroom. A possible explanation could be that the learning environment outside
offers an authentic experience with objects in students’ environments, and students
therefore perceive that the processing of the task is more valuable.
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The Climbing Frame

How many metres of rope does the climbing
frame consist of?

Fig. 13.1 Real-world problem The Climbing Frame

Prior research investigated real-world problems outside the classroom as part of
a math trail. Math trails are out-of-classroom activities. In such a trail, students can
solve mathematical problems that refer to real objects. Students discover these real
problems in their environment as they follow a planned route (Cahyono and Ludwig
2017). This learning environment offers an authentic experience with the subject
matter (Buchholtz and Armbrust 2018). Cahyono and Ludwig (2017) showed that
students were interested in solving real-world problems along a math trail outside
the classroom with the help of the MathCityMap-App,' and a study by Buchholtz
and Armbrust (2018) revealed that students enjoyed solving real-world problems on
a math trail outside the classroom. However, to the best of our knowledge, neither
of these studies compared the effects of solving real-world problems inside versus
outside the classroom on students’ interest or emotions.

13.2.3 Research Questions

To help close this research gap, we aimed to address the following research questions:

(1) Are students who solve real-world problems outside the classroom on a math
trail more interested in solving these problems than students who solve the same
real-world problems inside the classroom?

(2) Do students who solve real-world problems outside the classroom on a math
trail feel more enjoyment and less boredom than students who solve the same
real-world problems inside the classroom?

On the basis of the importance of the learning environment for triggering students’
interest (Hidi and Renninger 2006) and results from empirical research by Cahyono

I'The MathCityMap-App is a project from the IDMI of the Goethe-University in Frankfurt. It
provides the opportunity to develop interesting tasks concerning objects in reality and to solve them
in the form of a math trail (Cahyono and Ludwig 2017).



13 Interest and Emotions While Solving Real-World Problems Inside ... 157

and Ludwig (2017), we expected that students who solved the real-world problems
outside the classroom on a math trail would be more interested in solving the prob-
lems than students who solved the same real-world problems inside the classroom.
Concerning students’ emotions and based on results from empirical research by
Buchholtz and Armbrust (2018), we expected that students who solved the real-
world problems outside the classroom on a math trail would feel more enjoyment
and less boredom than students who solved the same real-world problems inside the
classroom because solving problems outside a classroom might improve the value
of task processing, which is important for enjoyment and boredom.

13.3 Methodology

13.3.1 Participants and Procedure

To answer these research questions, 50 sixth graders [74% female, 26% male, average
age: 11.38 years (SD = 0.49)] from a German middle school took part in this study.
The students had no prior experience in solving real-world problems with missing
information. On the basis of pretest results, students from each class were randomly
assigned to two groups with the same number of students in each group such that
the average age, interest in mathematics, ratio of males and females, and average
achievement level in mathematics did not differ. The students solved six problems
that referred to their school environment in groups of four to five and were given
60 min to finish the tasks (10 min each). Afterwards, they completed a questionnaire
about their task-specific interest, enjoyment, and boredom.

The experimental group solved six real-world problems outside the classroom by
measuring directly on the object in the real-world. The MathCityMap-App is used
in the group to locate the objects in the school environment. As real-world problems
solved inside the classroom usually contain photos of the real-world object, the
control group solved the same six real-world problems inside the classroom with
photos or videos. The problems were presented to the experimental group in the
app,” whereas the control group used print-outs that were left on tables. In addition,
aphoto of the object and a hint about the size of the object were located on each table in
the classroom. The tables in the classroom were arranged in a learning circle. During
task processing, students could fall back on three staged hints. The experimental
group could access them in the app, whereas in the classrooms, they were presented
on flash cards on the different tables. After task processing, the experimental group
entered their result in the app and received direct feedback on its correctness. The
students in the classroom compared their results with the result on a flash card. Both
groups could then read one solution to the problem—the experimental group in the
app and the control group on the flash cards.

ZFor an impression of how the real-world problems were presented in the app, see https://mathci
tymap.eu/de/portal/#!/trail/891164.
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Table 13.1 Items used to assess task-specific interest, enjoyment, and boredom

Scale Item

Task-specific interest | Task processing was exciting

I am already curious about further tasks

I would like to work on such tasks more often

Enjoyment I enjoyed task processing

I was happy during task processing

Task processing was great fun for me

Boredom Task processing was boring

I got so bored during task processing that I had trouble remaining alert

I did not want to continue my work because it was so boring

13.3.2 Measures

To measure interest, enjoyment, and boredom, we used well-evaluated 5-point Likert
scales ranging from 1 (not at all true) to 5 (completely true). Interest was measured
with three self-developed items based on a well-evaluated scale used in prior studies
(Frenzel et al. 2012) (see Table 13.1). The scale for task-specific interest achieved
good reliability (Cronbach’s o« = .88). To measure enjoyment and boredom, we
used items from the well-evaluated Achievement Emotions Questionnaire (Pekrun
etal. 2011). Each scale included three items (see Table 13.1). The Cronbach’s alpha
reliabilities were 0.88 for enjoyment and 0.69 for boredom.

13.3.3 Data Analysis

To test the results for significance, we used t-tests for independent samples. We
excluded three students with missing values (two students from the experimental
group and one student from the control group) and four students with outliers (two
students from each group) to avoid distorting the results. Thus, the number of students
was reduced to N = 21 in the experimental group and to N = 22 in the control group.

13.4 Results

13.4.1 Task-Specific Interest

We expected that students who solved the six real-world problems outside the class-
room on a math trail would be more interested in the tasks than students who solved
the same problems inside the classroom. Table 13.2 presents students’ task-specific
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Table 13.2 Values. for. Location Task-specific interest
students’ task-specific interest
N M SD
Outside (EG) 21 4.25 0.92
Inside (CG) 22 4.14 0.65

interest while solving real-world problems inside and outside the classroom.

Both the experimental and control groups reported high task-specific interest. The
statistical analysis revealed that contrary to our expectations, students experienced
the same level of task-specific interest while solving the real-world problems inside
and outside the classroom (#(43) = 0.46, p = 0.646) and that the location had only
a small effect on students’ task-specific interest (dconen = 0.138).

13.4.2 Enjoyment and Boredom

For students’ enjoyment and boredom, we expected that students who solved the real-
world problems outside the classroom on a math trail would feel more enjoyment
and less boredom than students who solved the same real-world problems inside the
classroom. The descriptive statistics concerning students’ enjoyment and boredom
are presented in Table 13.3 and revealed a high level of enjoyment and low level of
boredom in both groups.

Contrary to our expectations, students’ enjoyment during task processing did not
differ between the experimental and control groups (#(48) = 0.49, p = 0.627) and the
location had only a small effect on students’ enjoyment (dcopen = 0.145). Students’
boredom during task processing did not differ between the groups either (#(47) = —
0.67, p = 0.491) and the location also had a small effect on students’ boredom (dconen
= 0.210). Hence, students experienced the same level of enjoyment and boredom
while solving real-world problems inside and outside the classroom.

Table 13.3 Values for students’ enjoyment and boredom

Location Enjoyment Boredom

N M SD M SD
Outside (EG) 21 3.99 0.94 1.40 0.45
Inside (CG) 22 3.85 0.99 1.51 0.59
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13.5 Discussion

13.5.1 Task-Specific Interest

In this chapter, we aimed to analyse how solving real-world problems outside the
classroom would affect students’ task-specific interest. On the basis of theoretical
considerations from interest theory (Hidi and Renninger 2006) and prior research
that indicated that students are interested in solving real-world problems outside
the classroom (Cahyono and Ludwig 2017), we expected that students would be
more interested in solving real-world problems outside the classroom than inside.
However, our analysis did not confirm this hypothesis. Students experienced the same
level of task-specific interest no matter whether they worked on it inside or outside
the classroom. One possible explanation for these results could be that the problems
were similar concerning their reference to objects in students’ school environment.
Although the objects were presented on photographs in the control group, students
may have perceived the problems inside the classroom as authentic problems.

13.5.2 Enjoyment and Boredom

Additionally, we aimed to analyse how solving real-world problems outside the
classroom would affect students’ enjoyment and boredom. On the basis of theoret-
ical considerations from the control-value theory of achievement emotions (Pekrun
2006) and prior research that indicated that students enjoy solving real-world prob-
lems from a math trail outside the classroom (Buchholtz and Armbrust 2018), we
expected that students who solved the problems outside the classroom would experi-
ence more enjoyment and less boredom than students who solved the problems inside
the classroom. Contrary to our expectations, our analysis revealed that students expe-
rienced the same level of enjoyment and boredom while solving real-world problems
inside and outside the classroom. Hence, our analysis did not confirm our hypoth-
esis. One possible explanation for these results could be that due to the similarity of
the problems, the two processing situations were accompanied by high control and
value appraisals. Both processing situations might be accompanied by high control
appraisals due to the staged hints and therefore the adaption of the tasks to students’
competences. High value appraisals may have been enhanced by the authentic and
realistic contexts and the significance of the problems for the students’ lives and
group work.
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13.6 Strengths and Limitations

As we aimed to investigate the effects of working on real-world problems outside
the classroom, we posed identical real-world problems with high levels of authen-
ticity in the experimental and control groups. Therefore, interest and emotions may
have been influenced by the newness of the problem type in both groups. Further,
the experimental group used digital technology, which can also influence students’
interest and emotions, whereas control group worked with print-outs in the class-
room. The reason for combining “outside” group with technology and “inside” group
with print-outs was the external validity of teaching methods and our intention about
drawing practical implications from our study. We do not think that the digital tech-
nology (MathCityMap-App) decreased the positive effects of working on the prob-
lems outside the classroom because digital technology was found to be the prevalent
source of students’ enjoyment of task processing (Cahyono and Ludwig 2017). The
real-world problems in our study were characterised by their relation to students’
school environment. However, the results have to be validated for other types of
real-world problems. In our study, students worked in small groups of four to five
students because group work was found to be preferable for solving real-world prob-
lems (Schukajlow et al. 2012). However, the clustering effects could have affected
our results because the students in each small group may have influenced each other’s
perceptions of interest and emotions. Finally, due to the small sample size, our results
have to be interpreted with caution.

13.7 Conclusion and Summary

Working on real-world problems as part of a math trail can give students the oppor-
tunity to perceive the connection between their world and mathematics. This can
offer an authentic experience with the subject matter and might thereby trigger posi-
tive emotions and interest. As interest and emotions have a high impact on students’
learning (Schukajlow et al. 2017), one of the main aims of mathematics classes should
be to foster students’ interest and positive emotions and to diminish their negative
emotions. Therefore, the aim of this work was to examine whether students are more
interested in and experience more enjoyment and less boredom while solving real-
world problems outside the classroom than students who solve the problems inside
the classroom.

Our findings can contribute to a better understanding of the role that authentic
learning environments (e.g., outside the classroom) play in the context of solving
real-world problems. Overall, our results indicate that students have high interest and
experience high enjoyment and little boredom while solving real-world problems,
whether the problems are solved outside on a math trail or inside the classroom.
We conclude that it is not the learning environment outside the classroom that is
important for the development of students’ interest and emotions. We hypothesise
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that the authentic problem type referring to students’ school environment is important
for the development of students’ interest and emotions. This hypothesis should be
investigated in future studies.
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Chapter 14 )
Learners Developing Understanding e
of Fractions via Modelling

Lindy Hearne and Dirk Wessels

Abstract Fractions are a notoriously difficult area to master. The use of a fraction
as an operator is one of the least commonly accessed sub-constructs of fractions.
We explore the use of mathematical modelling to enhance Grade 6 learners’ under-
standing of this sub-construct. Learners’ understanding improves as effective connec-
tions are made between and within their intra-mathematical and extra-mathematical
knowledge. The quality of connections made during the task differed between groups.
We conclude that learners benefit by connecting symbols and their referents and
procedures and their underlying concepts rather than focusing on the surface features
of Arabic notation.

Keywords Modelling + Understanding - Fractions - Mathematics education -
Semiotic approach

14.1 Introduction

Mathematical modelling has been developed as a vehicle for teaching mathematics
for understanding (Blum and Niss 1991). Though research into the use of modelling
in primary school mathematics has been gaining traction in the last ten years, it is
still in its early stages. Stohlmann and Albarracin (2016) recommend research on
developing, implementing, and assessing Modelling Eliciting Activities (MEAs) at
the primary school level:

For representational and conceptual competence future research can expand on the [mathe-

matical] content that has been studied. The content of ... [amongst others] fractions... can

be explored as to how modelling can enable students to develop conceptual understanding
through different representations (p. 6).
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Poor sequencing (Aliustaoglu et al. 2018; Bayaga and Bossé 2018; Newstead and
Murray 1998), unmonitored informal misconceptions about fractions (Newstead and
Murray 1998), and a limited variety of problems have been identified as reasons
children find it difficult to learn fractions (Bayaga and Bossé 2018; Newstead and
Murray 1998). Modelling allows for use of learner’s informal knowledge and enlarges
the variety of activities that learners are exposed to using their fractional knowledge.
Modelling is thus, theoretically, a viable tool for the learning of this content area.

Though fractions are one of the most important content areas in this age group
(Aliustaoglu et al. 2018), very little mathematical modelling research has been
conducted in this content area in this age group. Few MEAs have been developed
(for one such study see Shahbari and Daher 2013) in the content area of fractions.
Furthermore, though these studies have reported on the capacity of modelling to
increase conceptual understanding, there is still a theoretical gap for exploring how
that understanding comes about. “Teachers need deeper knowledge of the compre-
hension processes during the solution of reality-based tasks so that they can also
emphasize linguistic and contextual aspects and provide targeted help to students
(Leiss et al. 2019, p. 1).” During the modelling process, learners are afforded the
opportunity to make connections between their representations. In understanding
fractions, it is important that learners make connections (Hiebert 1985) between the
symbols and their referents, between the procedures and their underlying concepts,
and between solutions and their reasonableness in both the real world and in relation
to other mathematics that is known.

Mathematical modelling utilises “tasks that require an effective linkage and trans-
lation between extra-mathematical context and intra-mathematical content (Leiss
et al. 2019, p. 2)”. This requires learners to display “the ability and willingness to
perform these translation processes” (Leiss et al. 2019, p. 2), in order to be compe-
tent modellers. This translation is a pragmatic process requiring higher levels of
integration by learners.

14.2 Fractions

According to Hiebert (1985), deep learning of fractions happens at two sites, one
of form and one of understanding. Fractions in the intermediate phase in many
South African schools are taught via a developmentally graded procedural system.
This establishes a strong foundation at the site of “form”. To encourage application,
fractions have associated word problems. Few, if any, of these word problems are
non-routine and there is little or no exploratory learning. Considering the possible
interrelationship between understanding the fraction concept and solving word prob-
lems involving operations between fractions (Aliustaoglu et al. 2018), this approach
may not be optimal for establishing fractions at the site of “understanding”.
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However, some researchers recognize that contextualizing fraction learning in real-world
problems helps to demonstrate the semantic structure of fractions and leads to greater learn-
ing... a number of factors can contribute to students gaining deeper semantic understanding
of fractions. (Bayaga and Bossé 2018, p. 1)

The five main sub-constructs in fractions include part-whole, measure, ratio, oper-
ator and quotient (Aliustaoglu et al. 2018; Bayaga and Bossé 2018; Shahbari and
Daher 2013). Many important big ideas, or important concepts, are found within these
sub-constructs. For many researchers, these subconstructs form part of the semantic
boundary of fractions. That is, they are included in what fractions are collectively
understood to represent. However, the fraction as an operator, also known as multi-
plying a fraction with a natural number (Aliustaoglu et al. 2018) or finding the frac-
tion of a set (Newstead and Murray 1998), has been found to be the least commonly
accessed subconstruct of fractions (Aliustaoglu et al. 2018; Newstead and Murray
1998).

14.3 Modelling and Fractions as an Operator

If we are to utilise learner’s real-world knowledge, Modelling Eliciting Activities
(MEAs) should incorporate topics that learners are exposed to in their everyday lives.
All the learners in the class where the study reported in this chapter took place are
from a seaside town and four of them are avid surfers. The topic was thus designed to
incorporate their real-world knowledge, hoping to provide opportunities for arguing
with fractions as well as solving the sub-construct. The following Surfboards to Rent
MEA was designed:

Surfboards to rent
Mr Pieters has started a small business renting out boards at the beach. He plans
on renting out stand-up paddle boards (SUPs), long boards and surf boards. He
has a 4 x 4 with a tow hitch and has approached a business to design a trailer
to store and transport the boards. The designers can build a trailer with a rack
for a maximum of 24 boards.

Mr P has already bought the long boards and the SUPs. He knows one third
of the trailer will be filled with SUPs and a sixth will be filled with long boards.
He is currently trying to decide which smaller boards to buy.
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He’s done some research and knows that mini-mals are a good idea for
people who are new to surfing, so he’s considering three different size mini-
mals. He’s found a manufacturer, who will give him a good deal on the mini-
mals. They have sent him a table of the board lengths that are recommended
for different surfer weights. Mr P is considering the following three mini-mals:

Board (min-mal) Length Surfer weight (kg)
A 6'3" 45-64
B 6'6” 63-80
C 6'10” 80-91

Mr P obviously wants to rent out as many boards as possible. He’s come to
you for advice about which mini-mals he should buy. How many of each size
mini-mal should he buy?

In this chapter, we do not focus on the whole modelling process, as modelling in
this instance was used as a vehicle (see Mudaly and Julie 2007) to further learners’
understanding of fractions as an operator. Rather we analyse in a more atomistic
manner, focussing on mathematising as we are interested in the connections and
translations made as learners link their mathematical knowledge to their extra-
mathematical knowledge. Blomhgj and Hgjgaard Jensen (2007) concluded that “a
balance between the holistic approach and the atomistic approach is necessary when
considering the design of an entire educational programme aiming at [among other
things] developing the students’ mathematical modelling competence. Neither of the
two approaches alone is adequate (p. 137)”.

14.4 The Study

14.4.1 Data Collection

Six Grade 6 learners participated in the study. The sessions were video-taped and
audio-recorded, and written representations were collected. Audio recordings were
transcribed and mathematisation analysed according to semiotic categories.
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The study took place during the COVID-19 pandemic. The final session occurred
on the Monday just after the first cases of COVID-19 were identified in South Africa.
A graded set of problem-solving activities was presented to the learners who worked
in pairs. The pairs were randomly assigned with learners picking one of six playing
cards at the door of the classroom. Group one consisted of Alan and Ann, group two
of Byron and Brett and group three of Cam and Cindy (names have been changed to
protect learners’ privacy).

All the learners had worked with arithmetic fraction procedures, initially using
pre-partitioned drawings and then learning the Arabic procedures. The target sub-
construct, fraction of a set, has been covered formally in the classroom. All of the
subjects have learned to multiply both mixed numbers and fractions procedurally.
However, despite having completed six formal exercises and two assessments which
incorporated fractions as an operator, within their last 6 months at school, not all the
learners who participated in this study were able to solve the following problem:

There are 18 Smarties in a small box of Smarties.

(a) How many Smarties is one third of the box?
(b) How many Smarties is two thirds of the box?
(c) How many Smarties in one sixth of the box?
(d) How many Smarties in two sixths of the box?
(e) How many Smarties in four sixths of the box?

Three of the learners, Cindy, Cam and Brett solved a and b but only one of the
learners, Cam, could solve all of the parts. As 1/3 x 18 =6 and 1/6 x 18 = 3, it
was postulated that the iterative nature of the solutions to these questions increased
the cognitive load of the task contributing to the breakdown of understanding. This
sub-construct of fractions was then targeted for additional support using a modelling
approach. The rationale for a modelling approach was that increased interaction with
the same set of data, in more depth, would allow time for the learners to stabilise this
sub-construct of fractions.

The learners are familiar with problem-solving activities but are novices to more
holistic and complex real-world problems. The problem statement asked them to
give good advice to a new business owner (see Surfboards to rent above). As this
was exploratory, an implicit approach to modelling (see Schukajlow et al. 2018) was
employed. The learners were encouraged to reapply their findings to the situation
once they had solved their mathematical models.

In the session following the modelling task, learners were presented with the
problem-solving set again to ascertain stabilisation of the sub-construct.

14.4.2 Results and Analysis

All the learners initially struggled with the complexity of the problem statement.
Their problem-solving experience is usually a short problem with no superfluous
information, though they are used to some ambiguity. After some discussion, one of
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the learners, Cindy, began to utilise a strategy of circling important information, and
this was observed and adopted by the other learners.

Each of the groups approached the task utilising a predominantly different repre-
sentational modality. Group one, Alan and Ann, used a rectangular area model which
required some reconstruction as they progressed (see Fig. 14.1). This was schematic
in nature and was continually used for reasoning. Alan and Ann worked interactively
through the solution process.

Group two, Byron and Brett, started with a representation of 24 boards but aban-
doned this approach and did not reason with their numerical representation. Instead,
they predominantly used skip counting (linguistic number facts) to solve the MEA
(see Fig. 14.2). They did not work interactively but rather in parallel. Both learners
managed to find the individual quantities but were unable to expose them in relation

Fig. 14.1 Alan’s written representation



14 Learners Developing Understanding of Fractions via Modelling 171

Fig. 14.2 Brett’s written representation

to the situational model. This required intervention from the teacher to link it back
to the real situation. They then wrote each quantity above the part of the problem
statement it related to.

Group three, Cindy and Cam, used Arabic numerals to solve the MEA (see
Fig. 14.3). Cam is the expert peer who had solved the entire problem-solving
sequence. He had explained the problem-solving set using both Arabic procedures
and a schematic representation. Cam solved the MEA using what he called “reverse
simplification”. Cindy observed his writing but waited for him to complete his calcu-
lations before asking him what she should write. Though Cam showed good transla-
tion between his mathematical and real-world knowledge, Cindy did not. Once they
had discussed solving for 1/3 of the set, Cam began to help Cindy solve for 1/6 of
the set. The following interaction followed Cindy writing 1/6 = 4/24:

Cindy: Reduce it now?
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Fig. 14.3 Cindy’s written representation

Cam: No but, but you want it into twenty-four because that’s it that’s how much...
the maximum, 24 boards.

Cindy needed Cam to pinpoint each step of the Arabic procedure, telling her
where to write each Arabic numeral. She continually wanted to reduce each fraction
and was unsure of both the procedure and what it revealed. When reminded that
“everyone needs to understand”, she used the time to “learn” what to say. The arrows
on her page are a strategy to remember the mathematisation process if she was asked.

Only Alan and Ann used their real-world knowledge of surfers and surfing to
determine the quantity of each mini-mal. They discussed their findings in the light
of who would be most likely to rent the boards. They decided it would be learner
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surfers who were adults. They did, however, include some smaller boards, in case
there were families.

Group three, Cam and Cindy, initially apportioned them mathematically. 12 mini-
mals, three types, so 4 of each. They expressed frustration when asked to go back to
reason with their answer.

Cam: 4,4, 4 is the right answer. Why are you saying it can be something else?

After some discussion around what it would mean to give Mr P good advice, they
reassessed their answer. They reasoned that as long boards and SUPs are already
large boards, they would recommend predominantly smaller mini-mals so there was
a greater variety in sizes.

Group two, Brett and Byron, figured out that there would be space for 12 mini-mals
but did not make any recommendations about the number of each mini-mal.

In the follow-up lesson, only four learners participated in the problem-solving
task. One, Byron, was absent due to the looming COVID-19 pandemic. The learners
were not paired up with the same partners. Cam, who had solved the problem set in
the first lesson, completed a different modelling task.

Both Ann and Alan were able to solve the problem set correctly. They answered
the questions without discussion, writing them in Arabic notation but without calcu-
lations or a diagram. However, they were reluctant to present their solutions. The
other two participants, Brett and Cindy, from group 2 and 3, respectively, solved
all the parts of the problem set, but incorrectly. Cindy initially agreed with Brett’s
answers. After some discussion between the learners, Cindy and Brett modified their
answers, agreeing with the solutions shared by Alan and Ann.

14.4.3 Analysis

We focus on Alan and Ann’s developing understanding of fractions as an operator
afforded by their mathematising of the MEA. Alan and Ann showed effective trans-
lation between fractions, 1/3, division and their multiplication facts, showing some
connection between fractions, division and multiplication. These, it could be argued,
are the underlying concepts of the process of using fractions as an operator.

Alan: I’'m... three of those.. um.. this is hard.
Ann: 1/3, what is 24 divided by 3, that’s...8. [Alan writes 8§ x 3 = 24.]

They also made connections between their schematic representation and other
mathematics, for example:

Ann: So08.1,2,3,4,5,6,7, 8. [Ann indicating the two left columns, Alan filling
in the two rows.]
Ann: Cool, cool, we got 8 is SUPs.

They also translated between their extra-mathematical and intra-mathematical
knowledge, making connections between their representation and the real world.
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In solving for 1/6, Ann made an error in accessing her multiplication facts:

Ann: And what’s 24 divided by 6. I'm guessing it would be 3, yeah, 3.

Ann: Okay, and then 6th, what’s 6ths...3.

Alan: Wow, this is hectic, we made a breakthrough, guys. We’re getting it, just don’t
look ‘cause that’s wrong!

Ann:  Well, 24 divided by 6 is 3.

Alan: Huh!

Ann, however, responded to her partner’s check. Alan was engaged in the process
and not just following instructions.

Ann: Oh, sorry it’s just, it’s not, so it’s 4, then that means that we must put in
another 4.
Alan: Ineed teacher to help us a bit hey?

Alan was uneasy and hoped for clarification from the teacher. Ann, however,
carried on with her process, linking her other mathematics to the schematic repre-
sentation. She then utilised her results to effectively link the left over squares to
number of mini-mals.

Ann: Because we have to fill in this row. [Alan colours the row in.]
Ann: Then there’s 12 less, so that’s 12 mini-mals.

14.5 Discussion

Though both Ann and Alan have had formal instruction using fractional procedures
for over a year, they do not use Arabic notation of fractions in their mathematising.
Rather, they make sense of the problem using an area model used in an array and
their multiplication facts. As drawing a schematic diagram has been encouraged in
weekly problem-solving classes, this may indicate their implicit understanding of
the problem-solving classroom’s contract.

In generating a diagram, Ann and Alan were not immediately able to produce
the accurate array; their representation originally had three rows, for reasoning with
thirds. However, they adapted this during their mathematising and removed the final
column, after checking that there were only 24 blocks to represent the 24 boards.
Thus, their partitioning of the rectangular array required adaption. This indicates
an accessing of relative magnitude. In this dialogue, we saw Ann make several
connections between her multiplication facts and the total number of boards. She
indicated these, and Alan tracked this on their diagrammatic scheme. From there,
she made a connection between the total number of boards and the number of SUPs.
Interestingly, not all learners were able to interpret their results in this context.

When Ann accessed her number facts incorrectly, she utilised the feedback
resolving this conflict correctly. She then connected her multiplication facts more
automatically to both the total number of long boards and their diagrammatic repre-
sentation, indicating some generalisation of her process. She was able to use her
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diagram to reason, linking the left over squares back to the problem statement and
solving for the required number of mini-mals. The approach, it could be argued, may
not benefit her ability to use Arabic notation in finding a fraction of a set; but her
developing connections between important aspects of this concept are evident. This
supports the aim of modelling to connect the mathematical and extra mathematical
world.

Alan is an avid surfer. This played a role in his development of the situational
model in order to mathematise. Alan and Ann did not spontaneously apply their
findings back to the real situation. The teacher encouraged them to think about the
advice they would give Mr P, reminding them that he had come to them for advice
because he needed help choosing the boards. The task then further engaged Alan’s
knowledge base of surfing. He used his outside world knowledge to contribute to the
real-world application in order to make good recommendations as to the number of
each minimal Mr P should buy. This is evident in their reasoning for the distribution
of 2, 4, and 6 to board A, B, and C, respectively. They had a discussion around who
would hire boards, and concluded that it would be novice surfers, as most surfers
adapt to their own boards. They also utilised the knowledge that beginners need
bigger boards as they are more stable on the water.

Alan and Ann both solved with fractions and argued with fractions effectively.
Solving with fractions allowed them to make effective connections between their
mathematics using a schematic diagram and other mathematics (their linguistic
number facts). It is likely that arguing with fractions allowed them to also estab-
lish connections between the usefulness of the fraction of a set and their real world.
The modelling task made a clear difference in Alan and Ann’s ability to use the
subconstruct of the fraction as an operator. In contrast, both Cindy and Brett were
still unable to independently solve the problem-solving set.

14.6 Conclusion

Utilising an implicit modelling approach, with learners being encouraged to reassess
their answers in response to the problem statement, was effective for two of the
three groups. Though not spontaneous, learners used their knowledge to argue with
fractions, and not just solve fractions. This allowed for translation of, and connections
between, their intra-mathematical and extra-mathematical knowledge.

Use of a MEA in the content area of fractions shows various benefits to learners’
ability to solve fractions as an operator. The quality of reasoning within the modelling
task indicated the benefit to their developing understanding of fraction of a set. The
quality of engagement of an individual with the model eliciting activity played a
role in their growth of understanding. Connecting symbols and their referents and
procedures and their underlying concepts appears to be of more benefit than figurative
involvement with surface features of Arabic system (as in the case of Cindy) or with
number facts (as in the case of Brett).
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Chapter 15 )
The Historical Development e
of Mathematical Modelling
in Mathematics Curricular
Standards/Syllabi in China

Jian Huang, Xiaoli Lu, and Binyan Xu

Abstract This study investigates the historical development of mathematical
modelling(MM) in China’s curricula. It employs a qualitative text analysis approach
to analyse the mathematics curricular syllabi/standards (MCSs) at primary, middle
and high school levels in China. It was found that (1) the term “modelling” was not
seen in the MCSs before 1996, but the MM thinking rooted in “solving real-world
problems” has been in existence for a long time; (2) the MM cycle has developed from
a four-step cycle to a seven-step cycle which is consistent with the cycles described
in international literature; (3) the MCSs for high school have more requirements for
students than those for middle school, but they both lack requirements in students’
affective aspects; (4) the 2017 edition of the high school mathematics curricular stan-
dard puts more emphasis on the connection between the mathematical world and the
real world than the 2013 edition.

Keywords Mathematical modelling + Curricular syllabi - Standards - Qualitative
text analysis + China - Modelling cycle

15.1 Theory

15.1.1 Different Perspectives on Mathematical Modelling

Mathematical modelling(MM) has been central to mathematical education during
the last 40 years. Though there is no consistently accepted definition, the under-
standing of what modelling entails will not vary greatly from field to field (Blum
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et al. 2007; Lesh and Fennewald 2010). Modelling is viewed as the link between the
“two faces” of mathematics, namely its grounding in reality, and the development of
abstract formal structures (Greer 1997).

When considered as a mapping process from the real world to the mathemat-
ical world, MM has a typical four-step cycle (See Fig. 15.1a). However, by paying
attention to the changes in the psychological state of participants in the process of
MM, Blum proposed a five-step cycle (Maall 2006). Furthermore, by subdividing
the objective existence form and subjective understanding form of the real situation
into two states, we get the seven-step cycle proposed by Blum and Leif3 (2007) (see
Fig. 15.1b). In this cycle, the modelling process consists of six states and seven
stages.

MM research in the field of education has gradually displayed many different
international perspectives. Kaiser (2017) categorizes the latest perspectives on MM
in schools. She includes: realistic or applied modelling (e.g. Kaiser and Schwarz
20006), epistemological or theoretical modelling (e.g. Garcia et al. 2006), educa-
tional modelling (e.g. Blum 2011), contextual modelling or model eliciting perspec-
tive (e.g. Kaiser 2014), socio-critical and socio-cultural modelling (e.g. Barbosa
2006) and cognitive modelling as metaperspective (e.g. Stillman 2011). Proponents
of realistic or applied modelling emphasize pragmatism and believe that the purpose
of modelling is to apply mathematics rather than to develop mathematics. Educa-
tional modelling comprises two facets: (1) didactical modelling and (2) conceptual
modelling. Didactical modelling emphasizes that students’ focus should be on devel-
oping various modelling competencies, while conceptual modelling followers believe
that the teaching of modelling should serve the learning of mathematical concepts.
Cognitive modelling as a metaperspective is more concerned with the changes in
cognition and emotion that occur in the students’ MM processes.

15.1.2 Mathematical Modelling of Curricular Standards
in Different Countries

There have been attempts during at least the last four decades to attribute a sizable
place and role to models and modelling in different mathematics curricula and in
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different contexts of teaching and learning (Niss 2012). Modelling competencies
play an essential role in many national curricula, showing the relevance of MM at
a broad international level (Kaiser 2014). The German mathematics education stan-
dards issued at the end of 2003 named MM ability as one of the six major mathemat-
ical abilities that students should develop. In 2010, the Common Core State Standards
for Mathematics issued by the USA regard MM as a route to solve problems. MM
was listed as a basic mathematical activity in the draft opinions on high school MCSs
issued by the Australian Curriculum, Assessment and Reporting Authority in 2010.
The current Swedish curriculum standards state that one of the aims of education is to
develop students’ ability to design and use mathematical models and critically eval-
uate conditions, opportunities and limitations of different models (Arlebick 2009).
In the newly issued national curricular standards for high school mathematics in
China, MM has been recognized as one of the six core competencies students should
develop during school mathematics (MOE 2018). When compared to Western coun-
tries such as Germany and the USA however, there is little information on the state
of MM in China. Both theoretical and empirical studies are needed.

Using the seven-step modelling cycle as a basis, this study defines MM as: “Under-
standing and building a real model in the face of a real situation, translating the real
model into a mathematical problem, building a mathematical model and solving the
mathematical problem using mathematical methods, then interpreting and checking
the mathematical solutions according to the real situation, and finally validating the
rationality of the model (Xu 2013)”.

What then is the course of development of “mathematical modelling” in Chinese
mathematics curricular standards? Specifically, we investigated the research ques-
tions: how is mathematical modelling described and what is required in the math-
ematical modelling process from the curricular standards of mathematics in China
from 1902 to 2018?

15.2 Method

15.2.1 Research Objects

The curricular documents analysed are mathematics curricular syllabi/standards
(MCSs) in China from 1902 to 2018. There are 24 primary mathematics syllabi and 43
secondary mathematics syllabi, published in Mathematics Volume of the Collection
of Primary and Secondary Curricular Standards/Syllabi in 20th Century in China,
from 1902 to 2000. Since 2000, there have been four national MCSs, two for Grade
1 to Grade 9 students (compulsory school)—2001 version and 2011 version, and the
other two for Grade 10 to Grade 12 students (senior high school)—2003 version and
2017 version. In sum, there are 71 MCSs (Table 15.1).
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Table 15.1 Research objects

Year Text Code Pages

1902-2000 | Mathematics Volume of the Collection of Primary and 685
Secondary Curricular Standards/Syllabi in 20th Century
in China

2001 Mathematics curriculum standards for full-time “01 Compulsory” | 102
compulsory education (Experimental version)

2003 High school mathematics curriculum standards “03 High School” | 122
(Experimental version)

2011 Mathematics curriculum standards for compulsory “11 Compulsory” | 132
education (2011 Edition)

2018 High school mathematics curriculum standards (2017 | “17 High School” | 180
Edition)

15.2.2 Qualitative Text Analysis

The main research method is text analysis. Kuckartz (2014) divided coded text anal-
ysis into three categories: thematic qualitative text analysis which focuses on iden-
tifying, systematizing and analysing topics and sub-topics and how they are related;
evaluative qualitative text analysis which involves assessing, classifying and evalu-
ating content; and type-building text analysis which aims to differentiate rather than
develop a general theory. In order to get closer to the specific meaning of the text,
the coding process mainly adopts the thematic qualitative text analysis method.

15.2.2.1 Text Filtering

First, we screened all texts, sorted out and recorded the relevant paragraphs. A require-
ment for inclusion was that the extracted paragraphs contain the terms “model”
(mo-xing) or “modelling” (jian-mo). We then checked that the paragraphs from the
two researchers complemented each other, and finally, we made sure that no para-
graphs related to MM in the texts were missed. After that, the excerpts were filtered
twice: firstly, the paragraphs from the appendix section of the syllabus were removed,;
secondly, we removed any paragraphs that did not conform to MM definitions. In
these paragraphs, models did not refer to MM but rather to geometric or physical
objects. For instance, the text mentioning “geometric object model (cube or cuboid)”
in the 1952 syllabus was not included. Finally, we found 128 paragraphs that met the
requirements to be encoded. The coding framework was constructed by combining
inductive and deductive methods.
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15.2.2.2 Coding and Analysis

The first step was developing the main thematic categories and performing the first
coding process. Using the “two faces” of MM, two major topics of “mathematics and
modelling” and “reality and modelling” were determined. The former uses mathe-
matics to do something and the latter connects mathematics with reality. In addi-
tion, it is important to include emotions in research on the teaching and learning of
modelling, but there is a significant lack of papers that investigated emotions (Cai
and Xu 2016; Schukajlow et al. 2018). Based on this, we regard “emotional attitude”
as the third topic. Two researchers conducted a first-step double-blind coding of all
data according to these three main topics, with consistency of more than 95% (Xu
and Zhang 2005).

The second step was further developing the main thematic categories and
performing the coding process. Fifty per cent of the data under each main topic
was randomly selected for preliminary classification. The two researchers then used
induction to code the selected data back to back. The final coding system is shown
in Table 15.2.

The MCSs emphasize two functions of mathematical knowledge in MM. These
fall under the main thematic category “mathematics and modelling” and include
two categories: (1) applying knowledge to a model or modelling and (2) applying
knowledge during model solving. The former emphasizes the role of mathematical
knowledge in MM, while the latter emphasizes the role of mathematical knowledge in
the model solving process. In addition, the concept of using MM activities to promote
the understanding and learning of mathematical knowledge is also mentioned in the
MCSs. Thus, under this topic, three secondary codes were obtained.

Under the thematic category “reality and modelling”, the description in the
paragraphs has a good correspondence with the steps described in the seven-step
modelling cycle. We therefore constructed four secondary codes according to the
seven modelling steps of Blum. These excluded the steps of modelling and mathe-
matical solving, and they fall under another main thematic category. We combined
interpreting and validating, encoding these as one secondary category. In addition,
we found many expressions similar to “use of modelling ideas to solve practical
problems”, which we categorized as “solve practical problems”.

For the eight sub-categories coded in the first two topics, only two codes are not
included in the seven-step cycle. These are “promoting mathematical learning” and
“solve practical problems”, which reflect the idea of teaching and learning MM in
the curriculum.

The sub-categories under the topic of “emotional attitude” were directly encoded
by the inductive classification method to obtain “increase interest” and “improve
attitude”.

The third step was to code all of the data according to the elaborate category
system. Two researchers coded all the paragraphs in a double-blind fashion. The
consistency of this two-person coding was more than 90%. Where there were differ-
ences, the two coders reached consensus by discussion. The final total number of
codes is shown in Table 15.3.
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Table 15.2 Coding system

J. Huang et al.

Category

Code

Description

Example (translated
texts)

C1: Mathematics
and modelling

C11: Mathematical
models

Using existing
mathematical models or
using mathematical
knowledge to build
mathematical models

Using these functions
to develop models;
selecting proper
function models;
constructing models

C12: Mathematical
solving

Using mathematical
knowledge to get a
solution

Solving the models;
calculating and
getting the solution

C13: Promoting
mathematical learning

Enhancing the
understanding of
mathematical
knowledge, acquisition
of skills, et cetera

Developing
mathematical
knowledge; acquiring
necessary knowledge
and skills (through
modelling)

C2: Reality and
modelling

C21: Understanding

Understanding the real
problems

Finding proper
objects to study from
a mathematical
perspective

C22:
Simplifying/Structuring

The given real problem
is simplified in order to
build a real model or
posing mathematical
problems

Expressing the
problem with
mathematical
language; translating
to mathematical
problems;
mathematizing

C23:
Interpreting/Validating

Interpreting the
mathematical results and
validating

Improving the model;
verifying the
solutions (in real
situation); reflecting
on the modelling

C24: Apply it to practice

Further apply the model
results to the actual

Interpretation and
application;
explaining economic
phenomenon

C25: Solve practical
problems

Use of modelling ideas
to solve practical
problems

Dealing with realistic
problems; solving
real-world problems

C3: Emotional
attitude

C31: Increase interest

Conducive to the
improvement of interest

Inspiring students’
interest in learning
mathematics

(continued)
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Table 15.2 (continued)

Category Code Description Example (translated
texts)
C32: Improve attitude Improve students’ views | Gaining good
on mathematics experience in affect;

feeling the value of
the application of
mathematical theory

Table 15.3 Number of codes

Curriculum Number of codes | Curriculum Number of codes
Before 1996 0 2001 compulsory education 18
1996 senior high school |4 2003 senior high school 114
2000 junior high school |4 2011 compulsory education 18
2000 senior high school |5 2017 senior high school 147

15.3 Results

15.3.1 Evolution of Mathematical Modelling

The terms “mathematical modelling” and “mathematical model” have not been in
the Chinese MCSs for long (see Table 15.3). The latest high school curriculum
(1996), Full-time general high school mathematics syllabus (for trial use), changed
the sentence “... make students better understand and master knowledge, learn to use
mathematics knowledge to solve simple real-world problems” (p. 605) found in the
previous edition of the syllabus to “... make students better master the basic knowl-
edge, enhance the awareness of using mathematics and be able to use mathematical
model to solve some real-world problems” (p. 644). This shows the evolution of MM
from the long-standing “solving [of] real-world problems”.

Before 2000 (1996-2000), MM seldom appeared in the syllabi and was not clearly
defined, but the description of its process had initially been formed. When compared
to the four-step cycle, it contained the process “convert real problems into mathemat-
ical models and then solve to get mathematical results”, but neither “interpreting”
nor “validating”. In the twenty-first century (2001-2017), the incomplete four-step
cycle is gradually moving towards a seven-step cycle.

“01 Compulsory” further developed the MM process, pointing out that students
should be allowed the experience of “abstract[ing] the real-world problem into a
mathematical model and then explaining and applying it” (MOE 2001, p. 61). The
MM process at this point already included “interpretation, application and extension”,
but lacked the “validating” step. “03 High School” promulgated in 2003 highlighted
the importance of cultivating MM capabilities. In terms of the number of codes,
there are 114 codes in “03 High School”, which is almost 100 more than those in the
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previous version. From the text itself, “03 High School” gave the framework diagram
of the MM process for the first time (Fig. 15.2). The diagram is a complete MM
cycle and is in line with the five-step cycle (with “problem posing” and “validating”
being added).

In the “11 Compulsory”, “model thinking” became one of the ten key terms (MOE
2012, p. 5). The MM process described in the “11 Compulsory” conformed to the
framework diagram given by “03 High School”. The description of the MM process
in the newly issued “17 High School” was upgraded from a five-step cycle to seven-
step cycle. It describes the process of MM as “discover problems in realistic situa-
tions from a mathematical perspective, pose problems, analyse problems, construct
models, determine parameters, calculate and solve, verify results, improve models
and finally solve the realistic problems” (MOE 2018, p. 35). In comparison to “03
High School”, the transition process from the real situation to model construction
has become clear and complete. In particular, the process of “finding problems from
a mathematical perspective” corresponds to developing a “situation model” in the
seven-step modelling cycle.

15.3.2 Requirements of Mathematical Modelling

15.3.2.1 Comparison Between High School and Compulsory Education

When comparing the coding data of high schools (“03 High School” and “17 High
School”) in MCSs since the twenty-first century with the coding data of compulsory
education developed for Grades 1-9 (“01 Compulsory” and “11 Compulsory™), it
can be seen that the number of codes in high schools is much higher than those
of compulsory education (see Fig. 15.3). MM is mentioned more frequently in the
MCSs of high schools, and the corresponding teaching requirements are higher.
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Fig. 15.3 Data comparison between high school and compulsory education

The same conclusion can be drawn from specific texts. Throughout the two MCSs
of compulsory education, the low requirements for MM can be seen by their descrip-
tions in terms such as “experiencing” and “realizing”. “01 Compulsory” requires
that students “experience the process of abstracting a real problem into mathematical
models, interpreting and applying them...” (MOE 2001, p. 1). Although “11 Compul-
sory” emphasizes model thinking, it is not listed as the most important training goal.
Students are only required to “experience model thinking”.

The high school MCSs for MM requirements are more stringent. “03 High School”
requires students to “propose ways to solve problems, establish proper mathemat-
ical models and then try to solve the problems” (MOE 2003, p. 88-89). “17 High
School” specifies the teaching objectives of MM, requiring that “through learning
high school mathematics, students can express the real-world consciously with math-
ematical language, discover and propose problems, make sense of the connections
between mathematics and reality, learn how to use mathematical models to solve real
problems...” (MOE 2018, pp. 5-6).

15.3.2.2 Comparison of Two Versions of Curricular Standards in High
School

The requirements for MM in the Chinese MCSs are mainly placed in the high school
segment, so are there any differences in the descriptions in the two versions of the
high school curriculum standards? When comparing the coded data (Fig. 15.4), it is
obvious that the prevalence of the three major topics is significantly different. Under
the topic of “mathematics and modelling”, there is little difference in the number of
codes found between the two. Under the topic of “reality and modelling”, the number
of “17 High Schools” is significantly higher than that of “03 High School”, but under
the topic of “emotional attitude”, “03 High School” has more codes.

Looking at the codes in the high school curricula, it is apparent that there are fewer
affective aspects included in the “17 High School”. The number of affective codes
decreased from 23 in the previous version to 8. This is probably because affect and
attitudes were one of the three basic curricular ideas of the 2003 version. The previous
version proposes a three-dimensional teaching goal as its basis namely “knowledge
and skills”, “processes and methods” and “emotional attitudes and values”. As a
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result, almost every “03 High School” curricular requirement is connected with
affect and attitudes. In contrast, “17 High School” emphasizes six core mathematical
competencies, and affect is not one of these. There are, therefore, fewer descriptions
of affective aspects and a greater focus on MM competencies, especially on reality
and modelling. The prevalence of codes under the category reality and modelling
has increased significantly to 89 (in the 2017 version) from 40 (in the 2003 version).
This is consistent with its curricular idea which emphasizes the connections between
mathematics and reality.

15.4 Discussion

Throughout history Chinese mathematics education has a cultural background
strongly highlighting practicality. The core problems in ancient Chinese mathemat-
ical works are a variety of “shu (/K)” (i.e. give a general solution to a certain type
of problem).“Shu” is a mathematical model. In MCSs, the 1923 syllabus requires
students to learn to “solve real problems in their own life”; the 1951 syllabus
more specifically proposes to “train students to use mathematics familiarly to solve
various real problems in daily life”. The Chinese perspective on MM would thus be
the pragmatist view. China introduced the term “modelling” in 1996, conforming
internationally and continuing the tradition of Chinese mathematics education.

The findings of this chapter have the following implications for understanding
MM in the intended MCSs in China: (1) MM seems to be more demanding in the
curriculum for high school mathematics than for middle school mathematics, (2)
the characteristics of connections with reality of MM have been recognized and the
curriculum emphasizes mathematical foundations in the promotion of MM and (3)
affective aspects, such as students’ interest, are no longer prioritized. These charac-
teristics are consistent with the common understanding of mathematics education in
China, well recognized for its emphases on the mathematical contents and students’
performance rather than their interest in learning (e.g. Leung 2001).

The description of MM in Chinese MCSs is biased towards the “realistic or applied
modelling” perspective similar to Kaiser and Schwarz (2006). It emphasizes MM as
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important in applying mathematical knowledge, and the coding data also supports this
view. The MCSs, however, do not pay enough attention to the function of MM “pro-
moting mathematical learning”. “Conceptual modelling” needs to be emphasized in
future practice (cf. Blum 2011).

In recent years, MCSs for MM have become more and more demanding. The
“interpreting” and “validating” steps in the modelling cycle, however, need more
attention compared with Kaiser (2007). Analysis of Chinese MM education high-
lights the need for comprehensive development of all aspects of MM. This study has
focused on the intended mathematics curriculum. Further research is needed to gain
insight into the state of MM in the enacted mathematical curriculum in China.
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Chapter 16 )
Pictures in Modelling Problems: Does oo
Numerical Information Make

a Difference?

Marcus Schmitz and Stanislaw Schukajlow

Abstract Pictures are an important part of everyday life, and they often accom-
pany modelling tasks. However, we do not know much about the role of pictures
in modelling. To address this research gap, we randomly assigned students to three
groups. In the experimental groups, in addition to the text, the problems included
useful or superfluous numerical information in pictures, whereas the pictures that
went with the problems in the control group did not include any numerical infor-
mation. We assessed the picture-specific utility value and modelling performance of
110 students in upper secondary school. The picture-specific utility value reflects the
perceived usefulness of a picture for understanding the problem. Students assigned
a lower utility value to the pictures that contained additional superfluous numer-
ical information. However, we did not find differences in the students’ modelling
performance.

Keywords Pictures + Cognitive load theory (CLT) + Text-picture comprehension *
Utility value

16.1 Introduction

Improving students’ ability to solve real-world problems by using mathematics is
an important goal of mathematics education; thus, modelling competence is part of
school curricula all over the world (Niss et al. 2007). In order to strengthen the extent
to which modelling problems are linked to the real world, modelling problems often
include pictures. In addition, being able to deal with the combination of pictures
and text is important for professional and everyday life. Despite the importance of

M. Schmitz (X)) - S. Schukajlow
Department of Mathematics, University of Miinster, Apffelstaedtstr. 19, 48149 Miinster, Germany
e-mail: schmitz.marcus @uni-muenster.de

S. Schukajlow
e-mail: schukajlow @uni-muenster.de

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021 189
F. K. S. Leung et al. (eds.), Mathematical Modelling Education in East and West,

International Perspectives on the Teaching and Learning of Mathematical Modelling,
https://doi.org/10.1007/978-3-030-66996-6_16


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66996-6_16&domain=pdf
mailto:schmitz.marcus@uni-muenster.de
mailto:schukajlow@uni-muenster.de
https://doi.org/10.1007/978-3-030-66996-6_16

190 M. Schmitz and S. Schukajlow

pictures for modelling, there is a large deficit in research on the effects of pictures in
modelling tasks and on the processing of tasks that include pictures.

Multimedia theories such as the integrated model of text and picture compre-
hension (Schnotz 2014) have suggested that text—picture design influences mental
processing and learning effects. One prerequisite for supporting students’ under-
standing of problems is that the students notice the usefulness of pictures that accom-
pany the problems. Prior studies have yielded inconsistent results concerning whether
students perceive pictures as useful while solving real-world problems (Bockmann
and Schukajlow 2018; Dewolf et al. 2015). Moreover, we did not find any research on
the effects of different types of numerical information in pictures on the usefulness
of pictures or mathematical performance.

On the basis of these considerations, we aimed to gain more knowledge about the
role of additional numerical information in pictures on modelling performance and
the perceived usefulness of additional numerical information for understanding the
task. When we refer to ‘additional numerical information’ in this study, we mean
additional drawn information contained in pictures that is also described in the text.
For example, this additional numerical information may refer to distances with the
given length drawn in the picture.

16.2 Theoretical Framework

16.2.1 Pictures in Modelling Problems

At the core of mathematical modelling, there is a demanding process by which
information must be translated between the real world and mathematics. There are
several activities that are part of the solution process that are often described in a
cycle that begins with the student’s understanding of the real-world situation and
ends with the validation of the results (e.g. Blum and Leif3 2007). More specifically,
students need to construct a model of the situation that they will then simplify and
idealise before constructing a mathematical model. At the end of the solution process,
students need to interpret and validate their results.

In order to strengthen the extent to which modelling problems are linked to the
real world, modelling tasks that are presented in the classroom should, and often
do, include text and pictures. We assume that pictures can support certain modelling
activities and thus influence students’ modelling performance. For example, certain
pictures can be particularly helpful for understanding and creating a model of the situ-
ation. The extraction of the necessary information from the text represents a potential
barrier for students when they solve modelling tasks. Furthermore, superfluous infor-
mation in the text increases the difficulty of the task. Pictures can potentially help
students organise information, simplify the situational model, and mathematise the
information.



16  Pictures in Modelling Problems. Does Numerical Information ... 191

Kite

Lucas got a new kite as a birthday present. The kite ?
is 1m in length and 50cm in width. Lucas flies the g
kite with his friend Susan (see picture). They are === o
standing at a distance of 80m from each other. The "’-‘*’*‘f&hﬁ*—;gﬁ._ —
kite‘s string has a length of 100m. Susan is right .. _ : = -
under the kite and 20m from the sea. i —"';»..B_rﬁ —

How high is the kite flying at this moment? . e

Fig. 16.1 Kite Task with no additional numerical information in the picture

Pictures used in combination with text can serve different functions. Elia and
Philippou (2004) developed a taxonomy of pictures for problem solving. There are
decorative pictures that are irrelevant to the contents of the corresponding text. The
picture does not refer to events or information in the text. Pictures with a repre-
sentational function “represent the whole or a part of the content of the problem”
(Elia and Philippou 2004, p. 328). Informational pictures present information that
is essential for solving the modelling problem. All pictures used in this study have a
representational function. In our study, we used photos as the pictures because they
are closely connected to reality. Such realistic pictures are two-dimensional simula-
tions of objects from a specific perspective with a great deal of potential to support
mental model construction (Schnotz and Cade 2014). Figure 16.1 shows an example
of a modelling task used in our study.

Comprehension of the Kite Task results in a model of the situation that includes
Lucas and Susan, a kite, a piece of string, and the positions of the two people and
the kite. To calculate the desired height of the kite, students can use the Pythagorean
theorem and add an estimate of Lucas’ height. The picture in the task can help
the problem-solver organize the information and construct a model of the situation.
In the modelling process, the picture can be used as an easily accessible external
representation of the situation.

16.2.2 Text and Picture Comprehension

Several studies have shown that students generally learn more deeply from text when
it is combined with pictures than from text alone (Mayer 2005). Models such as the
cognitive theory of multimedia learning (Mayer 2005) or the integrated model of text
and picture comprehension (Schnotz 2014) describe this positive multimedia effect.
They assume that a multimedia effect occurs only under certain conditions. One
assumption is that the text and the picture can only be processed into a joint mental
model if they are closely semantically connected. This conforms to the coherence
condition. According to the contiguity condition, the text and the picture can only
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contribute to the construction of a joint mental model if they are presented closely
together in space or time.

Furthermore, in multimedia theories, working memory plays a central role and
determines to a large extent whether the multimedia presentation leads to a posi-
tive learning effect through the optimal use of working memory or whether it
hinders learning through overloading. The cognitive load theory (CLT) (Sweller
1994) describes the different loads on working memory. It is integrated in multi-
media theories and builds the basis for the effectiveness of design of pictures (Mayer
2005). CTL distinguishes between the cognitive structures in long-term and working
memory. Long-term memory can store large amounts of information in schemas.
Schemas refer to cognitive structures that incorporate multiple elements into a single
element with a specific function. Schemas can be retrieved from long-term memory
into limited working memory in which all conscious cognitive processing occurs.
Thus, working memory can perform complex cognitive activities despite its limited
capacity by retrieving these schemas. CLT therefore represents learning as the process
of acquiring schemas.

According to CLT, there are three types of cognitive load on working memory
that occur during the processing of new and already stored information: intrinsic,
extraneous and germane cognitive load. Intrinsic load describes the load on working
memory caused by the complexity and difficulty of the learning content. Intrinsic
load is characterised by the number of interacting learning elements kept in working
memory for processing. The amount of load depends on the learners’ individual level
of expertise since the number of processed elements depends on the schemas stored
in long-term memory. Thus, all instruction has an inherent difficulty associated with
it, and this inherent difficulty, which produces intrinsic load, cannot be altered by an
instructor.

The manner in which learning material is designed can also produce cognitive
load. When such load is unnecessary and thereby interferes with building schemas,
it is referred to as extraneous load. Thus, extraneous cognitive load is generated by
the manner in which information is presented to learners and is under the control of
instructional design.

The third source of cognitive load is germane cognitive load. Whereas extraneous
cognitive load interferes with learning, germane cognitive load enhances learning. So
germane load is related to information and activities that foster processes of schema
construction and automation. Thus, when pictures support modelling activities such
as understanding or structuring, they produce germane cognitive load.

A central assumption of CLT is that the three types of cognitive load can be accu-
mulated into the total cognitive load. If this total cognitive load exceeds the capacities
of working memory, learning cannot occur (Sweller 1994). This hypothesis is only
valid if the intrinsic load is sufficiently complex. A high intrinsic load combined with
a high extraneous load can lead to an overload of working memory resources and
prevent germane load. However, if the learning content (intrinsic load) is very low,
an unfavorable design style (extraneous load) will not lead to an overload of working
memory. These ideas must be considered when designing learning material and are
therefore also important for the use of pictures in modelling tasks.
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16.2.3 Picture-Specific Utility Value

The expectancy-value theory links expectancies and personal values and describes
utility (or extrinsic) value as one of four components of values that influence task
performance, task choice and motivation (Eccles 1983). A task’s utility value refers
to the importance of a task or its parts (e.g. pictures) for extrinsic indicators of success
such as an accurate solution, grades, or career. In this study, we analysed utility value
of pictures for understanding modelling problems. We investigated different types
of pictures and the picture-specific utility value to determine whether the pictures
facilitated students’ understanding of the modelling problems and thus supported the
solution process.

A positive relation between values and students’ performance was confirmed
for problems with and without a connection to reality (Schukajlow 2017). Further,
students usually realise that decorative pictures are less helpful for understanding and
solving problems than pictures with representative or essential functions (Bockmann
and Schukajlow 2018). Otherwise, students often do not use information from repre-
sentative pictures in problems (Dewolf et al. 2015) or essential pictures in arithmetic
word problems (Elia and Philippou 2004) for their solution process.

The extent to which additional numerical information in pictures influences
picture-specific utility value or modelling performance has not yet been investigated,
and thus, we aimed to address this research gap in the present study.

16.2.4 Research Questions

We conducted this study to address the following research questions:

(1) How do students rate the utility value of representative pictures that contain
additional useful or superfluous numerical information?

(2) How does additional useful or superfluous numerical information in represen-
tative pictures affect students’ modelling performance?

Prior research has shown that students rate the utility value of representative
pictures higher than pictures with a decorative function. Thus, we expected that
students would assign a higher utility value to pictures with additional useful numer-
ical information and would assign a lower utility value to pictures with additional
superfluous numerical information than to pictures with no additional numerical
information.

The integrated model of text and picture comprehension (Schnotz 2014) describes
the concept that the positive multimedia effect depends on the text—picture design.
We expected that pictures with additional useful numerical information would result
in higher modelling performance and pictures with additional superfluous numerical
information would result in lower modelling performance compared with pictures
without additional information.
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16.3 Method

16.3.1 Design

One hunderd and ten students from five upper secondary schools in Grades 9 and
10 (mean age = 15.26, SD = 0.89; 47.8% female) participated in the study. The
students in each class were randomly assigned to one of three groups: a control
group with no additional numerical information in the pictures (CG), an experimental
group with additional useful numerical information in the pictures (EG-U), and an
experimental group with additional superfluous numerical information in the pictures
(EG-S). Students first estimated the picture-specific utility value for understanding
problems that described six modelling tasks in a questionnaire. The instructions in the
questionnaire were: ‘Read each problem carefully and then answer some questions.
You do not have to solve the problems!” Then students read each problem and
answered the question about utility value. After completing the questionnaire, the
students solved the tasks.

In the present study, we used six modelling problems on the topic of the
Pythagorean theorem. The tasks were developed and tested in prior studies (Bock-
mann and Schukajlow 2018; Schukajlow 2017). Unlike in the prior studies, all tasks
included representational pictures in all three groups. The pictures used in this study
represent visually key mathematical elements of the situation (e.g. spatial geomet-
rical structure). In this study, the pictures representing the tasks differed across the
three groups in the additional numerical information given in them. In the experi-
mental groups, in addition to the text, the problems included useful or superfluous
numerical information in the pictures, whereas for the control group, the pictures
that accompanied the problems did not include any additional numerical informa-
tion. The pictures from a sample problem (i.e. the Kife Task) with three different
types of additional numerical information are shown in Fig. 16.2.

[ no additional numerical ‘ [ additional useful numerical ‘ [ additional superfluous

information (CG) information (EG-U) numerical inf tion (EG-S)

Fig. 16.2 Different pictures of the Kife Task with no additional numerical information (CG),
additional useful numerical information (EG-U) and additional superfluous numerical information
(EG-S)
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16.3.2 Utility Value

To measure the utility value of pictures with different kinds of additional numerical
information for each modelling problem, we used the statement ‘The picture helps
me to understand the problem’. The students rated the item on a five-point Likert
scale (1 = not at all true; 5 = completely true). Cronbach’s alpha as a measure of
reliability for the picture-specific utility value was satisfactory (0.73).

16.3.3 Modelling Performance

To assess students’ modelling performance, we estimated the accuracy of their solu-
tions to the problems on a three-point scale. Students achieved O points for a task if
they used an incorrect mathematical model. If students used a partially accurate math-
ematical model, they received 1 point. Students received 2 points for their modelling
performance if their mathematical model was completely accurate. Figure 16.3 shows
an exemplary solution for the Kite Task that received a score of 2 points. After calcu-
lating the leg, the student added 1.65 m because of the height of Lucas who is holding
the kite. This is why we gave the solution 2 points for modelling performance.

To test the inter-rater reliability of the codingprocedure, more than 15% of the
solutions were coded by two members of the research team. The inter-rater reliability
resulted in a good match between the two coders (Cohen’s Kappa = 0.98).

16.4 Results

The comparison of school grades in mathematics with an ANOVA indicated that
the experimental groups and the control group did not differ in their mathematical
abilities, F(2, 105) = 1.57, p = 0.212. To compare the groups, we calculated arith-
metic means for utility value and modelling. A one-way ANOVA with a post-hoc
Bonferroni correction was used to analyse group differences.

Lisung: I(-;’l'\' K'S\-‘j - H:L
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Fig. 16.3 Exemplary student solution for the kite task with 2 points for modelling performance
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Table 16.1 Means and standard deviations for picture-specific utility value

Additional numerical information in pictures
Superfluous (EG-S) Useful (EG-U) None (CG)
3.03 (0.70) 3.65 (0.59) 3.5(0.73)

16.4.1 Picture-Specific Utility Value

To answer the first research question, we compared the utility value for the students
who rated the pictures that contained additional superfluous numerical information
(EG-S), additional useful numerical information (EG-U), and no additional numer-
ical information (CG). Table 16.1 shows that the utility value means differed across
the three groups.

As expected, students gave the lowest utility value ratings to the pictures that
contained superfluous additional numerical information and the highest to the
pictures that contained useful additional numerical information. There were signifi-
cant differences in picture-specific utility value between the three groups, F(2, 107)
= 8.41, p < 0.001. A post-hoc analysis using a t-test confirmed significant differ-
ences between the EG-S and CG (¢#(71) = 2.83, p = 0.006, d = 0.66) and between
the EG-U and EG-S, #(71) = 4.11, p < 0.001, d = 0.96. No significant difference
was found between the EG-U and CG, #(72) = —0.97, p = 0.337, d = 0.23.

16.4.2 Modelling Performance

The second research question referred to the comparison of modelling performance
in the three groups. Table 16.2 shows that the means and standard deviations of the
modelling performance scores differed across the three groups.

In contrast to our expectations, students’ modelling performance in the EG-S and
EG-U was close to each other and slightly higher than in the control group. The
ANOVA showed that there was no statistically significant difference in the three
groups’ modelling performances, F(2, 105) = 1.43, p = 0.244.

Table 16.2 Means and standard deviations for modelling performance

Additional numerical information in pictures
Superfluous (EG-S) Useful (EG-U) None (CG)
6.30 (2.57) 5.97 (2.24) 5.02 (3.05)
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16.5 Discussion

16.5.1 Additional Useful Numerical Information

According to the integrated model of text and picture comprehension (Schnotz2014),
the conditions needed to create a positive multimedia effect are that the text and
the picture are semantically connected to each. In this study, we expected that the
coherence between the text and the picture and thus the picture-specific utility value
would be higher in the EG-U and that a stronger multimedia effect would increase the
modelling performance results. However, against our expectations, students assigned
similar utility value to the pictures that contained additional useful numerical infor-
mation (EG-U) and the pictures that did not contain additional numerical informa-
tion (CG) with respect to understanding the task. A similar finding was revealed for
modelling performance. One reason for these results might be that the difference
in coherence of text and pictures between the EG-U and the control group was too
small in our study.

16.5.2 Additional Superfluous Numerical Information

In line with our expectations, the EG-S showed the lowest utility value in this study.
Furthermore, we expected that the additional superfluous information in the picture
would increase the extraneous cognitive load and overload working memory for some
students and decrease their modelling performance. Contrary to what we expected,
the EG-S showed the highest modelling performance, even though it did not differ
significantly from the other groups.

It is possible that the superfluous information may have led the students to study
the pictures more intensively, thereby supporting their overall understanding of the
situation. According to this view, recognising that the information was superfluous
would be an example of one kind of cognitive load required to understand the learning
material. Thus, the pictures that contained the additional superfluous information
would result in an increased germane cognitive load, which could have a positive
effect on learning and would explain the slight increase in modelling performance
in the EG-S.

16.5.3 Overall Discussion and Implications

The results provide initial indications of the effect of different types of numerical
information in pictures that accompany modelling tasks. Students assign higher
utility value to pictures that provide additional useful numerical information than
to pictures with additional superfluous numerical information. However, a higher
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perceived utility value of pictures with additional useful numerical information did
not result in an increase in modelling performance. One possible explanation for
this result is that assigning numerical information to the appropriate object in the
picture might not be the main barrier to solving modelling problems. Other modelling
activities such as noticing that information is missing from the problem or making
assumptions about missing information were found to prevent students from finding
realistic solutions and solving modelling tasks (Krawitz et al. 2018).

Pictures with representative function can be designed differently. In our study,
we selected pictures as visual representation of the described situation in the text.
Moreover, it does not include any extraneous information (such as dogs, boats, etc.)
that might distract problem solvers from constructing mathematical models. The
results might be different for other implementations of representational pictures.

The results of our study offer initial implications for the design of pictures in
modelling tasks. The findings on utility value indicate that students noticed pictures
while solving modelling problems. Thus, additional numerical information that is
included in the pictures can influence the modelling process to a considerable extent.
We therefore suggest that teachers should think about designing pictures in modelling
tasks and prepare them conscientiously.

Acknowledgements Thanks go to Maxim Brnic for his work in preparing the pictures used in this
study.
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Part IV
Assessment Issues



Chapter 17 )
Validity of Mathematical Modelling e
Assessments for Interdisciplinary

Learning

Cigdem Alagoz and Celil Ekici

Abstract Teaching mathematical modelling produces interdisciplinary learning
outcomes that can be measured with formative assessments. Building, defining, and
clarifying the interdisciplinary competencies involved in the modelling performance
assessment tasks require the input of content experts from multiple disciplines. These
interdisciplinary perspectives create the foundation for a valid modelling assessment
before administering and interpreting its results. The validation process involves
scoring, interpretation and uses, and consequences of interdisciplinary mathemat-
ical modelling assessment results. Confirmatory factor analysis indicated construct
validity for a mathematical modelling assessment with two higher order factors indi-
cating conceptual and procedural dimensions of interdisciplinary learning enacted
by mathematical modelling.

Keywords Validity - Assessing mathematical modelling + Assessment validation -
Complex learning * Interdisciplinary learning

17.1 Introduction

Mathematical modelling is a research-based teaching practice with interdisciplinary
collaboration for K-20 mathematics, science, and technology education advocated
around the USA, Europe, and the globe (Andresen 2009; Blum 2015; Borromeo
Ferri 2013; NGACBP & CCSSO 2010; NGSS 2013). As a cognitively demanding
activity, the mathematical modelling involves non-mathematical competencies and
extra-mathematical knowledge (Blum 2015). Interdisciplinary learning tends to cross
traditional boundaries between disciplines building on a fact, quality, or condition
that brings two or more academic fields (Roth 2014). Interdisciplinary mathematics
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education taps into mathematical modelling as a process to generate conditions
motivating crossing boundaries between disciplines to bring together relevant disci-
plinary perspectives for a common modelling purpose (Arlebick and Albarracin
2019; Williams and Roth 2019). Mathematical modelling can be implemented as
a prototype for interdisciplinary mathematics education demanding a coordination
and assessment of interdisciplinary complex learning outcomes (Borromeo Ferri and
Mousoulides 2017). Michelsen (2015) highlights that the mathematical modelling
can involve both mathematical and science competencies. Intradisciplinary and inter-
disciplinary complex learning outcomes are emergent during the process of mathe-
matical modelling (Zawojewski et al. 2008). The defining challenge in mathematical
modelling assessment is how to account for learning through connections within and
across disciplines as students engage in mathematical modelling tasks.

Boaler (2001) called for new theories of learning to account for the nature of
the complex learning occurring during mathematical modelling. We need to recog-
nize that if complex learning outcomes during modelling are to be assessed well,
then an assessment that conveys this complexity is needed. We believe that the
interdisciplinary practices of mathematical modelling should be an area of research
requiring attention in developing valid measurements and assessments of mathe-
matical modelling competencies accounting for their use in practice across disci-
plines. Here, we present an argument-based approach towards establishing validity
of mathematical modelling assessments for interdisciplinary learning.

17.2 Problem and Background

Teaching mathematical modelling allows us to teach certain learning outcomes that
are not readily available in traditional instruction (Boaler 2001). The measurement
of the mathematical modelling skill set requires non-traditional measurement tools
to inform our teaching theory and practice. Mathematical modelling as an inter-
disciplinary activity system (Williams and Roth 2019) offers a driving goal to bring
perspectives from different disciplines for learners to confront, interpret, and process
new understandings, practices, and motives in response to a modelling situation.
Building on our previous work with mathematical modelling for STEM Education
(Ekici et al. 2018), the validity of mathematical modelling assessments is considered
here for interdisciplinary learning. For example, when modelling the population
dynamics of the queen conch, which is known to be a tasty, nutritious, and over-
fished sea snail in the Gulf of Mexico, this mathematical modelling activity requires
knowledge of fisheries, biology, sustainability, cultural habits, et cetera. The assess-
ments should properly align with the interdisciplinary learning with mathematical
modelling. The validity of mathematical modelling assessments requires interdis-
ciplinary perspectives involving different content experts and relevant community
members. This validity claim can be evaluated by analysing the psychometric prop-
erties of a modelling measure. When interdisciplinary competencies are heavily
involved in mathematical modelling performance tasks, their aligned assessment
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requires content expert input from multiple disciplines in building, defining, and clar-
ifying the interdisciplinary competencies involved. This interdisciplinary input from
multiple disciplines creates the foundation for a valid assessment before its adminis-
tration, and interpretation of its results. In the USA, mathematical modelling is inte-
grated into standards for teaching and learning secondary mathematics and science
education. We investigated the validity of a standardized mathematical performance
assessment towards measuring mathematical modelling performance with the inter-
pretation and use of performance traits with affordances and challenges for interdis-
ciplinary learning. In this study, we examined the validation process for assessments
towards accounting for interdisciplinary learning with mathematical modelling.

17.3 Theoretical Framework

While there are multiple frameworks for validity, there has been a shift in the theories
developed since the 1950s. Earlier theories dating back to the 1950s used many types
of validity such as correlational, content, and construct. During the 1980s, the source
of evidence to establish validity became more of a concern (Messick 1989). The
validity theories of that era focused on various areas such as content, response process,
internal structure, relation to other variables, use of scores, and consequences. Kane
(1992) takes a scientific approach to validity where assumptions are first made and
then evaluated resulting in hypotheses, and their analyses. From this perspective,
every assessment has a claim or an argument about a competence measure. Inter-
pretations and uses of scores are only valid when appropriate evidence is provided
(Kane 1992). Kane’s (1992, 2013) argument-based approach to validity is adopted
here. This approach considers scoring, generalization, extrapolation, decision, and
use.

17.3.1 Argument-Based Approach to Validity

The argument-based approach to validation involves two kinds of arguments. An
interpretation/use argument (IUA) explicates the reasoning behind the proposed inter-
pretations and uses of test scores (Kane 2013) and articulates clearly what is being
claimed. The validity argument provides an evaluation of the IUA. Once developed,
it provides a framework for test development and validation, offering criteria for eval-
uating the proposed interpretations and use. The validation of a score interpretation
involves an investigation of whether the scores mean what they are supposed to mean,
and the interpretation is said to be valid if the claims inherent in the interpretation are
supported by appropriate evidence. Establishing validity involves a hypothesis about
a specific interpretation or decision focused on a specific construct and a collection
of evidence to support or refute the hypothesis about the targeted competencies.
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Our approach to providing a validity framework for a mathematical modelling
assessment involves identifying and addressing the potential uses and interpretations
of the scores. The following inferences are identified as related to a mathematical
modelling assessment. Interpretation and use arguments most commonly include
inferences and assumptions from scoring, generalization, extrapolation, theory-based
inferences, and score uses.

17.3.1.1 Scoring Inferences

Using a unidimensional and continuous scoring method to measure the mathemat-
ical modelling achievement starts with the assumption that mathematical modelling
achievement is a unidimensional construct. The scoring process that places students
on a unidimensional continuum is based on the claim that we can order students’
mathematical modelling skills on a unidimensional continuum. If we consider the
outcome as a dichotomy, we claim that students either have mathematical modelling
skill or not, rather than having this skill to some degree. Consequently, these inherent
assumptions carried in scoring processes have implications for the construct validity
of mathematical modelling.

17.3.1.2 Inferences of Score Uses: Consequential Validity

After the scoring, the consequences of using the scores provide consequential validity
evidence. If the scores determine a students’ achievement in mathematics, introduc-
tion of non-mathematical skills in mathematical modelling tasks poses problems to
the validity. On the other hand, avoiding the multidimensional, and interdisciplinary
measurement due to its complexity has detrimental consequences in our instruc-
tional practices such as resorting to teaching simplified skills which do not prepare
our students for real life. The use of simpler unidimensional and multiple-choice
measurement for mathematical modelling could have unexpected and unintended
consequences that challenge their validity.

17.3.1.3 Theory-Based Inferences: Construct Validity

A mathematical modelling construct is multidimensional. There are various theories
about the components and measurement of the modelling construct (Zottl et al. 2011;
Hankeln et al. 2019). Learning outcomes that are expected to be taught and to be
learned during mathematical modelling instruction are informed by the theory-based
definition of the mathematical modelling construct. Dimensions of this construct
can be explored and confirmed with a measurement administration and analysis
of the results. One goal of the measurement is to evaluate the multidimensionality
of interdisciplinary mathematics learning as operationalized with a mathematical
modelling rubric.
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17.3.1.4 Generalization and Extrapolation

One important aspect of validity of an assessment is established by the degree that
assessment can be generalized. Learning outcomes of a mathematical modelling
instruction are not restricted to a certain level of mathematical knowledge. One
modelling problem can be approached and solved with the use of different mathe-
matical and science knowledge levels. Consistency of the construct across ages and
grades can be evaluated to provide evidence for the use of the scores.

17.4 Method and Data

17.4.1 Setting and Participants

Forty-one in-service secondary mathematics and science teachers participated in
modelling and assessment workshops conducted by the chapter authors during the
Summer of 2017 and 2018. Directed by the second author, teachers had been collab-
orating in developing and implementing interdisciplinary projects on locally relevant
issues since 2015. This research problem emerged from the need for valid assessments
that can measure interdisciplinary learning through modelling for STEM education.
The workshop activities focused first on mathematical modelling as a common inter-
disciplinary practice for integrated STEM learning and then on valid assessment
of mathematical modelling for interdisciplinary learning. In-service STEM teachers
engaged in the modelling process with locally relevant problems such as the queen
conch population. In total, 28 teachers completed mathematical modelling assess-
ment tasks. An assessment and validity workshop facilitated theoretical and practical
training on measuring and assessing mathematical modelling and interdisciplinary
learning. As a measure of modelling performance, we adopted a commonly used
rubric developed by the New York Performance Standards Consortium (2016). The
teachers analysed and discussed the assessment results with the rubrics providing
a hands-on training of content and processes involved in interdisciplinary mathe-
matical modelling practice. Participants revisited the modelling cycle again working
with interdisciplinary pairs and provided feedback. GAIMME’s modelling cycle
(Garfunkel and Montgomery 2016, p. 31) was given to reflect on modelling phases
and components during the assessment task such as “defining the problem, making
assumptions, defining variables, getting a solution, assessing the model” (p. 197).
Our research study employed mixed methods using quantitative analysis for relia-
bility and construct validity of measurements, qualitative methods for interpretation
and use arguments on validity.

Our design of the professional development for modelling assessment and validity
was informed by Blum and Borromeo Ferri (2009). We attended to the following four
dimensions for STEM teachers’ pedagogical content knowledge (PCK) on math-
ematical modelling and assessment: (1) theoretical dimension (modelling cycles,



208 C. Alagoz and C. Ekici

phases, assumptions, interdisciplinary perspectives), (2) task analysis (multiple solu-
tions, connections), (3) instructional dimension (culturally responsive pedagogies;
anticipated interventions), and (4) a diagnostic dimension (students’ difficulties).

17.5 Results

17.5.1 Scoring Inferences

Scoring of a complex formative assessment is achieved in multiple steps. The scoring
process involves multiple raters from different backgrounds. Training was provided
on scoring with the performance assessment rubric. The rubric served as a standard
setting tool. Multiple raters scored each paper and inter-rater reliability was accept-
able for three factors, while it was low for communication. The rubric identified the
dimensions, and provided explanation for these dimensions. Scoring is undertaken
with a cognitive diagnostic classification model and diagnostic feedback is provided
from the scoring. This scoring has provided validity evidence consistent with the
formative nature and instructional purpose of the assessment.

17.5.2 Inferences of Score Uses: Consequential Validity

Since the purpose of the mathematical modelling assessment was instructional, it
was designed as a tool to support teaching mathematical modelling. While taking the
assessment, participants assumed the role of students, teachers, and raters. Teachers
scored papers in interdisciplinary teams composed of secondary mathematics and
science teachers. This allowed them to experience the whole assessment process
from multiple perspectives.

The assessment results for science teachers had direct consequences on their
instructional practices in science classes. For example, in response to the modelling
assessment, several participants were observed to have made scientifically unsound
assumptions with their constants and the key variables related to queen conches.
Science teachers paid more attention to assumptions made helping the interdisci-
plinary team to identify key variables and constants drawing from their scientific
knowledge, local policies and practices impacting the queen conch population such
as their harvesting age and abundance rates such as 25 adults per acre for ecological
self-sustenance. The mathematics teachers were benefiting from the contextually
relevant scientific knowledge science teachers were bringing. On the other hand, we
observed science teachers struggled with the mathematizing phase with the expo-
nential or logistic growth models; for example, one science teacher noted: “It is not
clear to me how this activity fosters reasoning and proof skills”.
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Table 17.1 Factor loadings Conceptual factors | Procedural factors
from confirmatory factor
analysis (CFA) of Problem solving 0.340 0.709
mathematical modelling Reasoning, 0.576 0.483
justification, proof
Communications 0.983 0.178
Connections 0.742 0.204
Representations 0.124 0.992

When asked to evaluate the measurement process and its consequences, teachers
focused their comments on the rubric. The descriptions of performance indicators
provided by the rubric are accepted as the standard by teachers. This highlighted
the importance of vetting the rubric by the practitioners thoroughly before adoption
allowing them to consider its use and consequences.

17.5.3 Theory-Based Inferences: Construct Validity

The construct is hypothesised to be multidimensional. Multidimensionality analysis
is provided as construct validity evidence for the use of mathematical modelling
scores. Maximum likelihood extraction is used with Varimax rotation. A two-factor
model adequately fits to the observed data with x> = 1.4 and “df = 17, p = 0.229.

From the factor analysis as seen in Table 17.1, reasoning, justification, and
proof, communications, and connections are clustered together which we inter-
preted as referring mainly to conceptual competencies in interdisciplinary math-
ematical modelling. Secondly, problem solving and representations are clustered
together aligning with procedural competencies during interdisciplinary mathemat-
ical modelling. We found that interdisciplinary mathematical modelling assessment
tasks have balanced conceptual and procedural factors each of which are domi-
nated by communication and representations, respectively. The CFA measurement
model depicts the factors and their clusters as higher order factors as shown
in Fig. 17.1. These results show that this construct is valid for interdisciplinary
modelling assessment.

17.5.4 Generalization and Extrapolation

Mathematical modelling assessments have their own set of disciplinary and interdis-
ciplinary competencies and skills. The pattern emerging among teacher reflections
collected after the validity session indicated that there are three leading factors of
the mathematical modelling assessment works for interdisciplinary learning: “com-

ELINNT3

munication”, “representation”, and “connections”, aligning with their overall CFA
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Reasoning,
Justifications, Communication Connections Problem Solving
andl Proofl

Fig. 17.1 Path diagram for mathematical modelling as measured by the existing rubric

factor loadings. Reflections indicated that science teachers found this rubric working
best in assessing interdisciplinary modelling competencies in communication and
connections. While they agreed on representations as critical in interdisciplinary
modelling assessment, there was a lack of consensus between science and math-
ematics teachers’ understandings and practices with representations. Mathematics
teachers initially struggled on the connection and communication competencies.
They benefited from working with science teachers and interdisciplinary experts
providing the support with interdisciplinary connections, building on locally relevant
justifications of their assumptions from local scientific perspectives.

Based on the assessment results, the generalization and extrapolation require
interdisciplinary participants to reflect on how they can adopt this, what they can do
next at their grade levels and across grade levels. This critical adoption process helps
interdisciplinary teachers to generate plans for adopting the mathematical modelling
assessment for their practice. The consistency of the construct across ages and grades
can be evaluated after teachers adopt it and implement it in their practice to provide
evidence for the use of scores. Building on modelling assessments as case studies for
interdisciplinary learning, this process can create new claims to be tested to expand
mathematically, scientifically, and contextually relevant knowledge and practices
aligning their use and interpretations across mathematics and the sciences.

17.6 Discussion

Communication is a critical performance element for interdisciplinary learning.
Teachers in this study realized that interpretation of the model brings back the
problem into its original context. Discussing the problem with interdisciplinary
teachers allows teachers to question their earlier assumptions.



17 Validity of Mathematical Modelling Assessments ... 211

Based on their background, teachers were able to identify intra-disciplinary
connections and multiple viable solutions when they were analysing “the task dimen-
sion” of the mathematical modelling assessment. One of the modelling assessments
was based on the population dynamics modelling for the queen conch population
using different harvesting schemes. Depending on how the problem was formulated,
modelling “the changes in the proportion” of harvested queen conch reduced the
problem into a quadratic model. This re-framing decision for mathematizing made
the model more accessible. Otherwise, science teachers and middle school mathe-
matics teachers experienced problems with the logistic model in its exponential and
continuous form. “Doing the math” phase impacted “how the problem is framed”
mathematically. Ekici and Plyley (2019) demonstrate that mathematical modelling
tasks in growth modelling for lionfish or the conch population can be mathematically
framed with discrete, continuous, and stochastic models to generate alternative path-
ways for the mathematizing phase towards building intra-disciplinary connections
with implications on the intradisciplinary learning outcomes from the modelling
process.

Cultural context with its motives (Roth and Williams 2016) shapes the interpreta-
tions and how to set up the problem. To better differentiate, teachers were asked first
to work in pairs on culturally relevant mathematical modelling tasks, such as lionfish
and queen conch population modelling. Motives were compared in modelling the
harvesting schemes for conch and lionfish. For conch population, modellers wanted
to keep the population alive for long-term sustainability of a desirable population
as a part of the livelihood of the ecological system. On the other hand, the targeted
harvesting goal for lionfish population was set to eradicate this invasive species due
to their threat to the ecological balance, directly or indirectly, with their high rate of
reproduction and growth, their voracious feeding capacity and lack of predators. In
addition, in modelling the conch population, participants are expected to examine
different conch harvesting scenarios, revising the growth functions, and harvesting
at different rates.

17.7 Conclusions

In collaborative interdisciplinary modelling projects, there are critical roles for inter-
disciplinary content experts in the mathematical modelling assessment design and
validation. The mathematical modelling problems with science and engineering
contexts benefit heavily from the rich contextual discussion provided by the science
and engineering educators in evaluating the assumptions and interpretation of the
targeted common modelling competencies from their disciplinary perspectives.
Towards making mathematical modelling more culturally and socially responsive,
the learning community should be inclusive of relevant interdisciplinary perspec-
tives supported by science, technology and engineering teachers, and community
partners who can be involved in and out of the classroom during the mathemat-
ical modelling process. We need to reconsider the modelling assessments to be more
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inclusive to perspectives from relevant disciplines towards interdisciplinary learning.
Construct validity essentially starts with an articulation process in determining what
to assess in terms of mathematical and interdisciplinary learning outcomes informing
the construct design of complex learning assessment, interpreting the meaning of the
performance construct and the scores. This process should be informed by multiple
disciplinary standpoints within and across disciplines. The assessment validation for
interdisciplinary learning with modelling requires teacher collaboration to interpret,
use, extrapolate, and generalize the results for a coordinated mathematical modelling
community of practice across subjects in schools.

Using CFA, we identified that there are two high-order clusters for inter-
disciplinary mathematical modelling—the conceptual dimension and the proce-
dural dimension. This result aligns with the two-dimensional model for the sub-
competencies identified by Hankeln et al. (2019). The conceptual dimension refers
to reasoning justification, connections, and communication, concurring with the
combined interpreting and validating sub-competencies observed by Hankeln et al.
In contrast, the procedural dimension as identified here refers to problem solving
and representations, aligning with Hankeln et al.’s (2019) second dimension that
combines simplifying and mathematizing. Their model fits well for two but better
with four dimensions.

In establishing validity, assumptions are not trivial in setting up the model with its
interdisciplinary and intra-disciplinary connections as assumptions, problem posing,
and formulation are often critical parts impacting on how the content is enacted during
the mathematical modelling process (Galbraith and Stillman 2001). The validation of
the assumptions in a mathematical modelling assessment requires interdisciplinary
collaboration.

17.7.1 Future Directions

This study presents an approach to facilitating a standard-setting like process for
mathematical modelling assessments. The modelling assessments should align and
validate interdisciplinary and intradisciplinary perspectives utilized in authentic
mathematical modelling assessment tasks. We suggest involving interdisciplinary
groups of teachers as users and experts in learning outcomes in the validation process
for developing and revising the assessments for mathematical modelling.

There is a clear need for differentiation and consensus building in interdisciplinary
mathematical modelling assessments. With the mathematical modelling assessments,
relevant domain analysis should be performed by mathematics, science teachers, and
faculty and content experts.

Different scoring guidelines, according to their purposes, should be established
to ensure validity. The same scoring or assessment rubrics should not be used inter-
changeably for formative and summative assessments. This has implications for the
construct related dimensions of assessments. The consequential validity helps to
articulate for interdisciplinary practitioners the relevant information emerging from
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mathematical modelling assessments so as to inform their practice in mathematics
and science classes at different levels. Mathematical modelling assessments must be
flexible to account for multiplicity of solutions depending on the assumptions made,
how the problem is formulated, and how the theoretical framework is used for its
mathematization with discrete, continuous, stochastic, or deterministic methods.

Broader questions we pose requiring further investigations are how to value, eval-
uate, and validate interdisciplinary learning outcomes with mathematical modelling
with targeted assessments. By positing mathematical modelling as an interdisci-
plinary practice across natural and mathematical sciences, collaborative research
should address how a series of modelling assessments can be designed to examine
the conditions for the transfer of interdisciplinary learning within and across disci-
plines. As mathematical modelling plays a pivotal role in cultivating interdisci-
plinary learning through collaboration, valid and reliable assessments are required to
measure its potential for intra-disciplinary learning by tapping into mathematizing
from multiple disciplinary perspectives.
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Chapter 18 )
Measuring Students’ Metacognitive e
Knowledge of Mathematical Modelling

Lena Frenken

Abstract The support of modelling in school is a common issue in investigations
and in the relevant literature on modelling competence. In this chapter, research is
presented on constructing a test instrument for assessing metacognitive knowledge of
modelling. Based on a theoretical definition of the term “metacognitive knowledge”
and its domain-specific connection to mathematical modelling, a large number of
items were developed. The scalability and possible reduction of items are analysed
in this chapter. The process of item construction and evaluation is described in detail.
With the help of a one-parameter Rasch analysis, it can be deduced that a selection
of items is suitable for measuring at least some aspects of metacognitive knowledge
of mathematical modelling.

Keywords Metacognition + Metacognitive knowledge - Item development *
Assessment + Measurement * Rasch analysis

18.1 Introduction

Metacognition is—among other aspects such as sub-competencies or one’s own
attitude towards modelling—important for a successful holistic modelling process
(Kaiser 2007; Tanner and Jones 1995). Furthermore, studies have shown that digital
tools enrich and change modelling at school, for example, through using appro-
priate tools or presenting the problems in a more realistic way (Molina-Toro et al.
2019). Nevertheless, the question of how technology should be used effectively
for modelling at school has not yet been answered satisfactorily (English et al.
2016) partly due to ongoing developments of technology. Especially the imparting
of metacognitive knowledge, as a selected subcategory of metacognition, could be
considered as a viable possibility for promoting students’ modelling competencies,
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while learning in a computer-based learning environment, because of the associ-
ated self-regulated working formats (Veenman 2007). Furthermore, the correlation
between modelling sub-competencies and metacognitive knowledge has not yet been
investigated (Hankeln et al. 2019). These aspects are intended to be investigated in the
project Modi—Modelling digitally, which comprises the conceptualization and devel-
opment of a test instrument on metacognitive knowledge of mathematical modelling,
among other things.

Initially, a detailed description of the term metacognitive knowledge including the
establishment of a connection to mathematical modelling is presented in this chapter.
In addition, the test construction and its analysis are described so that conclusions
can be drawn about the use of the test instrument and the implications of the results
for modelling.

18.2 Theoretical Background

In order to conceptualize a test instrument that assesses students’ metacognitive
knowledge of mathematical modelling, it is necessary to first understand its under-
lying concepts. It is well known that metacognition, which is the paramount concept
of metacognitive knowledge, is fuzzy (e.g. Flavell 1981; Schoenfeld 1987), often
used, but often criticized as well, due to a lack of precise definitions. However, in
this chapter, similar terms are delimited in contrast to metacognitive knowledge,
and a construct definition that can be used for research in mathematics education is
targeted as a result.

18.2.1 Metacognitive Knowledge

Following a fundamental definition of metacognition, the term can generally be
understood as “knowledge and cognition about cognitive phenomena” (Flavell 1979,
p. 906). A differentiation between levels of cognition makes clear that metacogni-
tion is part of cognition itself, whereby cognitive processes entail defining objects of
other cognitive processes (Nelson and Narens 1990). For example, solving a system of
linear equations involves a cognitive process and in contrast, answering the question
of how well someone solves such a system initiates a cognitive process about the
previous cognitive processes. To answer the latter question, proceeding metacog-
nitive activities mainly affect the answer. Thus, different cognitive levels become
evident. Because metacognition is still a broad field and the explicit contents are
not obvious, a partition of the concept into two to four theoretically considered,
interacting aspects is undertaken by several authors (e.g. Flavell 1979; Scott and
Levy 2013; Vorholter 2018). For the Modi project, the division into metacogni-
tive knowledge and metacognitive skills is fundamental. To divide these terms, a
clear distinction is needed. In doing so, the most important aspect is to differentiate
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between the knowledge that individuals accumulate through various situations over
time about cognitive processes and the actions that individuals undertake to regulate
cognitive processes. Metacognitive knowledge means, for example, being aware of
the fact that the Gaussian algorithm is an appropriate strategy for solving a system
of linear equations. In contrast, the decision to execute the Gaussian algorithm and
not the addition method for solving a given system of linear equations can be seen
as a performed action and therefore constitutes a metacognitive strategy, because it
regulates the cognitive process of solving it. At this point, a question arises as to
the differentiation between cognitive strategies and metacognitive strategies, but is
beyond the scope of this chapter. Hence, here the author refers only to the distinction
between the two levels that were used to clarify the differences between cognition
and metacognition. Further, knowledge is verifiable, and thus can be rated as wrong
or right (Bolisani and Bratianu 2018). Taking a more detailed look at metacognitive
knowledge, Flavell (1979) considers three facets of the knowledge about influencing
factors in cognitive processes: person, task and strategy. The personal factors can
again be divided into knowledge or beliefs about inter individual differences, intra
individual differences and universals that are generated from the experienced differ-
ences. Thus, an example (again about solving a system of linear equations) of the
person category would be that there still is a lack of understanding on the Gaus-
sian algorithm—with regard to oneself, to the person sitting next to oneself or to
the whole class. Knowledge about the possible number of solutions when solving a
system of linear equations, ranging between none, one or infinitely many, constitutes
an example of the task variables. Knowledge about the Gaussian algorithm as an
appropriate strategy was already mentioned regarding clarifying the differentiation
between metacognitive knowledge and metacognitive strategies and can be related
to the strategy variables. Furthermore, knowledge about the aims of the Gaussian
algorithm can be mentioned as an example of this category.

Summarizing, metacognitive knowledge in this study is used as the generic term
for verifiable, domain-specific knowledge about the factors that affect cognitive
processes, which can be considered as relating to knowledge about the involved
person(s), about the tasks to solve and about appropriate strategies, including their
aims and objectives.

18.2.2 Metacognitive Knowledge of Mathematical Modelling

Mathematical modelling processes are executed as cognitive activities (Blum and
Leiss 2007). Accordingly, taking into consideration the domain-specific characteris-
tics (Veenman 2007), cognitive processes and thinking about mathematical modelling
can be seen as metacognitive activities of mathematical modelling. The modelling
processes therefore become the object level (Nelson and Narens 1990). Specifying
this basis with regard to the focus of the chapter, metacognitive knowledge can also
be defined by referring to mathematical modelling. Thus, following the summary
in Sect. 18.2.1, metacognitive knowledge of mathematical modelling is used as the
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term relating to knowledge that affects the execution of modelling processes, and
can be considered as divided into the categories person, task and strategy. It should
also be taken into account that knowledge can be assumed as verifiable. The personal
variables can be interpreted as knowledge about difficulties encountered during the
modelling process, accumulated through learning about oneself and one’s problems
as amodeller (intra-individual differences), compared to problems of other modellers
such as classmates (inter-individual differences). The task variables contain knowl-
edge about properties and characteristics, in this case, of modelling tasks. This
includes information about the design of modelling tasks, as well as about possible
structures of solutions and modelling processes. Underlying the two facets already
described, the strategy variables refer to the objectives behind appropriate strategies
on the one hand and knowledge of a repertoire of useful strategies on the other hand.
Referring to modelling, knowledge about a solution plan, different reading strategies,
searching for an analogy, making a drawing or verifying the solution by comparing it
with known sizes, can all be mentioned as appropriate strategies during the process of
solving reality-based problems (e.g. Schukajlow et al. 2015; Stillman 2004; Vorholter
2018). Summarizing, metacognitive knowledge of mathematical modelling is part
of a competency that includes memorizing facts about different strategies, properties
of modelling and potential difficulties during the process.

Though Cohors-Fresenborg et al. (2010) state that procedural metacognition is
the aspect of metacognition that is important for modelling, previous investigations
have shown that some aspects of the above-mentioned definition of metacognitive
knowledge are crucial for a successful modelling process as well or could at least
influence it positively. For example, important relations between knowledge about
different models such as the real or the mathematical model and their setting, by iden-
tifying misconceptions related to difficulties or errors, were provable (Maaf3 2007).
Furthermore, it was shown that the awareness of different strategies and their aims
is a basis for decision-making when working on real-world problems (Stillman and
Galbraith 1998). Nevertheless, a lack of investigations on the structure of metacog-
nitive knowledge (of mathematical modelling) is conspicuous. Finally, the question
of an existing correlation of metacognitive knowledge and modelling competence
has been raised (Hankeln et al. 2019) and could help fill the gap in investigations on
the influence of metacognitive aspects of students’ modelling processes (Vorholter
et al. 2019).

18.3 Method

Because no quantitative test instrument on metacognitive knowledge about mathe-
matical modelling has yet been constructed (Vorholter 2018), this chapter addresses
the evaluation of newly developed items. Therefore, an attempt is made to answer
the following question:
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Is it possible to measure metacognitive knowledge of mathematical modelling as a latent
construct?

The author assumes that not all of the constructed items statistically fit the global
test instrument, although this is the requirement for investigating student differ-
ences or developments concerning the metacognitive knowledge of mathematical
modelling. However, several steps with regard to ensuring the quality of items are
undertaken. These various elements are presented in the following section, whereby
the focus is laid on student performance in five different classes and an analysis of
them.

18.3.1 Item Construction and Data Collection

With respect to the research question posed, several steps were undertaken. First of
all, the items were formulated and designed on the basis of the theoretical concepts
on the structure and contents of metacognitive knowledge, whereby the aim was to
create items which can be rated as either wrong or right. Afterwards, the items were
given to experts, with the instruction to fill in the test and mark all critical aspects. The
specialists, who all work at the Institute of Education in Mathematics and Computer
Science at the University of Muenster, conducting research on either test construction
or mathematical modelling, gave detailed advice. Especially, discussions about the
coding of items and the scales used were included. The content validity was also
ensured in this way. On this basis, items could be reformulated in a first round and
the items for the next step—the testing in classes—were selected. The distribution of
selected items across the categories strategy, task and person is shown in Table 18.1.

As can be seen from Table 18.1, in total, 39 items were to be included. Because
the processing time for solving a test with all items in one lesson of 45 min was
expected to be too long for 15-year-old students, two different versions of the test

Tablel8.1 Overview of the items and their distribution across the variables

Version A Version B

Introduction

Personal data
[

Strategy repertoire I
(6 Items, short answer)

Strategy repertoire 11

2 EmElien WSy (6 Items, short answer)

[
Person category (7 Items, Combined-Single-Choice)

Task category (8 Items, Combined-Single-Choice)

Strategy aims (14 Items, Combined-Single-Choice)
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were developed. Each version consists of 35 items, which may not seem like a large
reduction, but it should be taken into account that the quantity of the most time-
intensive items was indeed reduced. Furthermore, a qualitative study was conducted
within the research context of a master thesis, which aimed to identify the difficul-
ties students encountered while answering the test. On this basis, the results of the
statistical analysis can be reconsidered. Before the results of the statistical analysis
are presented, an overview of item examples is provided. The test was adminis-
tered to five classes, at two schools, of 15-year-old students, whereby 115 students
participated in total.

18.3.2 Item Examples

The description of selected items follows the structure of the test, which is shown
in Table 18.1. Before the metacognitive knowledge is assessed, the test starts with
an introduction and a short query on personal data. Afterwards, one item block on
the strategy variable is used to assess the repertoire. The strategy variable had to be
divided into two parts in the test, because in previous investigations on strategy knowl-
edge, there were criticisms that the assessed strategies were mentioned explicitly (e.g.
Pintrich et al. 1993).

Items with the following expected and as correctly rated strategies were designed:
solution plan, searching for an analogy, making a drawing, verifying the solution by
comparing with known sizes and reading strategies. As shown in Fig. 18.1, each of
the items on strategy repertoire consists of a modelling task, a dialog between two

2.1 Record Nail
In order to present the name of his restaurant,
Mr. Nail set up an oversized steel nail in front
of it. He took a picture of this nail. It is about 7
m long and has a diameter of about 22 cm. A
commercial carpenter’s nail is only about 20
cm long and has a diameter of 6 mm. Now the
nail shall be moved. The unloading crane of the
truck available for transporting the nail is 12
metres long and can lift a maximum of 1.5 t. Is
it possible to move the nail with this truck?
(Adapted from Driike-Noe et al. 2012)

Timur: So much text. Did you read everything?
Pascal: Yes, I’'m done. But I don’t know exactly what is important and what is
not.

nail task.)

‘What would you advise Timur and Pascal? (You don’t need to solve the ’

Fig. 18.1 Example item for the strategy repertoire
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students who are faced with a difficulty, and the question as to what advice the student
would give. Answers to the shown example that are rated correctly contain reading
strategies, for example, marking important information or reading the task again.
This block of items was positioned at the beginning of the test, because the partici-
pating students became familiar with various modelling tasks in this way. Therefore,
the term modelling task could be used in the following items. Item 3.2, shown in
Fig. 18.2, is an example of assessing the person variables. Because beliefs dominate
this category in Flavell’s considerations (1979), the inter- and intra-individual parts
were not assessed. Nevertheless, universal difficulties during the modelling process
were assumed to represent the knowledge gained from the two categories; therefore,
one block of items was constructed, introduced by the request to think about oneself
and one’s classmates as modellers. During the expert discussions, the proposal was
made to defuse rigid categories of true and false, by using a four-point Likert scale
for the assessment (True—possibly true—possibly false—false). This still offers the
possibility of conducting a one-parameter Rasch analysis to ensure the quality crite-
rion of scalability, by interpreting the categories true and possibly true as one and the
categories of possibly false and false as the alternative. Assuming that the personal
variables can be statistically ascertained as part of metacognitive knowledge includes
the characteristics of being verifiable. But, because the explanations of metacogni-
tive knowledge also often include the term beliefs, the need for a different allocation
within the map of modelling competence can be assumed, and therefore, the Likert
scale was included as an alternative. An answer was thus coded as correct, when the
student, for example, ticked the box for true or possibly true, while rating a correct
statement and vice versa.

Concerning the assessment of the task variable—item 4.1 shown in Fig. 18.2
belongs to this category—the two categories of true and false were used directly,
and the content of statements is based on properties and characteristics of modelling
tasks, following a few items from the test instrument of Klock and Wess (2018). In
the second part of assessing the strategy variables, the aims of the above-mentioned

When information gaps have been discovered, Possibly  Possibly

32 many find it difficult, ... True true false False
... to do targeted research filling those gaps. v v

... l0 estimate missing sizes, v v

... to ask the teacher to fill those gaps. v V
4.1 Modelling tasks ... True False
... may contain unimportant information. v

... may contain too little information. v

... contain exactly the information that is needed. v
5.5 Using a solution plan in modelling tasks is suitable for ... True False
... doing the calculation correctly. v
... structuring the process of solving. v

... Teceiving an accurate result directly. V

Fig. 18.2 Example items on the categories person (3.2), task (4.1) and strategy aims (5.5)



222 L. Frenken

strategies are formulated in different statements. With item 5.5 in Fig. 18.2, an
example of this category is provided as well. The chosen format of combined single-
choice items reduces the probability of guessing and includes one complete item
only being coded as correct, if the three accompanying statements are ticked in the
right combination of (possibly) true and (possibly) false.

18.4 Results of the Quantitative Analysis

To evaluate the test instrument, the data were scaled using a one-parameter Rasch
model (Rasch 1960) utilizing the software ConQuest (Wu et al. 2007). After the
requirement of normal distribution of the WLE-scores was checked, items with a
discrimination index under 0.2 were excluded as in PISA (OECD 2012), so that 27
items remained. The other 12 items have to be reformulated or excluded totally. On
the basis of the discrimination index, the problem of assessing the category person
becomes clear, because almost all of the items in this section had to be skipped and
only three remained. The reliabilities are satisfactory; the item separation reliability
amounts to 0.983 and the EAP/PV reliability, which can be compared to Cronbach’s
Alpha, is 0.641. The item fit statistics, which constitute another criterion for ensuring
the test quality, range between 0.82 and 1.13 for the unweighted mean square and
between 0.94 and 1.1 for the weighted mean square. Following Bond and Fox (2007)
and PISA (2012), these values indicate a high level of quality. A further analysis of the
item difficulties shows a floor effect, which means that the items were generally too
difficult for the participating students. Finally, an Andersen test was conducted with a
result of p = 0.28, which leads to the conclusion that the items do indeed measure the
one-dimensional construct of metacognitive knowledge of mathematical modelling
(Andersen 1973).

18.5 Summary and Discussion

This chapter focused on deducing a definition of metacognitive knowledge of math-
ematical modelling aiming at developing a test instrument that measures the asso-
ciated aspects of this term. Items were constructed on that basis and a pilot study
conducted to revise the quality criteria. It was found that the test instrument is usable
for a comparison of groups, and measures metacognitive knowledge of mathemat-
ical modelling (Bond and Fox 2007; Boone 2016). Incidentally, the differentiation
between measurement using a standardized, scalable test instrument, and assessment
using a test instrument that, for example, does not distinguish between item diffi-
culties, must be mentioned (Mislevy 2017). Therefore, the evolved test instrument
also enables measuring parts of the competence of mathematical modelling and is
an addition to existing test instruments that measure or assess other aspects, such as
sub-competencies (Hankeln et al. 2019) or metacognitive strategies (Vorholter 2018).
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Nevertheless, the unsatisfactory results in the dichotomous assessment of the person
category show that—despite the many investigations on the structure of modelling
competence and considerations on what aspects belong to it—the holistic competence
is still not fully determined. The assumption that the described aspects of the person
category belong to facets like self-efficacy or motivation, which influence modelling
processes and have to be assessed with other methods, can legitimately be made. To
complete a series of test instruments on facets of modelling (Kaiser 2007), further
analyses using the developed four-point Likert scale, and adding motivational factors
or the facet of self-efficacy, should be conducted. The three remaining items on the
personal variable will be excluded, and in further studies, strategy knowledge and task
knowledge remain as measured aspects of metacognitive knowledge of mathemat-
ical modelling. Because the categories of metacognitive knowledge were considered
theoretically (Flavell 1979) and not examined empirically, these new assumptions
about the structure and content of metacognitive knowledge should be verified in
other studies and different domains. However, sufficient statistical evidence is already
on hand, and at least aspects of metacognitive knowledge of mathematical modelling
can be measured with the instrument (Andersen 1973; Boone 2016). The test instru-
ment will be enhanced by consulting the results of a qualitative study on difficulties
encountered during the test processing. Beside the results concerning the suitability
of the test instrument, the students’ limited metacognitive knowledge of mathemat-
ical modelling reveals the importance of, and need to create, learning environments
for mathematical modelling, as well as integrating them into schooling more often
and intensively.
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Chapter 19 )
Mathematical Modelling in Dutch Lower | o
Secondary Education: An Explorative

Study Zooming in on Conceptualization

Sevin¢ Goksen-Zayim, Derk Pik, Rijkje Dekker, and Carla van Boxtel

Abstract Inthe Netherlands, mathematical modelling has become a major subject in
the higher secondary education curriculum. However, it is absent from the greater part
of lower secondary education. To improve the vertical coherence in the curriculum,
this study explores the mathematical modelling proficiency in both primary school
and lower secondary school. Additionally, this study also gains insight into the diffi-
culties that students encounter while solving modelling tasks. The study includes two
modelling tasks on three difficulty levels for 248 learners ranging from 11 to 15 years
old. At each level, learners encounter difficulties when constructing a meaningful
representation of the described modelling problem or may even fail to understand
the problem. These representation problems are qualitatively analysed and are shown
to be partially related to learners’ language problems.
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19.1 Introduction

Mathematical modelling is a major subject among the activities associated with
mathematical thinking and has received more attention in recent years, including in
the Netherlands. Mathematical modelling became a new component of the examina-
tion programmes for the five-year stream (HAVO) and the six-year stream (VWO)
in 2015. However, mathematical modelling is absent in the greater part of lower
secondary education in the Netherlands.

In the field of mathematical modelling, various representations of the modelling
cycle exist. According to Blum and Leif3 (2005), the modelling process begins with
understanding the real situation and problem, resulting in a situation model. Then,
the given situation has to be simplified, structured and made more precise, which
results in a real model (Blum and Leifs 2005; Blum and Borromeo Ferri 2009).
In the modelling cycle of Perrenet and Zwaneveld (2012), these first two parts of
the process are taken together as the conceptualization phase, followed by mathe-
matizing, solving, interpreting and validating. Plath and Leif} (2018) emphasize the
importance of the conceptualization phase and use this as the basis for all subsequent
decisions (see also Blum and Leif 2005; Borromeo Ferri 2006; Leif et al. 2019).
Therefore, in this chapter, we will focus especially on the difficulties that students
encounter in the conceptualization phase.

Assumption making is one of the modelling competencies used to understand
a real problem and to set up a model (Maaf 2006). Galbraith and Stillman (2001)
emphasized the role of assumption making as an underrated aspect of successful
modelling activity. Seino (2005) argued that assumptions are “the bridge” that
connects the real world and the mathematical world. While the ability of novice
modellers to make assumptions is rather weak (Chan et al. 2012), it hardly receives
attention in the Dutch mathematics curriculum. Therefore, it is important to examine
students’ difficulties related to assumption making, especially in lower secondary
education.

Usually, modelling problems in context-rich assignments are offered to learners
through texts. One of the first obstacles students may encounter is reading and inter-
preting text. In secondary school, being able to read a problem is a decisive factor
in solving a problem (Korhonen et al. 2012). The language used at school often
forms an obstacle to learning mathematics (Van Eerde and Hajer 2009). Language
proficiency may play a different role in every phase of the modelling cycle. In the
conceptualization phase, the student has to be able to understand the text in which
the problem is posed to translate it into a conceptual model. Plath and Leip (2018)
pointed out that the linguistic features of understanding and solving mathematical
modelling tasks have not been thoroughly examined. Therefore, this study will also
investigate the role of language comprehension in the conceptualization phase.

To improve vertical coherence in the curriculum, more insight is needed into the
modelling ability of students in lower secondary education and the difficulties they
encounter while solving modelling tasks. Therefore, this study explores two research
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questions: How do Dutch lower secondary students perform on context-rich mathe-
matical modelling tasks? Which problems do they encounter in the conceptualization
phase?

19.2 Method

To answer these questions, we developed two modelling tasks and two mathematical
core assignments for three age groups and conducted task-based interviews.

19.2.1 Participants

The participants in the study were 73 students from Grade 6 (age 11-12), 116
students from Grade 8 (age 13—14) and 59 students from Grade 10 (age 15-16).
In the Netherlands, Grade 6 is the final year of primary school, Grade 8 is part of
lower secondary education and Grade 10 is part of upper secondary education. In
total, four primary schools and four secondary schools with seven classes located in
an urban environment participated in this research (see Table 19.1).

Schools A, B and C were primary schools and schools D, E, F and G were
secondary schools. All schools were located in an urban environment. In schools B,
D and E, most students were raised bilingually with different parental languages.
School G had a more mixed population. The other schools, A, C and F, have more
homogeneous populations whose first language is mainly Dutch.

The teacher of each class selected two students, one with strong language profi-
ciency and one with weak language proficiency, with whom we performed task-based
interviews. These teachers had taught these students for over a year. Task-based
interviews were performed with 26 learners (see Table 19.2).

Table 19.1 Number of students per task, grade and school

School A B C D E F G Total
Task 1, Grade 6 16 23 39
Task 1, Grade 8 39 19 58
Task 1, Grade 10 22 22
Task 2, Grade 6 21 13 34
Task 2, Grade 8 17 41 58
Task 2, Grade 10 11 26 37
Total per school 21 16 23 35 28 80 45 248
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Table 19.2 Number of Grade Task 1 Task 2 Total

interviewees per task and

grade 6 4 4 8
8 6 4 10
10 4 4 8
Total 14 12 26

19.2.2 Modelling Tasks

We designed two paper-and-pencil mathematical modelling tasks in a rich context
with three difficulty levels. The first level was Grade 6, the second level Grade 8
and the third level Grade 10. The complexity increased with each level, such as by
adding more data to the process (Task 1) or by providing a context that is further
from students’ daily experiences (7ask 2). Furthermore, the modelling tasks were
developed according to the design principles of Galbraith (2006) and were improved
using feedback from two primary school teachers, three secondary school teachers
and an independent mathematics education researcher.

Task 1

You want an iPad for your birthday. That is why your mother asks you to
investigate the prices of iPad Pros. Figure 1 shows the two different sizes of
the iPad Pro in inches. In many English-speaking countries, an inch is used as
a measure of length.

Imagine that your mother travels the world for her work. She is able to buy
an iPad for you in one of the countries she is visiting. She only does this if it
is cheaper than in the Netherlands. Next week she has to go to San Francisco.
That is in the USA, where they use the American dollar. Then, she travels to
Singapore. That is in Asia. In Singapore, they use the Singapore dollar. The
values of the various currencies against the euro can be found in Table 1. The
prices of the various iPads are shown in Table 2.

Advise your mother where the best place is to buy the iPad. It is important
that you also explain which format you choose and why. Explain to your mother
how you came to your decision.

Task 2

Just before the holiday you organize a dance party in this classroom for the
children in your grade. There will be 32 children at the party. There are a few
tables and chairs and a few more closets.

1. Try to calculate if there is enough space to dance.

2. Make a map of the classroom during the party and give the dimensions.
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The first modelling task consisted of an algebraic problem. In this task, all the
information needed for the student to solve the task was given. Consequently, this
task contained a longer text to read. The student had to discern the information rele-
vant to construct a model. We used a single best answer question format, which is
comparable to problems in mathematics textbooks and the Dutch national examina-
tions. The task concerned a pupil who needs an iPad for school. Her mother travels
the world for her work and would be able to buy an iPad in one of the countries she
is visiting. The question for Grade 6 students was to calculate where the iPad is the
least expensive. Task I shows the shortened version of the task for Grade 6. We left
out the tables showing the currencies from different countries, the iPad prices in the
different countries and an image of an iPad. Grade 8 students also had to account for
the Value-Added Tax, and Grade 10 students also had to calculate the import taxes.

The second task concerned geometry. The problem description was stated as an
open-ended question. The task concerned the organization of a dance party. Grade
6 students had to organize a dance party in the classroom for the students in their
grade, as shown in Task 2. The original version of this task also contained a picture of
dancing children in a classroom. Grade 8 students had to organize a dance party in the
school canteen and Grade 10 students had to complete the same assignment for the
music hall. Students needed to calculate the dancing space for the appropriate number
of party-goers and make a map of the party, including the dimensions. This second
task had missing information that required students to make spatial and numerical
assumptions.

19.2.3 Mathematical Core Assignment

We designed a mathematical core assignment focusing on the mathematical content
without any context to identify pure mathematical problems. The mathematical core
assignment of the first task focused on currency calculations, percentages and reading
abilities. The students in Grades 8 and 10 had to solve an additional question with a
percentage calculation. For all grades, the table showing the currencies in the different
countries was given. The core assignment of task two asked for the meaning of the
word area, applications of the metric system and the area calculation. The students
in Grades 8 and 10 had to solve a second question regarding calculating an area and
a third question for which they had to draw a 0.5 dm? area.

19.2.4 Task-Based Interview

We conducted semi-structured interviews with 26 students. We prepared ten main
questions and, depending on the given answers, the interviewer asked clarification
questions. The questions that were posed focused on the understanding of the task,
text comprehension, word problems, problems the students encountered, outcomes
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and the approach taken, focusing on the different ways of solving the task. Examples
of the questions asked include the following: Can you explain in your own words
what you had to do? Are there words that you did not know, or are there sentences
that you did not understand? How did you perform the task?

19.2.5 Procedure

The students had to construct their answers individually. After the modelling task
was handed in, the core assignment was given. Most of the students finished both
assignments in 30 min. The interviews were conducted at school directly after the
assignments.

19.2.6 Analysis

19.2.6.1 Analysis of Student Work

All student answers were scored using an answer model. In addition, we highlighted
(parts of) the answers that could inform us of the problems that the students encoun-
tered. Because all tasks had different total scores, we calculated the percentages of
the points obtained for each student and task. A portion of the student answers were
scored by a second rater (n = 37). A Cohen’s kappa of k = 0.73 indicated suffi-
cient inter-rater agreement. Linear mixed model analyses were conducted in SPSS
to account for the hierarchical structure of the data. In the first step of the analysis, a
three-level null model (model 0) was estimated without explanatory variables. This
baseline model was used to determine the variance within and between Task 1 and
Task 2. In the next step (model 1), the explanatory variables, the mathematical core
assignment scores, were added and the interaction between the task and mathematical
core assignment (MCA). In the second step of the analysis (model 2), we included
grade and the interaction between the task and grade. We ultimately excluded the
school level due to the small numbers. The correlations between the scores for the
modelling task and the mathematical core assignment were calculated.

19.2.6.2 Analysis of Task-Based Interviews

The interviews with each student lasted from 6 to 20 min. The audio recordings of
the interviews were transcribed. We used the modelling cycle of Perrenet and Zwan-
eveld (2012) as a tool to analyse the students’ answers (see also Kaiser et al. 2006).
First, we coded the data in terms of the modelling activities of conceptualization,
mathematization and solving, interpretation, validation, reflection (on the modelling
process) and iteration (to improve the model). Assumption making was also added to
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this coding scheme. Second, we coded the problems that students encountered. Next
to difficulties with understanding words and sentences (which we asked about during
the interview), we used open coding with an ongoing formulation and refinement of
the categories.

19.3 Results

In this section, we report the results of the paper-and-pencil modelling tasks and the
results of the task-based interviews.

19.3.1 Results of the Modelling Tasks

Table 19.3 reports the average percentages of the correct answers given for Task
1, Task2 and the respective mathematical core assignments (MCA 1 and MCA 2).
The students generally did not perform well on the modelling tasks, although the
standard deviations indicated some variation. In Grade 6, students failed to earn half
the number of points possible on Task 1 and the corresponding mathematical core
assignment (MCA 1), while students from Grades 8 and 10 performed better on these
tasks. In contrast, the multilevel analysis showed that Grade 6 students performed
better on Task 2 than Grade 8 students (p = 0.02). The same effect could not be
shown for Grade 6 students versus Grade 10 students (p = 0.07).

In each grade, the learners who performed well at the mathematical core assign-
ment also performed better at the modelling task (p < 0.005). For each additional
point on the mathematical core assignment, the score on the modelling task was
0.277 points higher (p < 0.002).

A remarkable finding is the better performance on Task 2 of Grade 6 students
compared with the performance of students in Grades 8 and 10. It is possible that
this group’s surprisingly better performance on the second task can be attributed to the
physical surrounding in which the problem of the Grade 6 students was situated (the
classroom) while the problem of the Grade 8 students was the canteen of their school.
Galbraith and Stillman (2001) have mentioned the significant importance of students’
physical experience with the context. Therefore, we more closely examined students’

Table 19.3 Means and standard deviation on the tasks per Grade

Grade Task 1 MCA 1 Task 2 MCA 2
M SD M SD M SD M SD
6 41.9 29.3 46.6 19.2 59.1 20.0 48.5 26.1
57.1 30.3 70.7 16.6 40.1 21.4 434 24.3
10 57.6 242 82.5 159 47.6 19.3 45.9 24.0
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drawings and noticed differences in the quality and detail of the drawings that students
created during Task 2. As in Rellensman et al. (2017), we found situational and
mathematical drawings but also drawings where learners experienced problems with
reducing three-dimensional objects to a two-dimensional map, as well as drawings
that were too abstract and have lost too much detail for the student to successfully
continue with the modelling problem. The latter type of drawings occurred more
often in the higher grades. The students in Grade 6 focused more on the details than
the students in Grades 8 and 10.

Furthermore, we asked in MCA 2 for the meaning of the word area. Remarkably,
most of the students simply provided the formula of length multiplied by the width
instead of offering an explanation. Finally, in Task 1, a frequently occurring mistake
was that students multiplied instead of divided in currency calculations. This mistake
is related to students’ understanding of the context and mathematical knowledge. In
Task 2, most of the students encountered difficulties with calculating the dancing
space, and in the mathematical core assignment, it appears that they had difficulty
using the metric system.

19.3.2 Results of the Task-Based Interviews

The task-based interviews showed that most of the interviewed students enjoyed
solving the given tasks, but they also found it difficult to make assumptions and
solve the task. In addition, they indicated that they had not performed a similar task
before.

Contrary to our expectations, the data did not show a substantial difference
between the students with a strong language proficiency and those with a weak
language proficiency. The interviews, however, illustrated that for some students,
language was an important obstacle. In those cases, the learners failed to construct
a meaningful representation of the described situation. The transition from reality,
presented by the text, to a conceptual model stopped halfway. In all grades, most of
the students repeatedly re-read the text of the modelling task and learners at each level
encountered difficulties in constructing a meaningful representation of the described
modelling problem, sometimes even failing to understand the problem. These repre-
sentation problems were partially related to language problems. Most of the students
were sufficiently able to restate the problem in their own words. They mostly agreed
that the text did not contain any difficult words or sentences. Nevertheless, they still
had their own interpretations and associations of the context. For example, there were
students who drew a map of a classroom party for Task 2 in which the tables were in
groups in the middle of the classroom instead of creating an empty dance floor. The
following conversation between the researcher and a student shows how the student
construed the meaning of a dance party.

Researcher: Why have you drawn the classroom in this way?
Student: Because it has to be, right?
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Researcher: Have you ever been to a class party?

Student: No, not really a class party.
Researcher: What was it then?
Student: Just to a Christmas dinner in class, but not really a class party.

According to Dewolf et al. (2011) and Galbraith and Stillman (2001), the context
provided in the task exerts an important effect on the interpretation and, thus, also
on the solution. This student associated the context with something he recognized (a
Christmas party). Although his knowledge of mathematics was sufficient, the student
nonetheless failed.

These problems with students’ interpretation of the context occurred in the concep-
tualization phase. Although some students did not reach a solution, we found that
most of them were sufficiently able to explain what the task asked for. They became
stuck when they had to formulate this concept mathematically. For this group
of students, there seemed to be a barrier between the conceptual model and the
mathematical model.

19.4 Conclusion and Discussion

In this chapter, we examined the performance of Dutch lower secondary students
on context-rich mathematical modelling tasks. We compared their performance with
the performance of Grade 6 (primary school) and Grade 10 (upper secondary school)
students. We found that overall, students did not perform well. In Grade 8, on average,
students earned 57% of the total points for task 1 and 40% of the total points for task
2. Although the tasks were assessed by different teachers, the tasks may have been too
difficult. The mathematical core assignments showed that mathematical knowledge is
indispensable for solving modelling tasks. Moreover, these students had not received
any education focused on mathematical modelling or on making assumptions. The
standard deviations indicated substantial variation in student performance. When
introducing mathematical modelling in lower secondary education, it is important
that teachers cater to students’ different learning needs or use collaborative learning
tasks in which students can learn from one another.

Our second research question focused on the problems that students encounter,
particularly during the conceptualization phase. From the data, we found four types
of problems: the inability to simplify, structure and make the problem story more
precise; problems of context; the inability to make correct interpretations; and the
lack of mathematical direction shown by making overly abstract drawings.

Many of the students encountered problems in translating the real problem to
the conceptual model, in the conceptualization phase of the modelling cycle. These
findings are in line with previous studies showing that students experience difficulties
with reading the problem (Korhonen et al. 2012) and making assumptions (Chan
et al. 2012). In all grades, most of the students repeatedly re-read the text of the
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modelling task, and students encountered difficulties when constructing a meaningful
representation of the described modelling problem.

We found that most of the students were able to retell the problem in their own
words but were unable to sufficiently solve the problem. The problem for most
students seemed to arise at the end of the conceptualization phase. The conceptu-
alization phase (Perrenet and Zwaneveld 2012) consists of the first two steps (from
real situation to situation model and then from situation model to real model) of the
modelling cycle of Blum and Leif (2005). Understanding the problem is the first
step, and most of the students were successful at that stage. The second step is to
simplify, structure and make the problem more precise, which is where most students
became stuck. Assumption making was also a part of this difficulty.

Every student interpreted the given problem in his or her own way. In some cases,
these interpretations, caused by a limited or incorrect understanding of the keywords
in the problem description (e.g. dance party), led to difficulties in making correct
assumptions and affected their solution of the problem. Thinking aloud would be a
good addition to gain more insight into students’ difficulties and interpretations. In
Task 1, all the needed information was given, unlike in Task 2. For Task 2, we found
that Grade 8 students experienced more problems than Grade 6 students, and we also
found differences in their assumption making and drawings. This study supports the
findings for students aged 13—14 years old from Kaiser and Maap (2007), that “strong
students choose more challenging models while weaker students prefer simpler ways
to achieve their final solutions” (p. 104). Students from Grades 8 and 10 tended
more towards abstract drawings and models, so they experienced more difficulties in
solving the problems than the Grade 6 students who kept their drawings and models
fairly simple. We found that the transition from reality, presented by the text, towards
a conceptual model often stopped halfway.
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Chapter 20 ®)
Investigation of the Mathematics e
Modelling Competency of Mathematics
Undergraduate Student Teachers

Yangyu Wang

Abstract This study investigated the mathematical modelling competencies
of junior mathematics student teachers (n = 273) in four universities in Jiangsu,
Zhejiang, and Shanghai in China, using a scoring framework of the mathematical
modelling steps. “Peeling a pineapple” was selected as the item for the modelling
competency test. The study also used a questionnaire on modelling competition
experience. The results show the performance of the student teachers, the differ-
ences between genders and between different types of universities, and revealed the
correlation between the modelling competition experience of student teachers and
their modelling competency.

Keywords Modelling competency + Modelling steps + Mathematics student
teachers + Modelling competition experience - Mathematical modelling

20.1 Introduction

As one of the core competencies of mathematics (Cai and Xu 2016), mathematical
modelling competency is an important part of mathematics education. The Chinese
version of the Guidelines for Assessment and Instruction in Mathematical Modelling
Education has drawn attention from the mathematics education community (Liang
2017), and mathematical modelling will become a compulsory part of the high school
mathematics curriculum in China (YZZ 2017). However, determining how to teach
mathematical modelling remains a challenge for teachers since students from grade 9
to 11 have a relatively weak competency in mathematics modelling (Ludwig and Xu
2010). The competency of the students largely depends on the modelling competency
of mathematics teachers. Itis essential to investigate and understand the mathematical
modelling competency of mathematics student teachers and to enhance it, as they
will be teaching mathematics in the future.
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20.2 Theoretical Framework

There are several perspectives from which to evaluate modelling competency world-
wide (Kaiser and Brand 2015). Blum and Leiss (2007) have defined “mathematical
modelling competency”:

as the ability to identify relevant questions, variables, relations or assumptions in a given real
world situation, to translate these into mathematics and to interpret and validate the solution
of the resulting mathematical problem in relation to the given situation, as well as the ability
to analyze or compare given models by investigating the assumptions being made, checking
properties and scope of a given model etc. (p. 12)

Modelling competency is reflected in the modelling process. This study referred
to the steps of mathematical modelling by Garfunkel (2016) and defined the scoring
framework of mathematical modelling steps to determine modelling competency.
The modelling steps for scoring are as follows:

Step 1: Nothing is written or only a result is presented.
Step 2: Variable is identified, and an assumption is made, but it is unreasonable.
Step 3: Variable is identified, and a reasonable assumption is made, but the
mathematical solution is inaccurate.

e Step 4: Variable is identified, an assumption is made, and the mathematical
solution is accurately given, but the model is unverified.

e Step 5: Variable is identified, an assumption is made, the mathematical solution
is performed, and the model is validated.

In step 1, there is no modelling component (before defining the problem), while
step 2 features an unreasonable assumption (defining an unreasonable problem situa-
tion ), both of these are common in the modelling cycle in the real world before being
perfected in the mathematical world (Blum and Leiss 2007). In step 3, a reasonable
situation is defined, but an accurate mathematical solution was not offered. Step 4
defines variables and offers a reasonable assumption as well as an accurate solution,
but the model is not validated. Step 5 validates the model in the modelling cycle. In
this process, steps 3 to 5 are equivalent to the mathematics world in the modelling
cycle.

This theoretical framework was used to study the modelling competency of
mathematics student teachers, and the following research questions arose:

1. What is the status of the modelling steps reached by the student teachers?

2. Are there differences in the mathematical modelling competency among students
based on their school and gender?

3. What is the correlation between the modelling competency of student teachers
and their modelling competition experience?
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Fig. 20.1 A pineapple is
being peeled

20.3 Study Design

20.3.1 Task Design

20.3.1.1 Real Situation

This study offered the real situation of “peeling a pineapple” (Ludwig and Xu 2010)
as shown in Fig. 20.1.

Peeling a pineapple

In China, April is pineapple season. When a customer buys a pineapple, the
vendor peels it for them. This is an artistic practice, as the peels leave the fruit
in nice spirals. We probably take this for granted, but as a mathematician or
mathematics teacher, please consider the following: why does the vendor peel
the pineapple in this way? Please explain it mathematically.

20.3.1.2 The Solution to the Real Situation

A possible solution to Peeling a pineapple is as follows:

Suppose the black seeds are connected in a rhombus (Fig. 20.2).

Suppose ZABD = 6(0 <6 < %) and AB = a, then BD = 2acos6 and
AC =2asinf.

For horizontal peeling, there are a total of 2/ rows, and each row has a length of
2ah cos 6, so the total length of the peeled fruit is z = 4ahl cos 9.

For longitudinal peeling, there are a total of 24 columns, and each column has a
length of 2ah sin 0, so the total length of the peeled fruit is z = 4ahl sin6.

For diagonal peeling, there are a total of & diagonal lines, each diagonal line
with length of 2al, so the total length of the peeled fruit is z = 2ahl.

When 0 < 0 < %,AC < AB < BD;When% <0 < %,AB < AC < BD;
When% <9<%,AB<BD<AC;when%<9<%,BD<AB<AC.
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Fig. 20.2 Suppose the black A
seeds are connected in a
rhombus ABC D

C

So, AB is at a minimum when ¥ < 6 < %, which means that the least pineapple
is removed when being peeled diagonally. (See Ludwig and Xu, 2010, for a fuller

solution.)

20.3.1.3 Questionnaire

The following instruction was given in a questionnaire after introducing the above-
mentioned situation: Please discuss your level of experience with mathematical
modelling competitions. Three options were presented: have not participated, have
participated but have not won, and have participated and won. The modelling
competition could be at the school, provincial, national, or even international level.

20.3.2 Sample

This study selected undergraduate junior mathematics student teachers from four
universities in northern and central Jiangsu, southern Zhejiang, and Shanghai. In
particular, two first-tier universities in Shanghai and Jiangsu and two second-tier
universities in Jiangsu and Zhejiang were involved.

A total of 285 test papers and questionnaires were distributed in the test, of which
273 were valid. Amongst the valid test papers, the sample distribution is as follows
(see Table 20.1).

Table 20.1 Survey sample distribution

School Type Region Boys Girls Total

First-tier University Shanghai 22 48 70 144
Jiangsu 18 56 74

Second-tier University Jiangsu 20 60 80 129
Zhejiang 16 33 49

Total 76 197 273
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20.3.3 Test Analysis

Based on the rating criterion for mathematical modelling competency (see p. 2), the
solutions given by the student teachers were carefully rated and classified.

We encoded 273 solutions based on the modelling steps and their performance. To
improve the reliability of the encoded data, about 15% of the participants’ test papers
from different schools were collected and sampled, and they were independently
coded by two researchers. At the beginning, the coding consistency of the test was
about 80%, so the two researchers had to reach a consensus on inconsistent coding.
This procedure was repeated several times before the coding consistency reached
about 90% in the consistency test.

20.4 Results

20.4.1 Performance of the Student Teachers

A small number of the mathematics student teachers (see Fig. 20.3 in which 40.3%
of the student teachers stopped at step 1 or 2) could not turn real-world models into
mathematical models, whereas a majority of them (see Fig. 20.3 in which 59.7%
of the student teachers reached steps 3, 4 and 5) could transform real-world models
into mathematical models. Once the models were accurately transformed, most of
the student teachers (63.2%, as shown in Fig. 20.3) could solve problems and obtain
accurate mathematics solutions. Step 2 marks a key indicator in evaluating the math-
ematical modelling competency of the student teachers because some of them might
have difficulties turning real-world models into mathematical models.

In addition, most of the mathematics student teachers were unable to reach step
5, which means they could not test the rationality of a solution in the real world or
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25.00%
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Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 20.3 Percentage of student teachers who reached step x
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in real scenarios. This may be related to the approaches they used for mathematical
solutions.

20.4.2 Unipversity and Gender Differences

20.4.2.1 Differences in Terms of Type of University

There was a significant difference in the mathematical modelling competency of
the mathematics undergraduate student teachers from different types of universities
(p < 0.01). Students from first-tier universities completed more steps (3.17 steps,
on average) than students from second-tier universities (2.77 steps, on average).
Furthermore, there was no significant difference (p > 0.05) in the mathematical
modelling competency of students from the same university tier in different regions.
Meanwhile, those who were able to reach modelling step 5 were all from first-tier
universities.

20.4.2.2 Differences in Terms of Gender

There was no significant difference in mathematical modelling competency between
males and females (p > 0.05). It was found that 63.96% of the females reached the
mathematics world, whereas only 48.68% of the males, which was far lower than the
percentage for females who were able to do so. By contrast, more males stayed in
the real world than females (see Fig. 20.4). The data showed that more than half of
the males remained in the real world, indicating that compared with females, males
were less capable of “peeling a pineapple” in a mathematical model.
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40.00%

30.00% mgirls
H boys
20.00%
10.00% I
0.00% . - | ||

Step 1 Step 2 Step 3 Step 4 Step 5

Fig. 20.4 Percentage of females and males who reached step x
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Table 20.2 Correlation between modelling competition experience and modelling step in terms of
type of university

University N Correlation
First-tier University 144 0.292%%*
Second-tier University 129 —0.089

Total 273 0.197%%*

Table 20.3 Correlation between modelling competition experience and modelling step in terms of
gender

Gender N Correlation
Female 197 0.227+*%*
Male 76 0.123

Total 273 0.197%**

20.4.3 Correlation Between Modelling Step
Reached and Modelling Competition Experience

Although there is a difference in the modelling steps reached of student teachers
with different modelling competition experiences (p < 0.01), the correlation is low
(see Table 20.2 or 20.3, in which the correlation is 0.197), which means that student
teachers who had no modelling competition experience still had the potential to
improve their modelling competency. In addition, the correlation between modelling
competition experience and the mathematical modelling step reached of first-tier
university students (see Table 20.2, in which the correlation is 0.292) is higher
than that of second-tier university students (see Table 20.2, in which the correla-
tion is —0.089). The correlation between modelling experience and the mathemat-
ical modelling step of females (see Table 20.3, in which the correlation is 0.227) is
higher than that of males (see Table 20.3, in which the correlation is 0.123), and the
student teachers who could reach mathematical modelling step 5 all had modelling
competition experience.

20.5 Conclusions and Outlook

The results show that the modelling difficulty the student teachers encountered was
the transformation of problems in the real world to mathematical models, which is
consistent with the results of a study on grade 9 to 11 students by Ludwig and Xu
(2010). There may be a correlation between students” weak mathematics competency
and that of their teachers, which will hopefully be the topic of follow-up studies; in
particular, since mathematical modelling is about to be carried outin teaching in the
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high school in China. The promotion of modelling competencies amongst learners
requires qualified teachers (Blum 2015). Therefore, improving the mathematical
modelling competencies of teachers or student teachers is important, which is also a
topic to be studied in the future.

The data also show that the modelling steps have a correlation with modelling
competition experience, supporting the findings of my previous research (Wang
2018). However, the correlation is low, indicating that student teachers without
modelling experience still have the potential to improve their modelling competency.
In addition, modelling experience is positively correlated with the modelling compe-
tency of student teachers from first-tier universities, whereas itis negatively correlated
with the modelling competency of student teachers from second-tier universities. In
an interview with the student teachers, it was found that those from second-tier
universities won more awards in school or provincial competitions and fewer awards
in national or international competitions. However, student teachers from first-tier
universities had more awards in national or international competitions, which could
have played a role in the results of the test. One of the first-tier universities studied
is, in fact, reforming its mathematical modelling curriculum, providing inspiration
for follow-up studies. Meanwhile, as student teachers from first- and second-tier
universities may have a gap in mathematics knowledge when they enter university,
which could have an impact on their modelling competency, this is also a topic worth
studying in the future.

This study uses and expands the framework by Garfunkel (2016). The framework
is also related to the modelling cycle in the real world and the mathematical world
in Blum’s work (2007). As a combination of the two frameworks, the theoretical
framework of this study needs to be further improved. Meanwhile, the real situation
used is an early test from Ludwig and Xu (2010). Although China still uses this
method to peel pineapples, the manner of peeling pineapples in the real world has
changed substantially. Perhaps a new test can be developed for subsequent studies.
Furthermore, this study only targets universities located in the Yangtze River Delta
of China, a highly developed region in China. Conducting research in the central and
western regions of China in the future would be desirable.
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Abstract Teaching mathematical modelling is a cognitively challenging activity
for (prospective) teachers. Thus, teacher education requires a detailed analysis of
professional competence for teaching mathematical modelling. To measure this
competence, theoretical models that accurately describe the requirements placed
upon teachers are needed, as well as appropriate evaluation tools that adequately
capture skills and abilities in this field. This is where the present study comes in,
contributing to the teaching of mathematical modelling through the theory-based
development of a structural model and an associated test instrument. In particular,
this chapter discusses to what extent the proposed conceptualisation of the structural
model can be empirically confirmed. To this end, insights into the test instrument are
presented, as well as results of the structural equation analysis of the model.

Keywords Mathematical modelling - Professional competence + Teacher
education - Model development - Test development - Structural equation analysis
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21.1 Introduction

In recent years, many empirical studies have dealt with the questions of how
modelling can be taught in school (e.g. Blomhgj 2019), how modelling (sub-) compe-
tencies can be assessed (e.g. Haines and Crouch 2001) or how modelling can be
integrated into university teacher education (e.g. Borromeo Ferri and Blum 2010).
However, some questions in the field of mathematical modelling remain open, for
example:

e To what extent can prospective teachers be prepared by university courses?
¢ To what extent can selected contents and methods contribute to the promotion of
teachers’ competences?

To answer these and other questions, teacher education requires a detailed anal-
ysis of teacher competences and a detailed analysis of professional competence for
the teaching of mathematical modelling. In this context, we understand competences
as context-specific cognitive dispositions for achievement that relate functionally to
specific situations and demands in specific domains (Klieme et al. 2008). Accord-
ingly, current professionalisation efforts are not only limited to the acquisition of
theoretical knowledge but also include its application in concrete situations.

Now that the global professional competence of (prospective) mathematics
teachers has been comprehensively structured, operationalised and measured in
various large-scale studies (e.g. Baumert and Kunter 2013; Blomeke et al. 2014),
the question arises of a local, purposeful modelling-specific arrangement of these
competences. This chapter presents the theoretical derivation of a structural model
of professional competence for teaching of mathematical modelling. Furthermore,
empirical results on the quality of the model and the selected test instrument are
presented.

21.2 Theoretical Frame

In addition to good modelling tasks, which form the necessary basis for produc-
tive modelling processes, the promotion of modelling competences among learners
requires specific competences of teachers (Blum 2015)—especially given their
important role in the context of teaching-learning processes (Hattie 2009). Building
on Shulman (1986), a distinction in the aspect of teacher professional knowledge is
made between content knowledge, pedagogical content knowledge and pedagogical-
psychological knowledge. In this chapter, the concretisation of a structural model
of professional competence relating to the imparted competence of “mathematical
modelling” is carried out by using the competence model of the COACTIV-Study
(Baumert and Kunter 2013).

In the COACTIV-Model, professional competence is composed of the super-
ordinate aspects of beliefs/values/goals, motivational orientations, self-regulation
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Fig. 21.1 Structural model of professional competence for the teaching of mathematical modelling

and professional knowledge. Professional knowledge is in turn subdivided into
the following domains of competence: content knowledge, pedagogical content
knowledge, pedagogical-psychological knowledge, organisational knowledge and
consulting knowledge.

Regarding the necessary professional competences for the teaching of mathemat-
ical modelling (cf. Fig. 21.1), in addition to beliefs/values/goals and motivational
orientations, the pedagogical content knowledge, as a part of the professional knowl-
edge, in particular is characterised by modelling-specific contents. In contrast, other
aspects and domains like pedagogical-psychological knowledge and self-regulatory
skills tend not to contain any clear modelling-specific aspects and are therefore not
considered more closely.

21.2.1 Professional Knowledge

The interpretation of the modelling-specific pedagogical content knowledge is based
on the four theoretically derived competency dimensions for the promotion of
modelling competences among learners according to Borromeo Ferri and Blum
(2010): the theoretical dimension, the task dimension, the instruction dimension
and the diagnostic dimension. Each of these dimensions is concretised by facets of



252

Knowledge about
interventions

y :

/" Modeling-
specific \
| pedagogical |
content /

Knowledge about
modelling processes

Knowledge about
modelling tasks

R. Wess et al.

Knowledge about aims
and perspectives

» Characteristics of suitable

adaptive interventions

» Effects of suitable

adaptive interventions

+ Phases in the modelling

process

« Difficulties in the

modelling process

+ Characteristics of
modelling tasks

+ Cognitive analyses of
modelling tasks

+ Development of modelling

+ Modelling cycles
= Aims and Perspectives

+ Range of the references

+ Individual support in the tasks to reality
modelling process +  Multiple solutions of
modelling tasks

Fig. 21.2 Modelling-specific pedagogical content knowledge

knowledge and abilities, which relate both to declarative and procedural aspects of
the knowledge of (prospective) teachers.

Accordingly, we subdivide the modelling-specific pedagogical content knowl-
edge—following the COACTIV-Model (Baumert and Kunter 2013)—besides the
facets of knowledge about interventions, knowledge about modelling processes
and knowledge about modelling tasks additionally into knowledge about aims and
perspectives of mathematical modelling. These competence facets were developed
with selected aspects of the competency dimensions mentioned above (cf. Fig. 21.2).
All aspects are also mentioned in overview articles on mathematical modelling (e.g.
Blum 2015).

According to Borromeo Ferri and Blum (2010), knowledge about interventions
represents a facet of teaching knowledge that is important for adequate support of
modelling processes. In addition, the teaching of mathematical modelling results
in a different teacher role, which is associated with new demands. With the defi-
nition of adaptive teacher interventions following the principle of minimal help
and a taxonomy of teacher support, characteristics of suitable interventions could
be determined and used to assess assistance in the modelling process (Leiss and
Wiegand 2005). Good interventions in mathematical modelling processes are there-
fore oriented to students’ solution process and are minimal as well as independence
preserving. These interventions are specific to the field of mathematical modelling,
since they are intended to promote independent work by learners and metacognitive
competences. They are determined by the openness of the tasks and the confrontation
with a multitude of different solutions.

Knowledge about modelling processes is characterised by specific diagnostic
knowledge. In particular, teachers need skills to identify and document progress and
difficulties in students’ learning process. In the diagnostics of modelling processes,
for example, the focus is on identifying the modelling phase in which the learners
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are currently working (Borromeo Ferri and Blum 2010). Furthermore, in numerous
studies, difficulties occurring in the modelling process have been assigned to the
modelling phases in which they appear (e.g. Galbraith and Stillman 2006). Thus,
focused diagnostics are made possible in this way, the aim of which is the identi-
fication of opportunities to provide individual support for the learner’s modelling
process. In this context, Brunner et al. (2013) show the high relevance of teachers’
diagnostic skills for the learning process of students.

The knowledge and skills to analyse, process and develop modelling tasks
represent facets of a task-related competence dimension that forms the basis for
productive modelling processes among learners (Borromeo Ferri and Blum 2010).
The comprehensive classification scheme for categorising and analysing modelling
tasks according to Maall (2010), in conjunction with the explanations on task
design according to Czocher (2017), provides a theoretical foundation for the facets
mentioned here, in particular the criteria-based development of modelling tasks with
focus on reference to reality, relevance, authenticity and openness. These facets
form “the interface between student and teacher activities in the mathematics class-
room” (Neubrand et al. 2013, p. 127) and thus represent an indicator for the teaching
dimension of cognitive activation.

The facet of aims and perspectives consists of selected aspects of theoretical back-
ground knowledge. On the one hand, knowledge about modelling cycles and their
suitability for various purposes is described, for example as a metacognitive strategy
for learners or as a diagnostic tool for teachers. On the other hand, different perspec-
tives of research on mathematical modelling are illustrated (Kaiser and Sriraman
2006), for example modelling as vehicle to learn mathematics and to serve other
curricular needs (Julie and Mudaly 2007). In addition, teachers should be aware of
the corresponding goals of mathematical modelling in teaching and of the varying
relevance of reality references for learners.

21.2.2 Beliefs

The COACTIV-Study defines beliefs as “psychologically held understandings and
assumptions about phenomena or objects of the world that are felt to be true,
have both implicit and explicit aspects, and influence people’s interactions with the
world” (Voss et al. 2013, p. 250). Furthermore, Woolfolk Hoy et al. (2006) distin-
guish between epistemological beliefs and beliefs on teaching and learning math-
ematics. Epistemological beliefs can be operationalised in the following aspects:
the formalism aspect, the application aspect, the process aspect and the schema
aspect (Rosken and Torner 2010). Due to the reality reference of modelling tasks,
a reference to the application aspect appears to be suitable. This aspect describes
the relevance of mathematics in the world, which is why positive beliefs about
mathematical modelling represent perspectives that give modelling a meaning in
everyday life and work. In contrast, beliefs on teaching and learning mathematics
include views on teaching objectives and teaching method preferences as well as



254 R. Wess et al.

classroom and group management. They are operationalised by statements that give
mathematical modelling a justified place in mathematics teaching. Both facets of
beliefs can be understood within the framework of the antagonistic epistemology
of behaviourism and constructivism. Transmissive beliefs go hand in hand with the
view that learning is the absorption of knowledge and the reinforcement of posi-
tive behaviour. In contrast, constructivist beliefs see the learner as an active partici-
pant in the learning process who constructs his knowledge individually (Voss et al.
2013). The constructivist beliefs go hand in hand with the self-reliant and cooperative
handling of realistic, authentic and thus situationally connected modelling tasks. For
this reason, constructivist beliefs of teachers are normatively regarded as positive for
high competences in teaching mathematical modelling (Blomeke et al. 2014).

21.2.3 Self-Efficacy

As part of the motivational orientations, the self-efficacy of (prospective) teachers
is regarded as an empirically founded characteristic of professional competence.
Tschannen-Moran and Woolfolk Hoy (2001, p. 783) define the concept of self-
efficacy as follows: “A teachers’ efficacy belief is a judgement of his or her capa-
bilities to bring about desired outcomes of student engagement and learning, even
among those students who may be difficult or unmotivated”. Self-efficacy can be
related to concrete teacher competences and is suitable for recording ideas about
one’s own abilities in the field of teaching mathematical modelling. As already
mentioned, knowledge about modelling processes from a theoretical perspective as
a diagnostic component of modelling-specific pedagogical content knowledge has a
strong influence on students’ learning processes (Brunner et al. 2013). Accordingly,
it forms a decisive facet of competence for teaching mathematical modelling. For this
reason, our structural model operationalises self-efficacy by assessing the (prospec-
tive) teachers’ own ability to diagnose the performance potential of learners in the
modelling process. We assume that the diagnostic requirements for the teacher differ
depending on the modelling phase in which the learners work. Thus, the self-efficacy
of the (prospective) teachers can also be differentiated according to the phase. Further-
more, scaling analyses indicate that a distinction can be made between phases specific
to the modelling process (simplifying, mathematising, interpreting, validating) and
unspecific ones (working mathematically).

21.3 Empirical Validation of the Structural Model

For an empirical examination of the conceptualised structural model of professional
competence for teaching mathematical modelling, the following research questions
arise:
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1. To what extent can the proposed conceptualisation of the structure of profes-
sional competence for the teaching of mathematical modelling be empirically
confirmed?

2. To what extent are there connections between beliefs, motivational orientations,
and modelling-specific pedagogical content knowledge?

To answer these questions, the described structural model was evaluated on the
basis of data from 349 prospective teachers for secondary schools at the German
universities of Miinster, Koblenz-Landau and Duisburg-Essen. In this context, a test
instrument was developed (Klock and Wess 2018) that operationalises the described
four facets of the modelling-specific pedagogical content knowledge over a total
of 64 dichotomous test items in multiple and combined single-choice formats. The
items in the facets of knowledge about modelling processes and knowledge about
interventions relate to modelling tasks, which are supplemented by text vignettes on
the concrete modelling processes of learners (cf. Fig. 21.3).

The items of beliefs (16 items) and self-efficacy (19 items) for mathematical
modelling were collected using a five-point Likert scale (from 1 = “strongly disagree”

7.1 Traffic Jam (Grade 9)

It is the start of the summer holidays and there are many traffic
jams. Chris is on holiday in Germany and has been stuck in a
20 km traffic jam for 6 h. It is hot and she is longing for a drink.
Although there are rumours that the Red Cross is coming
around with a small lorry distributing water, she has received
nothing so far. How long will the Red Cross need to provide
everyone with water?

STUDENT 1:  We should actually know how many cars are in the traffic jam.

STUDENT 2:  Huh? Right!

STUDENT 1:  How should we calculate how long it takes? Many things are missing in the task!
STUDENT 3:  Yes, and we do not know how long it takes for each car.

STUDENT 2:  Such a stupid task.

STUDENT 1:  We can devide the 20 km by the 6 hours, then we know how fast the small lorry
has to be.

STUDENT 3:  Exactly! We did not get any further information anyway.

Diagnose students’ difficulty working on the task in this situation. Please check one box.
The Students ...

... have problems making assumptions.

... draw a wrong conclusion from their mathematical result.

... have problems understanding the context.

O|0/0|0O

... use an inappropriate mathematical model.

Fig. 21.3 Test item assessing knowledge about modelling processes on the basis of the traffic jam
task (cf. MaaBl and Gurlitt 2010)
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Table 21.1 Characteristics for belief and self-efficacy scales

Construct Scale Number of Items Cronbach’s Alpha
Beliefs Constructivist Orientations 12 0.83

Transmissive Orientations 4 0.65
Self-Efficacy Modelling 11 0.88

Working Mathematically 8 0.84

Table 21.2 Dichotomous Rasch models for knowledge scales

Scale Number of Items | EAP Reliability | Andersen Test | Pt.-Bis. Corr
Interventions 19 0.71 0.061 >0.30
Modelling Processes 18 0.74 0.072

Modelling Tasks 17 0.81 0.086

Aims and Perspectives | 10 0.70 0.058

to 5 = “strongly agree”). These scales were checked on the basis of a confirmatory
factor analysis and show a Cronbach’s « of at least 0.65 (see Table 21.1), which can
still be described as acceptable.

The dichotomous items were scaled using Rasch models and the scales in this
context were checked for sufficiency. Using the eRm package (Mair and Hatzinger
2007) of the software R, item difficulties were estimated on the basis of the solutions
of the tasks, and person ability parameters were estimated on the basis of the perfor-
mance of the interviewees. Various scale characteristics were calculated to assess the
scalability (see Table 21.2). The EAP reliabilities (comparable to Cronbach’s «) are
above (.70 and are therefore acceptable. The Andersen tests for assessing the model
fit are all not significant and therefore point to a fit of the Rasch models. Furthermore,
the point-biserial correlations of the items are all greater than 0.30 and thus also of
acceptable quality.

21.4 Results

The conceptualised model was verified by structural equation analysis using the
SPSS extension AMOS. Since it was not possible to load the items directly onto
the latent variables due to the small sample size (N = 349), the standardised sum
scores or the person ability parameters were used. In view of the fit indices (cf.
Figure 21.4), the model specified in this way has a very good global fit with the data
set (Hu and Bentler 1998). Empirically, significant correlations of medium practical
relevance between self-efficacy and beliefs in mathematical modelling (r = 0.57, p <
0.01), as well as between self-efficacy and scores in modelling-specific pedagogical
content knowledge (r = 0.53, p < 0.01), can be demonstrated. Also, a significant
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Fig. 21.4 Structural equation analysis of the model

correlation of medium-to-high practical relevance between beliefs and pedagogical
content knowledge can be identified (r = 0.78, p <0.01). In addition, all scales show
significant loadings with high effect sizes.

21.5 Discussion

The results of the empirical validation confirm the basic structure of the model of
professional competence for the teaching of mathematical modelling in the theo-
retically conceptualised form. In particular, the high correlation between the beliefs
and the facets of the modelling-specific professional knowledge is in line with the
findings of expertise research (Baumert and Kunter 2013). However, the scale of
transmissive beliefs in mathematical modelling showed little reliability. One reason
for this could be the low number of items. In follow-up studies, it would there-
fore be desirable to increase this number. The quantitative research approach also
reveals further limitations. In particular, the use of dichotomous test items in the
Rasch model leads in a way to a normative setting of true and false statements.
Especially with modelling problems this is a challenge, which leads to the fact that
many interesting examples could not be used because they could not be clearly clas-
sified into true and false. However, more sophisticated scales, such as Likert scales,
are not suitable for measuring knowledge, so this limitation must be dealt with. For
this reason, qualitative additions, such as the analysis of modelling tasks created by
(prospective) teachers in vivo, represent a necessary and vital starting point for future
studies. Furthermore, due to the unavailability of comparative tests, the discrimina-
tory and convergent validity cannot be conclusively assessed. However, the good
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model fit indicates structural validity. In this context, it should be borne in mind that
the results of the study merely represent an empirical foundation of the structures
under consideration for prospective teachers at the participating German universities.
Thus, further work on the examination for practising teachers on the one hand and
in international contexts on the other is still outstanding—perhaps there is a German
tradition of teaching modelling that cannot be generalised. Furthermore, the theo-
retically derived and empirically verified structural model does not fully describe
the professional competence for the teaching of mathematical modelling but only
modelling-specific aspects. In addition to pedagogical content knowledge, the teacher
must have well-founded pedagogical-psychological knowledge, for example about
organising and monitoring group work, as well as content knowledge in order to be
able to adequately carry out modelling processes. It would therefore be necessary to
capture facets of pedagogical-psychological knowledge and the modelling compe-
tence of (prospective) teachers with suitable instruments in order to comprehensively
describe professional competence for teaching mathematical modelling. However,
this would have led to a considerable increase in the test period, so the additional
survey of these domains was initially dispensed with.

21.6 Conclusion and Outlook

Using the example of teaching mathematical modelling, it could be shown that profes-
sional competences of teachers can be concretised in order to evaluate the associated
knowledge and skill facets. The finding that the conceptualised, modelling-specific
competences can be recorded in an empirical and structurally valid manner indi-
cates added value for further research on teaching mathematical modelling, since,
for example, a wide variety of university courses can be evaluated more precisely
and thus given a more differentiated assessment. It also seems sensible to apply this
approach to other competences (e.g. problem-solving), because the exact descrip-
tion of such specific professional competences is what enables them to be system-
atically promoted within the framework of university courses and practical teacher
training. Modelling competency as modelling-specific content knowledge was not
captured in the context of this study. Against the background of general profes-
sional competence, especially for secondary school teachers, the COACTIV-Study
demonstrates a close connection between content knowledge and pedagogical content
knowledge. Whether this connection can also be reproduced in the field of profes-
sional competence for the teaching of mathematical modelling is a question for future
studies.
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Part V
Teaching Practice



Chapter 22 ®)
Attending to Quantities Through e
the Modelling Space

Jennifer A. Czocher and Hamilton L. Hardison

Abstract Understanding students’ modelling processes is critical for informing
facilitator interventions. More specifically, it is important for facilitators to under-
stand the situation-specific attributes students find relevant in modelling tasks, if and
how these are manifested in their inscriptions, and when students’ situation-specific
meanings for inscriptions change while engaged in modelling. In this chapter, we
present a theoretically coherent methodological approach for attending to the afore-
mentioned features. Our approach foregrounds the quantities projected by students
when engaged in modelling, as well as attends to the situation-specific quantitative
referents for their mathematical inscriptions. We illustrate the utility of this approach
by analysing the modelling activities of a purposefully selected undergraduate student
and consider implications for future research.

Keywords Qualitative + Quantities + Post-secondary - Modelling space *
Facilitator intervention - Cognition - Representations

22.1 Introduction

Mathematical modelling pedagogies obtain optimal learning outcomes when students
work out their own solutions (Kaiser 2017), which means that students need help not
only in identifying that their models may be inadequate, but also support in revising
them appropriately. Model revision is an under explored and under conceptualised
topic. This is partly due to the myriad methodological questions that surround system-
atic inquiry into how and why students choose to revise their models (or to take up
or ignore facilitators’ suggestions, e.g. Stender and Kaiser 2015). Important ques-
tions remain like: What changes does (or might) a student make to her model? Why?
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Do the changes she makes meet her goals? Under what conditions do facilitator
interventions occasion model changes? And ultimately, what qualifies as a change
anyway? It is only by addressing this last question that we can uncover ways to help
students make meaningful changes, culminating in student-centred teacher training
on facilitating mathematical modelling tasks.

Our broad research objective is to produce a theoretically and methodologically
coherent means for documenting changes to a model—changes both to external
presentations and to the student-specific meanings they may carry. In this chapter,
we adopt a semiotic perspective (Kehle and Lester 2003) to argue that tracing model
evolution entails attending to the quantities a student projects onto a situation, the
relationships conceived among these quantities, the inscriptions produced along with
their quantitative referents, as well as the modifications in these aforementioned
elements. We illustrate our argument using a detailed case study approach (Ragin
2004) to explore interactions between inscriptions and quantitative reasoning. Our
contribution is theoretical and methodological: we document our methodological
approach and report on some insights regarding facilitating students’ revisions to
their models as they work on modelling tasks.

22.2 Relevant Theoretical Constructs

We view mathematical modelling as a cognitive and iterative process. Often, the
process is conceptualised as a series of phases of cognitive activity (Kaiser 2017,
Maal} 2006) where student decisions made during each phase contribute to the
dynamic evolution of the model. In essence, we elaborate on the systematising and
mathematising phases through a semiotic lens to garner insight into the ways models
could change. Following Kehle and Lester’s (2003) application of Peircean semiotics
to mathematical modelling, modelling can be seen as a process of unification among
a sign, a referent (the object the sign stands for), and an interpretant. Thus, math-
ematising a situation involves generating mathematical expressions and assigning
situationally relevant meanings compatible with the modeller’s physical theory. In
this view, the meanings of symbols within an equation are not inherent, but must
be constructed by the modeller and inferred by an observer (e.g. a facilitator or
interviewer). The mathematising phase depends on how the modeller coordinates
knowledge about the real-world entities and relationships in the scenario she iden-
tifies as relevant (or not) with her anticipation of the mathematical concepts and
signs that will appropriately signify them. Scholars from physics education have
conceptualised the coordination as follows. Systematising occurs through coordina-
tion of physical theory, which is a “representational system in which two sets of signs
coexist: the mathematical signs and the linguistic ones” (Greca and Moreira 2002,
p. 107), with a mathematical model, taken to be a deductively articulated axiomatic
system and attendant mathematical concepts. Statements of physical theories are
about simplified and idealised physical systems, termed physical models, not the
real-world scenario itself. We use the term representation to refer to an outward
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expression of an individual’s mathematical model and inscription to refer specif-
ically to the expression’s written form. These distinctions allow for precision in
talking about how components of a mathematical model (a mathematical conceptual
system with cognitive links to a real-world system) may change independently (or
in coordination) with one another.

Attending to meaning-making processes merits elaborating the role of quantities
as interpretants. According to Thompson (2011), quantities are mental constructs,
not characteristics of objects in the world. Individuals conceive of quantities via a
quantification, which is “the process of conceptualizing an object and an attribute
of it so that the attribute has a unit of measure, and the attribute’s measure entails a
proportional relationship (linear, bilinear, or multi-linear) with its unit” (Thompson
2011, p. 37). One can conceive of various instantiations of the object, with each
instantiation manifesting different extents of the relevant attribute, and coordinate
these instantiations with a value. We operationalise quantification as the set of opera-
tions an individual can enact on a particular attribute (Hardison 2019). These mental
acts may become quite familiar or nearly automatic if one has much experience in
the context; however, the quantification process is generally nontrivial (Thompson
2012). An attribute’s quantification is idiosyncratic because two individuals may
not enact the same mental operations on a given attribute; thus, they may conceive
of a specified quantity differently (Steffe and Olive 2010). Thus, quantities are not
synonymous with variables nor with the objects they quantify. And, returning to
mathematising, it can now be operationalised as conceiving and representing the
relationships among the quantities involved. We leverage Sherin’s (2001) theory of
symbolic forms to explain how both mathematical and quantitative meaning can be
associated with equations. A symbolic form consists of a template and an idea to be
expressed in the equation. For example, [] + [J = [J expresses a “parts-of-a-whole”
relationship, where each box is a placeholder for a (potentially different) quantity.
Familiarity with symbolic forms helps individuals “know” which equations to use in
a given situation.

22.3 Methodology

The theoretical perspectives outlined above distinguish among the quantities an indi-
vidual projects onto a situation, operations (quantitative or numerical) enacted on
these quantities or their values, and the representations (inscriptions as well as utter-
ances) she uses. The distinction is necessary in order to increase understanding of,
and respond to, a student’s evolving conceptual system. Quantities and operations
are conceptual entities, whereas inscriptions and utterances are observables. From
the researcher perspective, quantities and operations can only be inferred through the
observables generated by a student. Given the quantities that a student projects into
a particular situation and the operations available to the student, we refer to the set of
(conceptual) mathematical models a student might generate within a given modelling
task as the modelling space. We view the modelling space as the set of mathematical
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relationships that act via composition on the situationally relevant quantities available
to the student. For example, suppose that during a modelling task about a projectile
subject only to gravity, we are able to infer that a modeller has introduced the quan-
tities initial height above ground, time elapsed, current height above ground, mass
of the object, and initial velocity. We represent the modeller’s available quantities
as the sequence (TIME, HT;, HT, MASS, V;). His modelling space would be all of the
mathematical combinations of those quantities meaningful to him. For example, his
modelling space may contain iz = ho — vg - t to relate HT to TIME, where the symbols
correspond to experts’ conventions. However, his modelling space would not (yet)
contain the element 7 = hg — vot — %gt2 because he had not yet introduced gravity
as a situationally relevant quantity.

In our analysis, we sought a means to trace changes to models relevant to system-
atising and mathematising, namely: (1) introduction or modification of inscrip-
tions, (2) introduction of quantities, and (3) shifts in meaning of inscriptions due
to shifts in the roles of quantities. Therefore, we developed procedures attending
to these three phenomena through retrospective analyses of task-based interviews
(described below). For a given student working on a given task, we first catalogued
all inscriptions that he introduced and documented any modifications he made to them
throughout the session. We did so by attending to the spatial and temporal organ-
isation of inscriptions on his paper. We judged his mathematical representation to
have changed if either the system of signs comprising the representation changed
(e.g. introducing a symbolic equation for a quadratic relationship after working with
a graph) or a new inscription was created in a different location on the page (Czocher
and Hardison 2019). To identify substantive changes to the meaning for a given repre-
sentation, we considered (a) whether there was evidence to infer that information or
meaning was distributed to the representation or removed from it, (b) whether the
student modified an inscription, or (c) whether he modified an inscription in a way
suggestive of transporting meaning to, or from, another representation. Second, we
sought to identify the quantities the student projected onto the scenario. We anal-
ysed records of the interviews and identified situational attributes to which the student
attended during the course of the session. By situational attributes, we mean we were
able to infer a situational referent for the attribute within the scenario (e.g. a tree’s
height). Generic attributes for which we were unable to infer situational referents (e.g.
height, without indicating height of what) were not considered situational attributes.
Additionally, we searched for evidence of the student engaging in mental operations
suggestive of a conceived measurement process for each attribute. Through induc-
tive and iterative analysis, we obtained a set of 8 observable criteria (see Table 22.1)
to use as indicators of a student projecting situationally relevant quantities onto a
scenario. The criteria are not mutually exclusive. For example, specifying a unit of
measure (QC6) may co-occur with observing variation in an attribute (QC1). Three
independent coders systematically applied these criteria via constant comparison to
the interview records. Disagreements among coders were resolved through seeking
consensus as to whether there was evidence that at least one of the criteria was met
for a quantity. The result was a list of quantities we could infer the student projected



22 Attending to Quantities Through the Modelling Space

267

Table 22.1 Descriptions of quantification criteria (QC)

QC | Description Example

1 Discussing variation of a situational “The horizontal distance in terms of how far
attribute he is from the monkey, that’s the one

variable that I am ultimately gonna have.”

2 Substituting, assuming, or deducing a “You are going to be taking away gravity
numerical value for a symbol with a which is 9.8 metres per second squared.”
situational referent “Say he’s standing 30 ft away.”

3 Expressing a desire to measure a situational | “I need to know the angle he’s going to fire
attribute (e.g. “if I knew”) at.”

4 Interpreting the value in context “In this particular case it would be 40 ft.”
“...it’s going to be moving upward at a
linear rate, it’s going to be moving down at
10 m/s? so that effect is going to cause a
parabola ...”

5 Specifying a situational reference object “Anytime you know how far away he is
(e.g. line or point from which to measure; | from the monkey ... so all that matters is
situational 0) how far he goes away ...”

6 Specifying a (potentially non-standard) unit | “Yeah, so it’s still going to be negative 10
of measure for a situational attribute for every metres per second squared.”

7 Explicitly expressing a quantitative “So if you can have those two as variables
relationship, a dependence or causal (height and distance) in a system to get
relationship among already-introduced from there to whatever angle he needs”
quantities, describing one quantity in terms
of other quantities

8 Nominalising an attribute via verbally [Draws the tree diagram and labels the

labelling, symbolically labelling/indicating,
implicitly describing its relation to other
quantities

horizontal distance between the vet and the
dart as x and the height of the tree as y and
the angle the vet makes with the top of the
tree as o]

while modelling (Table 22.2). The quantities projected onto the situation formed the
basis for our conception of the student’s modelling space on that task.

Finally, we used the quantities to conceptualise the student’s modelling space
and trace the evolution of her model. For this analysis, we considered two sets of
instances: those in which we could infer quantitative situational referents for symbols
constituting the inscriptions and instances in which we were unable to do so. We next
sought instances in which the student’s activities indicated the quantitative situational
referent of a given inscription changed during the interview. We used these three
categories of instances to develop conjectures about the student’s quantification of
some situational attributes which (from our perspective) supported or constrained
her modelling process.
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Table 22.2 Potential quantities projected by Merik

Quantity Type Time | Description

ANGgrg Angle |2:08 | Measure of angle gun is aimed relative to the horizontal, for
straight path

DISTyprree | Length | 2:09 | Horizontal distance from vet to the tree/under the monkey

HTyky/cun | Length | 2:10 | Height of the monkey relative to the vet’s gun

VVELpapr.; | Rate 2:47 | Initial vertical velocity of the dart

ACCprt Rate 3:20 | (Vertical) acceleration of dart

HTGun/GrRD Length |3:35 | Height of gun (or vet) relative to ground

HTreporo | Length | 4:13 | Height of the tree

DISTypmky |Length | 4:36 | Length of the straight path from the vet’s gun to the monkey

ANGpagr Angle |6:04 | Measure of angle gun is aimed relative to the horizontal, for
parabolic path

IVELpsrT Rate 11:37 | Initial linear velocity of the dart

HTpart Length | 15:35 | Height of the dart

TIME Time 16:08 | Elapsed time

ANGygr 3p Angle |24:38 | Measure of the plane angle formed by a designated axis and the
line through the tree and veterinarian in 3-space

HVELpapr; | Rate 25.42 | Initial horizontal velocity of the dart

22.4 Theory-Building Case Presentation and Analysis

We conducted a series of task-based interviews with participants ranging from middle
grades to advanced undergraduates. The tasks ranged from simple word problems to
applications to more complex problems where participants needed to make simpli-
fying assumptions about the scenario. The purpose of our retrospective analysis
of these data was methodological, specifically, developing a theoretically coherent
procedure for tracing the evolution of a student’s model throughout an interview.
Here, we share the work of Merik, who was a non-traditional student. He returned
to university after working in concrete industry management and in the automotive
industry to pursue a mathematics degree with an education minor. He had completed
courses through Integral Calculus and was taking Vector Calculus. Merik was asked
to think aloud as he addressed the Shoot The Monkey Task in any manner that would
be satisfying to him:

Shoot The Monkey Task

A wildlife veterinarian is trying to hit a monkey in a tree with a tranquil-
lising dart. The monkey and the veterinarian can change their positions. Create
scenarios where the veterinarian aims the tranquillising dart to shoot the
monkey.
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We assumed that Merik’s interpretations of the task and his work could differ
from ours. We provisionally accepted his work, without actively teaching, leading,
or removing ambiguity (Goldin 2000). Follow-up questions and interventions aimed
to clarify or document his thinking. We purposefully selected Merik to illustrate
the need to explicitly analyse the role of quantification in mathematical modelling
exactly because his work on the Shoot The Monkey Task embodies the phenomenon
of interest “operating in a microcosm” (Walton 1992, p. 122). Because Merik was
articulate and a capable mathematics student, his work is ideal as an illustrative case.
He described his mathematical thinking and introduced many different inscriptions,
quantities, and mathematical representations indicating that it would be possible to
closely examine changes in his mathematical and contextual knowledge about the
situation. We see his work on the task as a “meaningful but complex configuration”
of the theories we elaborated above, “not as homogeneous observations drawn at
random from a pool of equally plausible selections” (Ragin 2004, p. 125).

Merik created a total of 11 distinct representations. From Table 22.2, we observe
that he rapidly introduced quantities, projecting more than half of the quantities of his
cumulative modelling space in the first six minutes. This is consistent with previous
research positing that identification of (ir)relevant quantities and variables occurs
early in the modelling process (e.g., Blum and Leiss 2007). Many were not necessary
to achieve a normative solution but provide evidence of the richness of his concep-
tions of the scenario. We infer that for Merik, introducing one quantity supported the
projection of related quantities, perhaps due to prior scholastic experiences, such as
when he introduced ANG1 gy, DISTygr and HTyky by projecting them onto an inscrip-
tion representing a right triangle. There was not a one-to-one correspondence between
symbols and quantities, because we could not infer situation-specific quantities for
some symbols.

In the following, we offer an illustration of how attending to quantities, inscrip-
tions, and situational referents enabled a detailed characterization of the evolution of
Merik’s modelling process and provide insight into why attending to these aspects
inter-dependently is necessary. Ataround 9 mins 30 s into the session, Merik indicated
he was seeking a quadratic equation. He explained his goal was to generate the equa-
tion such that the monkey would be located along the path that the dart would travel.
Although Merik had not yet produced inscriptions resembling a quadratic equation,
we interpret Merik’s goal as indicating an implicit symbolic form. To gain insights
into the situation-specific meanings Merik might hold for this quadratic symbolic
form, the interviewer asked, “What variables and parameters would be present in your
equation?” Merik immediately inscribed f(x) = Ax?+ Bx + C. In Sherin’s (2001)
notation, Merik’s inscription fits the template: [J = [J - (0? 4+ [0 - [0 + [J. Although a
quadratic function was relevant for Merik, we were initially unable to infer that he had
imbued the symbolic form with situation-specific meaning to the task at hand. Later,
Merik began to describe his meaning for the symbols in f(x), “I know that my A is
-10,” indicating attention to gravity. Then, he indicated that B “would be whatever the
initial velocity is, which I don’t have.” Merik later substituted particular values for
f(x) and x, representing specific instantiations of HTyxy and DISTygr, respectively.
Although Merik indicated C = 0, he did not indicate a situation-specific quantitative
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referent for C. Having substituted particular values for x, f(x), and A, Merik solved
the equation obtaining a particular value for B, which he indicated was the initial
velocity of the dart. At this point, we infer Merik’s meaning for the quadratic symbolic
form shifted from an inscription absent any situation-specific meaning to an inscrip-
tion with situation-specific quantitative referents. We symbolise the situation-specific
quantitative meaning we infer Merik attributed to f(x) as: HTyxy = ACCELpugr -
(DISTygr)?> + IVELpspr - DISTygr + . Merik treated Ax? as a placeholder for the
effects of gravity and Bx as a placeholder for effects of the initial velocity of the dart.
Because Merik indicated x referred to DISTy gy, we hypothesise that at this point during
the interview Merik intended the quadratic equation to represent the flight path of the
dart. However, from our perspective, Merik’s quantitative referents for A and B were
suggestive of a parabola with a temporal component (i.e. x referred to elapsed time).

Later in the interview, we inferred Merik’s quantitative referent for x shifted. At
times, the symbol x explicitly referred to the veterinarian’s distance from the tree;
at other times x implicitly referred to elapsed conceptual time. Although we viewed
Merik’s quadratic template as a viable foundation for a mathematical model of the
situation, we see evidence of competing meanings for the constituent inscriptions.
For Merik, the quadratic equation referred to, at different times, a purely spatial
parabola (i.e., the flight path of the dart) and a parabola with a temporal component.
We hypothesise these competing meanings are one factor that may have prevented
Merik from using the symbolic form to achieve a satisfactory conclusion, from his
perspective and from ours, to the modelling task. A second factor that may have
impeded Merik’s progress in The Shoot The Monkey Task is related to attributes
that did not satisfy any of the quantification criteria in Table 22.1. We did not find
evidence that Merik attended to some quantities useful for achieving a normative
quadratic solution. Although Merik conceived the dart’s initial velocity with a hori-
zontal component, we found no indication during the interview that Merik considered
the dart’s horizontal distance travelled at arbitrary moments in elapsed conceptual
time. Merik considered the parabolic path the dart would travel, yet he did not indi-
cate conceiving of the vertical and horizontal distances travelled co-variationally
(see Carlson et al. 2002). Had Merik considered elapsed time and conceived the
parabolic path in a covariational sense, we hypothesise he may have made greater
progress towards a satisfactory solution.

22.5 Implications

Our theoretical and methodological considerations have resulted in three types of
changes to models that should be considered: to meanings, to inscriptions, and
to quantitative referents. Through our analysis of Merik’s modelling activities, we
identified two factors that may have impeded his progress in solving The Shoot
The Monkey Task. First, there were competing mathematical and kinematic mean-
ings for Merik’s quadratic symbolic form. A single inscription (e.g. x) could refer
to different quantitative referents (e.g. the veterinarian’s distance from the tree or
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elapsed conceptual time). Although Merik’s template choice and inscription were
normatively correct, his meanings for these representations were not always compat-
ible with expert conventions or consistent. Understanding students’ meanings for
inscriptions should be an ongoing pursuit through probing for situationally specific
referents for students’ representations. Second, some quantities relevant to achieving
a normative solution were absent (from our perspective). To interpret significance of
the second observation, we employ the modelling space construct. The set of models
a student might produce in a given modelling task is dependent upon, and constrained
by, the quantities a student introduces into the situation at hand. Merik may not have
achieved a satisfactory solution precisely because his modelling space during the
interview did not contain a quantity associated with the dart’s horizontal distance
travelled. To be clear, we are not asserting that a variable was missing from Merik’s
equation. Rather, Merik may not have been able to take up the facilitators’ sugges-
tions about how to resolve the competing meanings for his symbolic form because
this quantity—which could have played a supporting role establishing a covaria-
tional relationship—was missing. If a facilitator thinks that a satisfactory solution is
outside the student’s modelling space, she can intervene in ways to engender consid-
eration of the missing quantity. Had the interviewer drawn Merik’s attention to the
dart’s horizontal distance travelled at intermediate times, Merik may have projected
the quantity into the situation; in turn, his modelling space would have expanded to
perhaps include a satisfactory solution.

Understanding meanings for students’ inscriptions should be an ongoing pursuit
from the facilitator’s perspective. Facilitators could ask probing questions to elicit the
situationally specific referents for students’ representations, rather than assuming that
the student has quantified an attribute in the same way as the facilitator. By carefully
attending to the quantities students project into situations, facilitators can imagine the
models a student is capable of producing and whether a satisfactory model might be
among them. If a facilitator thinks that a satisfactory solution is outside the student’s
modelling space, she can intervene in ways to engender consideration of the missing
quantity. In some cases, it may be necessary to support the student in quantifica-
tion of the situational attribute within the specific task context, rather than asking
directly about a missing variable. Future research is needed to understand how these
implications might be adapted for teachers of modelling in whole-class settings.

There is immense generative potential to the methodology proposed here and the
modelling space construct. They move the field closer to being able to systematically
trace changes in a mathematical model—how they are precipitated, ways they change,
and documenting how students may potentially respond to scaffolding. Attending to
these issues is incremental but paves the way to making recommendations to teachers
that are grounded in students’ conceptual systems.
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Chapter 23 ®)
Characteristic Elements Influencing e
the Practices of Mathematics Teachers
Developing the Modelling Process

in Ninth Grade

Blanca Cecilia Fulano Vargas and Nelson Enrique Barrios Jara

Abstract The goal of this study is to identify the implicit and explicit features in
the practices of teachers of mathematical modelling. Specifically, we investigate the
characteristic aspects affecting the practices of teachers in public schools in Bogot4,
Colombia, developing modelling in the ninth grade. To do this, a questionnaire was
designed, considering two categories, which emerged from a theoretical analysis
using an onto-semiotic approach: epistemic and didactic. The study was carried out
with thirty mathematics teachers who had extensive experience in teaching mathe-
matical modelling in ninth grade. The data were collected using the Google Docs
platform and analysed in relation to the theoretical framework.

Keywords Mathematical modelling practices - Epistemic aspects - Didactic
suitability - Onto-semiotic approach - Teachers

23.1 Introduction

This chapter presents an exploratory study to determine the elements that charac-
terize the mathematical modelling practices of teachers who teach mathematics in
the ninth grade of compulsory secondary education in Colombia. According to Frejd
(2014), mathematical modelling “is ... considered as a bridge between the mathe-
matics learned and taught in schools and the mathematics used at the workplace as
well as in society” (p. 5). Furthermore, Biembengut and Hein (1999) recognize the
leading role of the teacher in students’ experiences of modelling. Teachers, according
to their knowledge, thematic contents and their institutional reality, choose contexts
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or phenomena that give meaning to the teaching of mathematical modelling; there-
fore, the teacher is responsible for choosing what type of mathematical modelling
experiences are promoted in his/her practice. In this regard, the problem is to estab-
lish what are the characteristic elements that influence the practices of mathematics
teachers when developing the modelling process in the ninth grade. The goal that
guides the study is to identify the characteristic elements that affect the practices of
mathematics teachers when developing modelling in the ninth grade in the district
schools of Bogota.

In this chapter, to fulfil our goal, the theoretical references from the onto-semiotic
approach will be presented initially followed by epistemic aspects of mathematical
modelling and the different elements of didactic suitability (Godino et al. 2016). The
method used in the study to establish the elements that influence the practices of
mathematics teachers in the city of Bogotd is then outlined. Finally, the analysis and
discussion of results are presented.

23.2 Onto-Semiotic Approach: Didactic Suitability

According to Godino et al. (2016, p. 2), the notion of didactic suitability of an
instructional process is defined as the coherent and systemic process articulated in
six facets/aspects of didactical knowledge: epistemic, cognitive, affective, interac-
tional, mediational and ecological. Figure 23.1 shows the suitability facets, their
components (e.g. attitudes, affects, motivations, beliefs and values for the affective
facet) and basic didactic suitability criteria (e.g. implication for the affective facet—
student involvement in the study process). The model shown describes the implicit
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Fig. 23.1 Facets, components and basic didactical suitability criteria (Godino et al. 2016, p. 3)
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aspects of the teacher in the face of decision-making in his/her teaching practices.
This is how the cognitive aspect is related to the ways students learn, previous knowl-
edge, and class objectives. The affective aspect is related to the motivational factors
that it anticipates are mobilized in the classroom. The interactional aspect recognizes
the student as the centre of learning, which leads the teacher to countless interre-
lations within the classroom among all subjects. The mediation aspect implies the
use of technical human resources, technological elements and time. The ecological
aspect encourages the interrelationships between society, curriculum and school.
The epistemological aspect is didactic-mathematical knowledge about mathematical
modelling. All these aspects are not isolated but are interrelated and are relevant to
assess the teacher’s instructional process.

Following this theoretical framework, we will analyse and synthesize epistemic
aspects of mathematical modelling in Sect. 23.2.1 and didactical suitability criteria
for mathematical modelling in Sect. 23.2.2 in the light of relevant literature.

23.2.1 Epistemic Aspects of Mathematical Modelling

In the first instance, epistemic suitability is related to mathematical modelling
constructs, in this sense, authors such as Blomhgj (2019), Borromeo Ferri (2006),
Kaiser and Sriraman (2006) and Stillman and Brown (2014), among others, present
the theoretical considerations regarding: what is mathematical modelling, what is
a model, what the modelling cycle consists of, and what are the contexts and
representations.

The mathematical modelling process (MM), in the second instance, is considered
as the scientific activity in mathematics, which involves obtaining models of the
sciences (Biembengut and Hein 2004). On the other hand, itis considered as a didactic
strategy. According to Villa et al. (2008), “MM is the production of a mathematical
model based on a problem or phenomenon in the real world, it demands a period of
time on the part of the model and requires some mathematical knowledge” (p. 2). In
this sense, it could be said that mathematical modelling implies research from two
focuses: from sciences other than mathematics and from education.

Regarding what is a mathematical model, Biembengut and Hein (1999) recog-
nize that a mathematical model is a phenomenon or problem situation which “is
a set of symbols and mathematical relationships that represents, in some way, the
phenomenon in question” (p. 106). Blum and Niss (1991) consider that the math-
ematical model is “a triple (S, M, R), consisting of a real problem situation (S), a
collection of mathematical entities (M) and a relation (R) between the objects and
relations of S and objects and relations of M” (p. 39). These two concepts are closely
related to scientific practice.

Faced with the epistemic concept of mathematical modelling, Biembengut and
Hein (2004, p. 108) recognize that a teacher is able to implement mathematical
modelling in two ways: the first, allows developing programmatic content from
mathematical models applied to the various areas of knowledge and the second
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guides students to do modelling work. In contrast, Skovsmose (1994) affirms that
“the mathematics put into social life, in the classroom, includes communication
for the development of democratic discussions” (p. 19). Mathematical modelling
becomes a strategy that enables the understanding of a mathematical concept from
relationships and meanings. At the same time, Blomhgj (2019, p. 38) recognizes that
the modelling process involves solving mathematical problems, immersed in a real
context and includes problems of an extra-mathematical nature. Therefore, when
talking about mathematical modelling, contexts make sense.

According to Kaiser and Schwarz (2006), “students acquire competencies that
enable them to solve real mathematics problems including problems in everyday life,
in our environment and in the sciences” (p. 196). From their theoretical framework,
the OECD (2017) recognizes different contexts “relating to the self, family and peer
groups (personal), to the community (local and national), and to life across the world
(global) and applications are: health and disease, natural resources, environmental
quality, hazards, and the frontiers of science and technology” (p. 80). It can be
concluded that the variety of intra-mathematical and extra-mathematical contexts are
inherent and are put into play when making decisions by the teacher when designing
their teaching strategies.

On the other hand, authors such as Pollak (1979), Berry and Davies (1996),
Geiger (2011), and Blum (2015) consider that the modelling process is cyclical. For
the present study, the seven modelling stages by Blum (2015, p. 76) are consid-
ered: 1. Constructing, 2. Simplifying/structuring, 3. Mathematizing, 4. Working
mathematically, 5. Interpreting, 6. Validating, and 7. Exposing.

Finally, Dan and Xie (2011. p. 460) recognize that the objective of the modelling
work is aimed at strengthening creative thinking on the part of the modeller, by estab-
lishing existing relationships between the parts of the object, manipulating those rela-
tionships and creating new mathematical objects. This objective allows expanding
the use of tools, signs, symbols and representations in the face of cognitive exercise
in the construction of new schemes. According to D’ Amore (1999), “semiotic repre-
sentations can be discursive (natural language, in formal language) or non-discursive
(figures, graphs, diagrams, tables)” (p. 273).

23.2.2 Didactical Suitability Criteria for Mathematical
Modelling

Secondly, in the theoretical framework, from the onto-semiotic approach, an impor-
tant role is the treating of the suitability criteria of an instructional process such
as mathematical modelling for cognitive, affective, interactive, mediational and
ecological facets of didactical knowledge.

The cognitive suitability corresponds to the degree of adequacy of the objectives.
Bredaetal. (2017) assert that the tasks must present a high cognitive demand (through
generalization, intra-mathematical connections, conjectures, etc.), which implies in
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the practice decision-making taking into account the possibilities of identifying
conflicts and negotiating meanings.

About the affective suitability, Beltran-Pellicer and Godino (2020) recognize that
this refers to the degree of involvement of students in the class; therefore, interest
and motivation have a major role in the teaching-learning process. This suitability
criterion is regulated by the emotional component, interest, personal commitment,
tolerance of failure, feelings of self-esteem and aversion. These are fundamental for
the development of mathematical modelling.

Regarding the interactive suitability, Perrin (1999) recognizes that the teacher’s
tasks are linked to the management of the interaction between the students and the
mathematical knowledge that underlies the mathematical problem, that is, that the
teacher when building a didactical proposal takes into account the different inter-
actions and the analysis of these allows decision-making to develop mathematical
modelling.

Mediational suitability is evidenced in terms of both operational and discursive
practice and they take place in the configuration and selection of the means and
resources with meaning necessary for the development of the activity and its instruc-
tional complements. According to UNESCO (2015), for “any educational resource
including curriculum maps, course materials, study books, streaming videos, multi-
media applications, podcasts and any material that has been designed for teaching
and learning” (p. 5), it is important to have in mind the teaching-learning process
since it allows the development of the modelling process.

With respect to ecological suitability, Font et al. (2010, p. 9) point out that
the teacher must propose possibilities, be able to recognize internal and external
elements, social relations with mathematics and establish links with other disciplines
and with the daily life of the students. Ecological suitability implies that the teacher
recognizes the curriculum both from the exogenous elements given by academic
organizations of a global nature, the Ministry of National Education of Colombia
and the territorial entities; and the endogenous elements given by the guidelines of the
Institutional Educational Project, the area plans and the dynamics that are generated
inside the school.

23.3 The Study

Thirty mathematics teachers (20 female and 10 male) teaching in ninth grade from
public schools in Fontibén-Bogotd, Colombia, participated in the study presented
in this chapter. All teachers had more than eight years’ teaching experience; 21
(69.93%) were graduates in mathematics and 9 (29.97%) were engineers. In addition,
5 (16.65%) had a specialization and the other 25 (83.35%) had a master’s degree.
Finally, all teachers had knowledge about theories and experience in the area of
teaching mathematical modelling in ninth grade.

To achieve the goal of the study, namely, to identify the characteristic elements that
affect the practices of mathematics teachers when developing modelling in the ninth
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Table 23.1 Categories, operative definition and number of statements in questionnaire

Category Operative definition No. of statements

Epistemic | Teacher’s conceptions: mathematical model, mathematical |9
modelling, modelling cycle, use of the representations and
contexts

Didactic Contents organizations, objectives, motivation, sources and | 33
classroom interactions

grade in the district schools of Bogotd. A questionnaire was prepared consisting of 42
statements using Likert scales, with five grading levels to identify the degree of agree-
ment or disagreement with each statement. Structurally, the questionnaire provided
demographic data and aspects related to mathematical modelling. The questionnaire
was validated by two research experts in the area of mathematical modelling at the
international level: Martha Isabel Fandifio Pinilla, a mathematician researching in
mathematics education and Tulio R. Amaya de Armas, a researcher in innovation
and didactics.

The questionnaire was consolidated into a Google Docs form and subsequently
sent to each teacher by email. Each time a teacher answered the questionnaire, it
automatically recorded his/her responses, which facilitated data analysis. The instru-
ment is divided into two categories that emerged from the analysis and synthesis of
the theoretical framework: the epistemic and didactic categories (see Sect. 23.2).
Table 23.1 shows the description of each category.

23.4 Analysis and Discussion of Responses

The analysis of results was carried out by means of a descriptive scope, interpreting
each statement according to the teachers’ responses, which allowed consolidating the
information for each category, and then contrasting it with the theoretical references.
The results are demonstrative of the implicit and explicit elements in the mathematical
modelling practices carried out by teachers of public schools in Bogotd, Colombia.

23.4.1 Epistemic Category

Related to the teachers’ positions on mathematical modelling, 53.28% (16 out of
30) considered that mathematical modelling is inherent to scientific activity. Of this
percentage, 60% (10) corresponds to teachers with a master’s degree, while being
consistent with the results obtained regarding the conception of mathematical model.

As for what is a mathematical model, it was evident that 86.66% (26 out of 30)
of the teachers conceived of a model as a relationship between certain mathematical
objects with a situation or phenomenon of a non-mathematical nature. The other
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13.33% (4) of the teachers acknowledged that the model was associated with different
representation systems. It was observed that 35% (9) of the teachers with master’s
degrees and more experience took the first perspective, while in the case of teachers
with specialization only one had this conception that relates to the concept of Blum
and Niss’s (1991) mathematical model.

When asked: What is mathematical modelling? 26.64% (8) of the teachers took
into account that mathematics is a tool that helps solve real problems, while 39.96%
(12) acknowledged that mathematical modelling is similar to a scientific practice.
One-third of the teachers did not recognize mathematical modelling as a didactic
strategy that helps organize the teaching-learning process. In this sense, this finding
is related to the position of Biembengut and Hein (2004) who point out that teachers
develop programmatic content from mathematical models applying it to various areas
of knowledge.

Regarding the conception of the modelling cycle, teachers prioritized three stages,
simplifying, interpreting and validating, which gave didactic organization to their
practices, aimed at the development of these skills in students. In this sense, 100%
(30) of the teachers recognized validation more frequently, which corresponds to the
sixth stage proposed by Blum (2015) for the modelling cycle.

About the representations, 46.62% (14) of the teachers prioritized symbolic repre-
sentations, followed by dynamic representations (33.33%), since they implemented
the use of GeoGebra and Excel. On the other hand, 13.33% (4) preferred that students
use Cartesian representations and lastly, 6.66% (2) prioritized the use of tabular repre-
sentation. This confirms the epistemic coherence of the teacher by recognizing the
modelling process from a scientific and eminently symbolic position.

Concerning contexts, 86.58% (28) of teachers agreed with using intra-
mathematical contexts, for example, the contexts that come from algebra and geom-
etry. The rest used extra-mathematical contexts, for example, experiments. According
to what was proposed by Kaiser and Sriraman (2006), teachers can be considered
to relate the modelling process to different types of situations. All teachers with a
master’s degree applied mathematical modelling into intra-mathematical contexts,
which is consistent with the epistemic stance on the scientific nature of a mathematical
model.

Regarding the use of representation systems, two-thirds of the teachers used
discursive representations, that is, symbolic and those corresponding to computa-
tional dynamics, while the other third used non-discursive representations, such as
figures, graphs, diagrams and tables.

23.4.2 Didactic Category

Concerning the didactic category, the most important findings are related to the
cognitive, affective, interactional, mediational and ecological suitability.
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Analysing the cognitive suitability, it was found that the objectives set by 39.96%
(12) of the teachers were directed at developing abilities for identification of regular-
ities and patterns in the students. Regarding the validation of the model, one-third of
the teachers prioritized this objective, requiring students to check values that relate
the variables. Lastly, 26.64% (8) of the teachers intended for the student to carry
out prediction processes based on the proposed model, in order to estimate different
behaviours of the problem.

About emotional suitability, all teachers promoted values such as responsibility,
discipline and perseverance in their classroom, seeking that students recognize the
usefulness of models in everyday life and strengthen positive attitudes towards
working with mathematical models that arouse interest and challenge. Such prac-
tices are consistent with the approach of Beltran-Pellicer and Godino (2020) since
teachers take into account in their teaching strategies for the promotion of interest
and motivation in the mathematical modelling process.

Regarding the suitability of interaction, the teachers confirmed that they ques-
tioned students and promoted group work establishing different types of interrela-
tion. However, the teachers acknowledged that, due to the high number of students
in the classroom (on average 40), they could not guarantee the participation of all
students. In this sense, the teacher’s tasks are due to the interaction between students
and mathematical knowledge, as suggested by Perrin (1999). Of the 30 teachers in
the study, 19 (63.27%) prioritized interaction between students and 11 (36.73%)
prioritized teacher-student interaction.

In relation to mediational suitability, according to UNESCO (2015), teachers
consider in their didactic organization the use of technologies. With respect to this,
26.64% (8) of the teachers used GeoGebra, 19.98% (6) used Excel; on the other hand,
26.64% (8) used school texts, given that the educational authorities provide some
schools with guide books. Concrete material was used by 16.65% (5) of teachers
when proposing models to students in the development of geometry and only 9.99%
(3) of the teachers carried out experiments to develop mathematical modelling in the
classroom.

With reference to ecological suitability, all teachers developed the curriculum
corresponding to ninth grade algebra, according to the guidelines and standards
proposed by the Ministry of National Education of Colombia (MEN 2006), prior-
itizing linear, quadratic and cubic models. This finding confirms the position of
Biembengut and Hein (1999), who point out that teachers develop content from
mathematical models applying it to various areas of knowledge.

23.5 Conclusion

When analysing the epistemic suitability of teaching practices in mathematical
modelling at Grade 9 level in Colombia, we found a model conception framed within
a predominantly scientific practice. This is in accordance with the use of symbolic
representations. These two elements make the teacher’s didactics go in the line of
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monitoring the programmatic content and there is little assumption of creative and
challenging postures. This conception greatly influences decision-making regarding
the ecological suitability of mathematical modelling practices since teachers adhere
to curricular guidelines and standards in teaching linear, quadratic, and exponen-
tial mathematical models. It is important to emphasize that a small percentage of
teachers recognize mathematical modelling as a didactic strategy that allows students
to create their models based on their real-world situations that have to do with
extra-mathematical contexts.

As an implication of the previous results, it is advocated that the teachers consider
the didactic references that involve the suitability of epistemic, cognitive, affective,
interactional, mediational and ecological aspects for the teaching of mathematical
modelling, which allows students to develop the modelling process. However, it
is necessary for teachers to delve into the design of practices that strengthen the
interrelation of suitability criteria.

It is important to consider the feedback of the teachers’ practices, for which
the creation of accompanying strategies and collaborative work among peers and
between teachers with greater training is suggested, since these processes allow
innovative practices and contributions that enhance and enrich extra-mathematical
contexts. Likewise, the need to establish a mathematical modelling teaching network
in Bogota is determined, which allows feedback on the way modelling is being taught
and conducting research processes in the classroom as well as serving as an organ to
innovate in modelling practices. Such implications could be piloted in other countries
where a similar state of affairs with respect to the teaching of mathematical modelling
in secondary schooling is evident.
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Chapter 24 )
Pre-service Teachers’ Facilitations St
for Pupils’ Independency in Modelling
Processes

Ragnhild Hansen

Abstract Recently modelling and applications were included in the revised mathe-
matics curriculum for the Norwegian grade levels 1-10. The focus on mathematical
modelling in primary grade education is a challenge, because of limited experi-
ence with modelling at this educational level. This chapter is based on the study of
documents written by primary grade pre-service teachers, containing their reflec-
tions on modelling activities they had implemented during a practice period. From
this content, we studied what procedural choices and assessments the pre-service
teachers let the pupils make and how they facilitated their critical thinking. We
found that pre-service teachers often emphasised mathematical exploration, but that
they tended to offer specific tasks to assist pupils with this. Pupils were not often
given the opportunity to narrow the modelling problem and decide how to collect
and represent data.

Keywords Independent modelling processes - Critical thinking - Pupils’
inquiries - Pre-service teachers’ scaffoldings + Primary grade - Document analysis

24.1 Introduction

Educational research involving critical perspectives on modelling often focuses on
model applications in society, but the complexity of these models causes them
to be difficult to introduce at lower grade levels. In the perspective referred to
as critical mathematics inquiry (CMI) proposed by Greenstein and Russo (2019),
mathematical learning situations are perceived to contribute to critical mathematics
education as long as the pedagogy is considered democratic. Democratic pedagogy
is understood as inviting students to think mathematically in equitable classroom
discussions, where students’ inquiries are pursued and valued. As such, the CMI-
perspective implies that the societal fruitfulness of educational modelling mostly
depends on the pedagogical process and that models to be critically examined can
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be based on situations inside a classroom, as well as outside a school commu-
nity. Critical thinking is central in the CMI-perspective and is also a prerequi-
site for well-founded judgements when operating stages in modelling processes.
Considering collective work with models as communities of inquiry (Lipman 2003)
supports the assertion that critical thinking can be fostered through educational
modelling. According to Lipman (2003), a pedagogical goal of critical thinking
is to equip students to think for themselves, and self-regulated modellers are consid-
ered central in promoting modelling competency (Kaiser and Brand 2015). Particu-
larly for the lower school levels, we have found little research on how teachers can
support pupils’ independency and critical thinking in modelling processes. Based
on this background, we have formulated the following research question: How do
pre-service teachers support primary grade pupils to make their own choices and
judgements, and raise inquiries, during modelling processes? Results from our inves-
tigation of this question are discussed with reference to the CMI-perspective, at end
of the chapter.

Our study was included in the first cycle of an extensive research project based on
Educational Design Research (EDR) (Akker et al. 2006). In EDR, researchers and
practitioners continually can change conditions of the research process, with the aim
to improve upcoming research cycles. By constructing interventions of increasing
workability and effectiveness, EDR can contribute to the relevance of educational
research and improve educational practice (Akker et al. 2006). Therefore, EDR could
be effective to support implementations of new themes from curriculums, such as
introducing modelling in compulsory education.

24.2 Literature Review and Theoretical Framework

It is not obvious what skills primary grade teachers should possess to complete
productive modelling lessons, nor how to provide them with such capabilities. When
introducing modelling to Grade 3 pupils and their teachers, English and Watters
(2005) recommended the teachers make the children familiar with reading data tables
and working collaboratively before starting the modelling process. They found that
pupils’ ability to distinguish between practical knowledge of the modelling context
and scientific input data was important to work successfully with problems. This
also enabled pupils to make predictions based on patterns in the data. Paolucci
and Wessels’ (2017) study of pre-service teachers’ abilities to design appropriate
modelling problems for Grades 1-3 showed that the pre-service teachers struggled
with how to let pupils represent the problem context mathematically, as well as asking
strategic questions to assist pupils in progressing towards solutions. In contrast, the
pre-service teachers were proficient at creating modelling problems that contained
contexts relevant to the pupils, and they often created problems which had feasible
solution methods (p. 337). Ng (2018), who studied how experienced secondary
mathematics teachers designed, promoted and assessed pupils’ modelling processes,
found one challenge to be how teachers intervened in the process and wanted to
steer modellers towards specific mathematical outcomes instead of listening to their
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discussion (p. 295). The teachers also tended towards selecting a mathematical
learning outcome from the curriculum as the starting point for the modelling process,
for then to adapt a real-world context to this outcome. A positive feature was that in
designing the tasks, the teachers referred to real-world contexts that were meaningful
and relevant to the pupils, but generally they struggled to help pupils to progress on
different steps of the modelling process.

Raising inquiries is a substantial part of critical thinking (Lipman 2003). Lind-
fors (1999) characterises inquiries as “language acts”, through which they can be
recognised. In inquiry acts, one attempts to engage another to help him go beyond
his present understanding (p. 4). She distinguished between information seeking and
wondering inquiry acts, the latter as open and playful, involving engagement in a
process for its own sake, dealing with the imagined, uncertain or ambiguous (p. 40).
A type of discourse, that has been demonstrated particularly to influence mathematics
classrooms, is IRF-structured communication (e.g. Attard et al. 2018). In its proto-
typical form, it consists of an initiation (I) (usually a question or test put forward by
the teacher) a response (R) to this initiation by the pupils, and evaluative feedback
(F) from the teacher. This communication form has been associated with the “exer-
cise paradigm” in mathematics (Mellin-Olsen 1996). Studying pre-service teachers’
modelling processes, Barbosa (2007) detected two teacher discourses; directive,
where teachers respond readily to questions, correct errors and provide direction
for students’ work, and open, where teachers attempt to provoke a reactive pattern
by forming questions based on students’ utterances. He claimed that the first type of
discourse was not fitting for “authentic”” modelling experiences (p. 239).

24.3 Method

Data for investigating the research question was the content of 14 documents written
by groups of second-year pre-service teachers preparing to teach at Grades 1-7
in Norwegian compulsory school. In the documents, the pre-service teachers had
reflected on the accomplishment of an assignment which asked them to imple-
ment modelling during two weeks of practice teaching. The modelling assignment
and practice teaching were both part of a university college mathematics didactics
course of 15 ECTS. Altogether there were 47 students divided between two separate
college classes. Each document was written by 3—4 pre-service teachers from the
same college class who conducted their practice at the same primary school. Before
practicum, the classes had received three lectures on educational modelling, and the
pre-service teachers had reflected on modelling literature before performing self-
selected modelling activities in randomly selected groups. In an earlier course at the
college, they had been taught basic statistics.

In accordance with EDR (Akkers et al. 2006), course teachers and researchers
cooperated on including pedagogical guidelines into the compulsory assignment.
This was to assist the pre-service teachers with facilitating pupils’ independency and
critical thinking in the modelling processes the pre-service teachers were supposed
to implement. As a result, the pre-service teachers were encouraged to reflect on how
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they could act according to pupils’ participation in (1) choosing the context for the
modelling problem, (2) limiting it (making it approachable) and (3) collecting data to
solve it. They were also supposed to reflect on (4) what solution methods one could
expect pupils to use, (5) how they would encourage them to use their own formal
or informal representations and (6) how they expected pupils to argue concerning
model parameters. Further, they were supported to think about (7) how pupils could
compare and verify their model results, (8) relate to error sources and (9) present
their results (poster, group presentation, etc.). The pre-service teachers were also
asked to reflect on how they had (10a) supervised the pupils and (10b) facilitated
communication in the modelling process. The idea was to investigate the first part
of the research question by studying how the pre-service teachers supported pupils’
modelling processes according to these guidelines. This approach is further explained
in Sect. 24.3.1.

To operationalise the second part of the research question, how the pupils were
supported when raising inquiries, we analysed one of the documents using theories
on classroom discourse from Attard et al. (2018), Lindfors (1999), Mellin-Olsen
(1996) and Barbosa’s (2007) studies of discourses detected in pre-service teachers’
supervision of modelling processes. Document excerpts were selected strategically,
according to whether they contained information relevant to investigate the research
question.

24.3.1 Analytical Framework

A review of the 14 documents revealed that the students had followed the pedagogical
guidelines only to some extent. We therefore introduced an analytical framework
(Fig. 24.1) based on a grounded theory approach to investigate pupil involvement
during the modelling processes. From a randomly selected subset of the documents,
we created 10 hypotheses to be used as a basis for later interpretation of the remaining
documents. These hypotheses were inspired by the pedagogical guidelines (1)—(10)
and the literature in Sect. 24.2. In particular, we wanted to examine pre-service
teachers’ skills in selecting contexts for the modelling problems, how they facilitated
pupils to represent contexts and if they tried to steer the processes. The findings were
to be compared with corresponding results from Ng (2018) and Paolucci and Wessels
(2017). Items H9-H10 were considered useful to discuss whether critical discussions
of model results were emphasised (Barbosa 2009). We also wanted to investigate the
applicability of the pedagogy accompanying the CMI-perspective. This approach
resulted in the hypotheses in Fig. 24.1. The corresponding findings are analysed in
Sect. 24.4.

To give more detailed information on how the analytical framework in Fig. 24.1
was induced, we present excerpts from two pre-service teachers’ documents:

The first thing we did, was to find out what the pupils’ interests were. To find out of this, we
had a conversation with the pupils, where everybody got the opportunity to say something
they could imagine working with. In this conversation, it appeared that one pupil had got a
new school bag and was very interested in talking about this. This [the school bag theme]
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H1. Pupils participated in selecting a context from the real world that could serve as starting
point for designing a modelling problem

H2. Pupils participated in discussing how to /imit a context to a modelling problem that was
possible to investigate

H3. Pupils had the main responsibility to collect data to investigate the modelling problem

H4. When collecting the data, pupils decided how to represent them

HS. Student teachers offered the pupils mathematical tasks that were meant to assist them in
performing the modelling activity

H6. The student teachers emphasized correct calculations by use of methods or algorithms
already known

H7. One of the aims with the mathematization (modelling process) was to explore a
mathematical or statistical concept, strategy or idea

H8. Pupils were encouraged to discuss different mathematical solution methods for the problem

H9. Pupils were encouraged to discuss error sources that could have been present in the
modelling process

H10. The document explicitly describes that pupils were encouraged to present and discuss their
modelling results in class

Fig. 24.1 Framework to trace how pre-service teachers facilitated pupils’ independency in
modelling processes

was also engaging the whole class. We quickly found that this was what we should work
with, since we wanted the pupils to participate in designing the teaching program. After
many suggestions, we agreed with the pupils that we should weigh their school bags every
day and find differences and similarities from day to day. This was the start of our modelling
project. (Grade 3)

The tasks that were given to the pupils was to make a cardboard miniature version of the
school using scaling. [...] The pupils got a review of the concept “scaling” on a PowerPoint
before they went out to carry out measurements. (Grade 7)

The first excerpt indicates that the pupils, to a large extent, had participated in
choosing a real-world context (weight of school bags) that could serve as the starting
point for designing a modelling problem. This seems not to have been the case for
the context with the cardboard model in the second excerpt. From investigations like
this, we developed H1 as one category. Similar interpretations were accomplished
for the other categories in Fig. 24.1.

The 14 documents were then coded according to the framework in Fig. 24.1
by answering either “yes” or “no” to each hypothesis (for countability we used
the number “1” if the answer was yes and “0” if it was no). This analysis relates
to two interpretation levels; pre-service teachers’ interpretations of the classroom-
situations, and our interpretations of the replications and reflections described by
the pre-service teachers. The pre-service teachers addressed pupils’ performance of
the modelling tasks, as well as their own supervision of the pupils. To exemplify,
they often reproduced excerpts from classroom dialogues that had taken place. After
having coded the documents we collected the results in tables.

The general potential of the analytical framework in Fig. 24.1 should be further
analysed. For this study, it contributed to an overview of the documented modelling
processes, so that the first part of the research question could be answered.
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24.4 Findings and Analysis

Table 24.1 describes the activities that were implemented in practice teaching by the
seven pre-service teacher groups that constituted one of the two college classes.
The students described the work with these activities as “mathematical modelling”
or “modelling”. Table 24.1 shows that all the pre-service teacher groups generated
modelling contexts from pupils’ nearby communities (weighing of bags, represen-
tations of birthdays, etc.). This finding is consistent with the findings by Ng (2018)
and Paolucci and Wessels (2017) concerning teachers’ proficiency in choosing pupil-
relevant contexts for modelling problems. Applying the framework in Fig. 24.1 to
the content of the documents describing the students’ reflections, after they had
implemented the activities in Table 24.1, gave the results in Table 24.2. This table is
an overview of pupils’ opportunities to make their own choices and judgements at
different stages of the seven modelling processes. According to this table, H1 is zero
for most of the activities. This shows that even if the societal contexts in Table 24.1
can be considered as relevant to the pupils, the pre-service teachers often ignored
pupils’ contributions in selecting them. From Table 24.2, we further notice that in
many cases where H3 equals one, the value of H2 or H4 (or both) is zero. That
H3 equals one, means that the pupils often were given the main responsibility to
practically collect data. Despite that the pupils often were assigned the role as data-
collectors, they achieved limited experience with making the modelling problem
approachable (H2 often zero) and deciding how one could register or represent the
collected data (H4 often zero). We came to this conclusion because many docu-
ments contained attachments presented as empty tables or diagrams the pupils were
supposed to complete when collecting data. This finding can be compared to Paolucci
and Wessels (2017) reporting that PSTs had difficulties with developing problems
which required students to create a mathematical representation of the context. In

Table 24.1 Modelling activities implemented by seven groups of student teachers during a practice
period

Modelling activities Grade

1 | Distribution and representation of pupils’ birthdays in different ways on the yearly |1
quarters

2 | Registration of colours of pupils’ sweaters. Use of this information to discuss what | 2
colours to expect on the sweaters next week

3 | Weighing of school bags every day during a week. Use of this information to predict | 3
weight of school bags for next week

4 | Measurements of height differences on earth. (Pupils decided to measure the highest | 4
and lowest points and calculated the vertical difference between these points.)

5 | Competition on shortest time spent for collecting most garbage over given distance. |5
Questions about how much to collect to win other distances

6 | Dropping of ball from various heights. Use of this information to make a model for |5
bouncing height as function of drop height

7 | Creation of cardboard model of the school 7
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Table 24.2 Results from applying the analytical framework in Fig. 24.1 on the documents
describing the seven modelling processes in Table 24.1

Activity 1 2 3 4 5 6 7
H1 0 0 1 0 0 (b) 0
H2 0 0 1 1 0 0 0
H3 0 1 1 1 1 1 1
H4 0 0 0 (a) 0 1 (a)
H5 1 0 0 1 1 0
H6 0 0 0 0 0 1 0
H7 1 1 1 1 0 1 1
H8 1 0 0 1 0 0 0
H9 0 0 0 0 1 0 0
H10 0 1 0 0 0 0 0

Numbering 1: the answer to the hypothesis was “yes”, O: the answer was “no”, (a) not discussed in
document, (b) hypothesis not relevant

cases where the pre-service teachers had decided how to perform the data collection,
some groups reflected critically in the document on this in retrospect. An example
can be found in the document describing activity number seven in Table 24.1. Here
the pre-service teachers had equipped the pupils with a measuring wheel to map the
circumference of the school. At the end of the document, they wrote, “The pupils
should have gained more possibilities to find their own solution methods to the task,
instead of, for example, us, deciding that they should walk outside and measure [the
circumference with a measuring wheel]”. Here, the pre-service teachers reflect on
not having supported the pupils to make independent decisions about what they could
have measured at school, and what measurement techniques they could have used.
The pre-service teachers were aware of having addressed these stages (which can be
associated with H2 and HS) by prescribing a procedure.

In about half of the activities, the pupils had to answer some sort of mathematical
task (H5 equals one in four out of seven cases). According to Barbosa (2007), this
can be interpreted as directive instructions. It can also be interpreted as mathematical
steering of the modelling process (Ng 2018, p. 295) . Despite this administration,
the pre-service teachers did not necessarily emphasise correct calculations or known
algorithms (H6 is mostly zero). Instead, the aim with the modelling task was to
explore a mathematical concept, algorithm or idea (H7 is often one). For example,
in the sixth modelling problem, pupils were to use Excel to create a bar graph and
compare median heights found by different groups to explore this concept. The
content of many documents showed that the pre-service teachers were aware of
the importance of letting pupils experience different solution methods. In our view,
a few groups succeeded with this (H8). Critical reflections on error sources like
measurement uncertainties were not present in many documents (H9 is often zero).
Finally, few documents explicitly indicated that the pupils presented and discussed
their modelling results in class (H10) which, according to Barbosa (2009), is central
for reflexive discussions to appear. We applied the framework in Fig. 24.1 to the other
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college class, also consisting of seven pre-service teacher groups. The tendency that
pupils were given the main responsibility to practically collect data persisted. As
for the first class, pupils were left little independence in how to register data, find
contexts for the modelling problem, limiting it and presenting results in class, but they
continued to be afforded several opportunities to explore mathematical concepts. A
little more often than for the first class, small tasks, known algorithms and different
mathematical solution methods were offered, and the pre-service teachers were a
little more attentive to error sources.

To investigate the second part of the research question, we arbitrarily selected
the document describing the third activity in Table 24.1 to study the quality of the
discourse in classroom dialogues, which the pre-service teachers had referred. To
illustrate, we present an excerpt where they refer to communication that had taken
place in the period after the pupils had registered the weights of their bags:

The student [a student from the practice teaching group] then asked what days the bags
had been the heaviest and the lightest, and what pupils thought could be the reason for
this. A pupil answered that “the bag perhaps was heaviest on Monday, because then we got
homework books and we brought swimsuits” [...students here describe similar utterings
from the pupils...] Another pupil thought that “my bag perhaps was lighter on Wednesday,
because I had eaten my lunch when we weighed the bag”. Then the pupils worked two and
two together and answered the tasks on the last page of the questioning-scheme they were
working with (see att. 3). Finally, the student had a summary of what the pupils had answered
on the various questions.

The question raised in the first line can be interpreted as inviting the pupils to
explore a situation, in this case, why the bags were heavier or lighter on some days.
Because the pre-service teacher is requesting the pupils to think about reasons for
what they explore, the question can be comprehended as inviting critical thinking. The
pre-service teachers recount that the pupils used the wording “the bag perhaps was
heaviest...” and “my bag perhaps was lighter...” when responding to the question.
The inclusion of the word “perhaps” indicates that the pupils expressed uncertainty.
One possible interpretation of this is that these expressions were wondering inquiry
acts (Lindfors 1999), suggesting that pupils wished to explore the situation with the
weight of the bags more carefully. The following lines of this transcript (the last
three lines) do not indicate that the pre-service teachers at this moment went into
explorative dialogues with the pupils. Instead, they reported that the pupils started to
work in pairs with a questioning-scheme followed by a summary led by themselves.
By reading the scheme, we found the questions referred to which days the bags
were heavier and lighter, what things were in the bag on these days, and if the
pupils could detect a connection between the number of things in the bag and its
weight. This situation can be related to the findings of Paolucci and Wessels (2017)
who reported that pre-service teachers had difficulties with generating appropriate
sequential scaffolding for modelling processes, and it can be compared to directive
discourse approaches (Barbosa 2007). Further reading of the document revealed that
later in the process the pre-service teachers represented pupils’ data in a weight
versus day Excel-diagram and performed a class-discussion about why the weights
had varied during the week. According to the pre-service teachers’ document, not
all pupils could interpret a bar graph, and this was one goal with the activity. We
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notice that, even if the pupils were encouraged to independently collect the data
(detect the weight of their bag every day), the pre-service teachers decided how to
finally represent them (the Excel-diagram). This shows that the pre-service teachers
struggled with how they could support pupils to make a mathematical representation
of the context themselves (Paolucci and Wessels 2017). Instead, they steered the
process (Ng 2018) towards the interpretation of the Excel-diagram.

The beginning five lines of the above excerpt can be characterised as an IRF-
structured dialogue (the pre-service teacher asks a question, to which the pupils
respond). Pupils are mostly justifying (*“...because then we got homework books...”).
In analysing the 14 documents, we often detected similar examples, containing a
mixture of open-ended questions in the frame of an IRF-structured dialogue. This
could have been due to pre-service teachers’ earlier experiences with the exercise
paradigm (Mellin-Olsen 1996) and typical discourses they had experienced in their
own mathematics classrooms (Attard et al. 2018; Lindfors 1999).

We now consider what the pre-service teachers appraised to be the critical aspect
of this modelling process:

The pupils were critical to the model. When we asked them if they believed that the results
would be the same for the next week, the pupils answered, as mentioned, “no” and argued
about why they thought that the weight would be different next week. We interpret their
answers as they had reflected on the results and found connections between the weight and
the content of the school bags.

By questioning the results for the next week, the first lines of this transcript
show that these pre-service teachers considered model critique to be connected to
predictions. The last sentence shows that their interpretation of the quality of pupils’
predictions was related to the context (the weights) not patterns in the data (English
and Watters 2005). They did not reflect on this experiment as being theoretically
ill-defined for making prognoses. A similar situation was detected for the second
modelling activity in Table 24.1. Here the pre-service teachers asked the pupils about
what possible sweater colour combinations they could wear next week. This problem
would require logging the colours of all sweaters of the pupils. By reviewing the rest
of the documents, we did not find evidence that any of the pre-service teacher groups
in some way theoretically considered the validity of prognoses based on statistical
data.

24.5 Discussion and Conclusion

This study was the first of several cycles in an EDR project directed towards imple-
mentation of modelling in primary grades. The student teachers were novices to
mathematical modelling, and to some degree unfamiliar with college mathematics.
Still, they were asked to experiment with modelling in a practicum period. They
succeeded in finding modelling contexts that were familiar to the pupils, but often
without including the pupils in this activity. In light of the CMI-perspective, famil-
iarity of the modelling contexts is important at lower grade levels, because this facil-
itates democratic discussions. The democratic aspect could have been increased by
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including pupils in the process of selecting the contexts. Other efforts that could
have supported the CMI-perspective would have been to more actively include
pupils in limiting modelling contexts to become applicable problems, judge what
data one could collect, and how to represent these mathematically, and emphasise
critical reflections towards different solution methods. Since many of the pre-service
teachers’ questions were characterised as open, they supported the inquiry part of
CMLI, but the IRF structure appeared to have dominated the discourse. We found that
even if students’ supervision often was directive and teacher-centred, the modelling
activity was still centred around exploration of a mathematical or statistical concept
or method. This is inspiring and shows the importance of letting novice teacher
education students gain experience with how to facilitate for explorative dialogues
in modelling processes. For the forthcoming cycle of EDR, researchers and practi-
tioners need to discuss how to support pre-service teachers to become more flexible
in progressing pupils’ modelling processes.
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Chapter 25 ®)
Investigating Pre-service Teachers’ Gzt
Experiences with the “A4 Paper Format”
Modelling Task

Toshikazu Ikeda and Max Stephens

Abstract Our research question asks what kinds of educational effects are gained
for a group of pre-service mathematics teachers when we address the A4 paper
format task from the perspective that mathematical modelling can be used to enrich
students’ knowledge both in the real world and in mathematics. Around 60% of the
pre-service teachers perceived that they could enrich their knowledge both in the real
world and in mathematics, while around 30% were able to anticipate connections
to their actual teaching in future. This suggests that pre-service teachers are able
to appreciate these dual aims of modelling, that is, modelling can not only enrich
students’ ability to solve real-world problems but also deepen their ability to develop
further mathematics.

Keywords Mathematical modelling + Pre-service education - Paper (DIN)
formats - Mathematical knowledge * Prescriptive modelling + Descriptive
modelling

25.1 Aim and Research Question

Teacher education concerning modelling has been an important issue at the interna-
tional level (Borromeo Ferri 2018; Stillman and Brown 2019). This study focused
on a group of second-year pre-service mathematics teachers in a Japanese education
university who were taking a first course in mathematics education. The A4 paper
format task, illustrated as one of the prescriptive modelling tasks (Niss 2015), was
treated from the perspective that mathematical modelling may also be effective to
point to new mathematical knowledge (Blum and Niss 1991; Ikeda and Stephens
2020).
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This study aims to understand pre-service teachers’ views on mathematical
modelling teaching. Instead of using direct questionnaires or individual interviews,
we first allowed a group of pre-service teachers to participate in mathematical
modelling activities and then analysed their evaluations and reflections. Our study
design might provide a more objective insight into the true views of pre-service
teachers. Our research question was: What kinds of educational effects are gained
for these pre-service mathematics teachers when we treat the task, A4 paper format,
from a perspective that mathematical modelling can be used to enrich students’
knowledge both in a real world and in mathematics? We analysed the value pre-
service teachers derived from this task and have drawn some conclusions about how
the same task might be used with regular high school students.

25.2 Perspective of Teaching Modelling

Constructing mathematical knowledge starting from modelling has been discussed
as one of the perspectives of teaching modelling. In the international classification of
modelling perspectives by Blum and Niss (1991), “Prompting a mathematics learning
argument” was identified. Under this perspective, our framework comes into line with
Gravemeijer’s idea (1999) presenting a ‘“model-of/model-for shift” where both the
model and the modelling facilitate reflection. However, in this framework, math-
ematization is restricted to two types: horizontal and vertical. Our framework treats
multiple mathematizations (in our terminology, translations) from one world into
another world and focuses on the comparisons and contradictions between competing
perspectives among plural worlds (Ikeda and Stephens 2017). The principle that
underpins our framework is that mathematics can be abstracted or concretized repeat-
edly from one world to another. Further, our focus is on comparisons and contra-
dictions between competing perspectives that will promote the enrichment of both
mathematical knowledge and modelling. The intention is to deepen students’ knowl-
edge both in the real world and in mathematics by connecting and integrating the
outcomes constructed in each world.

25.3 Explanation and Justification of the A4 Paper Format
Task

The A-paper (DIN) format is in widespread use in our world. Almost everyone is
familiar with the common paper sizes (A3 and A4) used in current office photo-
copiers. However, people may be unaware of their exact measurements and may
even be surprised to see how some measurements are replicated in the next size up or
down, as shown in Fig. 25.1, which displays the measurements in millimetres for three
common A-formats. Some would also be familiar with the enlargement/reduction



25 [Investigating Pre-service Teachers’ Experiences ... 295

Fig. 25.1 Measurements for
three A-paper formats

A3 A4 A5

297 = 420 210 = 297 148 = 210

capabilities of modern photocopiers linking A3, A4, and AS formats in which each
can be enlarged or reduced onto the next size without any cut-offs or margins. This
feature is a defining property of the family of A-paper (DIN) formats.

As Niss (2015) reminds us, the A-paper (DIN) formats system is composed of the
following three properties: (P1) each sheet of paper is rectangular, (P2) the area of
the largest sheet in the system is 1 m?, and (P3) if any sheet of paper in the system is
bisected across a mid-point transversal between the two longest sides, each half sheet
is also in the system and is similar to the original one, that is, its side proportions
remain the same. Properties (P1) and (P3) are fundamental, for example, to explain
why an A4 sheet can be enlarged without margins to an A3 format simply by using
the 141% A4 — A3 command.

These mathematical/geometrical features are fundamental to the experimental
teaching episode described in this paper. What makes the A4 paper format task espe-
cially interesting is the opportunity it provides for students to access four different
worlds. The first is a real world; the second is a concrete operational world where
students are to fold the A4 paper; the third is a geometric operational world, which
allows them to draw/investigate the geometrical figure; the fourth is a symbolic oper-
ational world which represents the phenomena by a numerical/algebraic formula.
An important goal is to make students understand that, for all A formats, the ratio
of the sides of rectangle has to be 1 to /2, namely “a silver ratio.” By checking the
actual measurements of an A4 paper format, they will confront questions such as
“Why are the length and width of the A4 paper format 210 mm and 297 mm, respec-
tively, and how does this relate to the ratio 1 to 4/2?” This contradiction between
the actual data in the real world and the ideal value in a symbolic operational world
requires them to develop further mathematics. Concrete and geometric operational
methods in addition to the symbolic operational method are introduced to explain
that /2 cannot be represented in a fractional notation. The second question is how to
represent the irrational number by a sequence of rational number approximations. A
rational sequence that converges to /2 is 3/2,7/5, 17/12,41/29, 99/70, ..., which can
be introduced by investigating the concrete operational and geometric operational
methods to connect with the actual A4 format of 210 mm x 297 mm. Three times the
numerator and denominator of the fifth term 99/70 is 297/210, which corresponds to
the actual measurements of an A4 format. This interpretation is somewhat different
from the method of A-paper (DIN) format as explained by Niss (2015).



296 T. Ikeda and M. Stephens

25.4 Experimental Teaching Design

25.4.1 Settings on the Teaching of Modelling for Pre-service
Teachers

One author, who was the classroom researcher, conducted a case study with 37
pre-service teachers of mathematics in the second year of a Japanese education
university. Pre-service teachers first participate in completing a A4 Paper format
modelling activity. Organized experimental teaching was conducted for 90 min by
having pre-service teachers engage with this task on December 4, 2018. We assumed
that pre-service teachers were already familiar with; (1) /2 as an irrational number,
which is considered in secondary school using reductio ad absurdum and (2) how
to execute the Euclidean algorithm by using numerical and geometrical methods.
However, we did not assume that pre-service teachers knew that the irrationality of
+/2 can be explained with concrete operational and geometric operational methods
and that a rational number sequence (Euclid’s algorithm) converging to /2 can
be developed by investigating the concrete operational and geometric operational
methods. These features were integral to the design of the experimental teaching.

25.4.2 Task Design and Time Sequence in Experimental
Teaching

The design and time sequence of the experimental teaching are shown in Table 25.1.
In Parts 1-3 of the experimental teaching, A4 paper was shown to the pre-service
teachers who were asked to investigate the ratio between the lengths of the shorter
and longer sides. The essential property of the A4 paper format (and other associated
A formats) is: if the paper is bisected across a mid-point transversal between the two
longer sides, each half sheet is similar to the original one. This allowed pre-service
teachers to set a formula such as 1:x = x/2:1, to show that the ratio of the sides is
1: /2. By asking how this property of a paper system is applied in the real world,
pre-service teachers could consider and clarify the unique utility of the A4 paper
system.

Using the actual lengths of the shorter and longer sides of A4 paper as 210 and
297 mm, an important outcome of Part 3 was to show using a calculator that the
ratio 1.414285714... is close to the value of /2. But is it possible to relate the actual
dimensions of the shorter and longer sides of the A4 paper format as 210 and 297 mm
more meaningfully to the ideal value of /2 in a symbolic operational world? This
is the question to be investigated in Parts 4-6 of the experimental lesson.

In Part 4 of the lesson, pre-service teachers carried out a geometric investigation
on a representation of a generalized A-format sheet (i.e. the so-called “silver-ratio
rectangle”) to show that, by covering the rectangle with the different kinds of squares
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Table 25.1 Task design and time sequence

297

Time Activities ‘What pre-service teachers are | What the classroom researcher
doing is doing
15 min (1) | Solving the Analysing the properties of | Asking what is the ratio
original problem | A4 paper between the lengths of the
shorter and longer sides to
clarify the properties of A4
paper
8 min (2) Appreciating the | Appreciating the utility of Asking why the A4 paper
solution A4 paper system is applied in the real
world and sharing ideas among
pre-service teachers
7 min (3) Sharing the Sharing contradictions Setting the situation so that
contradiction between the modelling pre-service teachers can realize
results and the real situation | that the real ratio of the actual
two lengths of A4 paper is very
close but not equal to the value
of /2
10 min (4) | Clarifying the Understanding that the Introducing the geometric
additional problem is to show the interpretation of the fact that
problem similarity between two /2 is an irrational number and
rectangles focusing on the problem that
pre-service teachers need to
tackle
25 min (5) | Solving and Explaining that /2 is not Asking pre-service teachers
explaining the | represented in a fractional how to explain the similarity
problem notation between two rectangles and
letting share the ideas among
them
15 min (6) |Elucidating the | Investigating the rational Guiding pre-service teachers to
nature of the number sequence converging | investigate how to make
contradiction to /2 successive approximations to an
irrational number by a rational
number
10 min (7) | Reflection Pre-service teachers writing | Confirming two points of views:

what they learned from the
lesson

first, what pre-service teachers
have learned from today’s
teaching and second, where and
what can they apply of this in
the future

iterated forever as shown in Fig. 25.2, ,/2 must be an irrational number. Group
activities were used in this stage. By confirming inductively that the number of same
sized squares is sequenced in a particular pattern, such asin “1, 2,2, 2, .....” students’
focus was directed to how to explain this fact in a geometric operational world. By
discussing the similarity of several rectangles in Fig. 25.2, it was concluded for pre-
service teachers that it is enough to show the similarity between rectangle ABCD
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Fig. 25.2 Iterated geometric pattern

and rectangle EFGC in Fig. 25.3. These concrete and geometric operational methods
were used to explain that /2 cannot be represented in fractional form.

In Part 5 of the lesson, the results from the iterated geometric figures in Fig. 25.2
were further extended by asking pre-service teachers: “Is it possible to make rect-
angles so that the ratio between the shorter and longer sides can be expressed in a
fractional notation closer to +/2?” Several rectangles were derived by the pre-service
teachers and a sequence of rectangles was constructed that converge to the silver ratio
rectangle as shown in Fig. 25.4. This question was intended to show students how to
make successive approximations to an irrational number by a rational number. From
the first four rectangles shown in Fig. 25.4, a series of ratios was derived as “3/2,
715, 17/12, 41/29.”

A D

B G C

Fig. 25.3 Similarity of two rectangles
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I [E

Fig. 25.4 A series of rectangles that converge to the silver ratio rectangle

Given the difficulty of further investigating these ratios visually, students were
asked to consider the rule inductively. This is the focus of Part 6 of the lesson,
where a rational number sequence can be developed, which in fact conforms to
Euclid’s method. The generating rule of the sequence was explained by one of the
pre-service teachers as follows: “The next denominator is equal to the sum of the
previous numerator and the previous denominator, and the next numerator is equal
to the sum of the previous denominator and the next denominator.” Only one student
successfully explained the generating rule, and this allowed all pre-service teachers
to consider the sequence “3/2, 7/5, 17/12, 41/29, 99/70, ....” At this point, one of
the pre-service teachers observed that three times the numerator and denominator of
the fifth term “99/70” is “297/210,” which exactly matches the lengths of the longer
and shorter sides of an A4 paper format. This was the critical finding of Part 6,
illustrating the mathematical significance of the actual dimensions of the A4 paper
format. (Notice that 297/210 is not as close an approximation to the value of /2
as the sixth term of Euclid’s sequence, which is 239/169.) Part 6 of the lesson built
on the concrete and geometric operational methods explored earlier in the lesson,
and would not have made sense without those preceding explorations. Part 6 linked
together the previous investigations involving four different worlds.

25.4.3 Comparing This Approach to A4 Paper Format
with Niss (2015)

Niss (2015) presented an A-Paper (DIN) formats task as an example of prescriptive
modelling, which contrasts with descriptive modelling. For Niss, the general term
is directed under the properties (P1), (P2), and (P3) by using a numerical method,
such as recursion and induction, as follows; “L,, = 100/[2"{(2n — 1)/4}] cm, S, =
100/[27{(2n + 1)/4}] cm; L, means the longer side of nth sheet and S, means the
shorter side of nth sheet.” As a result, A4 paper is calculated as L4: 29.73 cm and S4:
21.02 cm. In this paper, the following three points are different from the approach by
Niss; (1) not presenting the property (P2) “the area of the largest sheet in the system
is 1 m?,” (2) focusing on the sequence of rectangles which converge to the silver ratio
rectangle, and (3) using concrete operational and geometric operational methods in
addition to symbolic operational methods.
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25.5 Analysis of Pre-service Teachers’ Reflections

25.5.1 Design of a New Analytical Tool to Assess Pre-service
Teachers’ Reflections

Pre-service teachers were asked to reflect and write down what kinds of educational
effects they gained from the lesson. In Part 7 of the lesson, the following ques-
tions were used: firstly, what did you learn from today’s lesson? secondly, what can
you apply from what you learned today and where would you apply it?

Two coding categories were developed to identify the differences among pre-
service teachers’ writings about what they have learned from the experimental
teaching. The first category was concerned with pre-service teachers’ perceptions
of modelling. Did pre-service teachers perceive the mathematical analysis involved
in their modelling as enriching their knowledge in the real world or did they perceive
modelling as enriching their knowledge in mathematics as a result of solving a real-
world problem? If the pre-service teacher’s writing was concerned with both view-
points, it was assumed that this pre-service teacher could enrich his or her knowledge
both in the real world and in mathematics, that is, in plural worlds. When assessing
pre-service teachers’ writings, we applied these two different but not mutually exclu-
sive points of view. The second category was concerned with identifying whether
students could anticipate connections to a high-school mathematics lesson. For this
viewpoint, an assessment was made about how pre-service teachers were prepared
to explore this kind of activity in their future teaching. Further, we recorded whether
students added any consequent notes for a lesson. Table 25.2 shows the types of
category criteria and sample comments from students. One author and a Japanese
associate performed this coding. The pre-service teachers’ responses were coded
individually by the two coders and then discussed to resolve any discrepancies in the
coding. The percentage of inter-coder agreement was 81.1%.

Written responses in Part 7 of the lesson were coded in two categories: The
first concerns their perceptions of modelling, while the second concerns their antici-
pated connections to a school mathematics lesson. Examples of pre-service teachers’
writings for two categories are as follows. Coding comments are given in italics.

Student S: I was surprised to notice that it is possible to consider the device hidden in A4
papers and the problem of rational and irrational numbers by applying the contents learned
in junior high school mathematics, such as geometric similarity and square roots. I was
unsure whether or not we could apply mathematics contents such as geometric similarity
in a real world. However, I understand mathematics can be applied in the real world from
this kind of application. I think it is good for junior high school students to learn this kind
of application and realize the fun of mathematics, as well as to develop various ways of
mathematical thinking. [Enriching knowledge both in the real world and in mathematics as
well as the willingness to treat this activity at school are evident, but there is no description
about interaction among plural worlds.]

Student F: I learned with interest because it is easy to understand the essence of /2 by using
things in the real world. It is hard to concretize irrational numbers such as /2; however, it
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Table 25.2 Categories of pre-service students’ writings about their experimental teaching

Type of category criterion Sample comment

Category 1: Generated perceptions of 1-1: Mathematics is used in everyday life, as in A4
modelling papers

1-1: Enriching real-world knowledge 1-2: Further mathematics is developed in ways
1-2: Enriching mathematical knowledge such as proving why /2 is unrepresentable in

1-3: Interactions among plural worlds fractional notation by using the concrete

Category 2: Connection to a school operational method or the geometric operational
mathematics lesson method

2-1: Willingness to treat this activity 1-3: I think it is important to consider

2-2: Notes in a lesson multi-directionally, as we experienced that the

irrationality of /2 can be explained by the
concrete, the geometric, and the symbolic
operational methods

2-1: I would like to address this problem with high
school students because I had a meaningful
experience that revealed to me that mathematical
knowledge can be greatly enriched by using A4
papers

2-2: If I approach this activity in junior high
school, I will need to pay attention to how to deal
with the idea of contra-position, because students
have not yet studied it

becomes possible to deepen our mathematical knowledge by using the material in the real
world [Here only enriching knowledge in mathematics is evident].

25.5.2 Generated Perceptions of Modelling

First, pre-service teachers’ writings were assigned to Category 1: generated percep-
tions of modelling. The number and percentage of pre-service teachers who belong to
each sub-category are shown in Table 25.3. Here, 1-1 means “enriching their knowl-
edge in the real world,” 1-2 means “enriching their knowledge in mathematics,” and
1-3 means “describing the interactions among plural worlds.” Thirty-six pre-service
teachers (97.3%) wrote that they could enrich their knowledge in mathematics by
tackling the A4 format task. On the other hand, 22 pre-service teachers (59.5%)
wrote that they could enrich their knowledge in the real world by tackling the A4
format task. Further, only 15 pre-service teachers (40.5%) pointed to the interac-
tions among plural worlds as meaningful. Next, in Table 25.4 we analysed the rela-
tions between 1-1, 1-2, and 1-3. No pre-service teacher wrote only 1-1, whereas

Table 25.3 Result of generated perceptions of modelling
1-1 1-2 1-3
Number of pre-service teachers 22 (59.5%) 36 (97.3%) 15 (40.5%)
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Table 25.4 Detailed result of generated perceptions of modelling

1-1land 1-2 | 1-1and 1-2 | 1-1 not 1-2 | 1-2not 1-1 | 1-1and 1-3 | 1-2 and 1-3
and 1-3 not 1-2 not 1-1

Number (%) | 22 (59.5%) |8 (21.6%) |0 (0%) 14 (37.8%) | 0 (0%) 7 (18.9%)

14 (37.8%) of the pre-service teachers wrote only 1-2. These pre-service teachers
tended to value mathematical knowledge rather than knowledge in the real world.
However, 22 (59.5%) pre-service teachers wrote 1-1 and 1-2. Around 60% of the
pre-service teachers appreciated mathematics can be enriched thanks to real-world
problem solving; and a real world can be enriched by mathematics. Only eight pre-
service teachers wrote 1-1, 1-2, and 1-3 (21.6%), showing that it is difficult for
pre-service teachers to reflect and write that modelling enriches their knowledge
both in mathematics and in the real world by pointing to meaningful interactions
among plural worlds. The following student’s writing included 1-1, 1-2, and 1-3:

Student K: In the real world, irrational numbers such as /2 are not used because it is
impossible to measure them. However, the idea of /2 is applied in systems of paper formats,
such as A4 paper. Although the relation between the A4 paper format and the irrational
number is not found at a glance, the relation between them is gradually found out by using the
Euclidian Algorithm, the geometric operation, and so on. From this result, we can understand
that a phenomenon can be interpreted in a variety of ways, so our mathematical knowledge
is also expanded ... Today’s teaching begun from a question about one thing, and then ...
further questioning this answer. I think that our knowledge will grow by considering “why.”
[Enriching knowledge both in the real world and in mathematics, interaction among plural
worlds, but no anticipated connection to a school mathematics lesson.]

25.5.3 Anticipated Connections to Future Teaching

Thirty-seven pre-service teachers’ writings were assigned to Category 2: anticipated
connection to a school mathematics lesson. The number and percentage of pre-service
teachers who belong to each sub-category is shown in Table 25.5, where 2-1 means
“willingness to treat this activity” and 2-2 means ‘“additional notes in a lesson.”
Twenty pre-service teachers (54.1%) wrote down that they wanted to use this type
of activity in the classroom, and 15 pre-service teachers (40.5%) wrote that it is
necessary to pay attention to anticipated students’ difficulties in a practical teaching
situation. Next, in Table 25.6, we analysed the relations between 2-1 and 2-2.

Nine pre-service teachers wrote only 2-1 (24.3%), whereas four pre-service
teachers wrote only 2-2 (10.8%). Eleven pre-service teachers wrote both 2-1 and

Table 25.5 Result of connections to a school mathematics lesson
2-1 2-2
Number of pre-service teachers 20 (54.1%) 15 (40.5%)
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Table 25.6 Possible connections to a school mathematics lesson
2-1 and 2-2 2-1 not 2-2 2-2 not 2-1
Number (%) 11 (29.7%) 9 (24.3%) 4 (10.8%)

2-2(29.7%). There were four pre-service teachers who wrote 2-1 and 2-2 in addition
to 1-1, 1-2 and 1-3. Here is one example:

Student N: It is amazing for me that A4 paper is interpreted not only as the outcome using
the idea of geometric similarity, but also as the means to examine the irrationality of /2.
The format of A4 paper is ideally made up as 1: /2. However, it is impossible to make
an accurate value in a real world. I had goose bumps to get the actual data of A4 paper as
the rational sequence converged to /2. It is interesting to consider the irrationality of /2
using concrete operational and geometric operational methods, not simply relying on the
numerical method called reductio ad absurdum commonly taught at high school...... Itis
new for me to be able to prove the irrationality of /2 visually by using the similarity of
geometric figures. I want to do teaching like this so that students can apply a variety of their
ideas.

Student N’s comment demonstrates interaction among plural worlds, showing
how this student’s knowledge has been enriched both in the real world and in math-
ematics. Also evident is this student’s ability to make a clear connection to a school
mathematics lesson.

25.6 Discussion and Conclusions

All pre-service teachers perceived that they could enrich their knowledge in mathe-
matics through this activity. Nearly 60% of pre-service teachers perceived that they
could enrich their knowledge both in the real world and in mathematics. However,
this paper does not examine how pre-service teachers shifted their perceptions of
modelling as a result of the experimental lesson. This should be examined in future.
Further, pre-service teachers were motivated to apply their experiences of math-
ematical modelling in a classroom in the next mathematics education course. In
addition, the A4 Paper format mathematical modelling task illustrates very clearly
how teachers can build on contradictions between the modelling results and the real
situation.

Finally, the categories of pre-service students’ reflections on the experimental
teaching episode provide some inspiration for future research, such as how pre-
service teachers’ perceptions of the value of, and relevance of, mathematical
modelling to their future teaching change over time. Experimental teaching activ-
ities, such as those reported in this study, which are designed from a modelling
and mathematical perspective, enable students to bridge between a concrete oper-
ational world and a mathematical (symbolic and geometrical) world. We envisage
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that, having participated in this experimental session, no pre-service teacher could
in future observe the 141% A4 — A3 command and simply think that 141% was an
arbitrary ratio, unrelated to all other A-paper formats.
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Chapter 26 ®)
Didactical Adaptation of Professional Gzt
Practice of Modelling: A Case Study

Sonia Yvain-Prébiski

Abstract In this chapter, the aim is to study the possibilities of giving to students
the responsibility for mathematical work that makes it possible to make an extra-
mathematical situation accessible through mathematical treatment. I briefly present
the elements of a first epistemological study of researchers’ modelling practices. 1
show how I used it to design, implement and analyse a situation for teaching and
learning mathematical modelling, based on an adaptation of a professional modelling
problem on tree growth prediction.

Keywords Mathematization - Modelling cycle - Modelling practices -
Problem-solving - Transposition + Horizontal mathematization + Phase of questions
and answers

26.1 Introduction

Research, especially at ICTMA (Blum 2015), shows the importance of the learning
and teaching of mathematical modelling development in secondary school but also
highlights hindrances concerning mainly the conception and implementation of
modelling activities in classrooms. In France, the modelling of extra-mathematical
situations has been part of the curriculum since 2016 (Ministere 2015). But in most
cases, the choices necessary for the mathematical treatment of such a situation are
not the responsibility of the students. The research question under consideration is
how to make the devolution (Brousseau and Warfield 2014) to secondary students
(11-18 years old) of mathematization work necessary to make a situation rooted in
reality accessible to a mathematical treatment. Following the French tradition on the
roles of epistemology in didactics (Artigue et al. 2019), I assume that an epistemo-
logical study of researchers’ modelling practices can enrich this didactic work. After
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specifying the theoretical framework of the research, I briefly present the results of
the epistemological study (Y vain-Prébiski 2018). I then show how I have used them
to provide elements of an answer to the research question posed in this chapter.

26.2 Theoretical Background

I focus on the teaching and learning of mathematical modelling based on extra-
mathematical situations with a specific interest in the devolution to secondary
students (11-18 years old) of the work of mathematization necessary to make a
situation rooted in reality accessible to mathematical treatment. Thus, within the
theoretical framework of Realistic Mathematics Education (RME), I consider the
distinction introduced by Treffers (1978) and Freudenthal (1991) between horizontal
mathematization which “leads from the world of life to the world of symbols” and
vertical mathematization, as work within the mathematical system itself.

Treffers, in his thesis of 1978, distinguished horizontal and vertical mathematising [...]:
Horizontal mathematising, which makes a problem field accessible to mathematical treat-
ment (mathematical in the narrow formal sense) versus vertical mathematising, which effects
the more or less sophisticated mathematical processing. (Freudenthal 1991, p. 40)

In the line of the French didactic tradition in mathematics (Artigue et al. 2019), the
research methodology used for the didactic analyses is didactic engineering (Artigue
2015), an essential characteristic of which is based on the comparison between a
priori and a posteriori analyses of the didactic situations concerned.

26.3 Epistemological Considerations

The specificity of this research is to support a didactic work on an epistemological
study of the contemporary practices of researchers using mathematics in modelling
work. The objective is to identify in the discourse of interviewees some invariant
practices allowing the construction of indicators likely to attest that a horizontal
mathematization is at stake. In this section, I report on elements that emerge from
this epistemological study, on the one hand from the literature, and on the other hand
from a study of researchers’ actual modelling practices.

26.3.1 Evidence from the Literature Review

I followed Israel (1996), who defines a mathematical model as “a piece of math-
ematics applied to a piece of reality” and specifies that “a single model not only



26 Didactical Adaptation of Professional Practice ... 307

describes different real situations, but this same piece of reality can also be repre-
sented by different models” (p. 11). By crossing this point of view with RME, hori-
zontal mathematization seems relevant to explore educational issues related to the
research question. It led me to define different forms of horizontal mathematiza-
tion that seem relevant to characterize this type of work, namely: choosing a piece
of reality to question in order to answer the problem; identifying and choosing the
relevant aspects of the piece of reality (context elements, attributes); and relating
together the chosen aspects in order to construct a mathematical model. In addition,
following Chabot and Roux (2011), I added another form of horizontal mathema-
tization: quantification which refers to the association of some aspects of reality to
quantities (essentially consisting in measuring).

26.3.2 Main Findings of the Study of Researchers’ Modelling
Practices

In the educational perspective of studying what can be transposed from researchers’
actual modelling practices, I led a study of researchers’ modelling practices. I
conducted, transcribed and analysed interviews with researchers using mathemat-
ical modelling in the context of life sciences (Yvain 2017). The main findings are
the identification of three invariant features in the practices of researchers which
contribute to the transformation of reality to mathematical solvable problems: (a)
simplifying the problem and selecting a piece of reality; it supposes to identify rele-
vant variables and choose relevant relations between the selected variables by antic-
ipating the mathematical treatment that these choices induce; (b) choosing a model
among those known by the researcher in order to initiate vertical mathematization,
at the risk of having to refine or reject the initial model later; and (c) quantifying
in order to compare the “real data” with the results obtained within the model.
This contemporary epistemological study has helped me to better identify the form
and role of horizontal mathematization in a mathematical modelling activity. It also
allowed me to develop a diagram of the modelling cycle including the dialectical
relationships between horizontal and vertical mathematization, which I will detail in
the next section.

26.4 Towards an Enriched Modelling Diagram

The work of Maall (2006) underlines on the one hand the diversity of schema
proposals to illustrate the modelling process in the literature, and on the other hand
that this diversity of proposals is essentially correlated to the learning objectives and



308 S. Yvain-Prébiski

HORIZONTAL MATHEMAT IZATION
.
A
HM HM
Exra: ———————» PSMT J—
: Choice ofa Problem Establishing
i mathemalics  fragmentof  ,ocesipletoa relations  Mathematical
A professional situation reality B lhetween o
problematic of Choices of the th
relevantaspects  treatment e

modelling  Adaptation ~—selected

of this fragment
aspects—

NOILYZI YWIH YN TV DI LY 3N

-

solution [ ———— — SN
Confrontation

Interpretation

Fig. 26.1 Diagram describing the modelling process. Adapted from Blum and Leiss (2007)

the choice of skills to be developed /targeted by the authors. Taking this into consid-
eration, I conducted a study to develop a diagram of the modelling cycle including
the dialectical relationships between horizontal and vertical mathematization.

To do this, I relied on the classification work of Borromeo Ferri (2006) included in
Rodriguez’s thesis work (2007) and on the work of Blum and Leiss (2007). From this
study and the results of the previous epistemological study (Yvain-Prébiski 2018), I
developed a diagram describing the modelling process (based on the modelling cycle
of Blum and Leiss 2007) taking into account the two aspects of mathematization and
the invariant elements identified in the research modellers’ practices (Yvain 2017).
This diagram (see Fig. 26.1) begins with an adaptation of a professional modelling
problematic which leads to a statement rooted in reality. To address this problem,
the students need to choose a fragment of reality and the relevant aspects. This
issue becomes a problem accessible to mathematical treatment, and students have
to establish relations between the selected aspects to make this as a mathematical
problem and then to build a mathematical model. I use two line segments with
arrowheads on either end showing that students can begin the solving by choosing a
known mathematical model and then testing it. That highlights the dialectic relation
between the horizontal and vertical mathematizations. In this chapter, I focus my
analysis on the part of the diagram which can highlight what happens between steps
2 and 3 of the Blum and Leiss diagram (2007) (see Fig. 26.2).

26.5 Design of the Modelling Situation

Based on the results presented in Sects. 26.3 and 26.4, I have developed a method-
ology to design, implement and analyse a teaching and learning situation for mathe-
matical modelling. The objective is to foster the devolution of horizontal mathema-
tization to students. I have characterized the problems likely to promote the learning
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of this mathematization. I call such situations ‘“Realistic Fictions conceived as Adap-
tations of a Professional Modelling Problem” (FRAPPM). They should lead students
to reflect on the system to be modelled and to bring them to become conscious of (a)
the necessity to develop a model to solve a problem, (b) the necessity to make choices
to mathematically address the problem, (c) the importance of the question set to them
during the development of the model and (d) that the work behind the development
of the model requires mathematical thinking within the model chosen to answer
the questions. I have chosen to adapt a historically and epistemologically important
modelling problem in life sciences: plant growth modelling (Varenne 2007). It is
about predicting the growth of a tree based on information about its first years of
growth given by diagrams:

The Tree Botanists from a Botanical Garden have discovered an exotic tree.
To study this new species, the botanists have sketched the tree every year since
2013. The botanists want to build a greenhouse to protect it. They believe it
will have reached its full size by 2023.
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To help them predict how the tree will be in 2023.

I'have chosen didactic variables and their values in order to promote the devolution
of horizontal mathematization to students: VI: 2D versus 3D diagrams: I have chosen
2D diagrams to provide a sufficiently realistic framework while allowing a modelling
activity from the 6th to the 12th grade, V2: The number of diagrams: 1 have proposed
three of them. This number is sufficient to allow students to make choices about
the growth rules of the different elements of the tree, V3: The shape of the tree
(symmetrical versus asymmetrical): I have chosen asymmetrical growth to encourage
students to question the forecasting of the tree’s growth. The shape chosen does not
resemble that of a known (or easily recognizable) tree to avoid a possible search
on a search engine (or other) on the growth of the potentially recognized tree, V4:
The number of new branches appearing each year: 1 have chosen to make two or
three new branches appear to quickly encourage students to make choices about
the tree’s growth, V5: The lengths of the trunks and branches: they were chosen to
question a possible choice of a regular growth model and V6: To give a scale or not:
I have chosen to give a scale to allow measurements and instrumented information
to be taken from the drawings. With these choices, simplifying assumptions and
identification of relevant variables that influence the actual situation are necessary
to consider a mathematical treatment of the given problem. The choice of an initial
growth model can be a known mathematical model (e.g. proportionality) that can
allow students to work on vertical mathematization in order to shed light on the
problem even if it means refining or rejecting the chosen model by reconsidering
their first choices. Providing a scale and allowing students to take instrumented
information could encourage students to choose a model and then compare the results
in the model to their knowledge of how trees grow in the real world.

26.6 Implementation of the Modelling Situation

To help teachers implement in their classrooms the situation of The Tree presented
in Sect. 26.5, I worked with a group of teachers in a professional development
programme on mathematical modelling. This programme called ResCo (collabora-
tive problem-solving) is proposed by a group of the IREM of Montpellier (Research
Institute for Teaching of Mathematics). In this group (existing for more than ten
years) some researchers and teachers work collaboratively. Each school year, this
programme offers a collaborative project for volunteer teachers with their classes
from grade 6 to the end of high school. The scenario includes five sessions (one
hour per week). Groups of three classes are formed and all classes interact using
an online forum regulated by the ResCo group (see Modeste and Yvain 2018 for
further details of the programme). One of its particularities is a question-and-answer
session designed to begin the resolution of the problem. This first step of the scenario
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requires teachers to devote the first session to getting students to ask questions about
the problem, to send them to the two other classes in their group, via the ResCo
online forum, and then to devote the second session to trying to answer questions
from other classes. The aim is to have the students ask themselves questions about
the different possible choices that would allow them to deal with the problem math-
ematically. It is during this phase of questions and answers that, on the one hand,
the relevant questions for solving the problem will emerge and, on the other hand,
different possible modelling choices will appear. The questions received lead to
discussions that allow students to become aware of the need to make choices to deal
mathematically with the problem, particularly around the identification of relevant
magnitudes. In the third session, the students discover and discuss the answers to
the other classes. Between the second and third sessions, based on the questions and
answers submitted on the forum, the ResCo group develops a “relaunched realistic
fiction”. Itis addressed to all classes during this third session, in order to set modelling
choices to allow further collaboration in solving a common mathematical problem.
The intentions of the group are to make visible to students the need to make choices
to solve the problem. During the fourth session, the students continue the research
of this same mathematical problem, resulting from the modelling choices set by the
“relaunched realistic fiction”. During the last session, teachers are invited to carry
out an assessment with their students to close the session. The ResCo group uses all
student productions posted on the forum to produce an assessment of the concepts,
mathematical skills and heuristic skills that the problem has implemented as well as
elements of a mathematical solution to the problem. In this chapter, I will focus my
analyses during the phase of questions and answers which contributes to making the
situation accessible to mathematical treatment.

26.7 A Priori Categorization for Analyses

To analyse the horizontal mathematical work, I am interested in the question—answer
pairs produced by the students. To do this, I define a priori categorization for the
questions and another one for the answers.

26.7.1 A Priori Categorization of Questions

I categorize a priori the students’ questions by using three indicators based on the
forms of horizontal mathematization. The first one Qo4 concerns question showing
the search for a model to address the proposed situation. It could highlight a work of
horizontal mathematization insofar as the research of the model induces the student
to make preliminary choices of one or more fragments of reality and some of their
aspects. This indicator essentially reflects the interconnection between horizontal
and vertical mathematizations when moving from the extra-mathematical situation
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to mathematical model, represented by the double arrows on the diagram of the
modelling process (Fig. 26.1). The second indicator Qg concerns questions about
identification of magnitudes relevant to consider mathematical processing in order
to develop a mathematical model. The third Q... concerns questions relating to the
choice of context elements to be taken into account for mathematical processing. The
Omag and Qcone indicators highlight the horizontal mathematical work represented
on the first horizontal axis of the modelling process diagram (see Fig. 26.1). The
QOcont indicator raises questions about the relevance of the chosen fragment of reality
in relation to the choices of context elements to be taken into account. The Qmag
indicator concerns the identification of relevant magnitudes when moving from “the
real situation” to a problem accessible to a mathematical treatment (“PSMT”’) and
the relationship between the selected magnitudes (moving from the “PSMT” to the
mathematical problem).

26.7.2 A Priori Categorization of Answers

The characteristics of the FRAPPM (see Sect. 26.5) allow students to make choices
either from reality, or from mathematical processing associated with taking measure-
ments or from their knowledge of existing models that they plan to test. Therefore,
I defined three indicators: the first one R«ge,» for the choice of a model or relevant
magnitudes based on considerations rooted in the real context of realistic fiction.
The second one R priori» for choices based on a model known to the student for the
purpose of testing it or for choices of a magnitude, made without considering the
real context and without further justification. And the last one Ry~ for choices of
a model or relevant quantities made from mathematical work or based on consider-
ations made on the statement’s diagrams. These kinds of answers would show that
from the work of horizontal mathematization (production of the question) students
can enter into vertical mathematization work (that would highlight the back and
forth between the two aspects of mathematization) (see Fig. 26.1). A response of
this type bears traces of the transposition of an expert’s practice insofar as it can
highlight that either the horizontal mathematization work triggers a vertical math-
ematization work, or that the work of horizontal mathematization is interconnected
with that of vertical mathematization in the sense that the choices are made in antic-
ipation of the feasibility or complexity of the mathematical processing that would
result. These indicators for the response development phase should make it possible
to: better understand how realistic fiction and the response phase lead students to
make choices when considering mathematical treatment of the problem, highlight
a possible transposition of the expert practices previously defined and highlight a
possible devolution of horizontal mathematization to students.
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26.8 Results

About 2000 students participated in the experiment. Questions and answers were
collected and analysed qualitatively (using language markers) and quantitatively in
relation to the above-mentioned indicators. Of the questions, 36% were in category
Omod> 39% in category Omae and 25% in category Qconc. For each category of ques-
tions, the results for the answers are shown in Table 26.1 and some examples of
question—answer pairs are given in Table 26.2.

The analysis showed that students made simplifying hypotheses about elements of
reality to consider a mathematical treatment, by selecting one or more fragments of
reality by focusing on branches, greenhouse, leaves, et cetera. They identified relevant
variables that influence the real situation (e.g. number of branches) as well as variables
or context elements that are not relevant to the problem to be solved (e.g. fertilizer,
leaf, tree height) and chose relevant relationships between the selected variables
by using mathematical frameworks (e.g. functional, proportional, geometric). The
choice of didactic variables (the diagrams of the tree, the asymmetrical shape of the
tree, the number of new branches, the lengths of the trunk and branches, the scale)
allowed students to ask authentic questions about the magnitudes to identify and
relate in order to consider a mathematical treatment of the problem. The sufficiently
realistic framework of the fiction encouraged reflection on the contextual elements to

Table 26.1 Results for the answers for each category of questions

Regear” (%) Rea priori” (%) ReMaths” (%)
Omod 26 35 39
Omag 27 36 37
Ocont 70 27 3

Table 26.2 Examples of question—answer pairs

Question—answer pair | Example

Omod RMaths” Is there proportionality between years and tree size? Size of the trunk,
height, width of the branch, number of branches? (Qmoq): Using the

3 cm scale on the drawing = 1 m in reality, we can measure the tree each
year, and we see that the coefficient to move from one year to another is
not constant, so there is no proportionality (R«Maths”)

Omod R“Real” Do trees evolve in a proportional way? (Qmod): Given the natural
context, trees do not evolve in a proportional way, but for the resolution
we will consider that they do (R«real”)

Omag ReReal” Should we only consider the height or also the width? (Qmag): Both must
be taken into account, as the greenhouse will have to have a roof (height)
and walls (width) (R«gear”)

QOcont ReA priori” Does exposure to the sun or watering have anything to do with tree size?
(Qcont): We think not, otherwise the statement would contain more
information on this subject (R«a priori”)
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be taken into account, leading students to realize that some information about the real
context was not necessarily useful in solving the problem or that it was preferable
to neglect it in order not to make more complex the construction of the model. The
majority of students tried to test a known model, the proportionality model, which
they sometimes rejected by comparing the results obtained in this model with what
they know about tree growth in the real world, leading them to reconsider their choice.
The scale opened up the possibility of carrying out instrumented measurements,
allowing students to quantify certain quantities and compare them with real data.

26.9 Discussions and Outlook

The main results highlight that the characteristics of a “FRAPPM” with an initial
phase of questions-answers between peers have encouraged the devolution to students
of the horizontal mathematization work. Analyses of the question—answer pairs show
traces of this devolution. These analyses show that students make choices to make
the extra-mathematical situation accessible for mathematical treatment. Through the
indicators developed for the analyses, based on the main findings of the study of
researchers’ modelling practices (Yvain 2017), we can understand how students
make these choices: by simplifying hypotheses about elements of reality to consider
mathematical processing, by identifying relevant magnitudes and by questioning the
influence of external parameters. Or, they made explicitly choices based on mathe-
matical work, essentially based on measurements to verify after calculations, whether
a model can be chosen. They also tried to test this model by comparing the results
obtained in this model with real data. The back and forth between the horizontal
and vertical aspects of mathematization, pointed out several times in the analyses,
support the claim that horizontal and vertical mathematizations are interconnected
in a mathematical modelling activity of this type in the classroom (for more details,
see Yvain-Prébiski 2018). The question-and-answer phase makes it possible to bring
to life in class the horizontal axis of the diagram of the modelling process developed
for the study. However, what still remains open for future research is to consider the
impact of this initial phase (question—answer) to the whole process of modelling and
to study how students’ responsibility was really involved in these activities and to
what extent this issue was identified by teachers in a way that allows a full devolution
of the learning issue (Yvain-Prébiski and Chesnais 2019).
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Chapter 27 ®)
An Opportunity for Noticing by Students | ¢
and Teachers

Jill P. Brown

Abstract Mathematical modelling allows teachers to teach in engaging ways and
students to become increasingly confident in working with challenging mathematical
tasks, yet it remains less common in the primary years of schooling. To achieve
success in solving real-world tasks, students must notice what is relevant, and decide
how to act on this to progress their solution. Teachers must also discern what is
relevant and nurture student capacity to notice. This chapter investigates teacher
noticing and novice modellers’ developing conceptions of noticing during a primary
school modelling task. In the study, 62-Year 3/4 students attempted The Packing
Task, observed by 13 teachers.

Keywords Challenging tasks - Mathematisation - Pre-mathematisation *
Productive noticing * Primary school - Real-world

27.1 Modelling in Primary Schooling

In mathematical modelling, sense-making opportunities abound (see e.g. Brown
2017) as complex problems are presented to learners who then engage in deci-
sion making. Learner choice is important in mathematical sense-making. “Sense-
making in mathematics classrooms is enhanced through less teacher structuring and
learners using their own informal methods” (Biccard 2018, p. 8). With regard to
modelling in primary school, more research is needed (English 2003; Stohlmann and
Albarricin 2016). Also, English (2010) advocated modelling problems being inte-
grated throughout the primary years. Concurring with this view to increase research
and modelling activity, Stohlmann and Albarricin note, “mathematical modelling
has mainly been emphasised at the secondary level, but for students to become more
adept modellers the elementary grades need to be given more attention” (p. 1).
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English (2003) has long championed the use of mathematical modelling activities
in primary school (and beyond) if “we intend our students to make modelling a way
of life” (Brown and Stillman 2017, p. 354). English argues that evidence from her
extensive research with primary school students, shows that modelling tasks are not
too challenging, and students can successfully engage with such tasks regardless of
their current mathematical capabilities (English 2003). More recently English noted,
“introducing young children to mathematical modelling where they are challenged
to mathematise problematic [real] situations ... can cultivate their mathematical
capacities” (English 2015, p. 104). An empirical study of three Year 6 classes utilising
two different tasks, highlighted the importance of task design impacting on whether
students saw the task as realistic (Brown 2013). Brown concluded that “tasks that
required students to reflect ... and make their thinking explicit can contribute to

.. students perceiving themselves as playing an important role in interpreting the
real-world problem situation and relating it to the world of mathematics” (p. 304).

27.2 Productive Noticing in Modelling

Arcavi’s (2003) ideas of students focussing on irrelevancies have been integral in the
project, this study is part of, in encouraging students and teachers to articulate every-
thing they notice in a particular image, task et cetera and then attending to which of
these are mathematical and or relevant to the task being considered. Galbraith et al.
(2017) note the importance of skilled ‘noticing’. Choy’s (2013) notion of produc-
tive mathematical noticing was extended to modellers, including student modellers,
by Galbraith et al. (2017) as productive Modelling Orientated Noticing (pMON).
Following Wenger and Wenger (2015), pMON needs to be nurtured in novices,
and displayed by experts in mathematical modelling. Galbraith et al. argue that to
develop as modellers, novice modellers must engage with modelling activities. Only
through this activity will they develop conceptions of discerning ‘noticing’ as they
select, develop, and communicate their modelling appropriately. From a pedagogical
perspective, productive Modelling Orientated Noticing includes when the teacher is
“monitoring and observing student decision making during modelling activity....
[and goes beyond noticing to include the essential] discernment of the relevance of
what is noticed” (p. 74). From a modelling perspective, for the student modeller,
productive noticing involves noticing what is relevant and what is not in a productive
manner by acting on what has been discerned as relevant and rejecting or ignoring
what is irrelevant.

To begin to model, novice modellers must become proficient in two processes,
mathematisation and pre-mathematisation. Jankvist and Niss (2020) describe as pre-
mathematisation, the processes of specification and idealisation, where modellers
reduce the complexity of the messy real-world situation. This involves “making
choices and assumptions concerning the features deemed significant to the modelling
enterprise, thus reducing its complexity so as to make it tractable” (p. 469) to solution.
Pre-mathematisation is critical to successful mathematisation. Hence, pMON plays
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a critical role as decision making regarding identification of significant features and
making assumptions requires productive noticing. Mathematisation occurs when the
modeller translates the idealised real-world problem into the mathematical world.

27.3 The Study

The research reported here is part of a four-year Teacher as Learner Research (TALR)
project with one primary school in Australia. It focused on the development of math-
ematical content knowledge and pedagogical content knowledge by the teachers,
and hence classroom practices to enhance student learning through teacher and
student noticing. Key aspects of the project include productive teacher noticing and
reflection, with an emphasis on students’ mathematical reasoning and their collab-
oration to solve challenging tasks. This task reported here occurred in the fourth
year of the project; hence, teachers had participated in many such demonstration
lessons previously. The following research questions, related to the implementation
of a modelling task, were the focus of the study reported here. RQ1: What devel-
oping conceptions of teacher noticing did this professional learning elicit? RQ2:
What developing conceptions of modeller noticing did the modelling activity elicit
in novice modellers?

27.3.1 Participants and Procedures

Sixty-two Year 3/4 students, aged 7-9 years old, worked on a modelling task observed
by 13 teachers. The Packing Task was implemented during a 1-h class taught by the
researcher. Students were asked to work with a partner, make a plan, then solve the
task, and to keep a record of their mathematical thinking. To support teacher noticing
during lesson observations, teachers used a researcher-designed recording sheet to
focus on key mathematical ideas and language and what the students did and what
the teacher (i.e. researcher) did. To focus on particular student pairs, the back of
the recording sheet asked teachers to pay particular attention to the progress of three
pairs throughout the lesson. Teachers were encouraged to ask students to clarify their
thinking or approach to the task.
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The Packing Task

How many rolls of | How many rolls of toilet | The boxes are transported in this truck
paper are in one paper are in the boxes?
ﬂ i

layer/box?
How many boxes will fit in the truck?
How many rolls of toilet paper is this?

When the task was implemented, students had limited formal school mathematics
experiences with area and volume. They had some notions of area as covering, filling
space, and had worked with arrays extensively. Students worked in self-selected pairs.
Year 4 students were expected to have more mathematical knowledge and experiences
of the notion of packing than Year 3 students, although still limited. The task was
designed to include in-task scaffolding. Specifically, the parts focused on a single
layer, the box, a vertical layer of boxes, and contents of the truck. The first step is to
understand the situation, that is, that rolls and boxes are arranged in equal rows and
in layers. The main requirement of the task is to translate between the mathematical
world and the real world, specifically to determine how many boxes can fit in the
truck. The dimensions of the boxes and the way they were packed relative to the
dimensions of the truck had to be noticed and accounted for.

27.3.2 Data Sources and Analysis

Students’ approaches to solving The Packing Task and teacher written reflections
on these (both in-the-moment and at end of the day) were analysed. Data used to
inform the qualitative analysis include student scripts, teacher observations during
the lesson, reflection following post lesson discussion involving all teachers and the
researcher, photographs of student scripts taken over the duration of task solution
and the researcher’s field notes. Thematic analysis (Guest et al. 2012) was conducted
following coding of data to focus on what teachers and students noticed and acted
on.
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27.4 Findings

27.4.1 Teacher Noticing and Irrelevancies

Four themes emerged in the teacher observations. These related to teacher noticing
with respect to irrelevancies, pre-mathematisation, mathematisation, and diagram
use.

Noticing Irrelevancies. Irrelevancies such as colour or patterns on the wrapping
paper need to be filtered out. Some pairs noticed and captured realistic aspects of the
wrapped toilet roll pictorially (e.g. wrapping paper pushed into central cylinder and
extending beyond the roll, see Fig. 27.1a). This did not necessarily hinder subsequent
idealisation and mathematisation, but tended to be time consuming, thus reducing
time to focus on task solution. Pair 25 used a careful pictorial representation to
represent the initial situation recording irrelevancies and the truck (Fig. 27.1b, c),
leaving no time for them to complete the last part of the task.

In the first part of the task, several teachers noticed students recording or discussing
irrelevancies, for example, Teacher 12°s [T12] observation of Pair 20 included, ‘I see
rows’ and ‘noticing patterns in colours etc.’. These students clearly saw the former
as essential (they identified three rolls under the flap) and dismissed the latter as
irrelevant but did not record this noticing. Teacher 17 noted that Pair 13 initially
attended to colour, and Teacher 18 noticed Pair 23 suggested it was ice-cream in
the box as well as attended to colour. When Pair 13 was trying to determine what
proportion of the rolls the flap covered, T17 noticed this and recorded, ‘students need
hands on material to challenge ideas’ however, she did not draw the students’ attention
to any of the available materials nearby. In contrast, Teacher 8 distinguished between
essential aspects and irrelevancies, recording her general observations, ‘Noticing the
patterns on the paper — irrelevant. Some noticed a hidden roll.” Teacher 8 noticed
that Pair 1, ‘thought there could be 0 or 3 behind the cardboard flap’ which clearly
related to their assumption the box was full. She also noticed this pair’s unrealistic
consideration of mini-rolls under the flap. Furthermore, she noted that Pair 8, although
not initially recognising the objects in the box, could visualise there were 12.

Noticing with respect to Pre-mathematisation. When Teacher 16 noticed Pair 6
struggling with pre-mathematisation when trying to identify the number of rolls in
the box, specifically the importance of the number of layers, she acted. ‘They weren’t

Fig. 27.1 Student focus on irrelevancies, a the roll, b the box, ¢ the truck
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drawing so I suggested they use unifix’. After seeing them create two layers of nine,
she directed them to the photograph of the box to see ‘if [their construction of unifix]
looked like the picture’. In fact, one of the pair then closely observed the actual
closed box that was in the room. Although Teacher 16 clearly noticed the students
had not recognised the significant feature that all layers had the same number of rolls,
it is unclear if her approach explicitly drew their attention to the lack of connection
between their identification of 12 rolls in the top layers and their concrete model with
nine. Similarly, when Teacher 17 noticed that Pair 13 had identified the number of
layers of rolls in the box as being significant, but were unable to determine what this
number was, she suggested they ‘go to the box’” which they did and returned having
identified there were four layers. Teacher 12 noticed Pair 20 also initially did not
recognise this essential element. There is no evidence of her acting on this, although
the pair did ‘re-establish 12 as important’ according to her notes.

When the focus was on packing the truck, Teacher 2 noticed that Pair 10 partitioned
both side and back view of the truck into a four by four array, ‘with no discussion
as to why they did this’ and furthermore ‘added 16 + 16 to get 32’ boxes in the
truck. There is no evidence, this teacher probed or challenged the pairs’ noticing.
Teacher 16 noticed Pair 30 ‘working out the width and height of the toilet paper and
trying to relate this to the size of the truck’. They recorded ‘toilet paper = 12 cm
long, 10 cm tall. Box = 36 cm width 40 cm tall’. Clearly, the pair was incorrectly
assuming the rolls were oriented sideways, which conflicts with the photographs.
Based on this, they identified two dimensions of the box. They later recorded 48
but there is no evidence where this came from or what it represented. Had Teacher
16 questioned their pre-mathematisation, they would have had an opportunity to
recognise the diameter of the roll determined two dimensions of the box. This may
have also led to their recognising their incorrect orientation of the rolls. Teacher 5
recorded his noticing of their inability to determine dimensions of the box based on
the roll but no actions of his own to intervene to support resolving this.

Noticing with respect to Mathematisation. Other teachers noticed other difficul-
ties as students mathematised the situation related to filling the box. Teacher 7, for
example, noticed that although Pair 14 had identified ‘the top layer had 12...and
decided 4 rolls would fit vertically [the] total rolls would be 16’. She noted, ‘when
probed he said it was by counting by 4s’. Teacher 14 also noticed their mathemati-
sation was actually of ‘4 toilet rolls vertical and 4 going across so he did 4 x 4 =
16, 16 rolls.” Neither teacher intervened sufficiently for the pair to recognise their
mathematisation was flawed.

Noticing with respect to Diagrams. Several teachers noticed student difficulties
with drawing diagrams, or not considering a diagram would be helpful to represent
and / or solve the problem. Teacher 16 noted Pair 2 were ‘struggling to draw what’s
under’, that is to represent the 3D box of rolls. When she noticed Pair 6 not drawing,
she recommended the use of concrete materials. There is no evidence she made the
same suggestion, or any other, to Pair 6. Teacher 12 noticed that this pair ‘did not
understand that diagrams do not have to be the exact labelled measurements’. There
was no evidence that any teacher supported student noticing that a diagram may be
helpful in representing or solving the task.
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Fig.27.2 Challenges representing the 3D situation a attempted 3D representation, b separate layers

Teacher 2 noticed Pair 10 struggled to represent the 3D box containing the rolls.
In this instance, the students also noticed this and recorded their error, ‘First, I did
4 layers then I started doing five layers’ (Fig. 27.2a). Pair 10 did not continue their
diagram but were successful in identifying 48 rolls in the box. There is no evidence of
interaction between Teacher 2 and this pair. Pair 7 [no teacher observations] overcame
the same challenge by representing the four layers side-by-side (Fig. 27.2b).

In conclusion, the four themes in the teacher observations are related to noticing
with respect to irrelevancies, pre-mathematisation, mathematisation, and diagram
use. Articulating observations can be an important part for a learner then recog-
nising they are irrelevant. It is only when such articulations are time consuming and
distracting students from the task at hand that a teacher should intervene—however
this requires the teacher to also recognise the irrelevancies. When noticing that,
for example, available concrete materials, or drawing a diagram, would support a
particular student approach, teachers need to act to encourage students to notice and
utilise such support. Furthermore, teachers should notice that some materials are more
helpful than others. Similarly, teachers should challenge student thinking when unre-
alistic ideas are proposed, or there is a disconnect between student representations
(concrete or diagrammatic) and reality.

27.4.2 Student Noticing

27.4.2.1 Number of Rolls Per Layer

When considering how many rolls in the top layer, only Pair 1 recorded evidence of
making assumptions as they discussed and recorded ‘O or 3’ hidden and so ‘maybe
9’ or ‘maybe 12’ in the top layer. Eventually they decided on 12 having explicitly
considered and then assumed the box was full. The remaining pairs just took it for
granted the box, and hence top layer was full (e.g. Pair 5: ‘if we open it [the flap]
we will see three more’) and there was space for one additional row (e.g. Pair 21: ‘it
would only fit 1 more row’).
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All except Pair 3 recognised—not necessarily immediately—the essential feature
that there must be the same number of rolls in each row (Pair 2: ‘It’s going by 3’s’),
and hence a total of 12 in the layer. Pair 3, whilst considering some rolls were hidden,
could not agree if there were two or four hidden, failing to notice that each row had
the same number of rolls.

When identifying the number of rolls in the top layer, there was little written
recording of mathematisations. Only six pairs explicitly recorded their mathemati-
sation, with two of these recording two alternative mathematisations using multipli-
cation (Pair 31: 3 x 4 = 12,4 x 3 = 12) and repeated addition (Pair 21: 3 + 3 +
3+3=12,4+4 4 + 4 = 12). A third approach was repeated doubling (i.e. 3 +
3 =6,6 4+ 6 = 12). Another five pairs recorded a counting strategy (counting by
threes or fours, counting on from nine, or counting all). Eighteen pairs recorded no
mathematisation, clearly some of these ‘saw 12’ and had no need for mathematising.

27.4.2.2 The Box

Pair 26, for example, explicitly considered if the box was full or not, and then assumed
it was full. They recorded, ‘I counted by 12. So, if I was to fill the whole box it will
be 48’. Of the 28 pairs who correctly identified 48 rolls in the box, 17 recorded their
mathematisation. Fifteen of these focused on four layers of 12 although six of these
used a doubling approach focusing on two layers and then four. The remaining two
pairs mathematised beginning with the rolls in the additional three layers (3 x 12 =
36, 12 4 36 = 48). All of these 28 pairs noticed the need to ascertain the number of
layers, and that each layer held the same number of rolls. The remaining three pairs
did not notice the importance of the number of layers.

27.4.2.3 The Stack

When considering the stack of boxes, several pairs explicitly considered if there were
hidden vertical layers behind the clearly visible one. For example, Pair 13 made
the assumption, ‘there are no boxes behind’. Two pairs made general statements
indicating they considered the possibility, with Pair 2 noting, ‘there might be more
behind’ and Pair 4, ‘maybe there’s more behind’. Teacher observation indicated at
least three other pairs also considered if there were hidden boxes (pairs 11, 21, 26).
Teacher 3 recorded Pair 11 as saying, ‘there might be more than 12 [boxes]. Can’t see
behind’. Only one pair explicitly recorded their assumption of four vertical layers,
noting ‘behind there are three layers’ (Pair 22).

From either the mathematisation or the result, four pairs proceeded on the assump-
tion of multiple vertical layers. Three pairs correctly identified there would be 2304
rolls if there were four vertical layers of boxes. Pair 11, reported to Teacher 3, ‘we
did 48 rolls x 48 boxes’ however, Pair 11 later erased their result of 2304 and wrote
576, in neither instance recording their mathematisation. Only Pair 22 recorded their
mathematisation, ‘48 x 48 = 2304’. Pair 16 assumed there were two vertical layers,
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as evident from their mathematisation, ‘we added 48, 24 times’ although their result
for this mathematisation of 1152, was incorrect.

Of the 19 pairs assuming a single vertical layer, 13 successfully noted 576 rolls as
being in the 12 boxes. Only eight of these correctly recorded their mathematisation
(e.g. 12 x 48 = 576). A further four pairs correctly mathematised the problem but
were unsuccessful in their calculation. The other two pairs incorrectly mathema-
tised the problem. Seven pairs provided no evidence of a calculation and two others
recorded unclear calculations.

27.4.2.4 Packing the Truck

When considering packing the truck, pre-mathematisation was problematic. Ten
pairs focused on the dimensions of one or more of the roll, box, and truck. Pair 18
recognised the need to coordinate these but was unsuccessful in doing so. They did
not recognise all three dimensions of the box were essential, not just the height of
40 cm which they used in their mathematisation to identify five layers of boxes, seven
high, nor did they notice that the packing was 3D. Four pairs attempted to coordinate
the dimensions of the roll and box, but only Pair 26 successfully mathematised all
three dimensions of the box. Pairs 1 and 20 successfully mathematised one dimension
of the box. Whilst Pair 30 appeared to consider all three dimensions, they failed to
notice the orientation of the roll relative to the box. Three pairs merely focused on the
roll and two others just on the truck. Pair 21 ignored the box as they unsuccessfully
attempted to coordinate the roll dimensions with the truck.

Eight pairs focussed directly on packing the truck, ignoring the importance of the
dimensions of any elements.! Four of these recognised the 3D nature of the packing
and attended to both side and back views. Two pairs partitioned the truck as having the
same number of layers left and back view and had the correct orientation of the box.
Pair 10 (Fig. 27.3a) drew on the truck (picture supplied) showing four layers of boxes
whilst Pair 16 had three layers and added ‘48’ to each box. Although recognising
the number of layers must remain the same, irrespective of the view, neither showed
any other measurement sense or other evidence in determining the number of layers.
Both pairs stated the number of boxes as being those visible not recognising the need

v “ -
432 em inelde length 280 cm Inadde wideh

Fig. 27.3 Packing the truck with boxes a layers coordinated, b layers not coordinated

IGiven roll dimensions, reasonable dimensions for a box were 36 by 48 by 40 cm high, for tight
packing. Truck held 5 layers each layer 9 by 8 or 12 by 6 depending on box orientation.
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to account for hidden boxes. The other two pairs were unable to coordinate the back
and side views of the truck. Pair 8 (Fig. 27.3b) represented the left view having three
layers, whilst the back view has four layers. Similarly, Pair 28 represented the left
view having three layers (of 7), and the back view as five layers (of 4). Neither of
these pairs recorded a result, or any calculation, for the total number of boxes. Three
other pairs only accounted for one view when packing the truck. Pair 27, ignoring the
boxes, attempted to determine directly how many rolls would pack into the truck. Of
the remaining pairs, two focussed on irrelevancies, with Pair 11 drawing the roll and
Pair 25 the truck, four pairs reported a number (24, 192, or 216) with no reasoning
or mathematisation recorded. Eight pairs did not respond to the problem.

27.5 Discussion and Conclusion

In this study, some teachers did carefully draw some students’ attention to their
lack of productive noticing, but in many situations, this did not occur. Teachers
need to notice when students are having difficulties mathematising and intervene,
for example, asking students to specify what the problem they are attempting is,
or how they anticipate their current actions will allow progress towards a solution.
Importantly, teachers should be “monitoring and observing student decision making
during modelling” (Galbraith et al. 2017, p. 85) discerning the relevance of what
has been noticed. When significant features, for example, had not been noticed,
teachers should ask students what they noticed, question if these were relevant, and,
if relevant, if essential, that is, significant to what is being solved. These questions
are appropriate across myriad tasks.

Post-task discussion allowed teacher observations to be shared and discussed.
This appeared invaluable, in-the-moment. In a non-research situation, the value of
teachers first solving such tasks cannot be underestimated, as this provides addi-
tional opportunities for productive Modelling Orientated Noticing (Galbraith et al.
2017) to focus on identifying assumptions, recognising key features, and opportuni-
ties for decision making (Jankvist and Niss 2020) in both pre-mathematisation and
mathematisation. Cooperative planning provides critical opportunities for teachers
to notice essential features themselves and plan appropriate teacher responses to
instances where students do not attend to these (Stender and Kaiser 2015).

With regard to the students’ developing conceptions of noticing, all students recog-
nised that modelling involves decision making. Furthermore, they appreciated the
necessity to make sense of the real-world context. In each part of The Packing Task,
at least some pairs identified all the significant features. In the early parts of the task,
almost all pairs did so. In the final, most challenging part of the task, student identifi-
cation of all significant features was lower with most noticing only some significant
features. Students who identified all significant features were unable to coordinate
these in-the-moment to solve the task. Few students were identified as having explic-
itly made assumptions, although it can be inferred from scripts or observations that
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other pairs had done so, but this was not deemed as important enough by the students
to record. Most pairs took it for granted the boxes and truck were full.

Clearly tasks such as The Packing Task address three of the “five overarching peda-
gogical meta-practices [for the primary years, namely] development of a productive
disposition, emphasis on mathematical modelling, use of cognitively challenging
tasks” (Dooley 2019, p. 3). The task addressed the call of English (2010, p. 295) to
allow primary students to deal with a complex situation and allowed “for a diver-
sity of solution approaches and enable[d] [all students] to participate in, and benefit
from [the] experience”. With experience, students’ conceptions of modeller noticing
will continue to evolve. The role of the teacher in developing these conceptions is
critical. In order for student modellers to recognise the importance of assumptions,
their teachers must also do so. As teacher noticing develops, teachers are better able
to support student noticing, as teacher questioning is more likely to draw students’
attention to productive noticing of what the teacher has also noticed.
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Chapter 28 ®)
Modelling and Mobile Learning i
with Math Trails

Nils Buchholtz

Abstract The chapter provides an orientation on the concept of mobile learning and
how it can be pursued with mobile math trails. Math trails contain tasks that promote
essential elements of mathematical modelling, such as mathematising. Research
shows that, nowadays, math trails are more and more supported by digital media, and
that this affects students’ motivation and achievements. The chapter collects existing
findings on mobile learning with math trails and expands the findings with the results
of a study on digital support of the modelling processes of 11th graders when doing
math trails.

Keywords Math trails -+ Mobile learning - Itinerary method - Mathematisation -
Math & The City - Actionbound

28.1 Introduction

Math trails emphasise an extracurricular and playful approach to learning essential
aspects of mathematical modelling, especially mathematising (Buchholtz 2017). In
a math trail or a mathematical city walk, students work collaboratively on modelling
tasks related to real objects in the school’s or city’s surroundings, moving outdoors
from site to site, like in a rally (Blane and Clarke 1984; Shoaf et al. 2004). The tasks
in math trails include estimating and measuring variables, setting relevant sizes up
in mathematical models, and calculating and comparing sizes, areas, and volumes
(Buchholtz 2017).

Math trails, in this form, have existed since the 1980s as an out-of-school leisure
activity for families and persons interested in mathematics (Blane and Clarke 1984;
Kaur 1990). The mathematical content in math trails can range from primary to
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secondary level mathematics, as can the complexity and difficulty of the selected
tasks. Although not a new idea, math trails have recently gained more attention
in mathematics education research. Nowadays, math trails are included in school
curricula and can be enhanced by the use of mobile technologies, such as smartphones
and tablet PCs (Cahyono 2018; Fessakis et al. 2018; Ludwig and Jesberg 2015; Wijers
et al. 2010). Digital tools, such as geolocation apps, response systems, Sensors,
dynamic geometry systems, and augmented reality applications, can be used on
math trails to support the task-solving process (Buchholtz et al. 2019; Bokhove et al.
2018; Roschelle 2003). An additional advantage lies in the ability to adapt the trails
to the students’ learning requirements (e.g. including support videos or additional
information) (Buchholtz et al. 2019).

In recent discussions on the use of digital media in education, these functions are
often associated with mobile learning (Frohberg et al. 2009), a special form of e-
learning that places emphasis on extra-curricular and informal learning with mobile
devices, such as the type of learning facilitated by math trails (see Sect. 28.2.1). The
question arises: to what extent can math trails enhance mobile learning, and what does
mobile learning with math trails look like? Research findings on students’ learning
outcomes with regard to math trails are scarce, partially because math trails were
originally invented as a leisure activity for people interested in mathematics (Shoaf
et al. 2004) and have not yet been the subject of systematic mathematics education
research. This chapter intends to contribute to filling this research gap by providing
a collection of research findings on the use of mobile devices in math trails and by
presenting findings from the project Math & The City (Buchholtz 2020), where math
trails are used to give students their first experiences with modelling. It is, therefore,
particularly interesting to see how digital devices are used by students to process the
tasks.

28.2 Mobile Learning with Math Trails

28.2.1 Mobile Learning

Mobile learning is a comparatively young field in educational research. Earlier defi-
nitions of mobile learning included the involvement of mobile devices in the learning
process and the physical mobility of the learners as central and necessary charac-
teristics of this educational concept (O’Malley et al. 2005). More recent definitions
of mobile learning highlight the importance of the personalisation of the learning
content and its context-relatedness (de Witt 2013; Frohberg 2008; Frohberg et al.
2009). Thus, the notion of mobile learning is increasingly overcoming the boundaries
between formal and informal learning contexts. Context-relatedness here means that
the place and the situation in which the learning takes place, as well as the people
with whom the learner studies (context of being), are utilized and have a signif-
icant relevance to the learning environment (context of learning) (Frohberg et al.
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2009). Examples include digital museum guides or digitally enhanced expeditions
in nature, such as app-based birdwatching. Math trails are well suited as prototypes
of educational settings for mobile learning.

The context-relatedness can be acknowledged in both ways. The physical context
of the learning environment has a clear relation to the learning content and co-
determines it (Frohberg 2008). To solve the given modelling problems, the students
need to explore the real objects and their characteristics on the math trail and take rele-
vant measures or use mathematics to determine sizes that are not directly accessible
(e.g. for tall buildings). In addition, the social context can be acknowledged by the
collaborative learning element, in which situations, relationships and emotions can
be linked with the learning experience in the environment (Frohberg 2008). Mobile
end devices, with their location-independence, are ideal for extra-curricular learning
environments and mediate between the physical and the social context, for example,
when multimedia and interactive apps are used (Buchholtz et al. 2019). Math trails
that are supported by digital media can contain elements of participation and gamifi-
cation (Gurjanow and Ludwig 2017), meaning that the students take an active role in
the learning process while working with the digital device. Furthermore, the learning
is supported by technology in such a way that students get immediate feedback on
their calculations after entering their results in the mobile device. Different apps
can be used for designing math trails (e.g. www.actionbound.com, www.mathcitym
ap.eu or www.google.com/maps). Actionbound, which is used in the Math & The
City project, is an app developed specifically for the field of media education for the
creation of digital learning paths.

28.2.2 Mobile Math Trails

If an app-based learning path sequences several mathematical tasks, and geo-
coordinates link them to different locations, we consider this a mobile math trail.
Mobile math trails consist of tasks with respective sub-tasks composed of different
mathematical concepts or different steps in the modelling process. The tasks are
designed to ensure that the students have to carry out concrete measurements and
identify required quantities of the real objects autonomously in groups (Fessakis et al.
2018; Ludwig and Jesberg 2015). The tasks vary in the degree to which assumptions
must be made and are therefore particularly suitable for learning individual elements
of the modelling process. They process mathematising by a meaningful assignment
of determined or estimated variables into a mathematical model (Buchholtz 2017).
All solutions to the tasks must be entered in the app, which provides immediate feed-
back on whether the solution was correct or incorrect. Figure 28.1 shows an example
of a task that is part of an Actionbound-based math trail in Oslo.

The task requires the calculation of the volume of the water in a well-known Oslo
fountain. It is embedded in the context that the fountain has to be filled with water
every spring, because winters in Oslo are very long and have very low temperatures.
Therefore, the city council needs to know the volume of water to be filled. The
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How can we calculate the fountains
How much water does the fountain surface area from its circumference?
contain?

Set the procedure in the right order!

Fig. 28.1 The Pdfugl fountain task on volume calculation

students have to consider how to determine the volume of water in the cylindrical
fountain, as the diameter of the basin (7.6 m) is not accessible and therefore cannot be
measured. As such, it must be determined by means of an appropriate mathematisa-
tion using the circumference of the fountain (24 m). For example, students could use
footsteps as a non-standard unit and walk around the fountain, counting the number
of steps, and afterwards multiply the length of a footstep accordingly. An additional
sub-task in which the necessary steps of mathematisation have to be arranged to get
from the circumference to the surface area serves as a scaffold in the digital medium,
providing aid for the necessary steps in solving the task (Fig. 28.1, right side). Care
must be taken to measure the stones on the inner edge of the fountain; otherwise,
the results will vary considerably. With the corresponding water level of the fountain
(0.36 m), the approximate volume of the water (16.5 m?) can then be determined.
When creating a mobile math trail, the geo-coordinates of the tasks must be fixed
so that the app can guide the students via the geo-localisation of the mobile device.
In Actionbound, not only can tasks be displayed in text form, but the integration of
external links, images, videos and audio recordings is also supported. It is easy to
add explanatory videos, an interesting article or a mathematical sketch with relevant
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sizes, depending on which degree of difficulty is chosen for the modelling tasks and
which forms of support are to be offered. In this manner, the tasks in the mobile
math trails can be adjusted to the respective needs of the learning group, which
creates added value over merely presenting the tasks in the paper and pencil format
(Buchholtz et al. 2019).

28.2.3 Recent Research Findings on Mobile Math Trails

The research group around Matthias Ludwig develops a network of math trails around
the world using the app MathCityMap (Ludwig and Jesberg 2015). Gurjanow and
Ludwig (2017) investigated the influence of gamification elements on the motiva-
tion of German students. They examined whether the implementation of a reward
system and a ranking in the mobile math trails positively influenced the intrinsic
motivation of 25 participating students. They found that the reward system had no
influence on the intrinsic motivation of the students, whereas the ranking system had
a positive influence on intrinsic motivation, especially among male students. Other
studies found effects of mobile math trails on students’ achievement as well. In an
explorative case study of four students in Greece, Fessakis et al. (2018) revealed that
the digital map they used in their study (Google Maps) provided easier navigation
and information on the communication and cooperation between different groups
of students (Fessakis et al. 2018). In most cases, research on mobile math trails is
concerned with their impact on student motivation or achievement, not so much with
students’ mobile learning while doing the math trail.

28.3 Findings from the Project Math & The City

28.3.1 Research Design and Approach

To analyse student’s mobile learning on math trails, what happens during the trail,
and how the mobile device is involved in the modelling process are of foremost
interest. In this case, this means observing the students’ interactions with the real
objects connected to the different tasks on the trail, their use of the mobile device
during the math trail, and their contextual modelling processes and strategies when
estimating and taking measures.

Exploratory qualitative research methods are used in the Math & The City
project to analyse students’ mobile learning. The method of itinerary (Méthode des
Itinéraires) was originally invented in sociology to collect and describe the subjec-
tive views of pedestrians in order to draw conclusions about city planning (Miaux
et al. 2010; Petiteau and Pasquier 2001). Central to this method are city walks during
which the researcher takes a passive role, guided by the participants, and interviews
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and records audio of the participants while a photographer walks behind and takes
pictures at each change in direction or emotional change. The method is adapted
here for the mobile math trails in order to gather information about the subjective
use of mobile devices when working with tasks, which is a good indicator for mobile
learning. Central to this adaptation is the video-recording produced by an action
camera that the students wear on their body. In this way, the observation remains
minimally invasive (for further details: Buchholtz 2020).

For the project, two math trails were developed in downtown Oslo. One math trail
consists of five tasks on the topic of circle calculation (among them, the task from
Fig. 28.1); another focuses on the topic of linear functions. After piloting the trails in
summer 2019 (Buchholtz 2020), the trails were carried out with two school classes
(11th grade) and their mathematics teachers in autumn 2019. For each math trail,
five groups of three students were equipped with action cameras, a tape measure and
an iPad on which the app was installed. In addition, the students were allowed to use
their own smartphones, and they were responsible for recording the process at the
individual stations of the math trail. All the necessary declarations of consent were
obtained before the data collection, and the study was approved by the Norwegian
data protection authority (NSD). The data evaluation is based on the qualitative
content analysis (Mayring 2014). The data are still subject to evaluation, but in this
chapter, the first results from the video recordings are presented.

28.3.2 Findings on Students’ Mobile Learning When
Modelling

In the recordings, we identified different phases of the modelling processes where
the mobile device supported or scaffolded the activities of the students.

When following the math trail, the app guided the path from task to task. The app
presented the tasks as soon as a location had been found. The students then had to
understand the tasks on the iPad. The quantities that were relevant for the tasks were
localised in the real object by shifting the attention between the digital presentation
of the task (e.g. photo, sketch, text or video) and the respective object properties (see
Fig. 28.2), often associated with deictic gestures. The students then made context-
related assumptions about or simplifications of the real model (for example, if the
form of the real objects differed from ideal mathematical forms that were presented).
When working with the Pdfugl fountain task, they discussed where and how to take
the relevant measurements. Then, suitable methods of data retrieval were found (see
Fig. 28.3). When mathematising, the students used their smartphones to take notes
or look up relevant formulas (see Fig. 28.4).

The students also processed the task using their smartphones as calculators
(Fig. 28.5). It was also possible for students to take a photo of the object or make an
audio recording with their iPads and then upload the work in the app; for example,
parts of the real objects that were relevant for the calculation or that had to be
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Fig. 28.4 Students looked up a formula to calculate the radius from the circumference
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Fig. 28.5 Students used their smartphones as calculators and entered results into the app

compared in the tasks could be documented. The students could also upload sketches
and calculations that they made on paper or on their smartphones as they worked
with the tasks.

The entered results were automatically validated by the app with solution intervals
or programmed correct responses so that the mobile device could give immediate
automated feedback. The app then provided pre-programmed assistance in case of
incorrect answers, and the students could use the feedback to look for errors in their
solution strategy, their estimates or their measurements. If the solution was entered
correctly, the app rated the result with points and sent the students to the next task.

28.4 Discussion

In contrast to regular modelling tasks in class, the contextualisation offered by the
real objects seems to play a special role on math trails. In order to accomplish the
tasks, students had to measure, scale, count, or estimate quantities and place them
into a correct mathematical relation or reconstruct or calculate relevant but inacces-
sible quantities from measured quantities—the actual mathematising. Perhaps most
importantly, the groups were able to directly validate the mathematical results against
the real objects. Overall, we could identify three important areas where the mobile
device supported the students’ modelling processes: first, in task presentation and
contextual support (variety of approaches to the task); second, as a technical aid
in task processing and mathematisation (research tool and computer function); and
third, in providing immediate feedback that motivated the students to find errors and
validate their solutions. These findings show first insights into the use of mobile
devices for modelling and math trails in general. A more systematic review of scien-
tific findings on this topic should take place in the next few years because there is
great potential for the use of mobile devices.
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Mobile math trails enable educators to combine texts, images and animations, as
well as audio recordings, construction plans, floor plans, or even technical drawings
when designing modelling tasks, thus offering the students a differentiated access
to mathematical concepts and an opportunity to relate the mathematics involved to
different realistic contexts. Using different (and even dynamic) representations in
task formulations can strengthen the networking between mathematical concepts.
The possibility of additional “augmented reality” content—for example, in addi-
tional explanation videos—opens up possibilities of variation in task access and
simultaneity of representations, thus linking the different levels of representations
together.
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Chapter 29 ®)
Modelling in School Mathematics: Past e
Achievements—Current Challenges

Hugh Burkhardt

Abstract This chapter describes my 55 years of learning about teaching modelling,
from initial explorations through a sequence of modelling projects at the Shell Centre.
After introducing some core concepts, the chapter focuses on the design strategies and
tactics that were learned in each project, including roles for technology. A discussion
of specific design issues in teaching modelling leads into asking why improvements
are so difficult to achieve on a large scale. Elements of a way forward are outlined.

Keywords Modelling - Tasks - Roles + Microworlds + Change - Assessment

29.1 Introduction

The Shell Centre for Mathematical Education was created in 1967 by the mathematics
professors at the University of Nottingham, Heini Halberstam and George Hall—
himself a pioneer in teaching modelling. Initially, a professional development centre,
when I joined as director in 1976 we decided it should focus on research-linked
development of materials to improve the teaching and learning of mathematics. This
chapter describes this ‘engineering research’ (Burkhardt 2006) approach to teaching
modelling at the Shell Centre since then.
To begin, I will clarify some assumptions that run throughout the chapter.

29.1.1 Models and Modelling

First the distinction in Fig. 29.1 between learned models, illustrating how mathe-
matics has been used to understand real world situations and active modelling by
students.
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lllustrative applications Active modelling

Mathematical
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Reinforce a topic through applications  Choose and use your mathematical tools

Fig. 29.1 Different purposes with different priorities

These activities are complementary—a knowledge of existing models of a wide
range of practical situations is essential for creating models of situations that seem
in some way similar. But it is far from enough to enable active modelling. Here, I
shall be concentrate on active modelling by students of all ages, choosing and using
tools from their mathematical toolkit to better understand practical situations, and
how we can develop these capabilities in mathematics classrooms.

29.1.2 The Central Role of the Task

We believe that the tasks that students work on should provide opportunities for:

1. Using good mathematics, however simple.

2. Cognitive demand that requires ‘productive struggle’—thinking not just
imitating.

Equity so that all students should be able to engage with the task.
Agency—for students to feel the solution is their own, not the teacher’s.

5. Feedback in the classroom—formative assessment that forwards learning.

W

More broadly, these are the five features of powerful classrooms (TRU) set out by
Alan Schoenfeld, based on a series of research and development studies (Schoenfeld
et al. 2016).

Figure 29.2 shows two modelling tasks that potentially have all these attributes
and work well in classrooms. Airplane turn-round is a simple task that can be used
to show students (and adults) what modelling is about. Presented with this problem
in a mathematics classroom, students just add the numbers—*“that’s what you do
in maths”. When the teacher then asks “Is there any way you could do the turn-
round more quickly?” students recognize that this is a different game where their life
experience, common sense and imagination are needed.

Cats and Kittens is a richer and more complex task where strategy is the main
challenge.
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Fig. 29.2 Two modelling tasks

29.1.2.1 Types of Task

‘We have found it useful (Burkhardt and Swan 2017) to introduce students to a variety
of types of modelling task, notably those which ask students to:

Plan and organize Find a good solution, subject to constraints.
Design and make Design an artefact or procedure and test it.
Model and explain Invent models to explain the situation, make reasoned
estimates.
e Explore and discover Find relationships, make predictions.
Interpret and translate Deduce insights, translate representations.
Evaluate and improve an argument, a plan or an artefact.

Since all these can make you more effective in facing life’s challenges, a rich
modelling curriculum should bring all of them in from time to time.

29.1.2.2 How Realistic Should the Tasks Be?

It is clear that few tasks that are presented in the classroom by the teacher are
entirely realistic for the students’ life in the real world. I devised (Burkhardt 1981)
the following semi-serious classification:

A. Action problems affect students’ own lives—e.g. situations involving money
(What apps can I afford?) and risk (Should I worry about being killed by a
terrorist?).

B. Believable problems are those that might arise in the future and do concern
others—finance, risk, design, planning all come in here.

C. Curious problems are simply intriguing—Cats and Kittens, or the “Birthday
Party Problem”—with 22 people at a party it is likely that two have the same
birthday.
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D. Dubious problems are just there to practice maths—the real world situation is
purely cosmetic. “If it takes 5 men 7 hours to paint a fence, ...”

E. Educational problems are fundamentally dubious but mathematically irre-
sistible—real world examples of exponential growth, Fibonacci series and the
Golden Ratio.

So to develop modelling capability in a way that is most valuable in later years,
we have found it appropriate in developing materials to focus largely on Believable
problems, with a sprinkling of the other types.

29.1.2.3 Task Difficulty

...is multi-dimensional. The difficulty of a task depends on various factors, notably
its complexity, unfamiliarity, technical demand and the length of the chain of
autonomous reasoning expected of the student. We have found it useful to distinguish:

e Expert tasks come in a form in which they might naturally arise; they involve
all four aspects, so must not be technically demanding—there is a “few year
gap” between the mathematical techniques that students can manage in imitative
exercises and those they can choose and use in tackling non-routine complex
problems. For problem solving, mathematical concepts and skills must be well
absorbed and connected to other concepts and other applications so their relevance
to the new context can be perceived.

e Apprentice tasks are expert tasks with scaffolding added. This reduces the
complexity and the student autonomy. Apprentice tasks provide an important
element in developing modelling skills—Ilike climbing a mountain with a guide
to develop mountaineering skills.

e Novice tasks are short items with mainly technical demand, so can be “up to
grade”, including concepts and skills that have been taught and practised recently.

Thus each type of task has a different balance of sources of difficulty. This must be
taken into account in choosing tasks that provide ‘productive struggle’ for all students.
Thus, Airplane turn-round, where the technical demand is only simple addition, is
challenging to students through its strategic demand: deciding how to organize an
approach. Cats and Kittens requires students to devise a representation and a strategy
that will handle the inherent geometric growth, summed over successive generations.

29.1.3 55 Years of Learning How to Teach Modelling

I will begin the story of how we and others have gradually learned more about
teaching modelling with a very brief historical account, before turning to specific
design issues.
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29.1.4 Early Explorations—the 1960s

The unexpected launch by the Soviet Union of the first satellite led to soul-searching
in the USA: “The West is being left behind ....” The wave of ‘Post-Sputnik mathe-
matics reform’ that followed was led by mathematicians and scientists, whose views
on learning and teaching were intuitive rather than research based. Their core belief
was that teachers need to understand the mathematics more deeply, going back to
the foundations: set theory! In Birmingham from 1960 to 62, Peter Hilton and Brian
Griffiths set up weekly 3-hour lectures for high school teachers on fundamentals of
pure mathematics and how they relate to school arithmetic and algebra.

29.1.4.1 Personally

In 1962-64, almost by accident, I found myself faced with a challenge. After a couple
of years, the organizer thought the topic should change to applied mathematics; my
head of department asked me to run the course. At that time, the mathematics in
the last two years of British schools included, along with algebra and calculus,
Newtonian Mechanics of particles and rigid bodies in 2 dimensions—just as Newton
had designed it 300 years earlier! So, in the first year, I reviewed in some depth the
physics behind the highly stylized problems in the syllabus, like those in Fig. 29.3a.
These were based on 12 learned models, with no active modelling.

I became so frustrated with ‘perfectly light inextensible strings’ running over
‘perfectly smooth weightless pulleys’ that I decided to make the next year’s course
focus on modelling. It opened with a practical workshop ‘On falling off ladders’
that led the teachers to understand that, among the various instabilities, the ‘bottom
slipping away’ in Fig. 29.3a was the most dangerous—but only when someone is
climbing the ladder, which was not in the syllabus! I devised a version of the now-
standard modelling process diagram, shown in Fig. 29.3b. (Note how it handles
‘processes’ and ‘states’—an issue that persists to this day.)

I'then started teaching modelling in the same way to undergraduates with problems
like:

e ‘Onowning a car’ What is the best age (of the car!) to buy, then to sell a used car,
so0 as to minimize the cost. The students were able to expose various myths.

® ‘On walking in the rain’ so as to keep as dry as possible. Should I run?How
fast?What if there is a wind?

29.1.4.2 Other Early Initiatives on Teaching Modelling

In England, Ron McLone and a few other ‘explorers’ in university mathematics
departments were experimenting with modelling in their courses. In the US Henry
Pollak, then Head of Mathematics and Statistics at ‘Bell Labs’, worked with various
efforts to introduce modelling in schools.
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Special mention must be made of USMES: Unified Science and Mathematics
in Elementary Schools. Led by Earle Lomon, an MIT physicist, the team at the
Education Development Centre (EDC) developed a series of modules to support
6-week whole-class projects on practical topics including Classroom design, Orga-
nizing school lunch, Welcoming a newcomer to the community and Kids’ dessert
preferences—this one led some classes to develop factor analysis! Teacher support
was through ‘Teacher logs’, each written and illustrated by the team with a teacher
working on the project, and ‘How to cards’ describing useful techniques—practical,
scientific and mathematical. USMES was wonderful for students but only outstanding
teachers could handle this extended open problem solving in a productive way. This
inspired me later ‘to make USMES accessible to typical teachers’ in the Shell Centre’s
Numeracy through Problem Solving project.
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29.1.5 The Development of the Modelling
Community—1970s and ’80 S

In the following decade, many other people joined the modelling enterprise, which
has gradually grown into the ICTMA community. I will mention only some key
examples here. Niss and Blum (2020) give a more comprehensive survey of the
development of modelling.

In the UK, George Hall in Nottingham developed a modelling course for under-
graduates. Chris Ormell in Norwich developed a modelling-based mathematics
course for humanities-focused high school students. David Burghes in Exeter
founded the Journal of Mathematical Modelling for Teachers. Ian Huntley in
Sheffield and Chris Haines in London were among the pioneers in the polytechnics,
leading the first large-scale implementation of modelling in mathematics courses—
and, for a long time, the only one. They were helped by an institutional factor.
While each university devises its own courses, the courses in polytechnics were then
approved by a central organization, CNAA. The CNAA mathematics panel decided
that there should be a modelling course in all three years of any mathematics degree.
Thus, modelling became institutionalized in a way that never happened in English
universities, where innovation is easy but tends to be evanescent.

In the USA, inspired by Henry Pollak, groups arose around Boston and else-
where. Sol Garfunkel began to develop COMAP from a university-focused collabo-
ration towards the diverse achievements that were later recognized with an ISDDE
Prize for Excellence in Design. Ed Silver, Richard Lesh and Helen Doerr developed
schools of modelling with rather different foci on the relationship between modelling
and mathematics. Max Bell, another pioneer, made modelling and applications the
core of the UCSMP Everyday Mathematics curriculum, which is widely used in US
elementary schools to this day.

In Denmark, Mogens Niss recognized a potential role for modelling in mathe-
matics curricula as a student instructor in the 1960s, first in statistics then in microe-
conomics. In 1972, as the first mathematician at the new Roskilde University, where
he and his colleagues were designing all the courses ‘from scratch’, Mogens started
with a course on ‘mathematical model building’. Modelling grew and flourished on
that foundation, with Morten Bloemhoj and Thomas Jensen among the pioneers in
the ongoing work.

In Germany, Werner Blum was inspired by working with Henry Pollak on the
applications theme group for ICME-3 in Karslruhe, where Gabriele Kaiser became
involved. An early problem was on the design of the income tax system. Again the
group flourished with the work of Katja Maass, Rita Borromeo-Ferri and others.

In Australia, a strong strand of work on modelling grew through the work of Peter
Galbraith and Gloria Stillman. In South Australia, John Gaffney, Vern Treilibs, Jeff
Baxter and others developed modelling tasks for use in schools and in high-stakes
examinations. Treilibs, on a year visit to the Shell Centre, performed a study of the
formulation process that remains significant (Treilibs et al. 1980; Burkhardt 2017).
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In the Netherlands, the work at what became the Freudenthal Institute deserves
special mention. Led initially by Freudenthal and carried forward by Jan de Lange,
the team took a complementary approach to modelling, seeing it as a route to concept
development in mathematics through a process of successive abstraction and gener-
alization from concrete situations with the concept ‘hidden’ at the centre. Realistic
Mathematics Education was developed and later became the basis of Mathematics
in Context, the US middle school curriculum, and later developments in the UK.

29.1.6 ICTMAs

A key long-term event in this period was when, in 1983, David Burghes launched
the first International Conference on the Teaching of Modelling and Applications
in Exeter. The title of my paper in the book that followed (Berry et al. 1984) was
Modelling in the Classroom: How can we get it to happen?—a central concern still.
Exeter ’83 began the series of ICTMA conferences and publications leading to the
Hong Kong ICTMA-19. This turned the diverse work of many contributors into a
coherent community.

The other important connecting strand arose from Gabriele Kaiser’s work as editor
of ZDM Mathematics Education, in particular the special issues on modelling.

29.2 Developing Design-Focused R&D

My exploratory work on teaching modelling led to an invitation to move to
Nottingham in 1976 as director of the Shell Centre for Mathematical Education, with
the immodest ‘brief’: “To work to improve the teaching and learning of mathematics
regionally, nationally and internationally”,. I decided that this required:

Focus on direct impact on practice in classrooms

Recognizing that ‘scale’ can only be achieved through reproducible materials
An engineering style research and development approach, with practical products
A focus on design: strategic, tactical, technical (of which more later)

A central role for modelling—for student motivation and real world usefulness.

These principles have informed the sequence of linked design research and develop-
ment projects that have developed tools that support classroom teaching and learning,
assessment both formative and summative, teacher professional development and
systemic change.

The engineering research methodology we have developed, standard in other
applied fields, embodies: input from prior research and development (ours and
others’); imaginative design; and systematic iterative development through trials in
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increasingly realistic conditions, each revision based on rich and detailed feedback
from classroom observation.

I shall describe some of these projects in brief to bring out the more general design
principles that we developed, project by project.

29.2.1 Testing Strategic Skills (TSS 1980-85)

The strategic design (Burkhardt 2009) of this project set out to exploit the huge
influence of high-stakes examinations on teachers choices of learning activities for
their classrooms. WYTIWYG: what you test is what you get was obvious to teachers
(and to me) though not then accepted by examination providers. WYTIWYG is
now accepted as a fact though “tests worth teaching to” remain rare. Key features
of TSS were gradual year-by-year change, with specific integrated support for the
new area of learning. The first module was on non-routine problem solving tasks
in pure mathematics; modelling skills came in with the second year’s TSS module
on translation skills, The Language of Functions and Graphs (Swan et al. 1985)—
for which its lead designer, Malcolm Swan, was awarded the first annual prize for
excellence in design of ISDDE, the International Society for Design and Development
in Education (The ‘Eddie’).
The TSS design tactics were to:

¢ Introduce each year to the high-stakes examination one new task-type that is
important but currently not assessed

e Offer schools well-engineered materials that exemplify the new task type, support
the 3-weeks of new teaching involved, and in-school do-it-yourself professional
development

e Give schools two-year’s notice of the change, and remove content that involves
3-weeks teaching from the syllabus.

This approach was popular with teachers and students, whose performance in this
new area, not surprisingly, improved substantially.
We learnt from TSS the power of these broader design strategies:

e Gradual change Plan the pace of change to answer: How big a change can typical
teachers carry through successfully each year—given the support we can provide?

e WYTIWYG High-stakes examinations are powerful levers—for better or, usually,
for worse. So work to turn the exams into “exams worth teaching to”

e Alignment Avoid mixed signals. Harmonize and link: policy documents, exami-
nations, curriculum materials, and professional development

e Materials-based professional development This can increase the power of session-
based PD, offering the leaders a level of support they know most teachers need—
but they have never sought for themselves.

The tasks in Fig. 29.4 show the flavour of LFG.
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Fig. 29.4 Tasks from The Language of Functions and Graphs

29.2.2 Numeracy Through Problem Solving(NTPS 1984-88)

Modelling is the focus of NTPS with the strategic design goal of making
teaching modelling accessible to typical mathematics teachers. The key tactical
design elements are:

3-week group projects tackling practical problems

Activity sequences led by student booklets, supported by a teacher’s guide
Ensuring final products from each group, evaluated by the class

Assessment at three levels: Basic level during the project, with external exams
assessing transfer to closely similar situations (Standard level) and more distant
situations with similar structure (Extension level).

Five NTPS modules were developed on this basis (Shell Centre 1987-89):

Design a board game—design, develop, construct, evaluate both board and rules.
Produce a quiz show—create a TV style game show: choose the format, develop
fair questions, run it with the rest of the class as an audience that later chooses
the best show. Running the quizzes in real time is challenging for the teacher.
Plan a trip— plan and carry through a class day-trip to another town.

Be a paper engineer—design pop-up cards and boxes—develop skills and infer
geometric principles

Be a shrewd chooser—work our how to make well-informed consumer decisions,
learn pitfalls, etc.
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