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Abstract. The percentage of renewable energies (RE) within power
generation in Germany has increased significantly since 2010 from 16.6%
to 42.9% in 2019 which led to a larger variability in the electricity prices.
In particular, generation from wind and photovoltaics induces high
volatility, is difficult to forecast and challenging to plan. To counter this
variability, the continuous intraday market at the EPEX SPOT offers
the possibility to trade energy in a short-term perspective, and enables
the adjustment of earlier trading errors. In this context, appropriate price
forecasts are important to improve the trading decisions on the energy
market. Therefore, we present and analyse in this paper a novel approach
for the prediction of the energy price for the continuous intraday market
at the EPEX SPOT. To model the continuous intraday price, we intro-
duce a semi-continuous framework based on a rolling window approach.
For the prediction task we utilise shallow learning techniques and present
a LSTM-based deep learning architecture. All approaches are compared
against two baseline methods which are simply current intraday prices
at different aggregation levels. We show that our novel approaches sig-
nificantly outperform the considered baseline models. In addition to the
general results, we further present an extension in form of a multi-step
ahead forecast.

1 Introduction

Since the liberalization of the European electricity markets in the 1990s, the
primary trading location for electricity commodities are the national day-ahead
spot markets. However, with the increased electricity production through renew-
able energies, market prices have become more volatile. As result a rising demand
for continuous trading on intraday spot markets emerged in recent years.! On
the intraday spot markets, participants are able to account for rapid changes

! http://static.epexspot.com/document /38579 /Epex_TradingBrochure_180129_Web.
pdf.

C. Scholz and M. Lehna—Both authors contributed equally to this work.

© Springer Nature Switzerland AG 2021
V. Bitetta et al. (Eds.): MIDAS 2020, LNAI 12591, pp. 101-118, 2021.
https://doi.org/10.1007/978-3-030-66981-2_9


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66981-2_9&domain=pdf
http://orcid.org/0000-0002-8719-8261
http://orcid.org/0000-0003-0621-1442
http://static.epexspot.com/document/38579/Epex_TradingBrochure_180129_Web.pdf
http://static.epexspot.com/document/38579/Epex_TradingBrochure_180129_Web.pdf
https://doi.org/10.1007/978-3-030-66981-2_9

102 C. Scholz et al.

in demand and supply and integrate these changes in the pricing on a short-
term notice. However, in current research the continuous intraday market is
still under-represented, especially in the electricity price forecast (EPF). Even
though various research has been conducted on different day-ahead markets, as
reviewed by Giirtler and Paulsen [6], to the best of our knowledge only a small
amount of papers [1,4,9,13,14,18] have been published for the price forecast
on the intraday market. Furthermore, all these papers only focus on forecasting
the final price on the continuous intraday market. Consequently, this paper is
intended to contribute new insights for EPF into the intraday market. We pro-
pose a novel (semi-continuous) forecast framework in order to capture a more
consecutive representation of the intraday market. In addition, we incorporate
previous research proposals by combining several external factors in our forecast
study. Finally, different machine learning methods are presented and analyzed
regarding their predictive power.

1.1 Research Environment

As research environment, we chose the intraday spot market of Germany from
the year 2018, as we had enough data available to investigate the continuous
nature of the spot price and realize the respective forecast. On the market, the
electricity for the same day delivery is traded in two different products, which
are the one-hour and quarterly-hour products, and are based on their delivery
length. For each of the one-hour (or quarterly-hour) products of the day, the
market participants trade in different magnitudes of electricity feed-in through
an continuous orderbook system. However, in the continuous intraday market
the fundamental challenge of the EPF is the short time horizon in which the
products are traded. Between the opening of the market and the termination
by the delivery, only a small time interval is available for trading. In terms of
hourly intervals, the market opening occurs on the previous day at 15:00 while
the trade for the quarterly intervals begins at 16:00. For both, the products are
traded continuously up until 30 min before the delivery on the whole market
and up to 5min within the control areas of the distributors. In addition, the
majority of transactions take place in the last hours before delivery. In Fig. 1
this effect is visualized, where one can clearly see the increase in trading volume
over time. Moreover, note the two drops in the graph which correspond to the
described 30 min and 5min mark. Due the fact that the trading volume gets
stronger towards the end, we focus in our scenario on the last four hours till
delivery time.

1.2 Contribution

Framework: Given the specific structure of the intraday market, we introduce a
semi-continuous framework to enable the forecasting of the continuous intraday
prices. However, instead of only focusing on one value of each product (as done
in previous papers like [9,14,18] for the German market), we propose to forecast
the electricity price development at regular intervals. This allows to forecast
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multiple observations per product and give a more precise description of the price
development. Our intention behind this short-term perspective is the ability to
forecast the price movement, while the product is still traded on the market. In
comparison to other EPF literature this approach is unique, due to the fact that
until now researchers only predicted one value per product.
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Fig.1. Average number of both trades and traded volume for time t. The z-axis
denotes the remaining time ¢ (in minutes) till the delivery of the product. The left
y-axis represent the average number of traded volume at time ¢, the right y-axis the
average number of trades at time ¢. The red dotted line at minute 240 is the starting
time of our forecast scenario.

Forecasting Approaches: One major consequence following from the structure of
the research environment is that the implementation of time series approaches
such as ARIMA and VAR models proves to be difficult. Due to their reliance
on previous observations, it would be necessary to determine the auto-regressive
order structure and provide sufficient amount of data to estimate the models for
each individual product. As a result, in this paper we disregard the usage of basic
time series model and instead analyze three different machine learning techniques
for the EPF task. As model candidates, we decided to implement two shallow
learning models as well as one deep learning model for the comparison analysis.
In terms of the shallow learning models, the Random Forests [2] as a simple
model and the XG-Boost [3] as a more advanced model were selected. However,
it is important to note that while both approaches can be applied on a regression
setting, they are not designed to capture time related dependencies between
the samples i.e. auto-correlation or auto-regressive structures. Nevertheless, due
to their flexibility and their robust behavior in terms of noise variables, we
employ the two approaches. On the other hand, we decided to employ a LSTM -
based deep neural network architecture for the prediction of the spot price. This
network is well known to detect and use time dependencies for the prediction
task. All models are further discussed in Sect. 4.2.
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Outline: In general, our contribution in this paper can be summarized as follows:

1. We present the first work forecasting the electricity price development of
individual products on the continuous intraday market.

2. We utilize three different machine learning approaches, two shallow learning
and one LSTM-based deep learning approach and compare the predictive
power with state-of-the-art baseline models.

3. We show that our presented novel approaches significantly outperform base-
line models by at least 10%.

4. We perform and discuss the performance of a multi-step ahead forecast.

2 Related Work

Within the literature, intraday spot price receives more and more attention in
recent years. Kiesel and Paraschiv [10] examine the biding behaviour of partic-
ipants on the German intraday market based on 15min products and analyze
the different influencing factors. In their paper, they especially emphasise the
importance of wind and photovoltaic forecast errors as one major impact for
the trading behaviour. Similar results were published by Ziel [21], who analyzed
the effect of wind and solar forecasting errors. Further analyses on the German
intraday market were published [8,16], however with a different research focus.
While Pape et al. [16] focused their research on the fundamentals of the electric-
ity production and their influence on the intraday spot price, Kath [8] analyzed
the effect of cross-border trade of electricity. Next to the german intraday mar-
ket, other research was conducted on the Iberian electricity market [1,4,13] as
well as the Turkish intraday market [15]. On the Iberian spot market MIBEL,
the first advances in terms of intraday EPF have been made. While Monteiro
et al. [13] use a MLP neural network to forecast the intraday prices, Andrade et
al. [1] conduct a probabilistic forecasting approach to further analyze the influ-
ence of external data. Further research was published by Oksuz and Ugurlu[15],
who examined the performance of different neural networks in the EPF in com-
parison to regression and LASSO techniques on the Turkish intraday market.
In terms of the German, the intraday trade was primarily covered by three
papers [9,14,18]. Kath and Ziel [9] predicted both the intraday continuous and
the intraday call-auction prices of German quarterly hour deliveries based on an
elastic net regression. Furthermore, they proposed a trading strategy based on
their forecast results to realize possible profits. A different approach was pro-
posed by Uniejewski et al. [18] which analyzed the German intraday spot price
in form of the closure price of the FPEX SPOT ID3 index. For their forecast
they employed a multivariate elastic net regression model to further conduct
a variable selection and proposed a simple trading strategy to realize possible
gains. With a very similar research setting Narajewski and Ziel [14] also analyzed
the EPEX SPOT ID3 index through a multivariate elastic net regression model.
Their difference to Uniejewski et al. [18] is that they included both the one hour
and quarterly-hour in their analysis and focused on the variable selection. How-
ever, all previous papers disregard the continuous structure of the intraday spot
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price market as discussed in Sect. 1.1 and 1.2. While the forecast of the MIBEL
intraday market covered at least multiple trading intervals [1,13], the German
intraday forecast only consider one observation per product [9,14,18]. While this
approach might be interesting for a long term perspective (e.g. on the day-ahead
market), it does not necessarily reflect the needs on the intraday market. There-
fore, this paper introduces a new perspective on the intraday market with the
aim to establish a more short-term forecasting horizon.

3 Data Used for the Continuous Intraday Price Forecast

In order to compare different forecasting approaches, we chose the German
hourly electricity intraday spot price as endogenous variable. As time horizon,
we analyzed the first half of 2018 and thus constructed a data set of the German
intraday price from 02.01.2018 till the 30.06.2018. For the model comparison and
their predictive power, we decided to use the June of 2018 as test interval and
the previous five months as training interval.? For each day a total of 24 hourly
products were traded which results in a total of 3576 products in the training
sample and 720 products within the forecasting sample.? To analyze the predic-
tive power in short-term perspective, we chose as dependent variable the volume
weighted 15 min averaged trading results of the one hour German continuous
intraday market. Through the averaging process, further described in Sect. 4.1,
a total of 40 observations per product were created, thus giving a more detailed
process of the price development. In order, to predict the dependent variable,
multiple features were included in the forecasting process. These variables are
the following:

1. Past transaction results which consist of the previous price as well as trading
volume and number of trades.

2. Prediction error of the wind forecasts between the day-ahead forecast and the
current intraday wind forecast.

3. EPEX SPOT MT orderbook data as well as grid frequency data.

4. Categorical variables describe the weekday, hour of the product and the time
till completion for each step.

Due to the fact that some variables have not been frequently used in litera-
ture and specific transformations were partly necessary, we shortly discuss the
variables in detail.

2 Note that it is planned for future work to consider further training and testing
periods to investigate the quality of the models.

3 Note that two days were excluded from the observation (01.01.2018 & 25.03.2018).
The first was excluded due to missing training data of 2017, while the second was
generally missing data at the respective day.
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3.1 Transaction Data

The transaction data (for 2018) of the continuous intraday market were bought
from the EPEX SPOT*. The data set contains price and volume information
about all executed trades. In addition it also contains information about the exe-
cution time (at a one minute resolution) and information about the correspond-
ing product. For the price variable, several aggregation steps were necessary.
First, the price was centered through a subtraction of the product’s day-ahead
price and, due to extreme outliers in 2018, scaled by the standard deviation
and a constant ¢.’ Second, the price was averaged through a volume weighted
mean with two different resolutions. For the endogenous variable an interval
of 15min was used for the averaging. In terms of the exogenous variable, the
previous price information were aggregated in two parts. On the one hand, the
previous 15 min mean prices were used as look-back variable with a time horizon
of 4h. However, additional research showed that a more detailed description of
the 15 min prior to the prediction offered further insights for the forecast. Thus,
we included a one minute volume weighted mean for the last 15 min in order to
capture the short-term trend. Next to the price variable, we further included the
trade volume and count (i.e. number of trades) variable. Due to the fact that
we wanted to model a mid-range development with the variables, we chose to
aggregate them similar to the first spot price variable. Hence, the volume and
count variable were aggregated 15 min mean values recorded for the last four
hours.

3.2 EPEX SPOT M7 Orderbook Data

The EPEX SPOT MT orderbook data contains all historic and anonymous orders
submitted to the continuous intraday market of the EPEX SPOT. This allows a
more precise description of the current market situation, as the data also consist
of additional information such as available trading volume and the current bid-
ask spread for each point in time. In general the information contained in the
orderbook data can be divided in ex-ante and ex-post information, see Martin
et al. in [12]. Ex-ante information like price and volume are available at the cur-
rent time of order creation. Ex-post information like the execution price depends
on market developments and is not yet available at the time of order creation.’

In our experiments we combined the information to calculate the current buy

and sell prices for 1I0MWh and 50 MWh which we also included in our models.

In Fig. 2 we plotted as an example the current price development as well as the

sell and buy price for 10 MWh. The difference between the buy and sell price is

also known as the bid-ask spread.

4 https:/ /www.eex-group.com/eexg/companies/epex-spot.

5 While many researchers further transform the spot price, e.g. Uniejewski and Weron
[19], we were not able to detect improvements in our estimation. Instead, we opted
for the simple scaling through a constant ¢ so that 99.7% of the data was within the
interval [—1,1].

5 The detailed variables in the orderbook data are displayed in the Appendix A based
on Martin et al. [12].
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Price Development + Orderbook Information
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Fig. 2. Price development of the 2018-01-18 16:00:00 product with the corresponding
buy and sell prices for 10 MWh. The z-axis represents the time ¢ of the day, the y-axis
the corresponding price at time t.

3.3 Day Ahead and Short-Term Forecasting of Wind Energy

In order to balance their own balancing group, managers often have to compen-
sate for errors in the day ahead forecast (wind and photovoltaics) on the intraday
market. Therefore, in our experiments we use the difference between the actual
and the day-ahead wind-power production forecast of Germany as feature.” For
this purpose, we include the day-ahead and short-term forecast generated by the
Fraunhofer IEE into our forecasting framework. The respective forecasts have a
resolution of 15 min and are generated every 15 min, and forecast the wind-power
production in Germany. For more details about the generation of the day ahead
and short-term wind-power production forecasts we refer to Wessel et al. [20]. In
our experiments we included all forecast errors (i.e. the difference between the
actual and the day-ahead forecast) of the past four hours in our models.

3.4 Grid Frequency

In general, the European interconnected grid requires a grid frequency 50 Hz.
Usually, only small deviations from the grid frequency occur, so that only min-
imal countermeasures by the grid operators are necessary to balance the fre-
quency. In order to intervene, balancing energy is often used to compensate for
potential imbalances. Since the use of balancing power is usually associated with
high costs, it is possible that changes in the frequency are factored in the current
electricity price. Therefore, in our forecast approach we also include the current
network frequency, where data is provided by the French Transmission System
Operator (TSO) RTE.®

7 At the time of writing, we had no adequate photovoltaic feed-in forecast available.
8 https://clients.rte-france.com/lang/an /visiteurs/vie/vie_frequence.jsp.
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4 Price Forecasting Methodology

4.1 A New Framework for Short-Term Energy Price Prediction

In order to forecast the intraday electricity price in a short-term perspective it
is necessary to transform the continuous variables to a semi-continuous forecast
framework. Consequently, we developed the following forecast framework for all
one hour products. In our setting we use historical data to predict the next 15 min
volume-weighted average prices as illustrated in Fig. 3.° In our regular forecast
process, for each product the “forecast-time” was limited to an interval between
4h until 45 min before delivery time (i.e. the termination) of the product. By
reason of their low trading volume (as seen in Fig. 1), observations prior to the
4 h limit were discarded and only used as features. Further, due to the fact that in
the last 30 min trading is only allowed within the control areas of the distributors,
we excluded this time period as well. Thus, we performed the last forecast 45 min
before deliver time in order to ensure that there are no overlaps to the last half
hour. As a second step, we aggregate the continuous intraday electricity price
with a rolling window. The window generates in 5 min steps volume weighted
averages of the next four 15 min blocks. The decision to aggregate the spot price
through the volume weighted mean is twofold. First, we ensure that enough
observations are summarized, given that especially the early observations are
relatively sparse. Moreover, the volume averaging further establishes more stable
observations that are less affected by outliers i.e. high prices with a small trading
volume. Thus, with 5 min steps in the 3.15h interval we receive a total of 40
observations per product.

. Historic Data
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. Forecast Time 15-30
Forecast Time 30-45

ForecastIntervals
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Fig. 3. Forecasting interval of a 00:00 product. The z-axis denotes the time, the y-axis
the model run of the forecast (i.e. when the forecast is performed). The first forecast
is done four hours before termination (at 20:00), while the last forecast is done 45 min
before termination (at 23:15). The dark blue squares symbolize the time horizon of the
data points that are used to perform the price forecast for the time symbolized by the
remaining squares.

9 In addition, in Sect.5.2 we extend the prediction interval to a length of four 15 min
steps which we further display in Fig. 3 as well.
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The third step of the research framework is the inclusion of the features. As
already stated in the Sect. 3, the features were included in the analysis through
three different groups. As a first group, we consider the price development of the
product in the last 15min with a one minute resolution, to capture the short-
term information. This inclusion is based on the idea that last minutes changes in
the trading behaviour would translate to the next prediction interval. However,
we further wanted to describe a mid-range trend of the spot price. Thus, the
second group of variables was included in the framework which consisted of a
4h look-back in 15 min steps. Next to the volume weighted price, this group of
variables consisted of the count, volume and orderbook data as well as wind
error variable. Lastly, as third group of variables, we included three categorical
variables that denoted the hour and weekday of the product as well as the
remaining time until the product would end. These variables were included to
capture structural dependencies that were valid across all products. After the
realization of the described framework, the products were later divided into a
training and testing data set, as described in the Sect. 3. Under consideration
that the rolling window results in 40 observations per product, we have a total
of 28800 observations in the test sample and 143040 observations in the training
data set.

4.2 Machine Learning Models

In the following, we briefly summarize the characteristics of the machine learning
methods that we applied to the continuous intraday price forecast.

Random Forests (RF). The Random Forests algorithm, introduced by Breiman
[2], is an ensemble method that uses a set of (weak) decision trees to build a
strong regression model. In the tree building process each tree is trained on
bootstrapped samples of the training data. The split of each node is selected on
a random subset of d input features.'® The final prediction is the average of all
trees individual predictions.

XG-Boost (XGB). The Extreme Gradient Boosting algorithm was first intro-
duced by Chen and Guestrin [3] and is a parallel tree boosting that is designed
to be “efficient, flexible and portable”.!! In general, the algorithm is based on the
Gradient Boosting algorithm which is similar to RF an ensemble method that
combines multiple weak learners to a stronger model. In comparison, the XG-
Boost-algorithm further improves the framework on the one hand from an algo-
rithmic perspective, by enhancing the regularization, weighted quantile sketch-
ing and sparsity-aware splitting. On the other hand, the system design was
improved through parallelization, distributed tree learning and out-of-core com-
putation. Thus, through the combined improvements of both algorithmic and
system design, the XGB is the next evolutionary step of the Gradient Boosting.

10 For regression tasks typically m/6 features are selected at random.
1 https://xgboost.readthedocs.io/en/latest /.
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Long Short-Term Memory (LSTM). The Long Short-Term Memory was intro-
duced by Hochreiter and Schmidhuber [7] in 1997. A LSTM is a special type of
Recurrent Neural Network (RNN) [17] that can capture long-term dependencies.
In contrast to a RNN, in practice, a LSTM is able to deal with the vanishing and
exploding gradient problem. A LSTM consists of the four components: memory
cell, input gate, forget gate and output gate that interact with each other. Each
component is represented by a neural network, where the input gate controls the
degree to which level a new information is stored in the memory cell. The forget
gate controls the degree to which level an information is kept in the memory
cell, and the output gate controls the degree to which level an information is
used within the activation function.

5 Evaluation

5.1 Experimental Setting

Given the research data and the respective framework, the three machine learn-
ing models RF, XGB and LSTM were applied and optimized for their hyper
parameters. Due to the fact that all three models inherit some randomness in
their estimation, we aggregate multiple predictions, in order to receive more
stable results. The aggregation is implemented by re-estimating the optimized
model ten times, forecast based on the test data set and thereafter take the
median value of the ten predictions. While the general experimental setting is
enforced on all three models, there are still some differences in the structure
and the hyper parameter optimization. Accordingly, we shortly summarize the
implementation of all three models and further present the baseline as well.

RF and XGB: In terms of the Random Forests and the XG-Boost, the data was
implemented in a regression setting. Because both approaches are in general not
able to distinguish time structured data, no further arrangement was necessary.
For the hyper parameter optimization of both models, we decided to implement
a randomized Cross-Validation to ensure that all training data was included in
the selection process. Thereafter, the models were repeatedly re-estimated and
the median forecast was computed.

LSTM: In the architecture of the LSTM model (see Fig. 6 in the Appendix), the
features were integrated in three different input gates. For both the 4h mid-range
data as well as the 15 min short-term data, the respective features were integrated
through separate LSTM layers followed by an individual dense layer. In terms of
the categorical variable, we decided against the frequently used one-hot encoding
and instead chose to embed the variables, based on the results of Guo and
Berkhahn [5]. Thus, each variable was first inserted into an embedding layer and
then combined with the other two through one dense layer. As a next step, the
output of the embedded layers was combined with the two LSTM dense layer
outputs. Thereafter, the concatenated data is fed through the final two dense
layers that summarize the data. For all dense layers, we chose the Leaky ReLU
activation function with the exception of the last dense layer, were only a linear
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activation function was implemented. For the hyper parameter optimization, we
decided to use the Hyperband approach [11], due to its ability to select the best
hyper parameters while managing the resources effectively. Given the results of
the Hyperband optimization, the forecast median was conducted as mentioned
before in the experimental setting.

Baseline Models: To examine the forecast quality of our approaches two different
and (in practice) commonly used baselines are proposed to guarantee an absolute
necessity and minimum performance threshold. The first baseline is the previous
observation i.e. the volume weighted mean of the last 15 min which we denote as
BL5. As second baseline, we include the last one minute price of the product
before the prediction interval, denoted as BL;.'> The reason for the decision of
two performance thresholds is based on the idea that the models have to compete
against both current impulses (BL;) as well as a more robust price development
(BLqs) of the product.

5.2 Results and Discussion

Single Step Prediction: Given the aggregated median forecast results, we are
now able to analyze and discuss the prediction quality of the three models. For
this purpose we primarily evaluate the forecast values based on the RMSFE error
metric. As one can see in Table 1, all three models outperform the BL15 baseline
by more then 14% as well as the BL; baseline by more than 10%. In terms
of the overall performance, the LSTM shows the best results. However, the
results between the XG-Boost and the LSTM models are relative close which
is surprising considering that the XGB does not incorporate any time series
relationship. Furthermore, when consulting the standard deviation in Table 1 one
can see that both shallow learning models are more stable in their prediction.
Next, we analyze the performance of the forecast models within the specific time
intervals i.e. we evaluate the forecast quality with respect (to the remaining)
time till the product’s delivery time. The result are visualized in Fig. 4. In this

Table 1. RMSE Results of the respective models and their percentage change in com-
parison to BL15 and BL;. In the last column we denote the standard deviation of the
RMSE based on the 10 forecast runs prior to aggregation.

Model RMSE | A% BL15 | A% BL, | Standard deviation
BLis 2.3214 |0 —3.78

BL, 2.2370 | 3.64 0

Random Forests | 1.9957 | 14.03 10.78 0.00145

XG-Boost 1.9461 | 16.17 13.00 0.00766

LSTM 1.9422 | 16.34 13.18 0.01517

12 As example, for the prediction interval 20:00-20:15 the price of 19.59 is taken as
BLibaseline and the volume weighted mean of 19:45-20.00 as BL15.
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context, some interesting results are visible. First of all, we are able to see that
a large proportion of the RMSE errors are induced through the forecast results
at the end of the product. While the baseline models BL15 and BL; jump up to
5.099 and 4.980 in the last forecast step, the machine learning models achieve
significant lower values with 3.942 (RF), 3.999 (XGB) and 4.394 (LSTM). The
most probable explanation for the high rise of the RMSE might be the increase
in trading volume as seen in Fig.1. Furthermore, one can see that all models
are frequently able to beat the baseline, with especially good performances at
minute 210, 95 and in case of the LSTM also minute 190. It can therefore be
assumed that the models will in many cases increase the performance of trading
at the intraday market. Lastly, the direct comparison between the LSTM and
the XGB in Fig. 4 reveals that the LSTM is generally performing better in the
interval between minute 250 and 100, while XGB is showing better results in the
last observations. The implication arising from the different performances hints
that in the beginning a time series relation might drive the intraday spot price.
The advantage of the LSTM is later lost, especially in the last prediction step,
thus one might increase the overall performance by combining the two models.
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Fig. 4. Display of the RMSFEvalues for different points of time till the end of the
product. The z-axis is denoted in minutes till delivery, while the y-axis shows the
RMSE in Euro.

The Multi-Step Forecast Extension: With the previous forecast success, we
further want to present one possible extension of the forecasting framework. In
the prior analysis, we were only interested in a one-step ahead prediction which is
most useful for short-term trading. However, for (automated) trading it might be
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advantageous to increase the forecast horizon in order to model the price trend of
the product. Thus, we extended the forecast horizon by three additional 15 min
steps. Note that our total forecast interval still ends 30 min before the delivery.
This results in fewer forecast intervals in the last steps.

Improvement in Comparison to the Baseline-Model

12.5

. N XGB
10.0 I LsT™M
7.5 =

[%]

.|
s

0.0

0-15 Min 15-30 Min 30-45 Min 45-60 Min

Fig. 5. Bar plot of RMSE values for different forecast horizons.

Implementation: For the analysis we applied the two best performing models
(XGB and LSTM).*? Therefore, in terms of the XG-Boost we used a Multi-
Output-Regressor structure which basically calculates for each of the four pre-
diction steps an individual model. For the LSTM we were able to implement a
different approach, because the model is able to predict multiple steps ahead.
Hence, a repetition vector prior to the dense layers was embedded and the last
two dense layers were enhanced by a time distributed layer.'#'> Under consider-
ation that the multi-step prediction is only seen as extension, we abstained from
a re-optimization of the hyper parameters. Instead we only re-estimate the two
models with our median aggregation approach.

Results: With the above-mentioned model-adaptation, the following results are
achieved, as displayed in Fig.5 and Table 2. Overall, both models are still able
to outperform the BLi-baseline in the multi-step ahead forecast. Nevertheless
one can observe a weakening of the predictive power the larger the forecasting
horizon is. Furthermore, in comparison to Table1 it is interesting to see that
both models perform worse in the first step prediction. For the LSTM model,
this decline might be induced by the fact that multiple time steps must be
optimized. On the other hand, in regard to the second till fourth interval, the
LSTM is showing a better prediction performance in comparison to the XGB.
Thus, it might be interesting for future work to identify additional mid-term
influencing factors to increase the predictability of the LSTM.

3 Since the RF had similar values to the XGB we skip the analysis of the RF.
' https://keras.io/api/layers/recurrent_layers/time_distributed /.
5 The three input gates are kept in the original structure.
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Table 2. Multi-step RMSE Results of the XGB and LSTM model as well as the BL;.

RMSE 00:00-15:00 min | 15:00-30:00 min | 30:00-45:00 min | 45:00-60:00 min
BL, 2.2370 3.3569 4.0416 4.7050
LSTM 2.0363 3.1496 3.8851 4.5730
XG-Boost | 1.9609 3.1356 3.9687 4.6785

5.3 Future Work

In order to further increase the performance of our algorithms, additional influ-
encing factors of the intraday market must be analyzed in depth and included
into the machine learning models. The order EPEX SPOT book data, for exam-
ple, offer high potential here. In this context an interesting research question
is which additional features can be gained from the orderbook data to further
increase the predictive power. Furthermore, factors such as the forecast error
of the photovoltaic feed-in and weather forecasts could be integrated into the
models. In addition to more input data, an extension of the forecasting periods
should be considered as well. While this paper only examined one month of 2018
it could be of interest, to what extend forecast behaviour is changing with dif-
ferent months and seasons. In the same context, analysis should be conducted
on the length of the training data, since it can be assumed that the trading
behaviour of (automated) traders changes regularly and “older” data does not
adequately reflect the current state of the market. Here, additional fundamental
analyses are necessary to obtain meaningful statements. Finally, another aspect
is the further development of the proposed LSTM model. By integrating CNN-
LSTMs, new (cnn) features may be generated to obtain better results.

6 Conclusion

In this article we presented the first approach to forecast the electricity price
development of individual products at the continuous intraday market of the
EPEX SPOT. We evaluated the predictive power of two shallow learning algo-
rithm (XG-Boost and Random Forests) as well as one LSTM-based deep learning
architecture, complemented by comparing the results with two state-of-the-art
baseline models. We show that all considered machine learning models perform
significantly better than the baseline models. Our new developed LSTM -based
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model showed the best performance, closely followed by the XG-Boost, which
had similar results. The remarkable performance of the XG-Boost was unex-
pected, since the XG-Boost is not explicitly designed to detect relationships in
time series data (in contrast to a LSTM ). Furthermore we also performed and
analyzed a multi-step time series forecast, where we forecast not only the next
time step, but the next four. In this context we showed that the quality of the
forecast significantly decreases with the longer forecast horizon, however the
performance of the baselines was beaten nonetheless.

Acknowledgement. This work was supported as Fraunhofer Cluster of Excellence
Integrated Energy Systems CINES.

Appendix A Orderbook Data

(See Table 3)

Table 3. Historic ex-ante and ex-post information available in the M7 orderbook data
of the of the continuous intraday market, c.f. [12]. The term “delivery date” is used in
this paper equivalently to the term product, and means the time of the delivery start of
the corresponding product. The “start validity date” is the time the submitted order
is valid from, and the ‘end validity date’ the time the order is no longer valid. The
flag “active order” symbolizes whether an order is active or deactivated. The variable
‘side’ indicates, if it is a buy or a sell-order. The variables price and volume specify the
offered price and volume, in contrast to the ‘execution price’ and ‘execution volume’
that define final the price and volume of the respective trade. In this paper we refer to
the ‘execution price’ also with intraday spot price.

Ex-ante Ex-post

Delivery date Is executed (yes/no)
Start validity date End validity date
Active order (Yes/No) | Canceling date

Side (buy/sell) Execution price
Price Execution volume
Volume

1D
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Appendix B LSTM Architecture

I input_17: InputLayer | input_18: InputLayer

input_16: InputLayer

S

| 9: Embedding | dding_10; Embedd | | I |
concatenate_7: Concatenate | | input_19: InputLayer input_20: InputLayer

Istm_5: LSTM
dense_13: Dense

leaky_re_lu_10: LeakyReLU I

Istm_4: LSTM ‘

reshape_3: Reshape ‘

dense_12: Dense

dense_I1: Dense

leaky_re_lu_9: LeakyReLU |

leaky_re_lu_8: LeakyReLU |

concatenate_8: Concatenate

dense_14: Dense
leaky_re_lu_11: LeakyReLU
dense_15: Dense

Fig. 6. Structure of the LSTM model. On the left side, the three embedding layers
process the categorical input. In the middle branch, the look-back variables of the last
4h are feed into the LSTMlayer. On the right side, the last 15 min are also implemented
into the network.
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Appendix C Model Hyper Parameters

In this section we display the hyper parameters for the RF in Table4, the XGB in
Table5 and the LSTM in Table6.

Table 6. LSTM hyper parameter
Table 4. RF hyper parameter

Hyper parameter LSTM

Hyper. parameter XGB Embedding Layer Output % of Input Shape
N.Estlmators . 1500 LSTM 4h Input 39
Min Samples Split|5 LSTM 15min Input 120
Min Samples Leaf |2 LSTM Dropout 0.0001
Max Depth 20 LSTM Recurrent Dropout |0
LSTM 11,12 Regularizer |0, 0.000001
Table 5. XGB hyper parameter LSTM Statefull False
Dense Layer Embedded 32 units
Hyper parameter XGB Dense Layer-4h 40 units
Colsample by Tree|0.8176985004103839 Dense Layer-15min 24 units
Gamma 0.0979914312095726 Dense Layer Concatenate |50 units
Learning Rate 0.04356818667316142 Dense Layer Final 1 units
Max Depth 9 Leaky ReLU « 0.1
N Estimators 184 Learning Algorithm Adam
Subsample 0.7554709158757928 Learning Rate 0.0005
Batchsize 40
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