
Chapter 9
Influence of Linear Elastic Stresses
on Hydrogen Diffusion into Metals

Polina M. Grigoreva, Elena N. Vilchevskaya, and Vladimir A. Polyanskiy

Abstract Within the framework of linear nonequilibrium thermodynamics, we con-
struct a new model of the diffusion of a gas component into a solid under thermo-
mechanical loads. Assuming that we have a linear elastic behaviour of the solid,
we obtain a local balance equation for the diffusion of the gas component, which
takes into account the stress–strain state of the solid and its mutual influence on the
diffusion process, the temperature in the system, and the concentration of the gas
component infiltrated into the solid. We specify the model for the case of hydrogen
diffusion into metal. The solution of the obtained differential equation shows that
taking into account the stress–strain state strongly affects the distribution of hydrogen
inside the metal. We found that the concentration quickly increases at the boundary
layer, in which the hydrogen concentration exceeds the amount in bulk by more than
a hundred times, which is consistent with experimental data on the skin effect when
metals are saturated with hydrogen.

Keywords Hydrogen diffusion · Hydrogen embrittlement · Chemical potential ·
Mechanochemistry · Deformable media

9.1 Introduction

Hydrogen embrittlement of metals has been of scientific interest for more than a
hundred years [1]. Many works, including those held in recent years, consider the
critical local concentrations resulting from infiltration of hydrogen into metals from
the aggressive corrosive environment. The data of Safronis [2] is recognized as the
main source. Quantitativemeasurements ofmicrostructural distributions of hydrogen
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inmetals are difficult. TheAgDecorationMethod [3, 4] and other similar approaches
cf. [5] provide only a qualitative map of the distribution of hydrogen. In the work of
Safronis, the threshold local concentrations of hydrogen at which the influence of the
HELP mechanism of hydrogen embrittlement begins is indicated as 0.1H/M. This
is equivalent to mass concentrations in 1500–9000 ppm range for different metals.
However, this value is very high for most metals used nowadays. As technologies
approach the extremely possible mechanical and chemical characteristics of metals
and alloys, the maximum permissible concentration of hydrogen in modern alloys
becomes about 50–100 times lower than in traditional [6]. Moreover, experiments
based on mass spectrometry and electron microscopy also show that the presence of
water vapour in the air, as well as aggressive environments, may serve as a source of
hydrogen. Metals may absorb it, reducing their fracture toughness and strength [7].

Measurements of the hydrogen concentration profile in metals, both in aggres-
sive environments and in the air [8–11] show that the hydrogen concentration at
the boundary layer is tens or even hundreds of times higher than the concentration
hydrogen in the entire volume of the metal, thereby creating some boundary layer.
Recent experimental work [12–14] show that it is this thin layer of about 100 µm
that has the main impact on the mechanical and strength properties of the metal.

Thus, modelling a thin boundary layer as a result of hydrogen diffusion from
the environment and describing the mutual influence of the diffusion process on
the mechanical properties of the metal is of considerable theoretical and practical
interest.

There are some models of diffusion in solid bodies, which describe the ordinary
forms of samples in a simple and stress–strain state. These models have a simpli-
fied design with only one specific mechanism of hydrogen redistribution. However,
experiments show that hydrogen not only diffuses through a crystalline matter of
metal but also redistributes in trap modes. This hydrogen redistribution proceeds
according to several different variants [9, 15–17]. Therefore, the diffusion of hydro-
gen in metal should be considered as multichannel. Moreover, most authors use
a trap model of diffusion (the fundamental works [18, 19] and many others, for
example, [20–24]), where micro traps have different nature and characteristics of
thermo-mechanical loads applied to the material. Such models are specific and do
not adequately describe all the various experimental data. This leads to the fact that
the diffusion coefficients of hydrogen in reference books differ by several orders of
magnitude at the same temperature (for example, [25]).

One should also note that most trap and volumetric diffusionmodels were verified
for small gradients of hydrogen concentration in the material. This does not allow
one to take into account the almost hundred times difference in the levels of hydrogen
concentration inside metal samples observed experimentally and requires substantial
modification of these models.

The mechanism of local hydrogen plasticity was first described in [26] (HELP
model). Later, in [2] and [27, 28], based on physical considerations about the poten-
tials of the interaction of hydrogen with dislocations, the governing equations of the
material were obtained. However, there are several uncertainties in this model. In
particular, the authors neglect the nonlinear dependence of the internal potential on
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the magnitude of the stresses and hydrogen concentration, but at the same time, they
consider large local hydrogen concentrations at which all nonlinearities should play
a decisive role. It should be noted that only some metals such as zirconium allow
saturation with hydrogen up to the HELP mechanism triggering concentrations of
0.1H/M and higher without spontaneous destruction. Moreover, work [29] notes
that the HELP model requires significant computational resources in solving any
applied problem. The solution to this problem is to use a continuum model of the
development of the dislocation. However, such a replacement is often inadequate.
Therefore, the authors of theHELPmodel reduce all hydrogen problems inmodelling
the development of cracks and reducing crack resistance.

Recent publications that study the deformation and fracture of metals under
mechanical stress in hydrogen-containing media [30–32] do not consider the pro-
cess of hydrogen diffusion from the external environment. The models there were
obtained heuristically and therefore cannot serve in the future as a basis for devel-
oping complex models which fully describe the process of hydrogen infiltration and
diffusion.

Someworks consider the hydrogen diffusion inmetalswhich is not affected by any
thermo-mechanical loads [33, 34]. They are focused on the influence of large plastic
deformations on the redistribution of dissolved hydrogen [35–37], the influence of
diffusively mobile hydrogen on the hydrogen embrittlement development [38, 39].

In this work, we make the first step of building a theoretical model to describe the
heterogeneous distribution of the hydrogen and formation of a thin boundary layer in
metal. Within the framework of linear nonequilibrium thermodynamics, we obtain a
modified local equation of balance of the diffusion component. This equation takes
into account the mutual influence of diffusion and the stress–strain state, as well as
the dependence of the diffusion process on temperature, gas concentration and other
thermomechanical loads.

As the first attempt to start the description of hydrogen diffusion in metals and see
how that approach works, we restrict ourselves to an isotropic linear continuum for
the metal and abandon the diffusion of hydrogen in trap modes. The first assumption
corresponds to the case when hydrogen concentrations are not large enough to cause
plastic deformations. The assumption that there are no hydrogen traps in our model
will not considerably affect the results since it is known mostly hydrogen with low
binding energy (i.e. diffusively mobile hydrogen) affects the stress–strain state of
metal [40] and vice versa, zones of tensile stresses ‘attract’ low-binding hydrogen
(the so-called Gorsky effect, [41]).

The constructed model is verified on the boundary problem of determining the
stress-strain state of a cylindrical sample under uniaxial tension and the distribution
of gas concentration. We use the results to estimate the possibility of further compli-
cating the model to describe the formation of the experimentally observed boundary
layer.
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9.2 Problem Statement and Governing Equations

9.2.1 Chemical Potential

Oneof themost commonwaysof describing the diffusionprocess, taking into account
the effect of temperature, heat fluxes, the local concentration of the diffusion com-
ponent and the stress-strain state of a solid in which diffusion occurs, is the theory
of chemical potential. Introduced by Onsager and Prigogine [42, 43] for multicom-
ponent mixtures of diffusing gases, it has been used for solids, as well as for various
diffusion systems under different thermo-mechanical loads.

Within the framework of linear nonequilibrium thermodynamics, one may con-
sider various thermo-mechanical loads which affect a system of a diffusing gas in a
solid. The chemical potential can include the influence of a stress-strain state of solid,
plastic deformations, heat fluxes in the system, trapping modes and other effects that
influence the diffusion process. One can note that, although some phenomena cannot
be introduced non-phenomenologically (for example, plasticity or the influence of
trappingmodes), the theory of chemical potential is the only theory that allows one to
take into account all these effects within the framework of one approach. This makes
it possible not to introduce additional restrictions on the range of external conditions
to keep the model corresponding to the experiment. Moreover, even the phenomeno-
logical account of any effect in the chemical potential is carried out following the
basic principles of mechanics and thermodynamics. For example, the effect of plas-
ticity can be considered through the deformations (using the decomposition of the
deformation gradient into elastic and plastic parts) or by introducing an additional
term into the bulk energy of a solid and taking into account the dissipation of this
energy under plastic effects.

In this work, we verify the basic principles of the theory of chemical potentials
and consider how diffusion is affected by small linear elastic deformations in a solid
material, as well as how strongly these deformations affect the diffusion process.
We also want to figure out whether they can explain the skin effect, observed in the
diffusion of hydrogen into metals from the environment. In this work, we neglect the
phenomena of plasticity, trap modes and other phenomena.

Following the non-equilibrium linear thermodynamic approach, we define diffu-
sion flux j as

j = Dc

RT
∇μ, (9.1)

where D is a diffusivity constant, c is the concentration, R is the gas constant, T
is a temperature and μ is the chemical potential of the diffusing gas. The chemical
potential of the ideal gas in vacuum is equal to

μg = μ0(T ) + RT ln c
c∗ . (9.2)

Here, c∗ is some concentration of normalization and μ0—the reference chemical
potential.
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The chemical potential of the diffusing constituent consists of the chemical poten-
tial of the gas itself, as well as of other terms that affect the diffusion process. They
enter the Eq. (9.1) as terms in general chemical potential of the diffusing component.
For now, we consider only the influence of the stress–strain state of the solid on the
diffusion.

We will consider the chemical potential of the solid in its full form [44, 45], since
taking into account only the first term of expansion or term, associated only with
pressure (as it is done in a lot of works, for example, [46]) imposes strong restrictions
on the range of external conditions. The full chemical potential of a solid is defined
as the (canonical) Eshelby stress tensor

μs = M

(
f E − 1

ρ
FT · S

)
, (9.3)

where M is a molar mass of a solid, ρ is its density, f is a density of a bulk energy
(f = w/ρ), F is a deformation gradient and S is a Piola-Kirchhoff stress tensor.

Since we do not have any phase transitions or moving boundary, the diffusion
flux, induced by the stress-strain state of the solid, is proportional to the trace of the
chemical potential tensor [47, 48]. The full diffusion flux is equal to

j = Dc

RT
∇μ = Dc

RT
∇ (

μg + trμs

)
. (9.4)

9.2.2 Case of Linear-Elastic Strains

In this work, we consider the linear elastic behaviour of the solid. We do not solve
any heat equations and consider temperature T as a constant, and neglect all effects
of plasticity and trapping.

In the case of linear elastic strain,

w = η(T ) + 1
2εe· ·C· · εe, (9.5)

where η is the free energy volume density of the stress-free solid (so-called chemical
energy) and depends only on temperature.

Thus, we can write an expression for the μs = trμs :

μs = M

ρ

(
3η(T ) + 3

2εe· ·C· · εe − σ · · εe
)

(9.6)

Here, we denote elastic strains as εe, σ is the Cauchy stress tensor and C is the
stiffness tensor. We set ε∗ for strains, induced by the diffused gas into the solid,
ε∗ = ε∗(c). Thus, following Hooke’s law for linear elastic behaviour of material, we
obtain
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μs = M

ρ

[
3η(T ) + 1

2 (ε − ε∗) · ·C· · (ε − ε∗)
]
. (9.7)

As η(T ) does not depend on coordinate and we consider that change of density
of solid body ρ is insignificant, for the gradient of chemical potential, induced by
solid body, finally we have that

∇μs = M

2ρ
∇ [(ε − ε∗) · ·C· · (ε − ε∗)] (9.8)

As we consider our body as isotropic, we use stiffness tensor with two constants,
Young’smodulus E and Poisson’s ratio ν.We also follow the ideas from the problems
of thermal elasticity and set deformation, induced by the diffused gas component,
proportional to the concentration: ε∗ = αcE. So, we obtain

∇μs = E

2ρ(1 + ν)
∇

[
ν

1 − 2ν
(trε − 3αc)2 + ε · ·ε − 2αctrε + 3α2c2

]
. (9.9)

Finally, we recall that ∇ · j = ∂c
∂t and substitute obtained expressions for the

chemical potential into the (9.4). After opening brackets, we get the diffusion equa-
tion:

∂c

∂t
= ∇ · (Deff∇c + Vc) , (9.10)

where

Deff = D0

(
1 + cM

RTρ

E

1 − 2ν

[
−αtrε + 3α2c

])
(9.11)

V = D0ME

RTρ

(
ν

(1 + ν)(1 − 2ν)
trε∇(trε) − 1

1 − 2ν
αc∇(trε) + 1

2(1 + ν)
∇(ε · ·ε)

)

In this new diffusion equation, the coefficient at the concentration gradient (diffu-
sion coefficient) is not a constant value. It depends on the stress–strain state of solid,
elastic constants, the concentration of the gas component in the solid (metal) and the
temperature in the system. In the diffusion equation, we also obtain an additional
term which is proportional to the gas concentration. The proportionality coefficient
also depends on the thermo-mechanical loads in the system. This term is a force that
decelerates the diffusion and rises when the concentration in the solid increases. One
should also notice that all the deformations have an influence on the diffusion pro-
cess, and therefore approximation with the first term of decomposition and spherical
part of the Cauchy stress tensor is not relevant.



9 Influence of Linear Elastic Stresses on Hydrogen Diffusion … 149

We can also note that the resulting equation does not impose any restrictions on
the values of temperatures, deformations, elastic moduli, concentration values and
gradients of concentration and deformations inside the body, except that we take such
a deformation field to remain within the framework of the linear theory of elasticity.

9.3 Boundary-Value Problem for Axially-Symmetric Body

Since most of the experiments are performed on cylindrical samples, in which tensile
stresses are applied along the axis of symmetry, we consider the boundary value
problem for a cylinder under uniaxial tension. Suppose it is located so that the
symmetry axis is directed along the 0z axis, and we can define the cylinder as z ∈
[−h, h]; r ∈ [0, ro] (Fig. 9.1). We believe that its linear dimensions with respect to z
significantly exceed the radius ro, and therefore, the cylindrical sample is in a plane-
deformed state before the diffusion process begins. We consider that ur = ur (r) and
does not depend on z-coordinate.

We also assume that the hydrogen infiltrates only from the side surface, and due
to the stress–strain state and the symmetry concentration depends only on the r -
coordinate, c = c(r).

The elasticity equation in cylindrical coordinates will look as follows:

Fig. 9.1 The cylindrical
sample under axial tension;
the hydrogen diffuses
through the outer boundary
of the sample at r = ro
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∂σr

∂r
+ σr − σϕ

r
+ ∂τr z

∂z
= 0 (9.12)

∂σz

∂z
+ τr z

r
+ ∂τr z

∂r
= 0

Here, σr , σϕ and τr z are the components of the Cauchy stress tensor:

σr = E

1 + ν

[
ν

1 − 2ν

(
∂ur
∂r

+ ur
r

+ ∂uz

∂z
− 3αc

)
+ ∂ur

∂r
− αc

]

σϕ = E

1 + ν

[
ν

1 − 2ν

(
∂ur
∂r

+ ur
r

+ ∂uz

∂z
− 3αc

)
+ ur

r
− αc

]

σr = E

1 + ν

[
ν

1 − 2ν

(
∂ur
∂r

+ ur
r

+ ∂uz

∂z
− 3αc

)
+ ∂uz

∂z
− αc

]
(9.13)

τr z = E

1 + ν

∂uz

∂r

The boundary conditions are prescribed tensile uniaxial stress and stress-free side
surface:

ur |r=0 < ∞; σr |r=ro = 0 (9.14)

σz|z=±h = σ0.

The diffusion equation will look as follows:

∂c

∂t
= ∂

∂t

(
Deff

∂c

∂r
+ Vc

)
(9.15)

where

Deff = D0

(
1 + cM

RTρ

E

1 − 2ν

[
−α

(
∂ur
∂r

+ ur
r

+ ∂uz
∂z

)
+ 3α2c

])
(9.16)

V = D0ME

RTρ

[
ν

(1 + ν)(1 − 2ν)

(
∂ur
∂r

+ ur
r

+ ∂uz
∂z

)(
∂2ur
∂r2

− ur
r2

+ 1

r

∂ur
∂r

+ ∂2uz
∂z∂r

)

− 1

1 − 2ν
αc

(
∂2ur
∂r2

− ur
r2

+ 1

r

∂ur
∂r

+ ∂2uz
∂z∂r

)
(9.17)

+ 1

2(1 + ν)

(
ur
r2

∂ur
∂r

− u2r
r4

+ ∂ur
∂r

∂2ur
∂r2

)]

The boundary condition is the prescribed concentration at the outer surface of the
body:
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c|r=0 < ∞; c|r=ro = c∗ (9.18)

The initial condition is the absence of the concentration in the body:

c|t=0 = 0. (9.19)

One should note that we have terms that depend on the concentration in the
elastic problem and the coefficients that depend on deformations (both in r - and in
z-directions) in the diffusion equation. Thus, we have the coupled problem, and these
two equations cannot be solved separately.

9.4 Numerical Solution and Discussion

The boundary problem (both elasticity problem and diffusion equation) is solved
numerically using the explicit finite difference scheme, which corresponds to the
finite volume method. Experimental data is taken from [49] for steel T24. Parameter
α corresponding to the expansion due to the hydrogen diffusion is chosen to keep
deformations in the linear elastic area. All parameters are presented in Table9.1.

Since we consider the capabilities of the presentedmodel, we can neglect possible
inaccuracies or inconsistencies in the parameters and consider them as parameters
of some model material.

We were able to perform calculations only for the timeless than 6h: after this time
the stresses near the boundary layer start to exceed linear elasticity and the stress–
strain state of the steel should be described within the plasticity theory. Due to these
restrictions, we investigate only the beginning of the diffusion process.

The two main parameters governing the diffusion process are the effective diffu-
sivity coefficient Deff and the coefficient at the linear concentration term V . They
both depend on the hydrogen concentration and the deformation values.

The value of the diffusivity coefficient significantly depends on the hydrogen
concentration and the stress–strain state of the steel, since the value of the effective

Table 9.1 Material and geometry parameters value [49]

Parameters Value

Diffusivity coefficient D0, mm2/s 0.035

Temperature T , K 293

Young’s modulus E , GPa 182

Poisson’s ratio ν 0.295

ρ/M ,mol/m3 14.5e3

Outer radius ro, mm 1.1

Expansion coefficient α 0.03
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Fig. 9.2 Dependence of diffusivity coefficient Deff on coordinate at different times, σ0 = 0.1 GPa

diffusivity coefficient differs within the sample by almost ten times (see Fig. 9.2). It
can also be noted that the effective diffusion coefficient increases with time and the
rate of its growth is variable and decreases with time. The profile of the effective
diffusion coefficient dependence on the coordinate practically does not change.

The concentration coefficient V in the second term of the (9.10) equation is very
small (of the order of 1e5) and does not varymuch with time, thus practically without
exerting any influence on the diffusion process. In further studies of the model in
the theory of small deformations, this term can be neglected. It should be noted that
the real deformations arising from expansion due to the hydrogen infiltration into
the steel are not small and exceed 3%, therefore, we can say that the coefficient V
begins to influence the diffusion process at large finite deformations and significant
gradients of them.

Although at short times hydrogen infiltrates into the metal rather quickly, from
Fig. 9.3 we see that after some time the process of hydrogen redistribution slows
down, and then with increasing time the distribution of hydrogen concentrations
changes insignificantly. We can also notice that yet the diffusivity coefficient is still
large at this boundary zone, the diffusivity coefficient in the bulk is significantly
smaller (Fig. 9.2). This leads to the higher saturation with hydrogen of the boundary
layer and not the propagation of the concentration profile deeper.

This experimentally observed effect is usually associated with the filling of hydro-
gen traps inside the crystal lattice of themetal. However, the experimentally observed
multiple difference between the hydrogen concentration in the central and near-
boundary parts of the samples is often inexplicable, since the experimental samples
are made so that mechanical treatment does not violate the initial homogeneity of
the metal throughout the volume of the sample. In our model, we obtain the block-
ing effect at saturation with hydrogen from the general propositions of nonlinear
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Fig. 9.3 Dependence of normalized concentration c/c∗ on coordinate at different times, σ0 = 0.1
GPa

Fig. 9.4 Dependence of normalized concentration c/c∗ on coordinate at different axial stresses σ0,
t = 2000 m

nonequilibrium thermodynamics, which was previously described only with the help
of empirical or phenomenological terms introduced into the diffusion equation.

The obtained concentration profile inside the metal is highly nonuniform: the
concentration values near the boundary and in a thin boundary layer are hundreds of
times higher than the concentration inside the sample. This indicates the agreement of
the model with the experiment and describes the experimentally observed boundary
layer as part of the skin effect.

An increase in tensile axial stresses does not significantly change the diffusion
process and the concentration profile (Fig. 9.4). With an increase in tensile stresses,
diffusion proceeds faster, accelerating significantly at stresses close to the yield point.
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This is due to both the fact that the crystal lattice of the metal expands, allowing
hydrogen molecules to diffuse into the metal with less resistance, and with the fact
that stretching along the axis of symmetry reduces the value of the locking stresses,
thereby weakening the locking effect.

9.5 Conclusions

We have built a new model of the diffusion of the gas component into a solid based
on the theory of chemical potentials and the principles of linear nonequilibrium ther-
modynamics. We took the trace of the Eshelby energy–momentum tensor in its full
form as the chemical potential of a solid body. To evaluate the effect of deformations
in a solid, we considered the case of linear elasticity and did not consider plasticity,
heat effects, and large deformations. We also took into account the deformations that
arise as a result of hydrogen diffusion inside the solid and introduced the spherical
tensor of diffusion deformations, which is linearly proportional to the concentration.

As a result, we obtained an equation for the local balance of the diffusion com-
ponent, which takes into account the dependence of the diffusion process on the
stress-strain state of the solid, the concentration of the gas component inside it, and
other thermo-mechanical loads. The new diffusion equation is a modified Fick’s
equation with a non-constant diffusivity coefficient and an additional term in the
expression for the diffusion flow, which is linearly proportional to the concentra-
tion of the gas component, and the proportionality coefficient also depends on the
deformations in the solid and the concentration of the gas component.

Using the finite volume method, we obtained a numerical solution of the coupled
boundary value problem of determining the stress–strain state of a cylindrical steel
sample under uniaxial tension and the distribution of diffused hydrogen concentra-
tion. We found that hydrogen quickly saturates a thin boundary zone, and with time
the concentration profile only moves deeper practically unchanged into the sample.

As a result of hydrogen diffusion into the steel, large deformations arise inside
the sample. They significantly increase the diffusion coefficient. Thus, saturation
of the thin layer occurs faster, than further propagation of the concentration profile
into the sample. This locking effect is also observed experimentally. Earlier in the
literature, this locking effect was explained by the presence of traps which were
phenomenologically introduced into the model. We describe this locking effect from
the first principles.

In addition, we found that in the case of small linear deformations, the term
proportional to the concentration is small and practically does not change with time,
which suggests that the effect of this term in the case of small deformations can be
neglected. This result can be used with further complications of the model; however,
in the case of large strains and large strain gradients, this term is likely to have a
significant effect.
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To study the diffusion process completely, it is necessary to add plasticity to the
model, since deformations corresponding to plastic deformations arise in the sample
with further saturation with hydrogen. In this work, we investigated diffusion at short
times (up to 6h).

The resulting diffusion model is the first step to build a complete model of hydro-
gen diffusion into metals from the environment. Further improvements of the model
can be taking into account plastic deformations, metal inhomogeneities and associ-
ated internal stresses.
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