
Chapter 7
Effective Diffusion Coefficient of a
Porous Material Applied to the Problem
of Hydrogen Damage

Ksenia P. Frolova and Elena N. Vilchevskaya

Abstract The chapter focuses on calculation of the effective diffusion coefficient
of a porous material accounting for the volume fraction, shape of pores, and their
distribution over orientations in a three-dimensional solid. The existing pores are con-
sidered as embedded inhomogeneities possessing a high diffusivity in comparison
with a matrix. The segregation effect is taken into account. Maxwell homogenization
schemes in terms of diffusivity and resistivity contribution tensors are used. Inho-
mogeneities are assumed to have a spheroidal shape. The paper considers diverse
microstructural patterns, namely, (1) arbitrary orientation distribution of pores, (2)
orientational scatter of pores about a preferential orientation, (3) arbitrary orientation
distribution of rotational axes of spheroidal pores in one plane. Application of the
model to problems related to hydrogen damage is discussed.

Keywords Effective diffusivity · Homogenization problem · Maxwell scheme ·
Segregation effect

7.1 Introduction

Correct estimation of the value of the diffusion coefficient allows one to predict
the amount of hydrogen in metals and alloys. Increasing the amount of hydrogen,
in turn, may lead to a premature failure of structural elements of metal parts [1, 2].
Determination of the effective diffusion coefficient of a porousmaterial is of practical
interest, since voids and microcracks are known to be traps for hydrogen [3, 4].
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Diffusion of hydrogen in materials containing microcracks and discontinuities
formed during manufacture can be observed in sacrificial coatings that are used to
protect steel against corrosion [5, 6]. Among other reasons, permeability of coatings
is determined by its microstructure. In [5], it was shown that Zn–Ni coatings can
contain through-thickness defects that makes the steel exposed to hydrogen uptake.
Correlation between the diffusion coefficient and the microstructural characteristics
of Zn–Ni and Cd coatings was investigated in [6]. Thus, it is of quite importance to
predict permeability of materials containing pores emerged before hydrogenation.

Numerous papers are devoted to investigation of microstructure of materials
affected by hydrogen [1, 7–11]. It is believed that hydrogen diffuses through met-
als and alloys lattice and accumulates within structural defects such as dislocations,
pores, and vacancies leading to initiation and propagation of hydrogen-stimulated
microcracks. Typically, defects are occurring at grain boundaries or inclusions due
to manufacturing. Thus, in the absence of the inner and outer stresses, hydrogen-
induced cracking is observed to take place mainly along grain boundaries [1, 7,
9]. Two types of intergranular cracking can be found in material, namely, void for-
mation along grain boundaries and grain boundary triple junction cracking [1, 7,
10, 11]. Also, hydrogen charging may lead to blistering of the surface [8, 11]. The
hydrogen-induced cracks are oriented primarily along the rolling direction of steel
[8, 9]. Hydrogen-induced defects may, in turn, increase permeability of a material
right during hydrogenation.

The focus is usually set on diffusion of hydrogen along grain boundaries while
investigating the effect of presence of high diffusivity paths in metals. To the best
of our knowledge, the earliest quantitative model for a diffusion in a heterogeneous
material accounting for a single rectilinear grain boundary embedded in a semi-
infinite solid of much lower diffusivity was proposed in [12] for the problem of
self-diffusion of silver. The same geometry with less restrictive boundary condi-
tions has been considered in [13, 14]. Lamellar and columnar microstructures were
modeled in [15], where the obtained expressions were similar to Wiener bounds for
thermal or electrical conductivity [16]. The fact that the grain boundaries completely
surround grains in a three-dimensionally interconnected network, and are not sim-
ply distributed in parallel, has been addressed by numerous diffusion models that
embedded grains in a matrix representing grain boundaries [17, 18]. A rule of mix-
ture was used in [19] to calculate the effective diffusion coefficient. A number of
approximate schemes accounting for the interactions between inhomogeneities were
rewritten in [20] for diffusivity on the base of similarity between governing equations
in the diffusivity and conductivity problems.However, a principal difference between
two problems is that temperature is a continuous function across the phase bound-
aries, while concentration is usually not. Therefore, the segregation effect should be
taken into account [21]. Hart and Maxwell–Garnett equations were rewritten in the
form containing the segregation factor in [22, 23]. The results may be employed for
description of materials containing spherical grains. Typical micromechanical mod-
els were rewritten for diffusivity in [24] to calculate the effective diffusion coefficient
of a polycrystalline material accounting for the isotropic distribution of spheroidal
grains over orientation. A similar problem was solved in [25] numerically.
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The present paper is concerned with a quantitative characterization of mass trans-
port process in a porous material. Such a microstructural pattern is corresponding
to a composite material consisting of grains, grain boundaries, various defects, and
isolated pores. Hydrogen is assumed to diffuse along grain boundaries and fill the
pores. A composite consisting of grains, grain boundaries, and various defects is rep-
resented by a homogenized background matrix with a known effective diffusivity.
Pores are considered as embedded inhomogeneities.

The effect of oblate and prolate spheroidal pores, as well as spherical ones, is
investigated. An oblate spheroidal pore models a hydrogen-stimulated microcrack
occurring between two grains. A prolate spheroidal inhomogeneity reflects the influ-
ence of an intragranular microcrack or microcrack propagating along a few grain
boundaries. Such a microstructure can be observed in non-saturated materials like
sacrificial coatings. Generally speaking, in this case, it is more correct to introduce
an ellipsoidal inhomogeneity that is not considered within the frame of the present
research. A spherical inhomogeneity models an isolated pore in the host material.

The paper accounts for different orientation distribution of inhomogeneities,
namely,

• Arbitrary orientationdistributionof pores specific forweaklydeformablematerials;
• Orientational scatter of pores about a preferential orientation specific for materials
prepared by rolling;

• Arbitrary orientation distribution of rotational axes of spheroidal pores in one plane
that can be observed for compressed materials.

All the mentioned cases are corresponding to the transversally isotropic porous
material. The question arises, how the diffusion coefficient of a matrix material
containing grains, grain boundaries, and various defects changes due to the presence
of pores.

7.2 Problem Statement

In the present paper, we apply micromechanical approximate schemes to calculate
effective diffusivity of a material containing isolated pores assuming that the matrix
material (consistingof grains, grain boundaries, andvarious defects) is homogeneous.
Thus, homogenization contains two steps. At the first implicit step, the effective
properties of matrix material are obtained by means of experimental data [26] or
theoretical framework [24]. At the second explicit step, the effective properties of a
porous material are calculated (see Fig. 7.1).

To reflect the effect of pores on the effective properties of a heterogeneousmaterial,
we consider inhomogeneities with diffusion coefficient D1 in a solid of much lower
diffusion coefficient D0. The value D1 → ∞ providing a zero ratio α = D0/D1

can be considered for simpleness. However, it is more correct to take into account
a non-zero α � 1 to explain a real phenomenon. We assume that the value of the
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Fig. 7.1 Schematic representation of the model

diffusion coefficient of pores is the same as for unfilled grain boundaries (D1 = DGB).
According to [27], the contrast in the diffusion coefficient of the bulk material of
grains, DB , and grain boundaries, DGB, varies from 0.005 to 0.1. Knyazeva et al. [24]
considered α̃ = DB/DGB = 0.015. The contrast in the effective diffusion coefficient
of matrix, D0, and bulk material of grains, DB , increases with decreasing of the grain
size [24, 26]. If the grain diameter is about 10 – 13 µm, the value of α̃eff = D0/DB

is equal to 2.2–4.4 [24, 26]. Then,

α = D0

D1
= α̃effα̃

takes values in the range 0.03–0.07.Within the frame of the present paper, we assume
that α = 0.05.

We assume continuity of the normal component of the solute flux across the
matrix/pore interface and a constant jump in hydrogen concentration, c, described
by the segregation factor, s, as follows:

c (x) |x→∂V+ = sc (x) |x→∂V− (7.1)

We are especially interested in cases when hydrogen is partially trapped inside
the pores and, therefore, focus on cases s < 1. For completeness, we also consider
the case when concentration is a continuous function across the phase boundaries
and, therefore, there is no segregation effect (s = 1). We assume that the segregation
effect is independent of the type of pore. Also, segregation related to pore saturation
is not discussed here.

The certain preferential orientation distribution of pores is described by means of
the probability density function introduced by Sevostianov [28]:

ψλ (θ) = 1

2π

[(

λ2 + 1
)

e−λθ + λe−λπ/2] . (7.2)

This probability density function is defined on the upper semisphere of unit radius
(0 ≤ θ ≤ π/2) and subject to the normalization condition. The scatter parameter λ
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varies in the range from zero to infinity that corresponds to fully random and strictly
parallel orientations of pores, respectively.

To obtain the explicit expressions for the effective properties, we use the for-
mulation of Maxwell’s homogenization scheme in terms of diffusivity (resistivity)
contribution tensors [24, 29].

7.3 Diffusivity Contribution Tensors

Following [29, 30],we introduce property contribution tensors to express the effect of
a given inhomogeneity on the properties of interest. Their sums are propermicrostruc-
tural parameters that reflect contributions of individual inhomogeneities to the over-
all effective properties. To explain the process of mass transfer, we introduce the
second-rank diffusivity and resistance contribution tensors, HD or HDR.

Let us consider a reference volume V of an infinite three-dimensional solid
with the isotropic diffusivity tensor D0 = D0I containing inhomogeneity with the
isotropic diffusivity tensor D1 = D1I occupying domain V1 � V . We assume that
both inhomogeneity and the surrounding material obey the linear Fick’s law con-
necting the vector of molar flux with the concentration gradient. The extra molar
flux due to the inhomogeneity is as follows:

�J = V1

V
HD · G0, (7.3)

where G0 is a concentration gradient prescribed at the boundary of V . The diffusiv-
ity contribution tensor HD depends on the shape of the inhomogeneity, diffusivity
contrast between inhomogeneity and surrounding material, and the segregation of
particles at the interface.

Assuming continuity of the normal component of the solute flux across the
matrix/inhomogeneity interface and a segregation effect described by Eq. (7.1), the
diffusivity contribution tensor representing the contribution of the spheroidal inho-
mogeneity to the overall diffusivity of volume V can be written in the form [24]

HD = D0 [B1 (I − nn) + B2nn] , (7.4)

where taking α = D0/D1,

B1 = 1 − α

sα + (1 − sα) f0
, B2 = 1 − α

1 − 2 (1 − sα) f0
. (7.5)

Shape function f0 = f0 (γ ) depends on the aspect ratio of the spheroidal inho-
mogeneity γ = a3/a (a3 is the rotation axis, a1 = a2 = a are two other semiaxes)
in the following way:
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f0 = 1 − g

2
(

1 − γ −2
) , (7.6)

where

g =

⎧

⎪

⎨

⎪

⎩

1

γ
√

1−γ 2
arctan

√
1−γ 2

γ
, γ ≤ 1

1

2γ
√

γ 2−1
ln

(

γ+
√

γ 2−1

γ−
√

γ 2−1

)

, γ ≥ 1.
(7.7)

The diffusion resistance contribution tensor HDR that is dual to HD can be intro-
duced in a similar way. It appears if, instead of uniform gradient of concentration, a
uniform molar flux is remotely applied. Tensors HDR and HD interrelate as follows
[24]:

HDR = − 1

D2
0

HD. (7.8)

According to [29], there are no any explicit evidence regarding preference of one
of tensor HDR or HD . So, it is necessary to check which one of these tensors yields
better agreement with experimental data.

Note that according to Eqs. (7.4) and (7.5), the segregation factor s does not play
any role and simplifies the model in the case when α → 0 due to D1 → ∞.

7.4 Homogenization Problem

An exact solution of the homogenization problem for a composite material with mul-
tiple inhomogeneities can be obtained only numerically. Moreover, specific materi-
als with a known microstructure should be considered. All analytical approximation
methods involve uncertainties and/or inconsistencies. A detailed review of history
of various methods can be found in [31], whereas the current state of knowledge of
the problem is described in [29].

We use the Maxwell homogenization scheme, since it appears to be one of the
best schemes, in terms of its applicability to cases of multiphase composites and
accuracy. In his original work, Maxwell addressed the problem of effective electrical
conductivity of a material containing multiple spherical inhomogeneities [32]. The
accuracy of Maxwell’s original formula was checked by means of a periodic array of
spheres and found to be accurate up to volume fractions about 40% [33]. We use the
formulation of Maxwell scheme in terms of property contribution tensors proposed
in [28, 34].

According toMaxwell’s idea, it is necessary to evaluate far-field perturbations due
to inhomogeneities in two different ways and equate the results. The first way is to
evaluate this field as the one generated by a homogenized region
 possessing the (yet
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unknown) effective properties. This field can be expressed in terms of the property
contribution tensor of the domain 
. The second way is based on consideration the
sum of far fields generated by all the individual inhomogeneities within
 (treated as
non-interacting ones). Equating the results yields the effective diffusion properties
in the form [24]

(

Deff
)−1 = 1

D0
I +

⎧

⎨

⎩

[

1

V


∑

k

VkHDR
k

]−1

− QD



⎫

⎬

⎭

−1

(7.9)

in terms of the resistivity and

Deff = D0I +
⎧

⎨

⎩

[

1

V


∑

k

VkHD
k

]−1

− PD



⎫

⎬

⎭

−1

(7.10)

in terms of diffusivity. Here,

QD

 = D0s
[(1 − f0

(

γ D



))

(I − mm) + 2 f0
(

γ D



)

mm], (7.11)

PD

 = 1

D0s

[ f0

(

γ D



)

(I − mm) + (1 − 2 f0)
(

γ D



)

mm] (7.12)

are the second-rank Hill’s tensors that reflect the shape of spheroidal domain 
 and
take into account interactions between the inhomogeneities. Vector m is supposed
to be a unit vector along the axis of symmetry of the domain 
. Note that n is
corresponding to the axis of symmetry of individual spheroidal inhomogeneity and,
therefore, m may not coincidence with n.

The segregation factor s
 describes a constant jump in the particles concentra-
tion at the interface between the domain 
 and matrix. This segregation factor
can not be estimated experimentally in contrast to the segregation factor for the
matrix/inhomogeneity interface. In [35, 36], these parameters were supposed to be
equal. Results obtained at s
 = s and s
 = 1 were compared with the experimental
data for a polycrystalline material in [24]. It was shown that s
 = 1 does not pro-
vide correct values of the effective diffusion coefficient at large values of the volume
fraction of inhomogeneities. At the same time, value of s
 does not play a role at
small values of the volume fraction of inhomogeneities.

Recommendations regarding the choice of the shape of the domain 
 can be
found in [28]. This shape has to obey the following requirements: (1) it should be
ellipsoidal, (2) it should properly reflect the shapes of individual inhomogeneities,
their orientations and properties. Within the frame of the present paper, we consider
materials with transversely isotropic microstructure. In this case, the domain 
 is a
spheroid. In the specific case of random orientation distribution of inhomogeneities,
the shape of the domain is spherical (γ
 = 1). In the case of preferentially oriented
inhomogeneities, following [28], we introduce the shape of the domain 
 as
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γ D

 =

∑

k
Vk PD

11

∑

k
Vk PD

33

, (7.13)

where P11, P33 are components of the second-rank Hill’s tensor

PD = 1

D0s

[

f0 (γ ) (I − nn) + (1 − 2 f0 (γ )) nn
]

(7.14)

for individual spheroidal inhomogeneity.
The effective properties of a considered material with pores of identical shapes

and size and diverse distribution over their orientations can be expressed in terms
of their volume fraction φ = ∑

k Vk/V [29]. Summation in Eqs. (7.9), (7.10), and
(7.13) can be replaced by multiplication of the fraction volume by averaged tensors,
so

1

V

∑

k

VkHD = φ
〈

HD
〉

,
1

V

∑

k

VkHDR = φ
〈

HDR
〉

,

1

V

∑

k

VkPD = φ
〈

PD
〉

.

The tensor averaging is equivalent to averaging of dyads nn, since these tensors
are determined by means of nn and I − nn.

We first consider orientation distribution of n about a preferential orientation m
accompanied by a random scatter. This orientation distribution of pores is described
by Eq. (7.2). The averaging of the dyad nn can be obtained by integration over the
upper semisphere of unit radius 
̃1/2, so

〈nn〉 =
∫


̃1/2

(nn)kψλd
̃1/2.

Then,
〈nn〉 = g1θ + g2mm,

where θ = I − mm and

g1 = 18 − e− πλ
2 λ

(

3 + λ2
)

6
(

9 + λ2
) , g2 =

(

3 + e− πλ
2 λ

)

(

3 + λ2
)

3
(

9 + λ2
) .

Equations (7.9), (7.10) reduce to
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Deff

D0
= 1

1 −
[

1
φ(B1(1−g1)+B2g1)

+ s

(

1 − f0
(

γ D



))

]−1 θ +

+ 1

1 −
[

1
φ(B1(1−g2)+B2g2)

+ 2s
 f0
(

γ D



)

]−1mm, (7.15)

Deff

D0
=

⎛

⎝1 +
[

1

φ (B1 (1 − g1) + B2g1)
− f0

(

γ D



)

s


]−1
⎞

⎠ θ +

+
⎛

⎝1 +
[

1

φ (B1 (1 − g2) + B2g2)
−

(

1 − 2 f0
(

γ D



))

s


]−1
⎞

⎠mm. (7.16)

In the case of arbitrary orientation distribution of inhomogeneities λ = 0 and,
therefore,

〈nn〉 = 1

3
I

and Eqs. (7.9), (7.10) take forms

Deff

D0
= 3 + 2φηs


3 + φη (2s
 − 3)
, (7.17)

Deff

D0
= 3s
 + φη (3s
 − 1)

3s
 − φη
, (7.18)

where η = η (γ, α, s) = 2B1/3 + B2/3.
Now, turn to the case of random orientation distribution of unit vectors n in the

plane normal to unit vector m. The averaging of the dyad nn can be obtained by
integration over a circle of unit radius l1 normal tom, so

〈nn〉 = 1

2π

∫

l1

(nn)kdl1.

Therefore,

〈nn〉 = 1

2
θ

and Eqs. (7.9), (7.10) reduce to
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Deff

D0
= 1

1 −
[

2
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+ s

(

1 − f0
(

γ D
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1 −
[

1
φB1
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]−1mm, (7.19)

Deff
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=

⎛
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φ (B1 + B2)
− f0

(

γ D



)

s


]−1
⎞

⎠ θ +

+
⎛

⎝1 +
[

1

φB1
− 1 − 2 f0

(

γ D



)

s


]−1
⎞

⎠mm. (7.20)

According to [34], Maxwell’s scheme formulated in terms of diffusivity and
resistivity contribution tensors should lead to the same result. Any contradictions
may cause incorrect accounting for interactions between inhomogeneities within
the scheme. Comparing the results obtained within the present section in terms of
diffusivity and resistivity contribution tensors, one can see that the equality of two
solutions imposes restrictions on the segregation factor s
 for the interface between
the domain 
 and matrix. Maxwell’s scheme formulated in terms of diffusivity and
resistivity contribution tensors for the considered cases of the orientation distribution
of inhomogeneities leads to the same result only at certain values of the segregation
factor s
. In particular, effective properties obtained within Maxwell’s scheme for-
mulated in terms of diffusivity and resistivity contribution tensors are the same in all
the mentioned cases of the orientation pattern when the segregation factor s
 = 1
that means that there is no segregation effect at the interface domain
/matrix. In the
case of random distribution of the inhomogeneities, the segregation factor s
 can also
be equal to 0.5. In the cases of preferentially oriented inhomogeneities, accounting
for the segregation effect leads to incorrect results.

7.5 Effective Diffusion Coefficient of a Material
with Spheroidal Pores

The effective diffusion coefficient of a material containing pores depends on the
shape of the inhomogeneities, its volume fraction and distribution over orientations,
as well as on the segregation effect. We now investigate these dependences for a
heterogeneousmaterial described in Sect. 7.2. Thus,we considerα = D0/D1 = 0.05
and s ≤ 1.

We start withmodeling of an isotropic distribution of spheroidal inhomogeneities.
The accuracy ofMaxwell’s schemewas found to be determined by volume fraction of



7 Effective Diffusion Coefficient … 123

Fig. 7.2 Dependences of the
effective diffusion coefficient
on the volume fraction of (1)
spherical pores, (2) oblate
spheroidal pores with
γ = 0.1, (3) prolate
spheroidal pores with
γ = 10 at s
 = 1 (solid line)
and s
 = 0.5 (dashed line);
case of random orientation
distribution of pores

pores. Such a restriction was discussed in our paper [37] for the case of material con-
taining oblate spheroidal pores. Figure7.2 illustrates dependences of the normalized
effective diffusion coefficient, Deff/D0, on the volume fraction of pores, φ, at two
different values of the segregation factor for the interface between the inhomogene-
ity with effective properties occupying domain
 and matrix (s
 = 1 and s
 = 0.5).
Segregation at the interface between an isolated inhomogeneity and matrix is deter-
mined by a fixed value s = 0.5. Accounting for the segregation effect at the interface
domain 
/matrix (s
 
= 1) increases the effective diffusion coefficient. Additional
efforts are needed to check whether accounting for segregation effect at the interface
domain 
/matrix in the model yields better agreement with the experimental data.
Hereafter, we assume that s
 = 1.

Figure7.3 illustrates dependences of the normalized effective diffusion coeffi-
cient on the segregation factor at the interface inhomogeneity/matrix at a constant
volume fraction φ = 0.1. According to the results, decreasing the segregation factor
s increases the effective diffusion coefficient and vice versa. The ratio Deff/D0 is
minimal when there is no segregation effect (s = 1). Thus, segregation of particles
inside pores produces effect similar to increasing diffusivity of an inhomogeneity.
At the same time, it is seen that the segregation of particles inside spherical pores
does not change the effective diffusion coefficient significantly. Thus, segregation
inside pores increases the effect of shape of the inhomogeneities on the overall
diffusion coefficient. Figure7.4 demonstrates that accounting for segregation of par-
ticles inside non-spherical pores at high volume fractions of pores is of great impor-
tance. Figure7.5 illustrates the effect of shape on the effective diffusion coefficient
at φ = 0.1 and s = 0.5.

Consider now material containing spheroidal pores that have mild tendency to
be parallel to each other. Dependences of the effective diffusion coefficients on the
scatter parameter are shown in Fig. 7.6. Increasing of the scatter parameter λ, i.e.,
decreasing of randomness of the orientation distribution, leads to increasing of the
effective diffusion coefficient within the plane of isotropy of a material containing
oblate spheroidal pores with γ = 0.1 and to decreasing of its effective diffusion
coefficient along the axis of symmetry. In the case of prolate spheroidal pores with
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Fig. 7.3 Dependences of the effective diffusion coefficient of a material containing non-spherical
pores (left-hand side), namely, oblate spheroidal pores with γ = 0.1 (solid line) and prolate
spheroidal pores with γ = 10 (dashed line), and spherical pores (right-hand side) on the segre-
gation factor s; case of random orientation distribution of pores

Fig. 7.4 Dependences of the effective diffusion coefficient on the volume fraction of oblate pores
with γ = 0.1 (left-hand side) and prolate pores with γ = 10 (right-hand side) at s = 0.1 (dashed
line), s = 0.5 (dotted line) and s = 1 (solid line); case of random orientation distribution of pores

Fig. 7.5 Dependence of the
effective diffusion coefficient
on the aspect ratio of pores
in the case of random
orientation distribution of
inhomogeneities
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Fig. 7.6 Dependences of the effective diffusion coefficients Deff
11/D0 (solid line) and Deff

33/D0
(dashed line) of a material with oblate spheroidal pores with γ = 0.1 (left-hand side) and material
with prolate spheroidal pores with γ = 10 (right-hand side) on lambda; case of certain preferential
orientation accompanied by random scatter

γ = 10, it is the other way round. We take φ = 0.01 and s = 0.5. Note that the
qualitative result will be similar if we use other values of the aspect ratios, volume
fraction, and segregation factor.

The oblate spheroidal pores were found to change diffusion within the plane of
isotropy and to have no significant influence on the value of the diffusion coefficient
along the axis of symmetry. The situation was found to be opposite in the case
of prolate spheroids. Figure7.7 illustrates dependences of the normalized effective
diffusion coefficient on the segregation factor at the interface inhomogeneity/matrix
at a constant volume fraction φ = 0.1 and scatter parameter λ = 20. For the sake of
brevity, we do not provide dependences Deff

33/D0 on s corresponding to a material
with oblate pores and Deff

11/D0 on s corresponding to a material with prolate pores,
since these effective diffusion coefficients are weakly dependent on the segregation
effect in the mentioned cases due to the weak effect of shape. As in the case of
random distribution, segregation inside pores increases effect of shape on the overall
diffusion coefficient. Figure7.8 illustrates the effect of shapeon the effective diffusion
coefficient at φ = 0.1, s = 0.5 and λ = 20.

Finally, turn to the problem of random orientations of unit vectors n in one plane.
The oblate spheroidal pores were found to change diffusion within the plane of
isotropy and along the axis of symmetry, whereas prolate spheroidal pores were
found to influence only diffusivity within the plane of isotropy. Again, for the sake
of brevity, we do not provide dependence Deff

33/D0 on s corresponding to a material
with prolate pores, since this effective diffusion coefficient weakly depends on the
segregation effect in the mentioned case due to the weak effect of shape. Figure7.9
illustrates dependences of the normalized effective diffusion coefficient on the seg-
regation factor at the interface inhomogeneity/matrix at a constant volume fraction
φ = 0.1. It is seen that segregation inside pores increases the effect of shape on the
overall diffusion coefficient. Figure7.10 illustrates the effect of shape on the effective
diffusion coefficient.
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Fig. 7.7 Dependences of the effective diffusion coefficients Deff
11/D0 of a material with oblate

spheroidal pores with γ = 0.1 (left-hand side) and Deff
33/D0 of a material with prolate spheroidal

pores with γ = 10 (right-hand side); case of certain preferential orientation accompanied by a
random scatter (λ = 20)

Fig. 7.8 Dependences of the effective diffusion coefficients Deff
11/D0 (solid line) and Deff

33/D0
(dashed line) on the aspect ratio of pores in the case of their certain preferential orientation accom-
panied by a random scatter (λ = 20)

Fig. 7.9 Dependences of the effective diffusion coefficients Deff
11/D0 (solid line) and Deff

33/D0
(dashed line) of a material containing oblate spheroidal pores with γ = 0.1 (left-hand side) and
prolate spheroidal pores with γ = 10 (right-hand side) on the segregation factor s; case of random
orientations of unit vectors n in one plane
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Fig. 7.10 Dependences of
the effective diffusion
coefficients Deff

11/D0 (dashed

line) and Deff
33/D0 (solid line)

on the aspect ratio of pores
in the case of random
orientations of unit vectors n
in one plane

Thus, it was shown that the presence of multiple pores of diverse shape and distri-
bution over orientation can lead to a significant increase in the diffusion coefficient.
The effect of shape was found to be strongly coupled with the distribution of inhomo-
geneities over orientation. In particular, diffusion coefficients in diverse directions
can be changed in various ways with respect to the shape of a non-spherical pore. The
segregation of hydrogen at the interface matrix/pore was found to have a significant
effect on the effective diffusivity, especially in the case of preferentially oriented
prolate pores.

7.6 Description of the Experimental Data by Means
of the Proposed Model

To illustrate the applicability of the results of modeling to problems associated with
hydrogen damage, we describe results obtained in [6]. Authors of [6] analyzed the
permeability ofZn–Ni coatingmaterial to hydrogen in correlationwith itsmicrostruc-
tural characteristics. In particular, they indicated that Zn–Ni coatings typically exhibit
defects, such as intergranular cracks and through-thickness pores. Changing of a sub-
strate geometry during the permeability test realized by the twin cell method led to
changing of the microcracks distribution in the coatings. As a result, microcracks
were found to be randomly distributed. Themicrostructure of coatings with andwith-
out defects was shown in Scanning Electron Microscope (SEM) images. Initiated
defects may make coatings susceptible to environmental hydrogen embrittlement.
Authors compared the hydrogen diffusion coefficients corresponding to uniform
coating and coating with defects. The ratio of the effective diffusion coefficient to
the diffusion coefficient of a host material is given in Table7.1.

Unfortunately, there are no data on the exact shape and volume fraction of the
defects. On the base of the SEM images shown in [6], we could say that microcracks
appearing in Zn–Ni coating can be considered as prolate spheroidal pores that have
certain preferential orientation (λ = 20). Taking diverse realistic values of γ and
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Table 7.1 Correlation of the effective diffusion coefficient Deff/D0 with its microstructural
characteristics, namely, shape (by means of γ ), porosity (φ), and distribution over orientations

Experimental γ (fixed) φ (range of values) Distribution Calculated

Deff/D0 over orientations Deff/D0

14.8 (Zn-Ni) 20 0.10–0.50 Certain preferential 4.70–19.75

100 0.10–0.50 orientation (λ = 20) 3.99 – 16.43

varying the value of the volume fraction, we can obtain a proper range of the effective
diffusion coefficient. The results are shown in Table7.1. We use s = 0.5, s
 = 1.

The suggested homogenization model leads to results that are in a good agree-
ment with experimental data and, therefore, may be applied to estimate the effective
diffusion coefficients of hydrogen in a porous material in the annex to the problem
of hydrogen damage.

7.7 Conclusions

The paper addresses the effective diffusion properties of a porous material. The
microstructure may comprise a mixture of inhomogeneities of diverse shapes and
orientations. We assume that oblate pores can model hydrogen-induced intergran-
ular microcracks, whereas prolate pores can model microcracks originating during
processing and affecting further hydrogenation. The segregation of hydrogen inside
pores takes place.

Maxwell scheme formulated in terms of property contribution tensors was applied
to solve the homogenization problem. Itwas shown that the presence of pores can lead
to a significant increase in the diffusion coefficient. Effect of shape and segregation
effect was observed. The homogenization problem was solved at diverse distribution
of inhomogeneities over orientations. The effect of shape was found to be coupled
with the orientation distribution.
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