
Chapter 11
Wave Nature of Hydrogen Concentration
Dynamics in Materials

Alexey V. Porubov, Alexander K. Belyaev, and Vladimir A. Polyanskiy

Abstract The models of the wave description of the hydrogen concentration in
materials are discussed and compared. Special attention is paid to the role of nonlinear
effects.
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11.1 Introduction

The influence of hydrogen on the plasticity and strength of metals attracts con-
siderable attention in the last years. One can say that the main problem today is
hydrogen-induced destruction. The modeling of hydrogen dynamics concerns vari-
ous approaches. One of them considers the evolution of the hydrogen concentration
as a wave process.

The wave description was less developed recently because of the linear descrip-
tion. The hydrogen transfer has been modeled by the equations of diffusion type.
However, the linear diffuison equation doesn’t possess wave solutions with finite
velocity. Only recently, such models began to appear [1–3]. Later, the wave charac-
ter of concentration has been detected in experiments [3–5]. The model developed in
[2] has been extended and thoroughly examined in [5–7]. Also, an influence of the
strains in the material on the concentration dynamics has been modeled in [8] on the
basis of discrete-continuum nonlinear modeling. All these studies allowed to reveal
new phenomena described with the help of a nonlinear description.
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The aim of the paper is to call attention to the nonlinear wave modeling of the
hydrogen concentration and the sources of nonlinearity causing qualitatively new
features of the concentration dynamics.

11.2 Bi-Continuum Nonlinear Model

This model has been developed in [2, 3, 6, 7].
Assume the diffuse hydrogen is characterized by mH , v

−
H and ρ−

H which are the
mass, velocity and volume density respectively. Similarly, the bound hydrogen is
described by v+

H , andρ+
H .Then the concentrations are N

−
H = ρ−

H/mH , N
+
H = ρ+

H/mH .
Then basic equations in the one-dimensional case are

(ρ0 + mH N+
H ) v+

H,t + (F0 − γ N+
H )mH N−

H (v−
H − v+

H ) + (α N−
H − β N+

H ) v+
H = σx ,

(11.1)

mH N−
H v−

H,t + (F0 − γ N+
H )mH N−

Hv
−
H + 3

2
k T N−

H,x + (α N−
H − β N+

H ) v−
H = 0,

(11.2)
ρ0,t + (ρ0 v

+
H ) = 0, (11.3)

N+
H,t + (v+

H N+
H )x − 1

mH
(α N−

H − β N+
H ) = 0, (11.4)

N−
H,t + (v−

H N−
H )x + 1

mH
(α N−

H − β N+
H ) = 0, (11.5)

where k is Boltzmann’s constant, T is the absolute temperature of the moving
medium, the stress σ is defined in [3].

It was shown in [7] that the solution of the basic equations reduces to finding the
solution to the concentration N+

H ,

N+
H = N0 + ÑH , (11.6)

where ÑH is the solution to the equation

ÑH,t t − a1 ÑH,xx + a2 ÑH,t − a3 ÑH,xxt+

a4(Ñ
2
H )xx + a5(ÑH ÑH,xt )x + a6 (ÑH,x ÑH,t )x = 0, (11.7)

where

a0 = mH

α
, a1 = 3kTβ((F0 − γ N0) mH + 2α)

2(F0 mH + α)2mH
, a2 = α + β

mH
,
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Fig. 11.1 Dynamics of concentration at the coefficients of Eq. (11.7): a1 = 1, a2 = 0.01, a3 =
0.01, a4 = 0.75, a5 = 0.075, a6 = 0. The profiles are shown in times 0, 30, 60

a3 = 3kTmH ((F0 − γ N0) mH + 2α − β)

2(F mH + α)2mH
, a4 = 3kT γβ

4(F0 mH + α)2

a5 = 3kTmHγ

2(F0 mH + α)2
, a6 = 3kT (α − β)

2(F mH + α)2N0
.

The physical meaning of the coefficients in Eq. (11.7) relates to an influence of
the corresponding terms in the equation on the dynamics of concentration. Thus, the
dominance of coefficient a1 results in a hyperbolic wave nature of the propagation
of the concentration front described by the terms with the second-order spatial and
temporal derivatives, while the terms with coefficients a2 and a3 are responsible for
the decay of the concentration wave. The coefficients a4 − a6 at nonlinear terms in
Eq. (11.7) characterize the influence of nonlinearity, see [7] for details.

Numerical simulations demonstrate the influence of different nonlinear terms
on the dynamics of localized variation in concentration. Numerical simulations are
performedby assuming N0 = 1 and considering evolution of a localized input defined
by a Gaussian distribution,

ÑH = N0 + Q1 exp(−(x − x0)
2/Q2) + Q3 exp(−(x − x1)

2/Q2) at t = 0,
(11.8)

where xi and Qi , are constants. A unidirectional evolution is provided by an extra
nonzero initial condition for the initial velocity,
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Fig. 11.2 Dynamics of concentration at the coefficients of Eq. (11.7): a1 = 1, a2 = 0.01, a3 =
0.01, a4 = 0, a5 = 0, a6 = 0.5. The profiles are shown in times 0, 30, 60

Shown in Fig. 11.1 is the evolution of the initial condition containing both negative
and positive parts, Q1 and Q3 are of either sign in Eq. (11.8). They are marked
by t = 0. One can see those initial disturbances propagate losing their amplitudes.
Besides, a decrease in the amplitude, one can see a development of an asymmetry of
the profile: the negative part suffers a steepness of the front edge of the wave, while
the positive part demonstrates a steepness of the back edge of the wave.

On the contrary, an influence of the nonlinear term (ÑH,x ÑH,t )x on the same initial
condition doesn’t provide an asymmetry as shown in Fig. 11.2. There is a decrease
in the amplitude for both the positive and negative parts of the input, also one can
see an increase in the width of the propagating disturbance of concentration.

More simulations about relative influence of nonlinearities and an influence of
the polarity of the input on the behavior of the localized wave of concentration can
may be found in Ref. [7].

11.3 Dicrete Continuum Nonlinear Model

The decrease in the amplitude of concentration wave happens due to an influence
of dissipative terms in Eq. (11.7). The dynamical behavior of concentration varies
when the strains in the material are taken into account.
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The crystalline structure of amaterial can be described by a one-dimensional chain
with masses connected by elastic springs and only with neighboring interactions
betweenmasseswhen the interactionobeys theHookean linear law.Then the equation
of motion for a mass with the number n is

müm = C0(un+1 − un) − C0(un + un−1), (11.9)

where ui is the displacement of the i-th mass in the chain, m is the mass of the
element of the chain, C0 is the constant stiffness.

We assume a rheological relationship, C = Cn(n, t),

N0 + Nn

Cn
= N0

C0
+ Nn

CH
, (11.10)

where N0 is the known constant concentration of the elements of the chain in the
material, Nn(n, t) is the discrete concentration of hydrogen, CH is some known con-
stant, Nn(n, t) is the concentration of hydrogen in nanovoids, and CH characterizes
the weakening of the material due to the formation of nanovoids. Then we obtain

Cn = (N0 + Nn)CHC0

CH N0 + C0Nn
. (11.11)

The statement of the problem is described more precisely in [8].
The continuum concentration N (x, t) is usually described by an equation of trans-

fer,
Nt + (β0 + β1ux )N + δ̃ux + γ Nxx = 0. (11.12)

where a diffusion of the hydrogen concentration, Nxx is taken into account as well
as a contribution of strains in the dynamics of concentration. First, it affects the
source term coefficient β0 + β1ux , second, there is an influence δux to the variation
of concentration. β0, β1, δ̃, γ are constants.

The weakly long-wavelength case is considered and a small parameter ε is intro-
duced,

u = εu(X, T, , τ, Z), y = ε2y(X, T, τ, Z),

where
X = εx, T = εt, τ = ε3t, , Z = ε4t.

where

y(x, t) = C0

CH

N

N0
.

It is shown in Ref. [8] that for small y one assumes

y = y0 + εy1 + ...
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and the governing continuum equation for y0 is

2 hβ0

√
C0my0,θτ + β0C0h4

12
y0,θθθθ − β0C0h2

2
(y20 )θθ = 0. (11.13)

where

θ = X −
√
C0

m
T . (11.14)

The traveling wave solution is [8]

y0 = F − h2κ2sech2(κξ), (11.15)

where

ξθ = 1, ξτ = −W, W = h
√
C0

6
√
m

(
h2κ2 − 3F

)

The parameter W should be

W < −κ2 h
√
m

3
√
C0

.

to achieve only positive values of the solution for concentration.
Numerical results shown in Fig. 11.3 are the dynamics of an initial disturbance

of concentration around constant value F . The initial profile contains both positive

Fig. 11.3 Dynamics of concentration The constant F = 1
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and negative amplitude disturbances marked by t = 0. As times goes on, the nega-
tive amplitude part evolves into traveling wave with a constant amplitude which is
illustrated by a horizontal line in Fig. 11.3. The wave travels to the left. The positive
amplitude disturbance is dispersed and doesn’t give rise to a traveling localized wave
of concentration.

The results obtained are written in the transformed coordinates. Coming back to
the original variables, one obtains the solution for the stiffness [8]

C = C0(1 − ε2 F + ε2κ2 h2sech2(εκ(x − (

√
C0

m
+ ε2 W )t). (11.16)

The initial constant concentration F results in a decrease in the stiffness. The prop-
agating wave of concentration locally increases the stiffness but not above C0. The
wavemoves in the same direction as those shown in Figs. 11.1 and 11.2.More numer-
ical solutions can be found in Ref. [8].

11.4 Conclusions

Several related phenomena, the formation of nanovoids associated with the hydrogen
accumulation, the weakening of the material as a result of the nanovoids formation,
and the non-uniform distribution of hydrogen and nanovoids, which is observed
during the tension of corset specimens without stress concentrators with a uniform
initial hydrogen concentration at a uniform uniaxial deformation, are described using
the nonlinear wave propagation.

The dynamics or the relatively high rate of these processes can be explained by
the fact that hydrogen itself does not move inside the material, but changes its state
passing from a diffuse phase to a gaseous one inside nanovoids which can appear
and disappear when the stress and strain change. Most likely, the consequences of
this transformation for the strength and internal microstructure of the metal depend
on the parameters of the material, loading rate, temperature, and value of the initial
hydrogen concentration. The proposed wave approach makes it possible to establish
these relations after identifying the parameters of the models.

Twomodels are discussed. The first one concerns themodeling of a bi-continuum.
Numerical simulations reveal different influences of the nonlinear terms appearing in
the presence or in absence of the inhomogeneous force. Qualitatively different effects
such as arising of the tail behind the localized wave and formation of the counterpart
wave are found. Also, the nonlinear discrete-continuum model of mutual influence
of the hydrogen concentration and longitudinal strain in a chain is developed. A
nonlinearity is introduced via the variations in the coefficient of stiffness of the
springs between the elements of the chain. A two-dimensional lattice model will be
the subject of our future work to describe both an increase and a decrease in the
elastic constants.
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