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Abstract The big data revolution and recent advancements in computing power
have increased the interest in credit scoring techniques based on artificial intelli-
gence. This has found easy leverage in the fact that the accuracy of credit scoring
models has a crucial impact on the profitability of lending institutions. In this
chapter, we survey the most popular supervised credit scoring classification methods
(and their combinations through ensemble methods) in an attempt to identify a
superior classification technique in the light of the applied literature. There are at
least three key insights that emerge from surveying the literature. First, as far as
individual classifiers are concerned, linear classification methods often display a
performance that is at least as good as that of machine learning methods. Second,
ensemble methods tend to outperform individual classifiers. However, a dominant
ensemble method cannot be easily identified in the empirical literature. Third,
despite the possibility that machine learning techniques could fail to outperform
linear classification methods when standard accuracy measures are considered, in
the end they lead to significant cost savings compared to the financial implications
of using different scoring models.

1 Introduction

Credit scoring consists of a set of risk management techniques that help lenders to
decide whether to grant a loan to a given applicant [42]. More precisely, financial
institutions use credit scoring models to make two types of credit decisions. First,
a lender should decide whether to grant a loan to a new customer. The process
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that leads to this decision is called application scoring. Second, a lender may want
to monitor the risk associated with existing customers (the so-called behavioral
scoring). In the field of retail lending, credit scoring typically consists of a binary
classification problem, where the objective is to predict whether an applicant will
be a “good” one (i.e., she will repay her liabilities within a certain period of time)
or a “bad” one (i.e., she will default in part or fully on her obligations) based on a
set of observed characteristics (features) of the borrower.1 A feature can be of two
types: continuous, when the value of the feature is a real number (an example can
be the income of the applicant) or categorical, when the feature takes a value from a
predefined set of categories (an example can be the rental status of the applicant, e.g.,
“owner,” “living with parents,” “renting,” or “other”). Notably, besides traditional
categories, new predictive variables, such as those based on “soft” information have
been proposed in the literature to improve the accuracy of the credit score forecasts.
For instance, Wang et al. [44] use text mining techniques to exploit the content of
descriptive loan texts submitted by borrowers to support credit decisions in peer-to-
peer lending.

Credit scoring plays a crucial role in lending decisions, considering that the cost
of an error is relatively high. Starting in the 1990s, most financial institutions have
been making lending decisions with the help of automated credit scoring models
[17]. However, according to the Federal Reserve Board [15] the average delinquency
rate on consumer loans has been increasing again since 2016 and has reached 2.28%
in the first quarter of 2018, thus indicating that wide margins for improvement in the
accuracy of credit scoring models remain. Given the size of the retail credit industry,
even a small reduction in the hazard rate may yield significant savings for financial
institutions in the future [45].

Credit scoring also carries considerable regulatory importance. Since the Basel
Committee on Banking Supervision released the Basel Accords, especially the
second accord in 2004, the use of credit scoring has grown considerably, not only for
credit granting decisions but also for risk management purposes. Basel III, released
in 2013, enforced increasingly accurate calculations of default risk, especially in
consideration of the limitations that external rating agencies have shown during the
2008–2009 financial crisis [38]. As a result, over the past decades, the problem
of developing superior credit scoring models has attracted significant attention in
the academic literature. More recently, thanks to the increase in the availability
of data and the progress in computing power the attention has moved towards
the application of Artificial Intelligence (AI) and, in particular, Machine Learning
(ML) algorithms to credit scoring, when machines may learn and make predictions
without being explicitly assigned program instructions.

1There are also applications in which the outcome variable is not binary; for instance, multinomial
models are used to predict the probability that an applicant will move from one class of risk to
another. For example, Sirignano et al. [40] propose a nonlinear model of the performance of a pool
of mortgage loans over their life; they use neural networks to model the conditional probability
that a loan will transition to a different state (e.g., pre-payment or default).
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There are four major ML paradigms: supervised learning, semi-supervised
learning, unsupervised learning, and reinforcement learning [32]. In supervised
learning, a training dataset should consist of both input data and their corresponding
output target values (also called labels). Then, the algorithm is trained on the data
to find relationships between the input variables and selected output labels. If only
some target output values are available in a training dataset, then such a problem
is known as semi-supervised learning. Unsupervised learning requires only the
input data to be available. Finally, reinforcement learning does not need labelled
inputs/outputs but focuses instead on agents making optimal decisions in a certain
environment; a feedback is provided to the algorithm in terms of “reward” and
“punishment” so that the final goal is to maximize the agent’s cumulative reward.
Typically, lending institutions store both the input characteristics and the output
historical data concerning their customers. As a result, supervised learning is the
main focus of this chapter.

Simple linear classification models remain a popular choice among financial
institutions, mainly due to their adequate accuracy and straightforward implementa-
tion [29]. Furthermore, the majority of advanced ML techniques lack the necessary
transparency and are regarded as “black boxes”, which means that one is not able
to easily explain how the decision to grant a loan is made and on which parameters
it is based. In the financial industry, however, transparency and simplicity play a
crucial role, and that is the main reason why advanced ML techniques have not
yet become widely adopted for credit scoring purposes.2 However, Chui et al.
[12] emphasize that the financial industry is one of the leading sectors in terms
of current and prospective ML adoption, especially in credit scoring and lending
applications as they document that more than 25% of the companies that provide
financial services have adopted at least one advanced ML solution in their day-to-
day business processes.

Even though the number of papers on advanced scoring techniques has increased
dramatically, a consensus regarding the best-performing models has not yet been
reached. Therefore, in this chapter, besides providing an overview of the most
common classification methods adopted in the context of credit scoring, we will
also try to answer three key questions:

• Which individual classifiers show the best performance both in terms of accuracy
and of transparency?

• Do ensemble classifiers consistently outperform individual classification models
and which (if any) is the superior ensemble method?

2Casual interpretations of “black box” ML models have attracted considerable attention. Zhao
and Hastie [50] provide a summary and propose partial dependence plots (PDP) and individual
conditional expectations (ICE) as tools to enhance the interpretation of ML models. Dorie et
al. [13] report interesting results of a data analysis competition where different strategies for causal
inference—including “black box” models—are compared.
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• Do one-class classification models score higher accuracy compared to the best
individual classifiers when tested on imbalanced datasets (i.e., datasets where
one class is underrepresented)?

Our survey shows that, despite that ML techniques rarely significantly out-
perform simple linear methods as far as individual classifiers are concerned,
ensemble methods tend to show a considerably better classification performance
than individual methods, especially when the financial costs of misclassification are
accounted for.

2 Preliminaries and Linear Methods for Classification

A (supervised) learning problem is an attempt to predict a certain output using a set
of variables (features in ML jargon) that are believed to exercise some influence on
the output. More specifically, what we are trying to learn is the function h(x) that
best describes the relationship between the predictors (the features) and the output.
Technically, we are looking for the function h ∈ H that minimizes a loss function.

When the outcome is a categorical variable C (a label), the problem is said to
be a classification problem and the function that maps the inputs x into the output
is called classifier. The estimate Ĉ of C takes values in C , the set of all possible
classes. As discussed in Sect. 1, credit scoring is usually a classification problem
where only two classes are possible, either the applicant is of the “good” (G) or
of the “bad” (B) type. In a binary classification problem, the loss function can be
represented by a 2 × 2 matrix L with zeros on the main diagonal and nonnegative
values elsewhere. L(k, l) is the cost of classifying an observation belonging to class
Ck as Cl . The expected prediction error (EPE) is

EPE = E[L(C, Ĉ(X))] = EX

2∑

k=1

L[Ck,Ĉ(X)]p(Ck |X), (1)

where Ĉ(X) is the predicted class C based on X (the matrix of the observed
features), Ck represents the class with label k, and p(Ck |X) is the probability
that the actual class has label k conditional to the observed values of the features.
Accordingly, the optimal prediction Ĉ(X) is the one that minimizes the EPE point-
wise, i.e.,

Ĉ(x) = argmin
c∈C

2∑

k=1

L(Ck, c)p(Ck|X = x), (2)

where x is a realization of the features. Notably, when the loss function is of the 0–1
type, i.e., all misclassifications are charged a unit cost, the problem simplifies to

Ĉ(x) = argmin
c∈C

[1 − p(c|X = x)], (3)
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which means that

Ĉ(x) = Ck if p(Ck |X = x) = max
c∈C

p(c|X = x). (4)

In this section, we shall discuss two popular classification approaches that result
in linear decision boundaries: logistic regressions (LR) and linear discriminant
analysis (LDA). In addition, we also introduce the Naïve Bayes method, which is
related to LR and LDA as it also considers a log-odds scoring function.

2.1 Logistic Regression

Because of its simplicity, LR is still one of the most popular approaches used in the
industry for the classification of applicants (see, e.g., [23]). This approach allows
one to model the posterior probabilities of K different applicant classes using a
linear function of the features, while at the same time ensuring that the probabilities
sum to one and that their value ranges between zero and one. More specifically,
when there are only two classes (coded via y, a dummy variable that takes a value
of 0 if the applicant is “good” and of 1 if she is “bad”), the posterior probabilities
are modeled as

p(C = G|X = x) = exp(β0 + βT x)
1 + exp(β0 + βT x)

p(C = B|X = x) = 1

1 + exp(β0 + βT x)
. (5)

Applying the logit transformation, one obtains the log of the probability odds (the
log-odds ratio) as

log
p(C = G|X = x)

p(C = B|X = x)
= β0 + βT x. (6)

The input space is optimally divided by the set of points for which the log-odds
ratio is zero, meaning that the posterior probability of being in one class or in the
other is the same. Therefore, the decision boundary is the hyperplane defined by{
x|β0 + βT x = 0

}
. Logistic regression models are usually estimated by maximum

likelihood, assuming that all the observations in the sample are independently
Bernoulli distributed, such that the log-likelihood functions is

L (θ |x) = p(y|x; θ) =
T0∑

i=1

logpCi (xi; θ), (7)
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where T0 are the observations in the training sample, θ is the vector of parameters,
and pk(xi; θ) = p(C = k|X = xi; θ). Because in our case there are only two
classes coded via a binary response variable yi that can take a value of either zero
or one, β̂ is found by maximizing

L (β) =
T0∑

i=1

(yiβ
T xi − log (1 + exp(βT xi )). (8)

2.2 Linear Discriminant Analysis

A second popular approach used to separate “good” and “bad” applicants that lead
to linear decision boundaries is LDA. The LDA method approaches the problem
of separating two classes based on a set of observed characteristics x by modeling
the class densities fG(x) and fB(x) as multivariate normal distributions with means
μG, and μB and the same covariance matrix Σ , i.e.,

fG(x) = (2π)−K/2 (|Σ|)−1/2 exp

(
−1

2
(x − μG)T Σ−1(x − μG)

)

fB(x) = (2π)−K/2 (|Σ|)−1/2 exp

(
−1

2
(x − μB)T Σ−1(x − μB)

)
. (9)

To compare the two classes (“good” and “bad” applicants), one has then to compute
and investigate the log-ratio

log
p(C = G|X = x)

p(C = B|X = x)
= log

fG(x)
fB(x)

+ log
πG

πB

= log
πG

πB

− 1

2
(μB + μG)T Σ−1(μB + μG) + xT Σ−1(μB + μG), (10)

which is linear in x. Therefore, the decision boundary, which is the set where p(C =
G|X = x) = p(C = B|X = x), is also linear in x. Clearly the Gaussian parameters
μG, μB , and Σ are not known and should be estimated using the training sample as
well as the prior probabilities πG and πB (set to be equal to the proportions of good
and bad applicants in the training sample). Rearranging Eq. (10), it appears evident
that the Bayesian optimal solution is to predict a point to belong to the “bad” class if

xT Σ̂−1(μ̂B − μ̂G) >
1

2
μ̂

T
BΣ̂−1μ̂B − 1

2
μ̂

T
GΣ̂−1μ̂G + log π̂G − logπ̂G, (11)

which can be rewritten as

xT w > z (12)

wherew = Σ̂−1(μ̂B −μ̂G) and z = 1
2 μ̂

T
BΣ̂−1μ̂B − 1

2 μ̂
T
GΣ̂−1μ̂G+log π̂G−logπ̂G.
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Another way to approach the problem, which leads to the same coefficients w is
to look for the linear combination of the features that gives the maximum separation
between the means of the classes and the minimum variation within the classes,
which is equivalent to maximizing the separating distance M

M = ωT μ̂G − μ̂B

(ωT Σ̂ω)1/2
. (13)

Notably, the derivation of the coefficients w does not require that fG(x) and fB(x)
follow a multivariate normal as postulated in Eq. (9), but only that ΣG = ΣB =
Σ . However, the choice of z as a cut-off point in Eq. (12) requires normality. An
alternative is to use a cut-off point that minimizes the training error for a given
dataset.

2.3 Naïve Bayes

The Naïve Bayes (NB) approach is a probabilistic classifier that assumes that given
a class (G or B), the applicant’s attributes are independent. Let πG denote the prior
probability that an applicant is “good” and πB the prior probability that an applicant
is “bad.” Then, because of the assumption that each attribute xi is conditionally
independent from any other attribute xj for i �= j , the following holds:

p (x | G) = p (x1|G)p (x2|G) . . . p (xn|G) , (14)

where p(x | G) is the probability that a “good” applicant has attributes x. The
probability of an applicant being “good” if she is characterized by the attributes
x can now be found by applying Bayes’ theorem:

p (G | x) = p (x | G)πG

p(x)
. (15)

The probability of an applicant being “bad” if she is characterized by the attributes
x is

p (B | x) = p (x | B)πB

p(x)
. (16)

The attributes x are typically converted into a score, s(x), which is such that
p (G | x) = p (G | s(x)). A popular score function is the log-odds score [42]:

s (x) = log

(
p (G|x)
p (B|x)

)
= log

(
πGp (x|G)

πBp (x|B)

)
=

= log

(
πG

πB

)
+ log

(
p (x|G)

p (x|B)

)
= spop + woe (x) , (17)
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where spop is the log of the relative proportion of “good” and “bad” applicants in
the population and woe (x) is the weight of evidence of the attribute combination x.
Because of the conditional independence of the attributes, we can rewrite Eq. (17) as

s (x) = ln

(
πG

πB

)
+ ln

(
p (x1|G)

p (x1|B)

)
+ . . . + ln

(
p (xn|G)

p (xn|B)

)

= spop + woe (x1) + woe (x2) + . . . + woe (xn) . (18)

If woe (xi) is equal to 0, then this attribute does not affect the estimation of the
status of an applicant. The prior probabilities πG and πB are estimated using the
proportions of good and bad applicants in the training sample; the same applies to
the weight of evidence of the attributes, as illustrated in the example below.

Example Let us assume that a bank makes a lending decision based on two
attributes: the residential status and the monthly income of the applicant. The
data belonging to the training sample are given in Fig. 1. An applicant who
has a monthly income of USD 2000 and owns a flat, will receive a score of:

s (x) = ln

(
1300

300

)
+ ln

(
950/1300

150/300

)
+ ln

(
700/1300

100/300

)
= 2.32.

If p (G | s(x) = 2.32), the conditional probability of being “good” when
the score is 2.32, is higher than p (B | s(x) = 2.32), i.e., the conditional
probability of being “bad,” this applicant is classified as “good” (and vice
versa).

Owner

Income

$1000-

$1000

Total

200

G B G B G B

500

700

50

50

100

150

450

600

100

100

200

350

950

1300

150

150

300

Not owner Total

Fig. 1 This figure provides the number of individuals in each cluster in a fictional training sample
used to illustrate the NB approach. Two binary attributes are considered: the residential status
(either “owner” or “not owner”) and monthly income (either more than USD 1000 or less than
USD 1000). Source: Thomas et al. [42]
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A lender can therefore define a cutoff score, below which applicants are
automatically rejected as “bad.” Usually, the score s(x) is linearly transformed so
that its interpretation is more straightforward. The NB classifier performs relatively
well in many applications but, according to Thomas et al. [42], it shows poor
performance in the field of credit scoring. However, its most significant advantage is
that it is easy to interpret, which is a property of growing importance in the industry.

3 Nonlinear Methods for Classification

Although simple linear methods are still fairly popular with practitioners, because
of their simplicity and their satisfactory accuracy [29], more than 25% of the
financial companies have recently adopted at least one advanced ML solution in
their day-to-day business processes [12], as emphasized in Sect. 1. Indeed, these
models have the advantage of being much more flexible and they may be able to
uncover complex, nonlinear relationships in the data. For instance, the popular LDA
approach postulates that an applicant will be “bad” if her/his score exceeds a given
threshold; however, the path to default may be highly nonlinear in the mapping
between scores and probability of default (see [39]).

Therefore, in this section, we review several popular ML techniques for clas-
sification, such as Decision Trees (DT), Neural Network (NN), Support Vector
Machines (SVM), k-Nearest Neighbor (k-NN), and Genetic Algorithms (GA). Even
if GA are not exactly classification methods, evolutionary computing techniques
that help to find the “fittest” solution, we cover them in our chapter as this method is
widely used in credit scoring applications (see, e.g., [49, 35, 1]). Finally, we discuss
ensemble methods that combine different classifiers to obtain better classification
accuracy. For the sake of brevity, we do not cover deep learning techniques, which
are also employed for credit scoring purposes; the interested reader can find useful
references in [36].

3.1 Decision Trees

Decision Trees (also known as Classification Trees) are a classification method
that uses the training dataset to construct decision rules organized into tree-like
structures, where each branch represents an association between the input values
and the output label. Although different algorithms exist (such as classification and
regression trees, also known as CART), we focus on the popular C4.5 algorithm
developed by Quinlan [37]. At each node, the C4.5 algorithm splits the training
dataset according to the most influential feature through an iterative process. The
most influential feature is the one with the lowest entropy (or, similarly, with the
highest information gain). Let π̂G be the proportion of “good” applicants and π̂B

the proportion of “bad” applicants in the sample S. The entropy of S is then defined
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as in Baesens et al. [5]:

Entropy (S) = −π̂G log2
(
π̂G

) − π̂B log2
(
π̂B

)
. (19)

According to this formula, the maximum value of the entropy is equal to 1 when
π̂G = π̂B = 0.5 and it is minimal at 0, which happens when either π̂G = 0 or
π̂B = 0. In other words, an entropy of 0 means that we have been able to identify
the characteristics that lead to a group of good (bad) applicants. In order to split the
sample, we compute the gain ratio:

Gain ratio (S, xi) = Gain (S, xi)

Split Information(S, xi)
. (20)

Gain (S, xi) is the expected reduction in entropy due to splitting the sample
according to feature xi and it is calculated as

Gain (S, xi) = Entropy (S) −
∑

υ

|Sυ |
|S| Entropy (Sυ) , (21)

where υ ∈ values(xi), Sυ is a subset of the individuals in S that share the same
value of the feature xi , and

Split Information (S, xi) = −
∑

k

|Sk|
|S| log2

|Sk |
|S| (22)

where k ∈ values(xi) and Sk is a subset of the individuals in S that share the same
value of the feature xi . The latter term represents the entropy of S relative to the
feature xi . Once such a tree has been constructed, we can predict the probability
that a new applicant will be a “bad” one using the proportion of “bad” customers in
the leaf that corresponds to the applicant’s characteristics.

3.2 Neural Networks

NNmodels were initially inspired by studies of the human brain [8, 9]. A NN model
consists of input, hidden, and output layers of interconnected neurons. Neurons
in one layer are combined through a set of weights and fed to the next layer.
In its simplest single-layer form, a NN consists of an input layer (containing the
applicants’ characteristics) and an output layer. More precisely, a single-layer NN is
modeled as follows:

uk = ωk0 +
n∑

i=1

ωkixi

yk = f (uk) , (23)
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where x1, . . . , xn are the applicant’s characteristics, which in a NN are typically
referred to as signals, ωk1, . . . , ωkn are the weights connecting characteristic i

to the layer k (also called synaptic weights), and ωk0 is the “bias” (which plays
a similar role to the intercept term in a linear regression). Eq. (23) describes a
single-layer NN, so that k = 1. A positive weight is called excitatory because it
increases the effect of the corresponding characteristic, while a negative weight is
called inhibitory because it decreases the effect of a positive characteristic [42]. The
function f that transform the inputs into the output is called activation function and
may take a number of specifications. However, in binary classification problems, it
may be convenient to use a logistic function, as it produces an output value in the
range [0, 1]. A cut-off value is applied to yk to decide whether the applicant should
be classified as good or bad. Figure 2 illustrates how a single-layer NN works.

A single-layer NNmodel shows a satisfactory performance only if the classes can
be linearly separated. However, if the classes are not linearly separable, a multilayer
model could be used [33]. Therefore, in the rest of this section, we describe
multilayer perceptron (MLP) models, which are the most popular NN models in
classification problems [5]. According to Bishop [9], even though multiple hidden
layers may be used, a considerable number of papers have shown that MLP NN
models with one hidden layer are universal nonlinear discriminant functions that
can approximate arbitrarily well any continuous function. An MLP model with one
hidden layer, which is also called a three-layer NN, is shown in Fig. 3. This model
can be represented algebraically as

yk = f (1)(

n∑

i=0

ωkixi), (24)

Fig. 2 The figure illustrates a single-layer NN with one output neuron. The applicant’s attributes
are denoted by x1, . . . , xn, the weights are denoted by ω1, . . . , ωn, and ω0 is the “bias.” The
function f is called activation function and it transforms the sum of the weighted applicant’s
attributes to a final value. Source: Thomas et al. [42]
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Fig. 3 The figure shows the weights of a three-layer MLP NN model, where the input charac-
teristics are the following dummy variables: x1 is equal to one if the monthly income is low; x2
takes the value of one if the client has no credit history with the bank; x3 represents the applicant’s
residential status

where f (1) is the activation function on the second (hidden) layer and yk for k =
1 . . . , r are the outputs from the hidden layer that simultaneously represent the
inputs to the third layer. Therefore, the final output values zv can be written as

zv = f (2)

(
r∑

k=1

Kvkyk

)
= f (2)

(
r∑

k=1

Kvkf
(1)

(
n∑

i=0

ωkixi)

))
(25)

where f (2) is the activation function of the third (output) layer, zv for v = 1, . . . , s
are the final outputs, andKvk are the weights applied to the yk values. The estimation
of the weights is called training of the model and to this purpose the most popular
method is the back-propagation algorithm, in which the pairs of input values and
output values are presented to the model many times with the goal of finding the
weights that minimize an error function [42].

3.3 Support Vector Machines

The SVM method was initially developed by Vapnik [43]. The idea of this method
is to transform the input space into a high-dimensional feature space by using a
nonlinear function ϕ(•). Then, a linear classifier can be used to distinguish between
“good” and “bad” applicants. Given a training dataset of N pairs of observations
(xi , yi)

N
i=1, where xi are the attributes of customer i and yi is the corresponding

binary label, such that yi ∈ [−1, +1], the SVM model should satisfy the following
conditions:

{
wT ϕ(xi ) + b ≥ +1 if yi = +1

wT ϕ(xi ) + b ≤ −1 if yi = −1,
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Fig. 4 This figure illustrates
the main concept of an SVM
model. The idea is to
maximize the perpendicular
distance between the support
vectors and the separating
hyperplane. Source: Baesens
et al. [5]

which is equivalent to

yi

[
wT ϕ (xi ) + b

]
≥ 1, i = 1, . . . , N. (26)

The above inequalities construct a hyperplane in the feature space, defined by{
x|wT ϕ (xi ) + b = 0

}
, which distinguishes between two classes (see Fig. 4 for

the illustration of a simple two-dimensional case). The observations on the lines
wT ϕ (xi) + b = 1 and wT ϕ (xi) + b = −1 are called the support vectors.
The parameters of the separating hyperplane are estimated by maximizing the
perpendicular distance (called the margin), between the closest support vector and
the separating hyperplane while at the same time minimizing the misclassification
error.

The optimization problem is defined as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

minw,b,ξ J (w, b, ξ) = 1
2w

T w + C
∑N

i=1 ξi ,

subject to:

yi

[
wT ϕ (xi) + b

] ≥ 1 − ξi , i = 1, . . . , N

ξi ≥ 0, i = 1, . . . , N,

(27)

where the variables ξi are slack variables and C is a positive tuning parameter [5].
The Lagrangian to this optimization problem is defined as follows:

L (w, b, ξ ;α, ν) = J (w, b, ξ ) −
N∑

i=1

αi

{
yi

[
wT ϕ (xi) + b

]
− 1 + ξi

}
−

N∑

i=1

νiξi .

(28)

The classifier is obtained by minimizing L (w, b, ξ; α, ν) with respect to w, b, ξ

and maximizing it with respect to α, ν. In the first step, by taking the derivatives
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with respect to w, b, ξ , setting them to zero, and exploiting the results, one may
represent the classifier as

y (x) = sign

(
N∑

i=1

αiyiK (xi , x) + B

)
(29)

where K (xi , x) = ϕ (xi )
T ϕ (xi ) is computed using a positive-definite kernel

function. Some possible kernel functions are the radial basis function K (xi , x) =
exp(−||xi−xj ||22/σ 2) and the linear function K (xi , x) = xT

i xj . At this point, the
Lagrange multipliers αi can be found by solving:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

maxαi − 1
2

∑N
i,j=1 yiyjK

(
xi , xj

)
αiαj + ∑N

i=1 αi

subject to:
∑N

i=1 αiyi = 0

0 ≤ αi ≤ C, i = 1, . . . , N.

3.4 k-Nearest Neighbor

In the k-NN method, any new applicant is classified based on a comparison with
the training sample using a distance metric. The approach consists of calculating
the distances between the new instance that needs to be classified and each instance
in the training sample that has been already classified and selecting the set of the
k-nearest observations. Then, the class label is assigned according to the most
common class among k-nearest neighbors using a majority voting scheme or a
distance-weighted voting scheme [41]. One major drawback of the k-NN method
is that it is extremely sensitive to the choice of the parameter k, as illustrated in
Fig. 5. Given the same dataset, if k=1 the new instance is classified as “bad,” while if
k=3 the neighborhood contains one “bad” and two “good” applicants, thus, the new
instance will be classified as “good.” In general, using a small k leads to overfitting
(i.e., excessive adaptation to the training dataset), while using a large k reduces
accuracy by including data points that are too far from the new case [41].

The most common choice of a distance metric is the Euclidean distance, which
can be computed as:

d
(
xi , xj

) = ||xi − xj || =
[
(xi − xj )

T (xi − xj )
] 1
2

(30)

where xi and xj are the vectors of the input data of instances i and j , respectively.
Once the distances between the newest and every instance in the training sample
are calculated, the new instance can be classified based on the information available
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Fig. 5 The figure illustrates the main problem of a k-NN method with the majority voting
approach: its sensitivity to the choice of k. On the left side of the figure, a model with k=1 is
shown. Based on such a model, the new client (marked by a star symbol) would be classified as
“bad.” However, on the right side of the figure, a model with k=3 classifies the same new client as
“good.” Source: Tan et al. [41]

from its k-nearest neighbors. As seen above, the most common approach is to use
the majority class of k-nearest examples, the so-called majority voting approach

ynew = argmax
ν

∑

(xi ,yi)∈Sk

I (ν = yi), (31)

where ynew is the class of the new instance, ν is a class label, Sk is the set containing
k-closest training instances, yi is the class label of one of the k-nearest observations,
and I (•) is a standard indicator function.

The major drawback of the majority voting approach is that it gives the same
weight to every k-nearest neighbor. This makes the method very sensitive to the
choice of k, as discussed previously. However, this problem might be overcome by
attaching to each neighbor a weight based on its distance from the new instance, i.e.,

ωi = 1

d
(
xi , xj

)2 (32)

This approach is known as the distance-weighted voting scheme, and the class label
of the new instance can be found in the following way:

ynew = argmax
ν

∑

(xi ,yi)∈Sk

ωiI (ν = yi), (33)

One of the main advantages of k-NN is its simplicity. Indeed, its logic is similar to
the process of traditional credit decisions, which were made by comparing a new
applicant with similar applicants [10]. However, because estimation needs to be
performed afresh when one is to classify a new instance, the classification speed
may be slow, especially with large training samples.
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3.5 Genetic Algorithms

GA are heuristic, combinatorial optimization search techniques employed to deter-
mine automatically the adequate discriminant functions and the valid attributes [35].
The search for the optimal solution to a problem with GA imitates the evolutionary
process of biological organisms, as in Darwin’s natural selection theory. In order
to understand how a GA works in the context of credit scoring, let us suppose that
(x1, . . . , xn) is a set of attributes used to decide whether an applicant is good or bad
according to a simple linear function:

y = β0 +
N∑

i=1

βixi. (34)

Each solution is represented by the vector β = (β0, β1, . . . , βN) whose elements
are the coefficients assigned to each attribute. The initial step of the process is the
generation of a random population of solutions β0

J and the evaluation of their fitness
using a fitness function. Then, the following algorithms are applied:

1. Selection: a genetic operator selects the solutions that survive (the fittest
solutions)

2. Crossover: a genetic operator recombines the survived solutions
3. Mutation: a genetic operator allows for random mutations in the survived

solutions, with a low probability

The application of these algorithms results in the generation of a new population of
solutions β0

J . The algorithms selection-crossover-mutation are applied recursively
until an (approximate) optimal solution β∗

J is converged to.
Compared to traditional statistical approaches and NN, GA offers the advantage

of not being limited in its effectiveness by the form of functions and parameter
estimation [11]. Furthermore, GA is a nonparametric tool that can perform well
even in small datasets [34].

3.6 Ensemble Methods

In order to improve the accuracy of the individual (or base) classifiers illustrated
above, ensemble (or classifier combination) methods are often used [41]. Ensemble
methods are based on the idea of training multiple models to solve the same problem
and then combine them to get better results. The main hypothesis is that when
weak models are correctly combined, we can obtain more accurate and/or robust
models. In order to understand why ensemble classifiers may reduce the error rate
of individual models, it may be useful to consider the following example.
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Example Suppose that an ensemble classifier is created by using 25 different
base classifiers and that each classifier has an error rate εi = 0.25. If the
final credit decision is taken through a majority vote (i.e., if the majority of
the classifiers suggests that the customer is a “good” one, then the credit is
granted), the error rate of the ensemble model is

εensemble =
25∑

i=13

(
25

i

)
εi(1 − ε)25−i = 0.003, (35)

where i = 13, . . . , 25, which is much less than the individual rate of 0.25,
because the ensemble model would make a wrong decision only if more than
half of the base classifiers yield a wrong estimate.

It is easy to understand that ensemble classifiers perform especially well when
they are uncorrelated. Although in real-world applications it is difficult to obtain
base classifiers that are totally uncorrelated, considerable improvements in the
performance of ensemble classifiers are observed even when some correlations
exists but are low [17]. Ensemble models can be split into homogeneous and
heterogeneous. Homogeneous ensemble models use only one type of classifier and
rely on resampling techniques to generate k different classifiers that are then aggre-
gated according to some rule (e.g., majority voting). Examples of homogeneous
ensemble models are bagging and boosting methods. More precisely, the bagging
algorithm creates k bootstrapped samples of the same size as the original one by
drawing with replacement from the dataset. All the samples are created in parallel
and the estimated classifiers are aggregated according to majority voting. Boosting
algorithms work in the same spirit as bagging but the models are not fitted in
parallel: a sequential approach is used and at each step of the algorithm the model is
fitted, giving more importance to the observations in the training dataset that were
badly handled in the previous iteration. Although different boosting algorithms are
possible, one of the most popular is AdaBoost. AdaBoost was first introduced by
Freund and Schapire [19]. This algorithm starts by calculating the error of a base
classifier ht :

εt = 1

N

⎡

⎣
N∑

j=1

ωj I
(
ht

(
xj

) �= yj

)
⎤

⎦ . (36)

Then, the importance of the base classifier ht is calculated as:

αt = 1

2
ln

(
1 − εt

εt

)
. (37)
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The parameter αt is used to update the weights assigned to the training instances.
Let ω

(t)
i be the weight assigned to the training instance i in the t th boosting round.

Then, the updated weight is calculated as:

ω
(t+1)
i = ω

(t)
i

Zt

×
{
exp(−αt ) if ht (xi ) = yi

exp(αt ) if ht (xi ) �= yi,
(38)

whereZt is the normalization factor, such that
∑

i ω
(t+1)
i = 1. Finally, the AdaBoost

algorithm decision is based on

h (x) = sign

(
T∑

t=1

αtht (x)

)
. (39)

In contrast to homogeneous ensemble methods, heterogeneous ensemble methods
combine different types of classifiers. The main idea behind these methods is that
different algorithms might have different views on the data and thus combining
them helps to achieve remarkable improvements in predictive performance [47].
An example of heterogeneous ensemble method can be the following:

1. Create a set of different classifiers H = {ht , t = 1, . . . , T } that map an instance
in the training sample to a class yi : ht (xi ) = yi.

2. Start with an empty ensemble (S = ∅).
3. Add to the ensemble the model from the initial set that maximizes the perfor-

mance of the ensemble on the validation dataset according to the error metric.
4. Repeat Step 3 for k iterations, where k is usually less than the number of models

in the initial set.

A comparative evaluation of alternative ensemble methods is provided in Sect. 4.2.

4 Comparison of Classifiers in Credit Scoring Applications

The selection of the best classification algorithm among all methods that have been
proposed in the literature has always been a challenging research area. Although
many studies have examined the performance of different classifiers, most of these
papers have traditionally focused only on a few novel algorithms at the time and,
thus, have generally failed to provide a comprehensive overview of pros and cons of
alternative methods. Moreover, in most of these papers, a relatively small number of
datasets were used, which limited the practical applicability of the empirical results
reported. One of the most comprehensive studies that attempts to overcome these
issues and to apply thorough statistical tests to compare different algorithms has
been published by Stefan Lessmann and his coauthors [29]. By combining their
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results with other, earlier studies, this section seeks to isolate the best classification
algorithms for the purposes of credit scoring.

4.1 Comparison of Individual Classifiers

In the first decade of the 2000s, the focus of most papers had been on performing
comparisons among individual classifiers. Understandably, the question of whether
advancedmethods of classification, such as NN and SVM, might outperformLR and
LDA had attracted much attention. While some authors have since then concluded
that NN classifiers are superior to both LR and LDA (see, e.g., [2]), generally, it
has been shown that simple linear classifiers lead to a satisfactory performance
and, in most cases, that the differences between NN and LR are not statistically
significant [5]. This section compares the findings of twelve papers concerning
individual classifiers in the field of credit scoring. Papers were selected based on
two features: first, the number of citations, and, second, the publishing date. The
sample combines well-known papers (i.e., [45, 5]) with recent work (e.g., [29, 3])
in an attempt to provide a well-rounded overview.

One of the first comprehensive comparisons of linear methods with more
advanced classifiers was West [45]. He tested five NN models, two parametric
models (LR, LDA), and three nonparametric models (k-NN, kernel density, and
DT) on two real-world datasets. He found that in the case of both datasets, LR
led to the lowest credit scoring error, followed by the NN models. He also found
that the differences in performance scores of the superior models (LR and three
different way to implement NN) vs. the outperformed models were not statistically
significant. Overall, he concluded that LR was the best choice among individual
classifiers he tested. However, his methodology presented a few drawbacks that
made some of his findings potentially questionable. First, West [45] used only
one method of performance evaluation and ranking, namely, average scoring
accuracy. Furthermore, the size of his datasets was small, containing approximately
1700 observations in total (1000 German credit applicants, 700 of which were
creditworthy, and 690 Australian applicants, 307 of which were creditworthy).

Baesens et al. [5] remains one of the most comprehensive comparisons of
different individual classification methods. This paper overcame the limitations in
West [45] by using eight extensive datasets (for a total of 4875 observations) and
multiple evaluation methods, such as the percentage of correctly classified cases,
sensitivity, specificity, and the area under the receiver operating curve (henceforth,
AUC, an accuracy metric that is widely used when evaluating different classifiers).3

However, the results reported by Baesens et al. [5] were similar to West’s [45]: NN

3A detailed description of the performance measurement metrics that are generally used to evaluate
the accuracy of different classification methods can be found in the previous chapter by Bargagli-
Stoffi et al. [6].
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and SVM classifiers had the best average results; however, also LR and LDA showed
a very good performance, suggesting that most of the credit datasets are only weakly
nonlinear. These results have found further support in the work of Lessmann et al.
[29], who updated the findings in [5] and showed that NN models perform better
than LR model, but only slightly.4

These early papers did not contain any evidence on the performance of GA.
One of the earliest papers comparing genetic algorithms with other credit scoring
models is Yobas et al. [49], who compared the predictive performance of LDA
with three computational intelligence techniques (a NN, a decision tree, and a
genetic algorithm) using a small sample (1001 individuals) of credit scoring data.
They found that LDA was superior to genetic algorithms and NN. Fritz and
Hosemann [20] also reached a similar conclusion even though doubts existed on
their use of the same training and test sets for different techniques. Recently, these
early results have been overthrown. Ong et al. [35] compared the performance of
genetic algorithms to MLP, decision trees (CART and C4.5), and LR using two real-
world datasets, which included 1690 observations. Genetic algorithms turned out to
outperform other methods, showing a solid performance even on relatively small
datasets. Huang et al. [26] compared the performance of GA against NN, SVM, and
decision tree models in a credit scoring application using the Australian and German
benchmark data (for a total of almost 1700 credit applicants). Their study revealed
superior classification accuracy from GA than under other techniques, although
differences are marginal. Abdou [1] has investigated the relative performance of
GA using data from Egyptian public sector banks, comparing this technique with
probit analysis, reporting that GA achieved the highest accuracy rate and also the
lowest type-I and type-II errors when compared with other techniques.

One more recent and comprehensive study is that of Finlay [16], who evaluated
the performance of five alternative classifiers, namely, LR, LDA, CART, NN, and k-
NN, using the rather large dataset of Experian UK on credit applications (including
a total of 88,789 applications, 13,261 of which were classified as “bad”). He found
that the individual model with the best performance is NN; however, he also showed
that the overperformance of nonlinear models over their linear counterparts is rather
limited (in line with [5]).

Starting in 2010, most papers have shifted their focus to comparisons of
the performance of ensemble classifiers, which are covered in the next section.
However, some recent studies exist that evaluate the performance of individual
classifiers. For instance, Ala’raj and Abbod [2] (who used five real-world datasets
for a total of 3620 credit applications) and Bequé and Lessmann [7] (who used
three real-world credit datasets for a total of 2915 applications) have found that LR
has the best performance among the range of individual classifiers they considered.

4Importantly, compared to Baesens et al. [5], Lessmann et al. [29] used the more robust H-measure
instead of the AUC as a key performance indicator for their analysis. Indeed, as emphasized
by Hand [21], the AUC has an important drawback as it uses different misclassification cost
distributions for different classifiers (see also Hand and Anagnostopoulos [22]).
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Although ML approaches are better at capturing nonlinear relationships, similarly
to what is typical in credit risk applications (see [4]), it could be concluded that, in
general, a simple LR model remains a solid choice among individual classifiers.

4.2 Comparison of Ensemble Classifiers

According to Lessmann et al. [29], the new methods that have appeared in ML have
led to superior performance when compared to individual classifiers. However, only
a few papers concerning credit scoring have examined the potential of ensemble
methods, and most papers have focused on simple approaches. This section attempts
to determine whether ensemble classifiers offer significant improvements in per-
formance when compared to the best available individual classifiers and examines
the issue of uncovering which ensemble methods may provide the most promising
results. To succeed in this objective, we have selected and surveyed ten key papers
concerning ensemble classifiers in the field of credit scoring.

West et al. [46] were among the first researchers to test the relative performance
of ensemble methods in credit scoring. They selected three ensemble strategies,
namely, cross-validation, bagging, and boosting, and compared them to the MLP
NN as a base classifier on two datasets.5 West and coauthors concluded that among
the three chosen ensemble classifiers, boosting was the most unstable and had a
mean error higher than their baseline model. The remaining two ensemble methods
showed statistically significant improvements in performance compared to MLP
NN; however, they were not able to single out which ensemble strategy performed
the best since they obtained contrasting results on the two test datasets. One of
the main limitations of this seminal study is that only one metric of performance
evaluation was employed. Another extensive paper on the comparative performance
of ensemble classifiers is Zhou et al.’s [51]. They compared six ensemble methods
based on LS-SVM to 19 individual classifiers, with applications to two different
real-world datasets (for a total of 1113 observations). The results were evaluated
using three different performance measures, i.e., sensitivity, the percentage of
correctly classified cases, and AUC. They reported that the ensemble methods
assessed in their paper could not lead to results that would be statistically superior
to an LR individual classifier. Even though the differences in performance were not
large, the ensemble models based on the LS-SVM provided promising solutions
to the classification problem that was not worse than linear methods. Similarly,
Louzada et al. [30] have recently used three famous and publicly available datasets
(the Australian, the German, and the Japanese credit data) to perform simulations
under both balanced (p = 0:5, 50% of bad payers) and imbalanced cases (p = 0:1,

5While bagging and boosting methods work as described in Sect. 3, the cross-validation ensemble,
also known as CV, has been introduced by Hansen and Salamon [24] and it consists of an ensemble
of similar networks, trained on the same dataset.
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10% of bad payers). They report that two methods, SVM and fuzzy complex systems
offer a superior and statistically significant predictive performance. However, they
also notice that in most cases there is a shift in predictive performance when the
method is applied to imbalanced data. Huang and Wu [25] report that the use
of boosted GA methods improves the performance of underlying classifiers and
appears to be more robust than single prediction methods. Marqués et al. [31] have
evaluated the performance of seven individual classifier techniques when used as
members of five different ensemble methods (among them, bagging and AdaBoost)
on six real-world credit datasets using a fivefold cross-validation method (each
original dataset was randomly divided into five stratified parts of equal size; for
each fold, four blocks were pooled as the training data, and the remaining part was
employed as the hold out sample). Their statistical tests show that decision trees
constitute the best solution for most ensemble methods, closely followed by the
MLPNN and LR, whereas the k-NN and the NB classifiers appear to be significantly
the worst.

All the papers discussed so far did not offer a comprehensive comparison of
different ensemble methods, but rather they focused on a few techniques and
compared them on a small number of datasets. Furthermore, they did not always
adopt appropriate statistical tests of equal classification performance. The first
comprehensive study that has attempted to overcome these issues is Lessmann et
al. [29], who have compared 16 individual classifiers with 25 ensemble algorithms
over 8 datasets. The selected classifiers include both homogeneous (including
bagging and boosting) and heterogeneous ensembles. The models were evaluated
using six different performance metrics. Their results show that the best individual
classifiers, namely, NN and LR, had average ranks of 14 and 16 respectively, being
systematically dominated by ensemble methods. Based on the modest performance
of individual classifiers, Lessmann et al. [29] conclude that ML techniques have
progressed notably since the first decade of the 2000s. Furthermore, they report that
heterogeneous ensemble classifiers provide the best predictive performance.

Lessmann et al. [29] have also examined the potential financial implications of
using ensemble scoring methods. They considered 25 different cost ratios based on
the assumption that accepting a “bad” application always costs more than denying
a “good” application [42]. After testing three models (NN, RF, and HCES-Bag)
against LR, Lessmann et al. [29] conclude that for all cost ratios, the more advanced
classifiers led to significant cost savings. However, the most accurate ensemble
classifier, HCES-Bag, on average achieved lower cost savings than the radial basis
function NN method, 4.8 percent and 5.7 percent, respectively. Based on these
results, they suggested that the most statistically accurate classifier may not always
be the best choice for improving the profitability of the credit lending business.

Two additional studies, Florez-Lopez and Ramon-Jeronimo [18] and Xia et
al. [48], have focused on the interpretability of ensemble methods, constructing
ensemble models that can be used to support managerial decisions. Their empirical
results confirmed the findings of Lessmann et al. [29] that ensemble methods
consistently lead to better performances than individual scoring. Furthermore,
they concluded that it is possible to build an ensemble model that has both high
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interpretability and a high accuracy rate. Overall, based on the papers considered in
this section, it is evident that ensemblemodels offer higher accuracy compared to the
best individual models. However, it is impossible to select one ensemble approach
that will have the best performance over all datasets and error costs. We expect that
scores of future papers will appear with new, more advanced methods and that the
search for “the silver bullet” in the field of credit scoring will not end soon.

4.3 One-Class Classification Methods

Another promising development in credit scoring concerns one-class classification
methods (OCC), i.e., ML methods that try to learn from one class only. One of
the biggest practical obstacles to applying scoring methods is the class imbalance
feature of most (all) datasets, the so-called low-default portfolio problem. Because
financial institutions only store historical data concerning the accepted applicants,
the characteristics of “bad” applicants present in their data bases may not be
statistically reliable to provide a basis for future predictions ([27]. Empirical and
theoretical work has demonstrated that the accuracy rate may be strongly biased
with respect to imbalance in class distribution and that it may ignore a range of
misclassification costs [14], as in applied work it is generally believed that the
costs associated with type-II errors (bad customers misclassified as good) are much
higher than the misclassification costs associated with type-I errors (good customers
mispredicted as bad). OCC attempts to differentiate a set of target instances from all
the others. The distinguishing feature of OCC is that it requires labeled instances in
the training sample for the target class only, which in the case of credit scoring are
“good” applicants (as the number of “good” applicants is larger than that of “bad”
applicants). This section surveys whether OCC methods can offer a comparable
performance to the best two-class classifiers in the presence of imbalanced data
features.

The literature on this topic is still limited. One of the most comprehensive studies
is a paper by Kennedy [27], in which he compared eight OCC methods, in which
models are separately trained over different classes of datasets, with eight two-
class individual classifiers (e.g., k-NN, NB, LR) over three datasets. Two important
conclusions emerged. First, the performance of two-class classifiers deteriorates
significantly with an increasing class imbalance. However, the performance of some
classifiers, namely, LR and NB, remains relatively robust even for imbalanced
datasets, while the performance of NN, SVM, and k-NN deteriorates rapidly.
Second, one-class classifiers show superior performance compared to two-class
classifiers only at high levels of imbalance (starting at 99% of “good” and 1% of
“bad” applicants). However, the differences in performance between OCC models
and LR model were not statistically significant in most cases. Kennedy [27]
concluded that OCC methods failed to show statistically significant improvements
in performance compared to the best two-class classification methods. Using a
proprietary dataset from a major US commercial bank from January 2005 to April
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2009, Khandani et al. [28] showed that conditioning on certain changes in a
consumer’s bank account activity can lead to considerably more accurate forecasts
of credit card delinquencies by analyzing subtle nonlinear patterns in consumer
expenditures, savings, and debt payments using CART and SVM compared to
simple regression and logit approaches. Importantly, their trees are “boosted” to
deal with the imbalanced features of the data: instead of equally weighting all the
observations in the training set, they weight the scarcer observations more heavily
than the more populous ones.

These findings are in line with studies in other fields. Overall, the conclusion that
can be drawn is that OCC methods should not be used for classification problems
in credit scoring. Two-class individual classifiers show superior or comparable
performance for all cases, except for cases of extreme imbalances.

5 Conclusion

The field of credit scoring represents an excellent example of how the application
of novel ML techniques (including deep learning and GA) is in the process of rev-
olutionizing both the computational landscape and the perception by practitioners
and end-users of the relative merits of traditional vs. new, advanced techniques.
On the one hand, in spite of their logical appeal, the available empirical evidence
shows that ML methods often struggle to outperform simpler, traditional methods,
such as LDA, especially when adequate tests of equal predictive accuracy are
deployed. Although some of these findings may be driven by the fact that some of
the datasets used by the researchers (especially in early studies) were rather small (as
in the case, for instance, of West [45]), linear methods show a performance that is
often comparable to that of ML methods also when larger datasets are employed
(see, e.g., Finlay [17]). On the other hand, there is mounting experimental and
on-the-field evidence that ensemble methods, especially those that involve ML-
based individual classifiers, perform well, especially when realistic cost functions
of erroneous classifications are taken into account. In fact, it appears that the issues
of ranking and assessing alternative methods under adequate loss functions, and the
dependence of such rankings on the cost structure specifications, may turn into a
fertile ground for research development.
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