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Abstract What we learned from the global financial crisis is that to get information
about the underlying financial risk dynamics, we need to fully understand the
complex, nonlinear, time-varying, and multidimensional nature of the data. A strand
of literature has shown that machine learning approaches can make more accurate
data-driven predictions than standard empirical models, thus providing more and
more timely information about the building up of financial risks. Advancedmachine
learning techniques provide several advantages over empirical models traditionally
used to monitor and predict financial developments. First, they are able to deal
with high-dimensional datasets. Second, machine learning algorithms allow to deal
with unbalanced datasets and retain all of the information available. Third, these
methods are purely data driven. All of these characteristics contribute to their often
better predictive performance. However, as “black box” models, they are still much
underutilized in financial stability, a field where interpretability and accountability
are crucial.

1 Introduction

What we learned from the global financial crisis is that to get information about
the underlying financial risk dynamics, we need to fully understand the complex,
nonlinear, time-varying, and multidimensional nature of the data. A strand of
literature has shown that machine learning approaches canmake more accurate data-
driven predictions than standard empirical models, thus providing more and more
timely information about the building up of financial risks.
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Advanced machine learning techniques provide several advantages over empiri-
cal models traditionally used to monitor and predict financial developments. First,
they are able to deal with high-dimensional datasets, which is often the case in
economics and finance. In fact, the information set of economic agents, be it
central banks or financial market participants, comprises hundreds of indicators,
which should ideally all be taken into account. Looking at the financial sphere
more closely, as also mentioned by [25] and [9], banks should use, and are in
fact using, advanced data technologies to ensure they are able to identify and
address new sources of risks by processing large volumes of data. Financial
supervisors should also use machine learning and advanced data analytics (so-
called suptech) to increase their efficiency and effectiveness in dealing with large
amounts of information. Second, and contrary to standard econometric models,
machine learning algorithms allow to deal with unbalanced datasets, hence retaining
all of the information available. In the era of big data, one might think that losing
observations, i.e., information, is not anymore a capital sin as it used to be decades
ago. Hence, one could afford cleaning the dataset from problematic observations
to obtain, e.g., a balanced panel, given the large amount of observations one starts
with. On the contrary, large datasets require even more flexible models, as they
almost invariably feature large amounts of missing values or unpopulated fields,
“ragged” edges, mixed frequencies or irregular periodic patterns, and all sorts of
issues that standard techniques are not able to handle. Third, these methods are
purely data-driven, as they do not require making ex ante crucial modelling choices.
For example, standard econometric techniques require selecting a restricted number
of variables, as the models cannot handle too many predictors. Factor models, which
allow handling large datasets, still require the econometrician to set the number of
the underlying driving forces. Another crucial assumption, often not emphasized,
relates to the linearity of the relevant relations. While standard econometric models
require the econometrician to explicitly control for nonlinearities and interactions,
whose existence she should know or hypothesize a priori, machine learning methods
are designed to address these types of dynamics directly. All of these characteristics
contribute to their often better predictive performance.

Thanks to these characteristics, machine learning techniques are also more robust
in handling the fitting versus forecasting trade-off, which is reminiscent of the so-
called “forecasting versus policy dilemma” [21], to indicate the separation between
models used for forecasting and models used for policymaking. Presumably, having
a model that overfits in-sample when past data could be noisy leads to the retention
of variables that are spuriously significant, which produces severe deficiencies in
forecasting. The noise could also affect the dependent variable when the definition
of “crisis event” is unclear or when, notwithstanding a clear and accepted definition
of crisis, the event itself is misclassified due to a sort of noisy transmission of the
informational set used to classify that event. Machine learning gives an opportunity
to overcome this problem.

While offering several advantages, however, machine learning techniques also
suffer from some shortcomings. The most important one, and probably the main
reason why these models are still far from dominating in the economic and financial
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literature, is that they are “black box” models. Indeed, while the modeler can surely
control inputs, and obtain generally accurate outputs, she is not really able to explain
the reasons behind the specific result yielded by the algorithm. In this context, it
becomes very difficult, if not impossible, to build a story that would help users
make sense of the results. In economics and finance, however, this aspect is at least
as important as the ability to make accurate predictions.

Machine learning approaches are used in several very diverse disciplines, from
chemometrics to geology. With some years delay, the potential of data mining
and machine learning is also becoming apparent in the economics and finance
profession. Focusing on the financial stability literature, some papers have appeared
in relatively recent years, which use machine learning techniques for an improved
predictive performance. Indeed, one of the areas where machine learning techniques
have been more successful in finance is the construction of early warning models
and the prediction of financial crises. This chapter focuses on the two super-
vised machine learning approaches becoming increasingly popular in the finance
profession, i.e., decision trees and sparse models, including regularization-based
approaches. After explaining how these algorithms work, this chapter offers an
overview of the literature using these models to predict financial crises.

The chapter is structured as follows. The next section presents an overview of the
main machine learning approaches. Section 3 explains how decision tree ensembles
work, describing the most popular approaches. Section 4 deals with sparse models,
in particular the LASSO, as well as related alternatives, and the Bayesian approach.
Section 5 discusses the use of machine learning as a tool for financial stability policy.
Section 6 provides an overview of papers that have used these methods to assess the
probability of financial crises. Section 7 concludes and offers suggestions for further
research.

2 Overview of Machine Learning Approaches

Machine learning pertains to the algorithmic modeling culture [17], for which data
predictions are assumed to be the output of a partly unknowable system, in which a
set of variables act as inputs. The objective is to find a rule (algorithm) that operates
on inputs in order to predict or classify units more effectively without any a priori
belief about the relationships between variables. The common feature of machine
learning approaches is that algorithms are realized to learn from data with minimal
human intervention. The typical taxonomy used to categorize machine learning
algorithms is based on their learning approach, and clusters them in supervised and
unsupervised learning methods.1

1See [7] for details on this classification and a comprehensive discussion on the relevance of the
recent machine learning literature for economics and econometrics.
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Supervised machine learning focuses on the problem of predicting a response
variable, y, given a set of predictors, x. The goal of such algorithms is to make
good out-of-sample predictions, rather than estimating the structural relationship
between y and x. Technically, these algorithms are based on the cross-validation
procedure. This latter involves the repeated rotation of subsamples of the entire
dataset, whereby the analysis is performed on one subsample (the training set),
then the output is tested on the other subset(s) (the test set). Such a rotational
estimation procedure is conceived with the aim of improving the out-of-sample
predictability (accuracy), while avoiding problems of overfitting and selection bias,
this one induced by the distortion resulting from collecting nonrandomized samples.

Supervised machine learning methods include the following classes of algo-
rithms:

• Decision tree algorithms. Decision trees are decision methods based on the actual
attributes observed in the explored dataset. The objective is to derive a series of
rules of thumb, visualized in a tree structure, which drive from observations to
conclusions expressed as predicted values/attributes. When the response variable
is continuous, decision trees are named regression trees. When instead the
response variable is categorical, we have classification trees. The most popular
algorithm in this class is CART (Classification and Regression Trees) introduced
in [18].2 CART partitions the space of predictors x in a series of homogeneous
and disjoint regions with respect to the response variable y, whose nature defines
the tree as classification (when y is a categorical variable) or regression (when y

is a continuous variable) tree.
• Ensemble algorithms. Tree ensembles are extensions of single trees based on

the concept of prediction averaging. They aim at providing more accurate
predictions than those obtained with a single tree. The most popular ensemble
methods are the following: Boosting, Bootstrapped Aggregation (Bagging),
AdaBoost, Gradient Boosting Machines (GBM), Gradient Boosted Regression
Trees (GBRT). and Random Forest.

• Instance-based algorithms. These methods generate classification predictions
using only specific instances and finding the best match through a similarity
measure between subsamples. A list of the most used algorithms includes the
following: k-Nearest Neighbor (kNN), Learning Vector Quantization (LVQ),
Locally Weighted Learning (LWL), and Support Vector Machines (SVM). SVM,
in particular, are particularly flexible as they are used both for classification and
regression analysis. They are an extension of the vector classifier, which provides
clusters of observations identified through partitioning the space via linear
boundaries. In addition, SVM provide nonlinear classifications by mapping their
inputs into high-dimensional feature spaces through nonlinear boundaries. In
more technical terms, SVM are based on a hyperplane (or a set of hyperplanes—
which in a two-dimensional space are just lines) in a high/infinite-dimensional

2Less popular decision trees algorithms are: Chi-squared Automatic Interaction Detection
(CHAID), Iterative Dichotomiser 3 (ID3); C4.5 and C5.0.
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space. Hyperplane(s) are used to partition the space into classes and are optimally
defined by assessing distances between pairs of data points in different classes.
These distances are based on a kernel, i.e., a similarity function over pairs of data
points.

• Regularization algorithms. Regularization-based models offer alternative fitting
procedures to the least square method, leading to better prediction ability. The
standard linear model is commonly used to describe the relationship between
the y and a set of x1, x2, . . . , xp variables. Ridge regression, Least Absolute
Shrinkage and Selection Operator (LASSO), and Elastic Net are all based on
detecting the optimal constraint on parameter estimations in order to discard
redundant covariates and select those variables that most contribute to better
predict the dependent variable out-of-sample.

• Bayesian algorithms. These methods apply Bayes Theorem for both classifi-
cation and regression problems. The most popular Bayesian algorithms are:
Naive Bayes, Gaussian Naive Bayes, Multinomial Naive Bayes, Averaged One-
Dependence Estimators (AODE), Bayesian Belief Network (BBN), and Bayesian
Network (BN).

• Supervised Artificial Neural Networks. Artificial neural networks (ANN) are
models conceived to mimic the learning mechanisms of the human brain—
specifically, supervised ANN run by receiving inputs, which activate “neurons”
and ultimately lead to an output. The error between the estimation output and the
target is used to adjust the weights used to connect the neurons, henceminimizing
the estimation error.

Unsupervised machine learning applies in contexts where we explore only
x without having a response variable. The goal of this type of algorithm is to
understand the inner structure of x, in terms of relationships between variables,
homogeneous clustering, and dimensional reduction. The approach involves pattern
recognition using all available variables, with the aim of identifying intrinsic
groupings, and subsequently assigning a label to each data point. Unsupervised
machine learning includes clusters and networks.

The first class of algorithms pertains to clustering, in which the goal is, given a set
of observations on features, to partition the feature space into homogeneous/natural
subspaces. Cluster detection is useful when we wish to estimate parsimonious
models conditional to homogeneous subspaces, or simply when the goal is to detect
natural clusters based on the joint distribution of the covariates.

Networks are the second major class of unsupervised approaches, where the goal
is to estimate the joint distribution of the x variables. Network approaches can be
split in two subcategories: traditional networks and Unsupervised Artificial Neural
Networks (U-ANN). Networks are a flexible approach that gained popularity in
complex settings, where extremely large number of features have to be disentangled
and connected in order to understand inner links and time/spatial dynamics. Finally,
Unsupervised Artificial Neural Networks (U-ANN) are used when dealing with
unlabeled data sets. Different from Supervised Artificial Neural Networks, here the
objective is to find patterns in the data and build a new model based on a smaller set
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of relevant features, which can represent well enough the information in the data.3

Self-Organizing Maps (SOM), e.g., are a popular U-ANN-based approach which
provides a topographic organization of the data, with nearby locations in the map
representing inputs with similar properties.

3 Tree Ensembles

This section provides a brief overview of the main tree ensemble techniques, starting
from the basics, i.e., the construction of an individual decision tree. We start from
CART, originally proposed by [18]. This seminal paper has spurred a literature
reaching increasingly high levels of complexity and accuracy: among the most used
ensemble approaches, one can cite as examples bootstrap aggregation (Bagging,
[15]), boosting methods such as Adaptive Boosting (AdaBoost, [29]), Gradient
Boosting [30], and [31], Multiple Additive Regression Trees (MART, [32]), as well
as Random Forest [16].4 Note, however, that some of the ensemble methods we
describe below are not limited to CART and can be used in a general classification
and regression context.

We only present the most well-known algorithms, as the aim of this section
is not to provide a comprehensive overview of the relevant statistical literature.
Indeed, many other statistical techniques have been proposed in the literature, that
are similar to the ones we describe, and improve over the original proposed models
in some respects. The objective of this section is to explain the main ideas at the
root of the methods, in nontechnical terms.

Tree ensemble algorithms are generally characterized by a very good predictive
accuracy, often better than that of the most widely used regression models in
economics and finance, and contrary to the latter, are very flexible in handling
problematic datasets. However, the main issue with tree ensemble learning models
is that they are perceived as black boxes. As a matter of fact, it is ultimately not
possible to explain what a particular result is due to. To make a comparison with
a popular model in economics and finance, while in regression analysis one knows
the contribution of each regressor to the predicted value, in tree ensembles one is
not able to map a particular predicted value to one or more key determinants. In
policymaking, this is often seen as a serious drawback.

3On supervised and unsupervised neural networks see [57].
4See [56] for a review of the relevant literature.
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Fig. 1 Example of binary
tree structure x1>x1*

no yes

x2>x2**

no yes

x2>x2*

no yes

p=1p=0.63 p=0.53p=1

3.1 Decision Trees

Decision trees are nonparametric models constructed by recursively partitioning a
dataset through its predictor variables, with the objective of optimally predicting a
response variable. The response variable can be continuous (for regression trees)
or categorical (for classification trees). The output of the predictive model is a tree
structure like the one shown in Fig. 1. CART are binary trees, with one root node,
only two branches departing from each parent node, each entering into a child node,
and multiple terminal nodes (or “leaves”). There can also be nonbinary decision
trees, where more than two branches can attach to a node, as, e.g., those based on
Chi-square automatic interaction detection (CHAID, [43]). The tree in Fig. 1 has
been developed to classify observations, which can be circles, triangles, or squares.
The classification is based on two features, or predictors, x1 and x2. In order to
classify an observation, starting from the root node, one needs to check whether the
value of feature x1 for this observation is higher or lower than a particular threshold
x∗. Next, the value of feature x2 becomes relevant.5 Based on this, the tree will
eventually classify the observation as either a circle or a triangle. In the case of the
tree in Fig. 1, for some terminal nodes the probability attached to the outcome is
100%, while for some other terminal nodes, it is lower. Notice that this simple tree
is not able to correctly classify squares, as a much deeper tree would be needed for
that. In other words, more splits would be needed to identify a partition of the space
where observations are more likely to be squares than anything else. The reason will
become clearer looking at the way the tree is grown.

Figure 2 explains how the tree has been constructed, starting from a sample
of circles, triangles, and squares. For each predictor, the procedure starts by
considering all the possible binary splits obtained from the sample as a whole.
In our example, where we only have two predictors, this implies considering all

5Notice that this is not necessarily the case, as the same variable can be relevant in the tree at
consecutive nodes.
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Fig. 2 Recursive partitioning x2

x1x1*

x2*

x2**

possible values for x1 and x2. For each possible split, the relevant impurity measure
of the child nodes is calculated. The impurity of a node can be measured by the
Mean Squared Error (MSE), in the case of regression trees, or the Gini index, for
classification trees, or information entropy. In our case, the impurity measure will
be based on the number of circles and triangles in each subspace associated with
each split. The best split is the value for a specific predictor, which attains the
maximum reduction in node impurity. In other words, the algorithm selects the
predictor and the associated threshold value which split the sample into the two
purest subsamples. In the case of classification trees, e.g., the aim is to obtain child
nodes which ideally only contain observations belonging to one class, in which case
the Gini index corresponds to zero. Looking at Fig. 2, the first best split corresponds
to the threshold value x∗

1 . Looking at the two subspaces identified by this split, the
best split for x1 < x∗

1 is x∗
2 , which identifies a pure node for x2 > x∗

2 . The best split
for x1 > x∗

1 is x∗∗
2 , which identifies a pure node for x2 < x∗∗

2 . The procedure is run
for each predictor at each split and could theoretically continue until each terminal
node is pure. However, to avoid overfitting, normally a stopping rule is imposed,
which, e.g., requires a minimum size for terminal nodes. Alternatively, one can ex
post “prune” large trees, by iteratively merging two adjoining terminal nodes.6

Decision trees are powerful algorithms that present many advantages. For
example, in terms of data preparation, one does not need to clean the dataset from
missing values or outliers, as they are both handled by the algorithm, nor does one
need to normalize the data. Moreover, once the tree structure is built, the model
output can be operationalized also by the nontechnical user, who will simply need to
assess her observation of interest against the tree. However, they also suffer from one
major shortcoming, i.e., the tree structure is often not robust to small variations in
the data. This is due to the fact that the tree algorithm is recursive, hence a different
split at any level of the structure is likely to yield different splits at any lower level. In

6See [38] for technical details, including specific model choice rules.
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extreme cases, even a small change in the value of one predictor for one observation
could generate a different split.

3.2 Random Forest

Tree ensembles have been proposed to improve the robustness of predictions
realized through single models. They are collections of single trees, each one grown
on a subsample of observations. In particular, tree ensembles involve drawing
subsets of are collections of regression trees, where each tree is grown on a
subsample of observations. In particular, tree ensembles involve drawing subsets of
observations with replacement, i.e., Bootstrapping and Aggregating (also referred to
as “BAGGING”) the predictions from a multitude of trees. The Random Forest [16]
is one of the most popular ensemble learning inference procedures. The Random
Forest algorithm involves the following steps:

1. Selecting a random subsample of the observations7

2. Selecting a random small subset of the predictors8

3. Growing a single tree based on this restricted sample
4. Repeating the first two steps thousands of times9

Predictions for out-of-sample observations are based on the predictions from all the
trees in the Forest.

On top of yielding a good predictive performance, the Random Forest allows to
identify the key predictors. To do so, the predictive performance of each tree in the
ensemble needs to be measured. This is done based on how good each tree is at
correctly classifying or estimating the data that are not used to grow it, namely
the so-called out-of-bag (OOB) observations. In practice, it implies computing
the MSE or the Gini impurity index for each tree. To assess the importance of a
predictor variable, one has to look at how it impacts on predictions in terms of
MSE or Gini index reduction. To do so, one needs to check whether the predictive
performance worsens by randomly permuting the values of a specific predictor in
the OOB data. If the predictor does not bring a significant contribution in predicting
the outcome variable, it should not make a difference if its values are randomly
permuted before the predictions are generated. Hence, one can derive the importance
of each predictor by checking to what extent the impurity measure worsens.

7It is common practice to use 60% of the total observations (see [38]).
8The number of the selected predictors is generally around to the square root of the total number
of predictors, while [16] tests with one variable at a time and with a number of features equal to
the first integer less than log2M + 1, where M is the total number of features.
9The accuracy of the Random Forest algorithm is heuristically proven to converge with around
3000 trees (see [38]).
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3.3 Tree Boosting

Another approach to the construction of Tree ensembles is Tree Boosting. Boosting
means creating a strong prediction model based on a multitude of weak prediction
models, which could be, e.g., CARTs. Adaptive Boosting (AdaBoost, [29]) is one
of the first and the most popular boosting methods, used for classification problems.
It is called adaptive because the trees are built iteratively, with each consecutive tree
increasing the predictive accuracy over the previous one. The simplest AdaBoost
algorithm works as follows:

1. Start with growing a tree with just one split.10

2. Consider the misclassified observations and assign them a higher weight com-
pared to the correctly classified ones.

3. Grow another tree on all the (weighted) observations.
4. Update the weights.
5. Repeat 3–4 until overfitting starts to occur. This will be reflected in a worsening

of the predictive performance of the tree ensemble on out-of-sample data.

Later, the Gradient Boosting algorithm was proposed as a generalization of
AdaBoost [30]. The simplest example would involve the following steps:

1. Grow a regression tree with a few attributes.11

2. Compute the prediction residuals from this tree and the resulting mean squared
error.12

3. On the residuals, grow another tree which optimizes the mean squared error.
4. Repeat 1–3 until overfitting starts to occur.

To avoid overfitting, it has been proposed to include an element of randomness.
In particular, in Stochastic Gradient Boosting [31], each consecutive simple tree is
grown on the residuals from the previous trees, but based only on a subset of the
full data set. In practice, each tree is built on a different subsample, similarly to the
Random Forest.

3.4 CRAGGING

The approaches described above are designed for independent and identically
distributed (i.i.d.) observations. However, often this is not the case in economics
and finance. Often, the data has a panel structure, e.g., owing to a set of variables

10Freund and Schapire [29] do not use CART and also propose two more complex algorithms,
where the trees are grown by using more than one attribute.
11Typically between 4 and 8, see [38].
12More generally, one can use other loss functions than the mean squared error, such as the mean
absolute error.
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being collected for several countries. In this case, observations are not independent;
hence there is information in the data that can be exploited to improve the predictive
performance of the algorithm. To this aim, the CRAGGING (CRoss-validation
AGGregatING) algorithm has been developed as a generalization of regression trees
[66]. In the case of a panel comprising a set of variables for a number of countries
observed through time, the CRAGGING algorithm works as follows:

1. Randomly partition the whole sample into subsets of equal size. The number of
subsets needs to be smaller than the number of countries.

2. One of the subsets is reserved for testing, while the others are used to train the
algorithm. From the training set, one country is removed and a regression tree is
grown and pruned.

3. The test set is used to compute predictions based on the tree.
4. The country is reinserted in the training set and steps 2–3 are repeated for all the

countries.
5. A cross-validation procedure is run over the test set to obtain a tree which

minimizes prediction errors. Hence, CRAGGING combines two types of cross-
validation, namely, the leave-one-unit-out cross-validation, in which the units
are removed one at a time from the training set and then perturbed, and the
usual cross-validation on the test sets, run to minimize the prediction error out-
of-sample. (see [66] for details).

6. Steps 1–5 are repeated thousands of times and predictions from the thousands of
trees are aggregated by computing the arithmetic average of those predictions.

7. As a final step, a regression tree is estimated on the predictions’ average
(computed at step 6) using the same set of the original covariates.

This algorithm eventually yields one single tree, thereby retaining the interpretabil-
ity of the model. At the same time, its predictions are based on an ensemble of trees,
which increases its predictive accuracy and stability.

4 Regularization, Shrinkage, and Sparsity

In the era of Big Data, standard regression models increasingly face the “curse
of dimensionality.” This relates to the fact that they can only include a relatively
small number of regressors. Too many regressors would lead to overfitting and
unstable estimates. However, often we have a large number of predictors, or
candidate predictors. For example, this is the case for policymakers in economics
and finance, who base their decisions on a wide information set, including hundreds
of macroeconomic and macrofinancial data through time. Still, they can ultimately
only consider a limited amount of information; hence variable selection becomes
crucial.

Sparse models offer a solution to deal with a large number of predictor variables.
In these models, regressors are many but relevant coefficients are few. The Least
Absolute Shrinkage and Selection Operator (LASSO), introduced by [58] and
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popularized by [64], is one of the most used models in this literature. Also in this
case, from this seminal work an immense statistical literature has developed with
increasingly sophisticated LASSO-based models. Bayesian shrinkage is another
way to achieve sparsity, very much used, e.g., in empirical macroeconomics, when
variables are often highly collinear. Instead of yielding a point estimate for the
model parameters, it yields a probability distribution, hence incorporating the
uncertainty surrounding the estimates. In the same spirit, BayesianModel Averaging
is becoming popular also in finance to account for model uncertainty.

4.1 Regularization

Regularization is a supervised learning strategy that overcomes this problem. It
reduces the complexity of the model by shrinking the parameters toward some
value. In practice, it penalizes more complex models in favor of more parsimonious
ones. The Least Absolute Shrinkage and Selection Operator (LASSO, [58] and
[64]), increasingly popular in economics and finance, uses L1 regularization. In
practice, it limits the size of the regression coefficients by imposing a penalty equal
to the absolute value of the magnitude of the coefficients. This implies shrinking the
smallest coefficients to zero, which is removing some regressors altogether. For this
reason, the LASSO is used as a variable selection method, allowing to identify key
predictors from a pool of several candidate ones. A tuning parameter λ in the penalty
function controls the level of shrinkage: for λ = 0 we have the OLS solution, while
for increasing values of λ more and more coefficients are set to zero, thus yielding
a sparse model.

Ridge regression involves L2 regularization, as it uses the squared magnitude of
the coefficients as penalty term in the loss function. This type of regularization does
not shrink parameters to zero. Also in this case, a crucial modeling choice relates to
the value of the tuning parameter λ in the penalty function.

The Elastic Net has been proposed as an improvement over the LASSO [38],
and combines the penalty from LASSO with that of the Ridge regression. The
Elastic Net seems to be more efficient than the LASSO, while maintaining a similar
sparsity of representation, in two cases. The first one is when the number of predictor
variables is larger than the number of observations: in this case, the LASSO tends
to select at most all the variables before it saturates. The second case is when there
is a set of regressors whose pairwise correlations are high: in this case, the LASSO
tends to select only one predictor at random from the group.13

The Adaptive LASSO [68] is an alternative model also proposed to improve
over the LASSO, by allowing for different penalization factors of the regression
coefficients. By doing so, the Adaptive LASSO addresses potential weaknesses of

13See [69].
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the classical LASSO under some conditions, such as the tendency to select inactive
predictors, or over-shrinking the coefficients associated with correct predictors.

4.2 Bayesian Learning

In Bayesian learning, shrinkage is defined in terms of a parameter’s prior probability
distribution, which reflects the modeler’s beliefs.14 In the case of Bayesian linear
regression, in particular, the prior probability distribution for the coefficients may
reflect how certain one is about some coefficients being zero, i.e., about the
associated regressors being unimportant. The posterior probability of a given
parameter is derived based on both the prior and the information that is contained
in the data. In practice, estimating a linear regression using a Bayesian approach
involves the following steps:

1. Assume a prior probability distribution for the dependent variable, the coeffi-
cients, and the variance of the error term.

2. Specify the likelihood function, which is defined as the probability of the data
given the parameters.

3. Derive the posterior distribution, which is proportional to the likelihood times the
prior.

4. If the likelihood is such that the posterior cannot be derived analytically, use
sampling techniques such as Markov Chain Monte Carlo (MCMC) method
to generate a large sample (typically based on thousands of draws) from the
posterior distribution.

5. The predicted value for the dependent variable, as well as the associated highest
posterior density interval (e.g., at the 95% level), are derived based on the
coefficients’ posterior distribution.

By yielding probability distributions for the coefficients instead of point esti-
mates, Bayesian linear regression accounts for the uncertainty around model
estimates. In the same spirit, Bayesian Model Averaging (BMA, [46]) adds one
layer by considering the uncertainty around the model specification. In practice, it
assumes a prior distribution over the set of all considered models, reflecting the
modeler’s beliefs about each model’s accuracy in describing the data. In the context
of linear regression, model selection amounts to selecting subsets of regressors
from the set of all candidate variables. Based on the posterior probability associated
with each model, which takes observed data into account, one is able to select and
combine the best models for prediction purposes. Stochastic search algorithms help

14The book by [34] covers Bayesian inference from first principles to advanced approaches,
including regression models.
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reduce the dimension of the model space when the number of candidate regressors
is not small.15

Finally, some approaches have more recently been proposed which link the
LASSO-based literature with the Bayesian stream. This avenue was pioneered by
the Bayesian LASSO [53], which connects the Bayesian and LASSO approaches by
interpreting the LASSO estimates as Bayesian estimates, based on a particular prior
distribution for the regression coefficients. As a Bayesian method, the Bayesian
LASSO yields interval estimates for the LASSO coefficients. The Bayesian adaptive
LASSO (BaLASSO, [47]) generalizes this approach by allowing for different
parameters in the prior distributions of the regression coefficients. The Elastic Net
has also been generalized in a Bayesian setting [40], providing an efficient algorithm
to handle correlated variables in high-dimensional sparse models.

5 Critical Discussion on Machine Learning as a Tool for
Financial Stability Policy

As discussed in [5], standard approaches are usually unable to fully understand the
risk dynamics within financial systems in which structural relationships interact in
nonlinear and state-contingent ways. And indeed, traditional models assume that
risk dynamics, e.g., those eventually leading to banking or sovereign crises, can be
reduced to common data models in which data are generated by independent draws
from predictor variables, parameters, and random noise. Under these circumstances,
the conclusions we can draw from these models are “about the models mechanism,
and not about natures mechanism” [17]. To put the point into perspective, let us
consider the goal of realizing a risk stratification for financial crisis prediction using
regression trees. Here the objective should be based on identifying a series of “red
flags” for potential observable predictors that help to detect an impending financial
crisis through a collection of binary rules of thumb such as the value of a given
predictor being larger or lower than a given threshold for a given observation. In
doing this, we can realize a pragmatic rating system that can capture situations of
different risk magnitudes, from low to extreme risk, whenever the values of the
selected variables lead to risky terminal nodes. And the way in which such a risk
stratification is carried out is, by itself, a guarantee to get the best risk mapping in
terms of most important variables, optimal number of risk clusters (final nodes),
and corresponding risk predictions (final nodes’ predictions). In fact, since the
estimation process of the regression tree, as all machine learning algorithms, is

15With M candidate regressors, the number of possible models is equal to 2M .
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based on cross-validation,16 the rating system is validated by construction, as the
risk partitions are realized in terms of maximum predictability.

However, machine learning algorithms also have limitations. The major caveat
sits on the same connotation of data-driven algorithms. In a sense, machine learning
approaches limit their knowledge to the data they process, no matter how and why
those data lead to specific models. In statistical language, the point relates to the
question about the underlying data-generation process. In more depth, machine
learning is expected to say little about the causal effect between y and x, but
rather it is conceived with the end to predict y using and selecting x. The issue is
extremely relevant when exploring the underlying structure of the relationship and
trying to make inference about the inner nature of the specific economic process
under study. A clear example of how this problem materializes is in [52]. These
authors make a repeated house-value prediction exercise on subsets of a sample
from the American Housing Survey, by randomly partitioning the sample, next re-
estimating the LASSO predictor. In doing so, they document that a variable used in
one partition may be unused in another while maintaining a good prediction quality
(the R2 remains roughly constant from partition to partition). A similar instability is
also present in regression trees. Indeed, since these models are sequential in nature
and locally optimal at each node split, the final tree may not guarantee a global
optimal solution, with small changes in the input data translating into large changes
in the estimation results (the final tree).

Because of these issues, machine learning tools should then be used care-
fully.17 To overcome the limitations of machine learning techniques, one promising
avenue is to use them in combination with existing model-based and theory-
driven approaches.18 For example, [60] focus on sovereign debt crises prediction
and explanation proposing a procedure that mixes a pure algorithmic perspective,
without making assumptions about the data generating process, with a parametric
approach (see Sect. 6.1). This mixed approach allows to bypass the problem of
reliability of the predictive model, thanks to the use of an advanced machine
learning technique. At the same time, it allows to estimate a distance-to-default, via
a standard probit regression. By doing so, the empirical analysis is contextualized
within a theoretical-based process similar to the Merton-based distance-to-default.

16The data are partitioned into subsets such that the analysis is initially performed on a single
subset (the training sets), while the other subset(s) are retained for subsequent use in confirming
and validating the initial analysis (the validation or testing sets).
17See [6] on the use of big data for policy.
18See [7] for an overview of recently proposed methods at the intersection of machine learning and
econometrics.
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6 Literature Overview

This section provides an overview of a growing literature, which applies the models
described in the previous section—or more sophisticated versions—for financial
stability purposes. This literature has developed in the last decade, with more
advanced techniques being applied in finance only in recent years. This is the so-
called second generation of Early Warning Models (EWM), developed after the
global financial crisis. While the first generation of EWM, popular in the 1990s,
was based on rather simple approaches such as the signaling approach, the second
generation of EWM implement machine learning techniques, including tree-based
approaches and parametric multiple-regime models. In Sect. 6.1 we will review
papers using decision trees, while Sect. 6.2 deals with financial stability applications
of sparse models.

6.1 Decision Trees for Financial Stability

There are several success stories on the use of decision trees to address financial
stability issues. Several papers propose EWM for banking crises. One of the first
papers applying classification trees in this field is [22], where the authors use a
binary classification tree to analyze banking crises in 50 emerging markets and
developed economies. The tree they grow identifies the conditions under which a
banking crisis becomes likely, which include high inflation, low bank profitability,
and highly dollarized bank deposits together with nominal depreciation or low bank
liquidity. The beauty of this tool stands in the ease of use of the model, which
also provides specific threshold values for the key variables. Based on the proposed
tree, policymakers only need to monitor whether the relevant variables exceed the
warning thresholds in a particular country. [50] also aim at detecting vulnerabilities
that could lead to banking crises, focusing on emerging markets. They apply the
CRAGGING approach to test 540 candidate predictors and identify two banking
crisis’ “danger zones”: the first occurs when high interest rates on bank deposits
interact with credit booms and capital flights; the second occurs when an investment
boom is financed by a large rise in banks’ net foreign exposure. In a recent
working paper by [33], the author uses the same CRAGGING algorithm to identify
vulnerabilities to systemic banking crises, based on a sample of 15 European Union
countries. He finds that high credit aggregates and a low market risk perception
are amongst the key predictors. [1] also develop an early warning system for
systemic banking crises, which focuses on the identification of unsustainable credit
developments. They consider 30 predictor variables for all EU countries and apply
the Random Forest approach, showing that it outperforms competing logit models
out-of-sample. [63] also apply the Random Forest to assess vulnerabilities in the
banking sector, including bank-level financial statements as predictor variables. [14]
compare a set of machine learning techniques, also including trees and the Random
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Forest, to network- and regression-based approaches, showing that machine learning
models mostly outperform the logistic regression in out-of-sample predictions and
forecasting. The authors also offer a narrative for the predictions ofmachine learning
models, based on the decomposition of the predicted crisis probability for each
observation into a sum of contributions from each predictor. [67] implements
BAGGING and the Random Forest to measure the risk of banking crises, using a
long-run sample for 17 countries. He finds that tree ensembles yield a significantly
better predictive performance compared to the logit. [20] use AdaBoost to identify
the buildup of systemic banking crises, based on a dataset comprising 100 advanced
and emerging economies. They also find that machine learning algorithms can have
a better predictive performance than logit models. [13] is the only work, to our
knowledge, finding an out-of-sample outperformance of conventional logit models
over machine learning techniques, including decision trees and the Random Forest.

Also for sovereign crises several EWM have been developed based on tree
ensemble techniques. The abundant literature on sovereign crises has documented
the high complexity and the multidimensional nature of sovereign default,
which often lead to predictive models characterized by irrelevant theory and
poor/questionable conclusions. One of the first papers exploring machine learning
methods in this literature is [49]. The authors compare the logit and the CART
approach, concluding that the latter overperforms the logit with 89% of the crises
correctly predicted; however, it issues more false alarms. [48] also use CART to
investigate the roots of sovereign debt crises, finding that they differ depending on
whether the country faces public debt sustainability issues, illiquidity, or various
macroeconomic risks. [60] propose a procedure that mixes the CRAGGING and the
probit approach. In particular, in the first step CRAGGING is used to detect the most
important risk indicators with the corresponding threshold, while in a second step a
simple pooled probit is used to parametrize the distances to the thresholds identified
in the first step (so-called “Multidimensional Distance to Collapse Point”). [61]
again use CRAGGING, to predict sovereign crises based on a sample of emerging
markets together with Greece, Ireland, Portugal, and Spain. They show that this
approach outperforms competing models, including the logit, while balancing in-
sample goodness of fit and out-of-sample predictive performance. More recently,
[5] use a recursive partitioning strategy to detect specific European sovereign risk
zones, based on key predictors, including macroeconomic fundamentals and a
contagion measure, and relevant thresholds.

Finally, decision trees have been used also for the prediction of currency
crises. [36] first apply this methodology on a sample of 42 countries, covering 52
currency crises. Based on the binary classification tree they grow on this data, they
identify two different sets of key predictors for advanced and emerging economies,
respectively. The root node, associated with an index measuring the quality of
public sector governance, essentially splits the sample into these two subsamples.
[28] implement a set of methodological approaches, including regression trees, in
their empirical investigation of macroeconomic crises in emerging markets. This
approach allows each regressor to have a different effect on the dependent variable
for different ranges of values, identified by the tree splits, and is thus able to capture
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nonlinear relationships and interactions. The regression tree analysis identifies three
variables, namely, the ratio of external debt to GDP, the ratio of short-term external
debt to reserve, and inflation, as the key predictors. [42] uses regression tree analysis
to classify 96 currency crises in 20 countries, capturing the stylized characteristics
of different types of crises. Finally, a recent paper using CART and the Random
Forest to predict currency crises and banking crises is [41]. The authors identify the
key predictors for each type of crisis, both in the short and in the long run, based on a
sample of 36 industrialized economies, and show that different crises have different
causes.

6.2 Sparse Models for Financial Stability

LASSO and Bayesian methods have so far been used in finance mostly for portfolio
optimization. A vast literature starting with [8] uses a Bayesian approach to address
the adverse effect due to the accumulation of estimation errors. The use of LASSO-
based approaches to regularize the optimization problem, allowing for the stable
construction of sparse portfolios, is far more recent (see, e.g., [19] and [24], among
others).

Looking at financial stability applications of Bayesian techniques, [23] develop
an early warning system where the dependent variable is an index of financial stress.
They apply Bayesian Model Averaging to 30 candidate predictors, notably twice as
many as those generally considered in the literature, and select the important ones
by checking which predictors have the highest probability to be included in the
most probable models. More recently, [55] investigate the determinants of the 2008
global financial crisis using a Bayesian hierarchical formulation that allows for the
joint treatment of group and variable selection. Interestingly, the authors argue that
the established results in the literature may be due to the use of different priors.
[65] and [37] use Bayesian estimation to estimate the effects of the US subprime
mortgage crisis. The first paper uses Bayesian panel data analysis for exploring its
impact on the US stock market, while the latter uses time-varying Bayesian Vector
AutoRegressions to estimate cross-asset contagion in the US financial market, using
the subprime crisis as an exogenous shock.

Turning to the LASSO, not many authors have yet used this approach to predict
financial crises. [45] use a logistic LASSO in combination with cross-validation to
set the λ penalty parameter, and test their model in a real-time recursive out-of-
sample exercise based on bank-level and macrofinancial data. The LASSO yields
a parsimonious optimal early-warning model which contains the key risk-driver
indicators and has good in-sample and out-of-sample signaling properties. More
recently, [2] apply the LASSO in the context of sovereign crises prediction. In
particular, they use it to identify the macro indicators that are relevant in explaining
the cross-section of sovereign Credit Default Swaps (CDS) spreads in a recursive
setting, thereby distilling time-varying market sensitivities to specific economic
fundamentals. Based on these estimated sensitivities, the authors identify distinct
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crisis regimes characterized by different dynamics. Finally, [39] conduct a horse
race of conventional statistical methods and more recent machine learning methods,
including a logit LASSO as well as classification trees and the Random Forest, as
early-warningmodels. Out of a dozen competing approaches, tree-based algorithms
place in the middle of the ranking, just above the naive Bayes approach and the
LASSO, which in turn does better than the standard logit. However, when using a
different performance metric, the naive Bayes and logit outperform classification
trees, and the standard logit slightly outperforms the logit LASSO.

6.3 Unsupervised Learning for Financial Stability

Networks have been extensively applied in financial stability. This stream of litera-
ture is based on the notion that the financial system is ultimately a complex system,
whose characteristics determining its resilience, robustness, and stability can be
studied by means of traditional network approaches (see [12] for a discussion). In
particular, network models have been successfully used to model contagion (see
the seminal work by [3], as well as [35] for a review of the literature on contagion
in financial networks)19 and measure systemic risk (see, e.g., [11]). The literature
applying network theory started to grow exponentially in the aftermath of the global
financial crisis. DebtRank [10], e.g., is one of the first approaches put forward to
identify systemically important nodes in a financial network. This work contributed
to the debate on too-big-to-fail financial institutions in the USA by emphasizing that
too-central-to-fail institutions deserve at least as much attention.20 [51] explore the
properties of the global banking network by modelling 184 countries as nodes of the
network, linked through cross-border lending flows, using data over the 1978–2009
period. By today, countless papers use increasingly complex network approaches
to make sense of the structure of the financial system. The tools they offer aim at
enabling policymakers to monitor the evolution of the financial system and detect
vulnerabilities, before a trigger event precipitates the whole system into a crisis
state. Among the most recent ones, one may cite, e.g., [62], who study the type of
systemic risk arising in a situation where it is impossible to decide which banks are
in default.

Turning to artificial neural networks, while supervised ones have been used in
a few works as early warning models for financial crises ([26] on sovereign debt
crises, [27] and [54] on currency crises), unsupervised ones are even less common
in the financial stability literature. In fact, we are only aware of one work, [59],
using self-organizing maps. In particular, the authors develop a Self-Organizing
Financial Stability Map where countries can be located based on whether they are

19Amini et al. [4], among others, also use financial networks to study contagion.
20On the issue of centrality, see also [44] who built a network based on co-movements in Credit
Default Swaps (CDS) of major US and European banks.
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in a pre-crisis, crisis, post-crisis, or tranquil state. They also show that this tool
performs better than or equally well as a logit model in classifying in-sample data
and predicting the global financial crisis out-of-sample.

7 Conclusions

Forecasting financial crises is essential to provide warnings to be used in preventing
impending abnormalities, and taking action with a sufficient lead time to implement
adequate policy measures. The global financial crisis that started with the Lehman
collapse in 2008 and the subsequent Eurozone sovereign debt crisis over the years
2010–2013 have both profoundly changed economic thinking around machine
learning. The ability to discover complex and nonlinear relationships, not fully
biased by a priori theory/beliefs, has contributed to getting rid of the skepticism
around machine learning. Ample evidence proved indeed the inconsistency of
traditional models in predicting financial crisis, and the need to explore data-
driven approaches. However, we should be aware about what machine learning can
and cannot do, and how to handle these algorithms alone and/or in conjunction
with common traditional approaches to make financial crisis predictions more
statistically robust and theoretically consistent. Also, it would be important to
work on improving the interpretability of the models, as there is a strong need to
understand how decisions on financial stability issues are being made.
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