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Abstract We present a comprehensive comparative case study for the use of
machine learning models for macroeconomics forecasting. We find that machine
learning models mostly outperform conventional econometric approaches in fore-
casting changes in US unemployment on a 1-year horizon. To address the black
box critique of machine learning models, we apply and compare two variables
attribution methods: permutation importance and Shapley values. While the aggre-
gate information derived from both approaches is broadly in line, Shapley values
offer several advantages, such as the discovery of unknown functional forms in the
data generating process and the ability to perform statistical inference. The latter is
achieved by the Shapley regression framework, which allows for the evaluation and
communication of machine learning models akin to that of linear models.

1 Introduction

Machine learning provides a toolbox of powerful methods that excel in static
prediction problems such as face recognition [37], language translation [12], and
playing board games [41]. The recent literature suggests that machine learning
methods can also outperform conventional models in forecasting problems; see, e.g.,
[4] for bond risk premia, [15] for recessions, and [5] for financial crises. Predicting
macroeconomic dynamics is challenging. Relationships between variables may not
hold over time, and shocks such as recessions or financial crises might lead to
a breakdown of previously observed relationships. Nevertheless, several studies
have shown that machine learning methods outperform econometric baselines in
predicting unemployment, inflation, and output [38, 9].
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While they learn meaningful relationships between variables from the data, these
are not directly observable, leading to the criticism that machine learning models
such as random forests and neural networks are opaque black boxes. However, as
we demonstrate, there exist approaches that can make machine learning predictions
transparent and even allow for statistical inference.

We have organized this chapter as a guiding example for how to combine
improved performance and statistical inference for machine learning models in the
context of macroeconomic forecasting.

We start by comparing the forecasting performance and inference on various
machine learning models to more commonly used econometric models. We find that
machine learning models outperform econometric benchmarks in predicting 1-year
changes in US unemployment. Next, we address the black box critique by using
Shapley values [44, 28] to depict the nonlinear relationships learned by the machine
learning models and then test their statistical significance [24]. Our method closes
the gap between two distinct data modelling objectives, using black box machine
learning methods to maximize predictive performance and statistical techniques to
infer the data-generating process [8].

While several studies have shown that multivariate machine learning models can
be useful for macroeconomic forecasting [38, 9, 31], only a little research has tried to
explain the machine learning predictions. Coulombe et al. [13] shows generally that
the success of machine learning models in macro-forecasting can be attributed to
their ability to exploit nonlinearities in the data, particularly at longer time horizons.
However, we are not aware of any macroeconomic forecasting study that attempted
to identify the functional form learned by the machine learning models.! However,
addressing the explainability of models is important when model outputs inform
decisions, given the intertwined ethical, safety, privacy, and legal concerns about
the application of opaque models [14, 17, 20]. There exists a debate about the level
of model explainability that is necessary. Lipton [27] argues that a complex machine
learning model does not need to be less interpretable than a simpler linear model if
the latter operates on a more complex space, while Miller [32] suggests that humans
prefer simple explanations, i.e., those providing fewer causes and explaining more
general events—even though these may be biased.

Therefore, with our focus on explainability, we consider a small but diverse set
of variables to learn a forecasting model, while the forecasting literature often relies
on many variables [21] or latent factors that summarize individual variables [43]. In
the machine learning literature, approaches to interpreting machine learning models
usually focus on measuring how important input variables are for prediction. These
variable attributions can be either global, assessing variable importance across the
whole data set [23, 25] or local, by measuring the importance of the variables
at the level of individual observations. Popular global methods are permutation
importance or Gini importance for tree-based models [7]. Popular local methods are

ISee Bracke et al. [6], Bluwstein et al. [5] for examples that explain machine learning predictions
in economic prediction problems.
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LIME? [34], DeepLIFT3 [40] and Shapley values [44]. Local methods decompose
individual predictions into variable contributions [36, 45, 44, 34, 40, 28, 35]. The
main advantage of local methods is that they uncover the functional form of the
association between a feature and the outcome as learned by the model. Global
methods cannot reveal the direction of association between a variable and the
outcome of interest. Instead, they only identify variables that are relevant on average
across all predictions, which can also be achieved via local methods and averaging
attributions across all observations.

For model explainability in the context of macroeconomic forecasting, we
suggest that local methods that uncover the functional form of the data generating
process are most appropriate. Lundberg and Lee [28] demonstrate that local method
Shapley values offer a unified framework of LIME and DeepLIFT with appealing
properties. We chose to use Shapely values in this chapter because of their important
property of consistency. Here, consistency is when on increasing the impact of
a feature in a model, the feature’s estimated attribution for a prediction does
not decrease, independent of all other features. Originally, Shapley values were
introduced in game theory [39] as a way to determine the contribution of individual
players in a cooperative game. Shapely values estimate the increase in the collective
pay-off when a player joins all possible coalitions with other players. Strumbelj and
Kononenko [44] used this approach to estimate the contribution of variables to a
model prediction, where the variables and the predicted value are analogous to the
players and payoff in a game.

The global and local attribution methods mentioned here are descriptive—they
explain the drivers of a model’s prediction but they do not assess a model’s
goodness-of-fit or the predictors’ statistical significance. These concepts relate
to statistical inference and require two steps: (1) measuring or estimating some
quantity, such as a regression coefficient, and (2) inferring how certain one is in this
estimate, e.g., how likely is it that the true coefficient in the population is different
from zero.

The econometric approach of statistical inference for machine learning is mostly
focused on measuring low-dimensional parameters of interest [10, 11], such as
treatment effects in randomized experiments [2, 47]. However, in many situations
we are interested in estimating the effects for all variables included in a model. To
the best of our knowledge, there exists only one general framework that performs
statistical inference jointly on all variables used in a machine learning prediction
model to test for their statistical significance [24]. The framework is called Shapley
regressions, where an auxiliary regression of the outcome variable on the Shapley
values of individual data points is used to identify those variables that significantly
improve the predictions of a nonlinear machine learning model. We will discuss
this framework in detail in Sect. 4. Before that, we will describe the data and the

2Local Interpretable Model-agnostic Explanations.
3Deep Learning Important FeaTures for NN.
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forecasting methodology (Sect. 2) and present the forecasting results (Sect. 3). We
conclude in Sect. 5.

2 Data and Experimental Setup

We first introduce the necessary notation. Let y and § € R™ be the observed and
predicted continuous outcome, respectively, where m is the number of observations
in the time series.* The feature matrix is denoted by x € R™*", where n is the
number of features in the dataset. The feature vector of observation i is denoted
by x;. Generally, we use i to index the point in time of the observation and k to
index features. While our empirical analysis is limited to numerical features, the
forecasting methods as well as the techniques to interpret their predictions also work
when the data contains categorical features. These just need to be transformed into
binary variables, each indicating membership of a category.

2.1 Data

We use the FRED-MD macroeconomic database [30]. The data contains monthly
series of 127 macroeconomic indicators of the USA between 1959 and 2019. Our
outcome variable is unemployment and we choose nine variables as predictors, each
capturing a different macroeconomic channel. We add the slope of the yield curve as
a variable by computing the difference of the interest rates of the 10-year treasury
note and the 3-month treasury bill. The authors of the database suggest specific
transformations to make each series stationary. We use these transformations, which
are (for a variable a:) (1) changes (a; — a;—;), (2) log changes (log, a; — log, a;—;),
and (3) second-order log changes ((log, a; — log, a;—;) — (log, a;—; — log, a;—2:)).
As we want to predict the year-on-year change in unemployment, we set / to 12 for
the outcome and the lagged outcome when used as a predictor. For the remaining
predictors, we set [ = 3 in our baseline setup. This generally leads to the best
performance (see Table 3 for other choices of /). Table 1 shows the variables, with
the respective transformations and the series names in the original database. The
augmented Dickey-Fuller test confirms that all transformed series are stationary
(p < 0.01).

4That is, we are in the setting of a regression problem in machine learning speak, while
classification problems operate on categorical targets. All approaches presented here can be applied
to both situations.
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Table 1 Series used in the forecasting experiment. The middle column shows the transformations
suggested by the authors of the FRED-MD database and the right column shows the names in that
database

Variable Transformation Name in the FRED-MD database
Unemployment Changes UNRATE
3-month treasury bill Changes TB3MS
Slope of the yield curve Changes -
Real personal income Log changes RPI
Industrial production Log changes INDPRO
Consumption Log changes DPCERA3MO086SBEA
S&P 500 Log changes S&P 500
Business loans Second-order log changes BUSLOANS
CPI Second-order log changes CPIAUCSL
Oil price Second-order log changes OILPRICEx
M2 Money Second-order log changes M2SL
2.2 Models

We test three families of models that can be formalized in the following way
assuming that all variables have been transformed according to Table 1.

e The simple linear lag model only uses the 1-year lag of the outcome variable as
a predictor: y; = o + 0py;—12.

* The autoregressive model (AR) uses several lags of the response as predictors:
yi=o+ Z;’:l 0;yi—i. We test AR models with a horizon 1 < h < 12, chosen
by the Akaike Information Criterion [1].

e The full information models use the 1-year lag of the outcome and 1-year
lags of the other features as independent variables: y; = f(yi—12; Xi—12),
where f can be any prediction model. For example, if f is a linear regression,
fi,xi) = o+ 60pyi—12 + Zzzl Okx;—12.k. To simplify this notation we imply
that the lagged outcome is included in the feature matrix x in the following. We
test five full information models: Ordinary least squares regression and Lasso
regularized regression [46], and three machine learning regressors—random
forest [7], support vector regression [16], and artificial neural networks [22].7

5In machine learning, classification is arguably the most relevant and most researched prediction
problem, and while models such as random forests and support vector machines are best known as
classification, their variants being used in regression problems are also known to perform well.
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2.3 Experimental Procedure

We evaluate how all models predict changes in unemployment 1 year ahead. After
transforming the variables (see Table 1) and removing missing values, the first
observation in the training set is February 1962. All methods are evaluated on the
359 data points of the forecasts between January 1990 and November 2019 using an
expanding window approach. We recalibrate the full information and simple linear
lag models every 12 months such that each model makes 12 predictions before it
is updated. The autoregressive model is updated every month. Due to the lead-lag
structure of the full information and simple linear lag models, we have to create
an initial gap between training and test set when making predictions to avoid a
look-ahead bias. For a model trained on observations 1. .., the earliest observation
in the test set that provides a true 12-month forecast is i + 12. For observations
i+1,...,i+ 11, the time difference to the last observed outcome in the training
set is smaller than a year.

All machine learning models that we tested have hyperparameters. We optimize
their values in the training sets using fivefold cross-validation.® As this is com-
putationally expensive, we conduct the hyperparameter search every 36 months
with the exception of the computationally less costly Lasso regression, whose
hyperparameters are updated every 12 months.

To increase the stability of the full information models, we use bootstrap aggre-
gation, also referred to as bagging. We train 100 models on different bootstrapped
samples (of the same size as the training set) and average their predictions. We do
not use bagging for the random forest as, by design, each individual tree is already
calibrated on a different bootstrapped sample of the training set.

3 Forecasting Performance

3.1 Baseline Setting

Table 2 shows three measures of forecasting performance: the correlation of the
observed and predicted response, the mean absolute error (MAE), and the root mean
squared error (RMSE). The latter is the main metric considered, as most models
minimize RMSE during training. The models are ordered by decreasing RMSE on
the whole test period between 1990 and 2019. The random forest performs best and
we divide the MAE and RMSE of all models by that of the random forest for ease
of comparison.

SFor the hyperparameter search, we also consider partitionings of the training set that take the
temporal dependency of our data into account [3]. We use block cross-validation [42] and hv-block
cross-validation [33]. However, both methods do not improve the forecasting accuracy.
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Table 2 Forecasting performance for the different prediction models. The models are ordered by
decreasing RMSE on the whole sample with the errors of the random forest set to unity. The forest’s
MAE and RMSE (full period) are 0.574 and 0.763, respectively. The asterisks indicate the statistical
significance of the Diebold-Mariano test, comparing the performance of the random forest with the
other models, with significance levels *p <0.1; **p <0.05; ***p <0.01

Corr. MAE RMSE (normalized by first row)

01/1990-  01/1990- 01/1990- 01/2000— 09/2008—
11/2019 11/2019  12/1999 08/2008 11/2019

Random forest 0.609 1.000 1.000 1.000 1.000 1.000
Neural network 0.555 1.009 1.049 0.969 0.941 1.114%%*
Linear regression 0.521 1.094*** 1.082*%*  1.011 0.959 1.149%%%
Lasso regression 0.519 1.094%*** 1.083*** 1.007 0.949 1.156%**
Ridge regression 0.514 1.099*** 1.087*** 1.019 0.952 1.157#%**
SVR 0.475 1.052 1.105**  1.000 1.033 1.169%*
AR 0.383 1.082(*) 1.160(***) 1.003 1.010 1.265(***)

Linear regression (lagged response)0.242 1.163*** 1.226%** 1.027 1.057 1.352%%%*

Table 2 also breaks down the performance in three periods: the 1990s and the
period before and after the onset of the global financial crisis in September 2008.
We statistically compare the RMSE and MAE of the best model, the random forest,
against all other models using a Diebold-Mariano test. The asterisks indicate the
p-value of the tests.’

Apart from support vector regression (SVR), all machine learning models
outperform the linear models on the whole sample. The inferior performance of
SVR is not surprising as it does not minimize a squared error metric such as RMSE
but a metric similar to MAE which is lower for SVR than for the linear models.
In the 1990s and the periods before the global financial crisis, there are only small
differences in performance between the models, with the neural network being the
most accurate model. Only after the onset of the crisis does the random forest
outperform the other models by a large and statistically significant margin.

Figure 1 shows the observed response variable and the predictions of the random
forest, the linear regression, and the AR. The vertical dashed lines indicate the
different time periods distinguished in Table 2. The predictions of the random forest
are more volatile than that of the regression and the AR.® All models underestimate
unemployment during the global financial crisis and overestimate it during the
recovery. However, the random forest is least biased in those periods and forecasts
high unemployment earliest during the crisis. This shows that its relatively high

"The horizon of the Diebold-Mariano test is set to 1 for all tests. Note, however, that the horizon
of the AR model is 12 so that the p-values for this comparison are biased and thus reported in
parentheses. Setting the horizon of the Diebold-Mariano test to 12, we do not observe significant
differences between the RMSE of the random forest and AR.

8The mean absolute deviance from the models’ mean prediction are 0.439, 0.356, and 0.207 for
the random forest, regression, and AR, respectively.
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Fig. 1 Observed and predicted 1-year change in unemployment for the whole forecasting period
comparing different models

forecast volatility can be useful in registering negative turning points. A similar
observation can be made after the burst of the dotcom bubble in 2000. This points
to an advantage of machine learning models associated with their greater flexibility
incorporating new information as it arrives. This can be intuitively understood as
adjusting model predictions locally, e.g., in regions (periods) of high unemployment,
while a linear model needs to realign the full (global) model hyperplane.

3.2 Robustness Checks

We altered several parameters in our baseline setup to investigate their effects on the
forecasting performance. The results are shown in Table 3. The RMSE of alternative
specifications is again divided by the RMSE of the random forest in the baseline
setup for a clearer comparison.

* Window size. In the baseline setup, the training set grows over time (expanding
window). This can potentially improve the performance over time as more
observations may facilitate a better approximation of the true data generating
process. On the other hand, it may also make the model sluggish and prevent
quick adaptation to structural changes. We test sliding windows of 60, 120,
and 240 months. Only the simplest model, linear regression with only a lagged
response, profits from a short horizon; the remaining models perform best with
the biggest possible training set. This is not surprising for machine learning
models, as they can “memorize” different sets of information through the
incorporation of multiple specification in the same model. For instance, different
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Table 3 Performance for different parameter specifications. The shown metric is RMSE divided
by the RMSE of the random forest in the baseline setup
Random  Neural Linear SVR AR Linear regression
forest network  regression (lagged response)

Training set size (in months)

Max (baseline) 1.000 1.049 1.082 1.105 1.160 1.226
60 1.487 1.497 1.708 1.589 2935 1.751
120 1.183 1.163 1.184 1.248  1.568 1.257
240 1.070 1.051 1.087 1.106  1.304 1.198

Change horizon (in months)

3 (baseline) 1.000 1.049 1.082 1.105  1.160 1.226
1 1.077 1.083 1.128 1.148 - -
6 1.043 1.111 1.142 1.162 - -
9 1.216 1.321 1.251 1.344 - -
12 1.345 1.278 1.336 1.365 - -

Bootstrap aggregation
No 1.000 1.179 1.089 1.117  1.160 1.226
100 models - 1.049 1.082 1.105 - -

paths down a tree model, or different trees in a forest, are all different submodels,
e.g., characterizing different time periods in our setting. By contrast, a simple
linear model cannot adjust in this way and needs to fit the best hyperplane to the
current situation, explaining its improved performance for some fixed window
sizes.

* Change horizon. In the baseline setup, we use a horizon of 3 months, when
calculating changes, log changes, and second-order log changes of the predictors
(see Table 1). Testing the horizons of 1, 6, 9, and 12 months, we find that 3
months generally leads to the best performance of all full information models.
This is useful from a practical point of view, as quarterly changes are one of the
main horizons considered for short-term economic projections.

* Bootstrap aggregation (bagging). The linear regression, neural network, and
SVR all benefit from averaging the prediction of 100 bootstrapped models.
The intuition is that our relatively small dataset likely leads to models with
high variance, i.e., overfitting. The bootstrap aggregation of models reduces the
models’ variance and the degree of overfitting. Note that we do not expect much
improvement for bagged linear models, as different draws from the training set
are likely to lead to similar slope parameters resulting in almost identical models.
This is confirmed by the almost identical performance of the single and bagged
model.
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4 Model Interpretability

4.1 Methodology

We saw in the last section that machine learning models outperform conventional
linear approaches in a comprehensive economic forecasting exercise. Improved
model accuracy is often the principal reason for applying machine learning models
to a problem. However, especially in situations where model results are used to
inform decisions, it is crucial to both understand and clearly communicate modelling
results. This brings us to a second step when using machine learning models—
explaining them.

Here, we introduce and compare two different methods for interpreting machine
learning forecasting models permutation importance [7, 18] and Shapley values and
regressions [44, 28, 24]. Both approaches are model-agnostic, meaning that they can
be applied to any model, unlike other approaches, such as Gini impurity [25, 19],
which are only compatible with specific machine learning methods. Both methods
allow us to understand the relative importance of model features. For permutation
importance, variable attribution is at the global level while Shapley values are
constructed locally, i.e., for each single prediction. We note that both importance
measures require column-wise independence of the features, i.e., contemporaneous
independence in our forecasting experiments, an assumption that will not hold under
all contexts.”

4.1.1 Permutation Importance

The permutation importance of a variable measures the change of model perfor-
mance when the values of that variable are randomly scrambled. Scrambling or
permuting a variable’s values can either be done within a particular sample or
by swapping values between samples. If a model has learnt a strong dependency
between the model outcome and a given variable, scrambling the value of the
variable leads to very different model predictions and thus affects performance. A
variable k is said to be important in a model, if the test error e after scrambling
feature k is substantially higher than the test error when using the original value for
k,ie., e,f “™ > e. Clearly, the value of the permutation error e,f "™ depends on the
realization of the permutation, and variation in its value can be large, particularly in
small datasets. Therefore, it is recommended to average e,f M over several random

draws for more accurate estimates and to assess sampling variability.'°

Lundberg et al. [29] proposed TREESHAP, which correctly estimates the Shapley values when
features are dependent for tree models only.

10Considering a test set of size m with each observation having a unique value, there are m!
permutations to consider for an exhaustive evaluation, which is intractable to compute for larger
m.
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The following procedure estimates the permutation importance.

1. For each feature xy:

(a) Generate a permutation sample x; " with the values of x; permuted across

observations (or swapped between samples).
(b) Reevaluate the test score for x; ", resulting in e <"
(c) The permutation importance of xy is given by I (x;) = e,f o Je M
(d) Repeat and average over Q iterations and average Iy = 1/Q Y q 14 (xk).

2. If I, is given by the ratio of errors, consider the normalized quantity I = (I —

DYk —1) € 0,1).12
3. Sort features by I (or, Ix).

Permutation importance is an intuitive measure that is relatively cheap to
compute, requiring only new predictions generated on the permuted data and not
model retraining. However, this ease of use comes at some cost. First, and foremost,
permutation importance is inconsistent. For example, if two features contain similar
information, permuting either of them will not reflect the actual importance of
this feature relative to all other features in the model. Only permuting both or
excluding one would do so. This situation is accounted for by Shapley values
because they identify the individual marginal effect of a feature, accounting for
its interaction with all other features. Additionally, the computation of permutation
importance necessitates access to true outcome values and in many situations, e.g.,
when working with models trained on sensitive or confidential data, these may not
be available. As a global measure, permutation importance only explains which
variables are important but not sow they contribute to the model, i.e., we cannot
uncover the functional form or even the direction of the association between features
and outcome that was learned by the model.

4.1.2 Shapley Values and Regressions

Shapley values originate from game theory [39] as a general solution to the problem
of attributing a payoff obtained in a cooperative game to the individual players based
on their contribution to the game. Strumbelj and Kononenko [44] introduced the
analogy between players in a cooperative game and variables in a general supervised
model, where variables jointly generate a prediction, the payoff. The calculation is
analogous in both cases (see also [24]),

n
o5[ra] = o5+ dfe = faw), M
k=1
11 Alternatively, the difference ej.) "™ _ ¢ can be considered.

12Note, I; > 1 in general. If not, there may be problems with model optimization.
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Equation 1 states that the Shapley decomposition ®@5[ f (x;)] of model f is local
at x; and exact, i.e., it precisely adds up to the actually predicted value f(x;). In
Eq. 2, C(x) \ {k} is the set of all possible variable combinations (coalitions) of n —
1 variables when excluding the k™ variable. |x'| denotes the number of variables
included in that coalition, w,s = |x’|!(n — |x’| — 1)!/n! is a combinatorial weighting
factor summing to one over all possible coalition, b is a background dataset, and x’
stands for the set of variables not included in x'.

Equation 2 is the weighted sum of marginal contributions of variable k account-
ing for the number of possible variable coalitions.!? In a general model, it is usually
not possible to put an arbitrary feature to missing, i.e., exclude it. Instead, the
contributions from features not included in x’ are integrated out over a suitable
background dataset, where {xi|x'} is the set of points with variables not in x’
being replaced by values in b. The background provides an informative reference
point by determining the intercept qﬁg . A reasonable choice is the training dataset
incorporating all information the model has learned from.

An obvious disadvantage of Shapley values compared to permutation importance
is the considerably higher complexity of their calculation. Given the factorial in
Eq. 2, an exhaustive calculation is generally not feasible with larger feature sets.
This can be addressed by either sampling from the space of coalitions or by setting
all “not important” variables to “others,” i.e., treating them as single variables. This
substantially reduces the number of elements in C(x).

Nevertheless, these computational costs come with significant advantages. Shap-
ley values are the only feature attribution method which is model independent,
local, accurate, linear, and consistent [28]. This means that it delivers a granular
high-fidelity approach for assessing the contribution and importance of variables.
By comparing the local attributions of a variable across all observations we can
visualize the functional form learned by the model. For instance, we might see that
observations with a high (low) value on the variable have a disproportionally high
(low) Shapley value on that variable, indicating a positive nonlinear functional form.

3For example, assuming we have three players (variables) {A, B, C}, the Shapley value of
player C would be 2 (f) = 1/3[f({A, B,C}) — f({A, BD] + 1/6[f ({A,C}H) — f({AD] +
1/6[f (B, CH — fUBDI+ 1/3[f({ChH — fF{ID].
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Based on these properties, which are directly inherited from the game theoretic
origins of Shapley values, we can formulate an inference framework using Eq. 1.
Namely, the Shapley regression [24],

n
vi =Y $ifxp +é = o5 + 4, )
k=0
where k = 0 corresponds to the intercept and & ~ N (0, 03). The surrogate

coefficients ﬁ,f are tested against the null hypothesis
Ho(2) = (B <0]2), (5)

with £2 € R” (aregion of) the model input space. The intuition behind this approach
is to test the alignment of Shapley components with the target variable. This is
analogous to a linear model where we use “raw” feature values rather than their
associated Shapley attributions. A key difference to the linear case is the regional
dependence on £2. We only make local statements about the significance of variable
contributions, i.e., on those regions where it is tested against H¢. This is appropriate
in the context of potential nonlinearity, where the model plane in the original input-
target space may be curved, unlike that of a linear model. Note that the Shapley
value decomposition (Egs. 1-3) absorbs the signs of variable attributions, such that
only positive coefficient values indicate significance. When negative values occur, it
indicates that a model has poorly learned from a variable and H( cannot be rejected.

The coefficients A5 are only informative about variable alignment (the strength of
association between the output variable and feature of interest), not the magnitude
of importance of a variable. Both together can be summarized by Shapley share
coefficients,

_ s )
s = [sign(ﬁzi’")<Z;quk|f;;)(|f)l>} e [-1,11, (6)
= 2

F@=xB () |Gk = ()l > ;
P <Z?:1|ﬂk(xl—<xl>>|g’ @

where (-) stands for the average over x; in §2; € R. The Shapley share coefficient
st (f, £2) is a summary statistic for the contribution of x4 to the model over a region
§£2 C R" for modelling y.

It consists of three parts. The first is the sign, which is the sign of the
corresponding linear model. The motivation for this is to indicate the direction of
alignment of a variable with the target y. The second part is coefficient size. It is
defined as the fraction of absolute variable attribution allotted to x; across §2. The
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sum of the absolute value of Shapley share coefficients is one by construction.' It
measures how much of the model output is explained by xj. The last component is
the significance level, indicated by the star notation (x), and refers to the standard
notation used in regression analysis to indicate the certainty with which we can
reject the null hypothesis (Eq. 5). This indicates the confidence one can have in
information derived from variable x; measured by the strength of alignment of
the corresponding Shapley components and the target, which is the same as its
interpretation in a conventional regression analysis.

Equation 7 provides the explicit form for the linear model, where an analytical
form exists. The only difference to the conventional regression case is the normal-
izing factor.

4.2 Results

We explain the predictions of the machine learning models and the linear regression
as calibrated in the baseline setup of our forecasting. Our focus is largely on
explaining forecast predictions in a pseudo-real-world setting where the model is
trained on earlier observations that predate the predictions. However, in some cases
it can be instructive to explain the predictions of a model that was trained on
observations across the whole time period. For that, we use fivefold block cross-
validation [3, 42].!> This cross-validation analysis is subject to look-ahead bias, as
we use future data to predict the past, but it allows us to evaluate a model for the
whole time series.

4.2.1 Feature Importance

Figure 2 shows the global variable importance based on the analysis of the fore-
casting predictions. It compares Shapley shares |I"S| (left panel) with permutation
importance I (middle panel). The variables are sorted by the Shapley shares of the
best-performing model, the random forest. Vertical lines connect the lowest and
highest share across models for each feature as a measure for disagreement between
models.

The two importance measures only roughly agree in their ranking of feature
importance. For instance, using a random forest model, past unemployment seems
to be a key indicator according to permutation importance but relatively less crucial

14The normalization is not needed in binary classification problems where the model output is
a probability. Here, the a Shapley contribution relative to a base rate can be interpreted as the
expected change in probability due to that variable.

15The time series is partitioned in five blocks of consecutive points in time and each block is once
used as the test set.
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Fig. 2 Variable importance according to different measures. The left panel shows the importance
according to the Shapley shares and the middle panel shows the variable importance according to
permutation importance. The right panel shows an altered metric of permutation importance that
measures the effect of permutation on the predicted value

according to Shapley calculations. Permutation importance is based on model
forecasting error and so is a measure of a feature’s predictive power (how much
does its inclusion in a model improve predictive accuracy) and it is influenced
by how the relationship between outcome and features may change over time.
In contrast, Shapley values indicate which variables influence a predicted value,
independent of predictive accuracy. The right panel of Fig. 2 shows an altered
measure of permutation importance. Instead of measuring the change in the error
due to permutations, we measure the change in the predicted value.'® We see that
this importance measure is more closely aligned with Shapley values. Furthermore,
when we evaluate permutation importance using predictions based on block cross-
validation, we find a strong alignment with Shapley values as the relationship
between variables is not affected by the change between the training and test set
(not shown).

Figure 3 plots Shapley values attributed to the S&P500 (vertical axis) against
its input values (horizontal axis) for the random forest (left panel) and the linear
regression (right panel) based on the block cross-validation analysis.!” Each point
reflects one of the observations between 1990 and 2019 and their respective value

16This metric computes the mean absolute difference between the observed predicted values and
apern

the predicted values after permuting feature & : r}I Y13 — 9 () |- The higher this difference,
the higher the importance of the feature k (see [26, 36] for similar approaches to measure variable
importance).

17Showing the Shapley values based on the forecasting predictions makes it difficult to disentangle
whether nonlinear patterns are due to a nonlinear functional form or to (slow) changes of the

functional form over time.
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Fig. 3 Functional form learned by the random forest (left panel) and linear regression. The gray
line shows a 3-degree polynomial fitted to the data. The Shapley values shown here are computed
based on fivefold block cross-validation and are therefore subject to look-ahead bias

on the S&P500 variable. The approximate functional forms learned by both models
are traced out by best-fit degree-3 polynomials. The linear regression learns a
steep negative slope, i.e., higher stock market values are associated with lower
unemployment 1 year down the road. This makes economic sense. However, we
can make more nuanced observations for the random forest. There is satiation for
high market valuations, i.e., changes beyond a certain point do not provide greater
information for changes in unemployment.'® A linear model is not able to reflect
those nuances, while machine learning models provide a more detailed signal from
the stock market and other variables.

4.2.2 Shapley Regressions

Shapley value-based inference allows to communicate machine learning models
analogously to a linear regression analysis. The difference between the coefficients
of a linear model and Shapley share coefficients is primarily the normalization of
the latter. The reason for this is that nonlinear models do not have a “natural scale,”
for instance, to measure variation. We summarize the Shapley regression on the
forecasting predictions (1990-2019) of the random forest and linear regression in
Table 4.

The coefficients 85 measure the alignment of a variable with the target. Values
close to one indicate perfect alignment and convergence of the learning process.
Values larger than one indicate that a model underestimates the effect of a variable
on the outcome. And the opposite is the case for values smaller than one. This

18Similar nonlinearities are learned by the SVR and the neural network.
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Table 4 Shapley regression of random forest (left) and linear regression (right) for forecasting
predictions between 1990-2019. Significance levels: *p <0.1; **p <0.05; **p <0.01

Random forest Linear regression
BS  p-value rs BS  p-value rs

Industrial production 0.626  0.000 —0.228%#* 0.782 0.000 —0.163***
S&P 500 0.671 0.000 —0.177%%* 0.622 0.000 —0.251%**
Consumption 1.314 0.000 —0.177%** 2.004 0.000 —0.115%**
Unemployment 1.394 0.000 4-0.112%%%* 2.600 0.010 +0.033#%*
Business loans 2.195 0.000 —0.068%*** 2.371 0.024 —0.031%**
3-month treasury bill 1.451 0.008 —0.066%**  —1.579 1.000 —0.102
Personal income —0.320 0.749 +0.044 —0.244 0.730 -+0.089
Oil price 1.589 0.018 —0.040%* —0.246  0.624 —0.052
M2 Money 0.168 0.363 —0.034 —4.961 0.951 —0.011
Yield curve slope 1.952  0.055 +0.029%* 0.255 0.171 +0.132
CPI 0.245 0.419 —0.024 —0.790  0.673 —0.022

can intuitively be understood from the model hyperplane of the Shapley regression
either tilting more towards a Shapley component from a variable (underestimation,
,Blf > 1) or away from it (overestimation, ,B,f < 1). Significance decreases as the ,B,f
approaches zero.'”

Variables with lower p-values usually have higher Shapley shares |I"S|, which
are equivalent to those shown in Fig. 2. This is intuitive as the model learns
to rely more on features which are important for predicting the target. However
this does not hold by construction. Especially in the forecasting setting where
the relationships of variables change over time, the statistical significance may
disappear in the test set, even for features with high shares.

In the Shapley regression, more variables are statistically significant for the
random forest than for the linear regression model. This is expected, because the
forest, like other machine learning models, can exploit nonlinear relationships that
the regression cannot account for (as in Fig. 3), i.e., it is a more flexible model.
These are then reflected in localized Shapley values providing a stronger, i.e., more
significant, signal in the regression stage.

5 Conclusion

This chapter provided a comparative study of how machine learning models can be
used for macroeconomic forecasting relative to standard econometric approaches.
We find significantly better performance of machine learning models for forecasting

19The underlying technical details for this interpretation are provided in [24].
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changes in US unemployment at a 1-year horizon, particularly in the period after the
global financial crisis of 2008.

Apart from model performance, we provide an extensive explanation of model
predictions, where we present two approaches that allow for greater machine
learning interpretability—permutation feature importance and Shapley values. Both
methods demonstrate that a range of machine learning models learn comparable
signals from the data. By decomposing individual predictions into Shapley value
attributions, we extract learned functional forms that allow us to visually demon-
strate how the superior performance of machine learning models is explained by
their enhanced ability to adapt to individual variable-specific nonlinearities. Our
example allows for a more nuanced economic interpretation of learned depen-
dencies compared to the interpretation offered by a linear model. The Shapley
regression framework, which enables conventional parametric inference on machine
learning models, allows us to communicate the results of machine learning models
analogously to traditional presentations of regression results.

Nevertheless, as with conventional linear models, the interpretation of our results
is not fixed. We observe some variation under different models, different model
specifications, and the interpretability method chosen. This is in part due to small
sample limitations; this modelling issue is common, but likely more aggravated
when using machine learning models due to their nonparametric structure.

However, we believe that the methodology and results presented justify the use
of machine learning models and such explainability methods to inform decisions
in a policy-making context. The inherent advantages of their nonlinearity over
conventional models are most evident in a situation where the underlying data-
generating process is unknown and expected to change over time, such as in a
forecasting environment as presented in the case study here. Overall, the use of
machine learning in conjunction with Shapley value-based inference as presented in
this chapter may offer a better trade-off between maximizing predictive performance
and statistical inference thereby narrowing the gap between Breiman’s two cultures.
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