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Abstract This chapter first provides an illustration of the benefits of using machine
learning for forecasting relative to traditional econometric strategies. We consider
the short-term volatility of the Bitcoin market by realized volatility observations.
Our analysis highlights the importance of accounting for nonlinearities to explain
the gains of machine learning algorithms and examines the robustness of our
findings to the selection of hyperparameters. This provides an illustration of how
different machine learning estimators improve the development of forecast models
by relaxing the functional form assumptions that are made explicit when writing up
an econometric model. Our second contribution is to illustrate how deep learning
can be used to measure market-level sentiment from a 10% random sample of
Twitter users. This sentiment variable significantly improves forecast accuracy for
every econometric estimator and machine algorithm considered in our forecasting
application. This provides an illustration of the benefits of new tools from the natural
language processing literature at creating variables that can improve the accuracy of
forecasting models.

1 Introduction

Over the past few years, the hype surrounding words ranging from big data to data
science to machine learning has increased from already high levels. This hype arises
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in part from three sets of discoveries. Machine learning tools have repeatedly been
shown in the academic literature to outperform statistical and econometric tech-
niques for forecasting.1 Further, tools developed in the natural language processing
literature that are used to extract population sentiment measures have also been
found to help forecast the value of financial indices. This set of finding is consistent
with arguments in the behavioral finance literature (see [23], among others) that the
sentiment of investors can influence stock market activity. Last, issues surrounding
data security and privacy have grown among the population as a whole, leading
governments to consider blockchain technology for uses beyondwhat it was initially
developed for.

Blockchain technology was originally developed for the cryptocurrency Bitcoin,
an asset that can be continuously traded and whose value has been quite volatile.
This volatility may present further challenges for forecasts by either machine
learning algorithms or econometric strategies. Adding to these challenges is that
unlike almost every other financial asset, Bitcoin is traded on both the weekend
and holidays. As such, modeling the estimated daily realized variance of Bitcoin
in US dollars presents an additional challenge. Many measures of conventional
economic and financial data commonly used as predictors are not collected at the
same points in time. However, since the behavioral finance literature has linked
population sentiment measures to the price of different financial assets, we propose
measuring and incorporating social media sentiment as an explanatory variable in
the forecasting model. As an explanatory predictor, social media sentiment can be
measured continuously providing a chance to capture and forecast the variation in
the prices at which trades for Bitcoin are made.

In this chapter, we consider forecasts of Bitcoin realized volatility to first provide
an illustration of the benefits in terms of forecast accuracy of using machine
learning relative to traditional econometric strategies. While prior work contrasting
approaches to conduct a forecast found that machine learning does provide gains
primarily from relaxing the functional form assumptions that are made explicit
when writing up an econometric model, those studies did not consider predicting
an outcome that exhibits a degree of volatility of the magnitude of Bitcoin.

Determining strategies that can improve volatility forecasts is of significant value
since they have come to play a large role in decisions ranging from asset allocation
to derivative pricing and risk management. That is, volatility forecasts are used by
traders as a component of their valuation procedure of any risky asset’s value (e.g.,
stock and bond prices), since the procedure requires assessing the level and riskiness
of future payoffs. Further, their value to many investors arises when using a strategy
that adjust their holdings to equate the risk stemming from the different investments
included in a portfolio. As such, more accurate volatility forecasts can provide

1See [25, 26], for example, with data from the film industry that conducts horse races between
various strategies. Medeiros et al. [31] use the random forest estimator to examine the benefits of
machine learning for forecasting inflation. Last, Coulombe et al. [13] conclude that the benefits
from machine learning over econometric approaches for macroeconomic forecasting arise since
they capture important nonlinearities that arise in the context of uncertainty and financial frictions.
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valuable actionable insights for market participants. Finally, additional motivation
for determining how to obtain more accurate forecasts comes from the financial
media who frequently report on market volatility since it is hypothesized to have an
impact on public confidence and thereby can have a significant effect on the broader
global economy.

There are many approaches that could be potentially used to undertake volatility
forecasts, but each requires an estimate of volatility. At present, the most popular
method used in practice to estimate volatility was introduced by Andersen and
Bollerslev [1] who proposed using the realized variance, which is calculated as
the cumulative sum of squared intraday returns over short time intervals during
the trading day.2 Realized volatility possesses a slowly decaying autocorrelation
function, sometimes known as long memory.3 Various econometric models have
been proposed to capture the stylized facts of these high-frequency time series mod-
els including the autoregressive fractionally integrated moving average (ARFIMA)
models of Andersen et al. [3] and the heterogeneous autoregressive (HAR) model
proposed by Corsi [11]. Compared with the ARFIMA model, the HAR model
rapidly gained popularity, in part due to its computational simplicity and excellent
out-of-sample forecasting performance. 4

In our empirical exercise, we first use well-established machine learning tech-
niques within the HAR framework to explore the benefits of allowing for general
nonlinearities with recursive partitioning methods as well as sparsity using the least
absolute shrinkage and selection operator (LASSO) of Tibshirani [39]. We consider
alternative ensemble recursive partitioning methods including bagging and random
forest that each place equal weight on all observations when making a forecast, as
well as boosting that places alternative weight based on the degree of fit. In total,
we evaluate nine conventional econometric methods and five easy-to-implement
machine learning methods to model and forecast the realized variance of Bitcoin
measured in US dollars.

Studies in the financial econometric literature have reported that a number of
different variables are potentially relevant for the forecasting of future volatility. A

2Traditional econometric approaches to model and forecast such as the parametric GARCH or
stochastic volatility models include measures built on daily, weekly, and monthly frequency data.
While popular, empirical studies indicate that they fail to capture all information in high-frequency
data; see [1, 7, 20], among others.
3This phenomenon has been documented by Dacorogna et al. [15] and Andersen et al. [3] for the
foreign exchange market and by Andersen et al. [2] for stock market returns.
4Corsi et al. [12] provide a comprehensive review of the development of HAR-type models
and their various extensions. The HAR model provides an intuitive economic interpretation that
agents with three frequencies of trading (daily, weekly, and monthly) perceive and respond to,
which changes the corresponding components of volatility. Müller et al. [33] refer to this idea
as the Heterogeneous Market Hypothesis. Nevertheless, the suitability of such a specification is
not subject to enough verification. Craioveanu and Hillebrand [14] employ a parallel computing
method to investigate all of the possible combinations of lags (chosen within a maximum lag of
250) for the last two terms in the additive model, and they compared their in-sample and out-of-
sample fitting performance.
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secondary goal of our empirical exercise is to determine if there are gains in forecast
accuracy of realized volatility by incorporating a measure of social media sentiment.
We contrast forecasts using models that both include and exclude social media
sentiment. This additional exercise allows us to determine if this measure provides
information that is not captured by either the asset-specific realized volatility
histories or other explanatory variables that are often included in the information
set.

Specifically, in our application social media sentiment is measured by adopting a
deep learning algorithm introduced in [17]. We use a random sample of 10% of all
tweets posted from users based in the United States from the Twitterverse collected
at the minute level. This allows us to calculate a sentiment score that is an equal
tweet weight average of the sentiment values of the words within each Tweet in
our sample at the minute level.5 It is well known that there are substantial intraday
fluctuations in social media sentiment but its weekly and monthly aggregates are
much less volatile. This intraday volatility may capture important information and
presents an additional challenge when using this measure for forecasting since the
Bitcoin realized variance is measured at the daily level, a much lower time frequency
than the minute-level sentiment index that we refer to as the US Sentiment Index
(USSI). Rather than make ad hoc assumptions on how to aggregate the USSI to the
daily level, we follow Lehrer et al. [28] and adopt the heterogeneous mixed data
sampling (H-MIDAS) method that constructs empirical weights to aggregate the
high-frequency social media data to a lower frequency.

Our analysis illustrates that sentiment measures extracted from Twitter can
significantly improve forecasting efficiency. The gains in forecast accuracy as
pseudo R-squared increased by over 50%when social media sentiment was included
in the information set for all of the machine learning and econometric strategies
considered. Moreover, using four different criteria for forecast accuracy, we find
that the machine learning techniques considered tend to outperform the econometric
strategies and that these gains arise by incorporating nonlinearities. Among the 16
methods considered in our empirical exercise, both bagging and random forest
yield the highest forecast accuracy. Results from the [18] test indicate that the
improvements that each of these two algorithms offers are statistically significant at
the 5% level, yet the difference between these two algorithms is indistinguishable.

For practitioners, our empirical exercise also contains exercises including exam-
ining the sensitivity of our findings to the choices of hyperparameters made
when implementing any machine learning algorithm. This provides value since
the settings of the hyperparameters with any machine learning algorithm can be
thought of in an analogousmanner to model selection in econometrics. For example,

5We note that the assumption of equal weight is strong. Mai et al. [29] find that social media
sentiment is an important predictor in determining Bitcoin’s valuation, but not all social media
messages are of equal impact. Yet, our measure of social media is collected from all Twitter users,
a more diverse group than users of cryptocurrency forums in [29]. Thus, if we find any effect, it is
likely a lower bound since our measure of social media sentiment likely has classical measurement
error.
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with the random forest algorithm, numerous hyperparameters can be adjusted by
the researcher including the number of observations drawn randomly for each tree
and whether they are drawn with or without replacement, the number of variables
drawn randomly for each split, the splitting rule, the minimum number of samples
that a node must contain, and the number of trees. Further, Probst and Boulesteix
provide evidence that the benefits from changing hyperparameters differ across
machine learning algorithms and are higher with the support vector regression than
the random forest algorithm we employ. In our analysis, the default values of the
hyperparameters specified in software packages work reasonably well, but we stress
a caveat that our investigation was not exhaustive so there remains a possibility that
there are particular specific combinations of hyperparameters with each algorithm
that may lead to changes in the ordering of forecast accuracy in the empirical horse
race presented. Thus, there may be a set of hyperparameters where the winning
algorithms have a distinguishable different effect from the others that it is being
compared to.

This chapter is organized as follows. In the next section, we briefly describe
Bitcoin. Sections 3 and 4 provide a more detailed overview of existing HAR
strategies as well as conventional machine learning algorithms. Section 5 describes
the data we utilize and explains how we measure and incorporate social media
data into our empirical exercise. Section 6 presents our main empirical results
that compare the forecasting performance of each method introduced in Sects. 3
and 4 in a rolling window exercise. To focus on whether social media sentiment
data adds value, we contrast the results of incorporating the USSI variable in each
strategy to excluding this variable from the model. For every estimator considered,
we find that incorporating the USSI variable as a covariate leads to significant
improvements in forecast accuracy. We examine the robustness of our results by
considering (1) different experimental settings, (2) different hyperparameters, and
(3) incorporating covariates on the value of mainstream assets, in Sect. 7. We find
that our main conclusions are robust to both changes in the hyperparameters and
various settings, as well as little benefits from incorporating mainstream asset
markets when forecasting the realized volatility in the value of Bitcoin. Section 8
concludes by providing additional guidance to practitioners to ensure that they can
gain the full value of the hype for machine learning and social media data in their
applications.

2 What Is Bitcoin?

Bitcoin, the first and still one of the most popular applications of the blockchain
technology by far, was introduced in 2008 by a person or group of people
known by the pseudonym, Satoshi Nakamoto. Blockchain technology allows digital
information to be distributed but not copied. Basically, a time-stamped series of
immutable records of data are managed by a cluster of computers that are not owned
by any single entity. Each of these blocks of data (i.e., block) is secured and bound
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to each other using cryptographic principles (i.e., chain). The blockchain network
has no central authority and all information on the immutable ledger is shared.
The information on the blockchain is transparent and each individual involved is
accountable for their actions.

The group of participants who uphold the blockchain network ensure that it
can neither be hacked or tampered with. Additional units of currency are created
by the nodes of a peer-to-peer network using a generation algorithm that ensures
decreasing supply that was designed to mimic the rate at which gold was mined.
Specifically, when a user/miner discovers a new block, they are currently awarded
12.5 Bitcoins. However, the number of new Bitcoins generated per block is set to
decrease geometrically, with a 50% reduction every 210,000 blocks. The amount
of time it takes to find a new block can vary based on mining power and the
network difficulty.6 This process is why it can be treated by investors as an asset
and ensures that causes of inflation such as printing more currency or imposing
capital controls by a central authority cannot take place. The latter monetary policy
actions motivated the use of Bitcoin, the first cryptocurrency as a replacement for
fiat currencies.

Bitcoin is distinguished from other major asset classes by its basis of value,
governance, and applications. Bitcoin can be converted to a fiat currency using a
cryptocurrency exchange, such as Coinbase or Kraken, among other online options.
These online marketplaces are similar to the platforms that traders use to buy
stock. In September 2015, the Commodity Futures Trading Commission (CFTC)
in the United States officially designated Bitcoin as a commodity. Furthermore, the
Chicago Mercantile Exchange in December 2017 launched a Bitcoin future (XBT)
option, using Bitcoin as the underlying asset. Although there are emerging crypto-
focused funds and other institutional investors,7 this market remains retail investor
dominated.8

6Mining is challenging since new blocks and miners are paid any transaction fees as well as a
“subsidy” of newly created coins. For the new block to be considered valid, it must contain a proof
of work that is verified by other Bitcoin nodes each time they receive a block. By downloading and
verifying the blockchain, Bitcoin nodes are able to reach consensus about the ordering of events
in Bitcoin. Any currency that is generated by a malicious user that does not follow the rules will
be rejected by the network and thus is worthless. To make each new block more challenging to
mine, the rate at which a new block can be found is recalculated every 2016 blocks increasing the
difficulty.
7For example, the legendary former Legg Mason’ Chief Investment Officer Bill Miller’s fund has
been reported to have 50% exposure to crypto-assets. There is also a growing set of decentralized
exchanges, including IDEX, 0x, etc., but their market shares remain low today. Furthermore, given
the SEC’s recent charge against EtherDelta, a well-known Ethereum-based decentralized exchange,
the future of decentralized exchanges faces significant uncertainties.
8Apart from Bitcoin, there are more than 1600 other alter coin or cryptocurrencies listed over 200
different exchanges. However, Bitcoin still maintains roughly 50% market dominance. At the end
of December 2018, the market capitalization of Bitcoin is roughly 65 billion USD with 3800 USD
per token. On December 17, 2017, it reached 330 billion USD cap peak with almost 19,000 USD
per Bitcoin according to Coinmarketcap.com.
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There is substantial volatility in BTC/USD, and the sharp price fluctuations in
this digital currency greatly exceed that of most other fiat currencies. Much research
has explored why Bitcoin is so volatile; our interest is strictly to examine different
empirical strategies to forecast this volatility, which greatly exceeds that of other
assets including most stocks and bonds.

3 Bitcoin Data and HAR-Type Strategies to Forecast
Volatility

The price of Bitcoin is often reported to experience wild fluctuations. We follow
Xie [42] who evaluates model averaging estimators with data on the Bitcoin price
in US dollars (henceforth BTC/USD) at a 5-min. frequency between May 20, 2015,
and Aug 20, 2017. This data was obtained from Poloniex, one of the largest US-
based digital asset exchanges. Following Andersen and Bollerslev [1], we estimate
the daily realized volatility at day t (RVt ) by summing the correspondingM equally
spaced intra-daily squared returns rt,j . Here, the subscript t indexes the day, and j

indexes the time interval within day t:

RVt ≡
M∑

j=1

r2t,j (1)

where t = 1, 2, . . . , n, j = 1, 2, . . . ,M , and rt,j is the difference between log-
prices pt,j (rt,j = pt,j − pt,j−1). Poloniex is an active exchange that is always
in operation, every minute of each day in the year. We define a trading day using
Eastern Standard Time and with data calculate realized volatility of BTC/USD for
775 days. The evolution of the RV data over this full sample period is presented in
Fig. 1.

In this section, we introduce some HAR-type strategies that are popular in
modeling volatility. The standard HAR model of Corsi [11] postulates that the h-
step-ahead daily RVt+h can be modeled by9

logRVt+h = β0 + βdlogRV(1)
t + βwlogRV(5)

t + βmlogRV(22)
t + et+h, (2)

9Using the log to transform the realized variance is standard in the literature, motivated by
avoiding imposing positive constraints and considering the residuals of the below regression to
have heteroskedasticity related to the level of the process, as mentioned by Patton and Sheppard
[34]. An alternative is to implement weighted least squares (WLS) on RV, which does not suit well
our purpose of using the least squares model averaging method.
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where the βs are the coefficients and {et }t is a zero mean innovation process. The
explanatory variables take the general form of logRV(l)

t that is defined as the l period
averages of daily log RV:

logRV(l)
t ≡ l−1

l∑

s=1

logRVt−s .

Another popular formulation of the HAR model in Eq. (2) ignores the logarithmic
form and considers

RVt+h = β0 + βdRV
(1)
t + βwRV

(5)
t + βmRV

(22)
t + et+h, (3)

where RV(l)
t ≡ l−1 ∑l

s=1 RVt−s .
In an important paper, Andersen et al. [4] extend the standard HAR model from

two perspectives. First, they added a daily jump component (Jt ) to Eq. (3). The
extended model is denoted as the HAR-J model:

RVt+h = β0 + βdRV
(1)
t + βwRV

(5)
t + βmRV

(22)
t + βj Jt + et+h, (4)

where the empirical measurement of the squared jumps is Jt = max(RVt −BPVt , 0)
and the standardized realized bipower variation (BPV) is defined as

BPVt ≡ (2/π)−1
M∑

j=2

|rt,j−1||rt,j |.

Second, through a decomposition of RV into the continuous sample path and the
jump components based on the Zt statistic [22], Andersen et al. [4] extend the
HAR-J model by explicitly incorporating the two types of volatility components
mentioned above. The Zt statistic respectively identifies the “significant” jumps CJt
and continuous sample path components CSPt by

CSPt ≡ I(Zt ≤ Φα) · RVt + I(Zt > Φα) · BPVt ,

CJt = I(Zt > Φα) · (RVt − BPVt ).

where Zt is the ratio-statistic defined in [22] and Φα is the cumulative distribution
function(CDF) of a standard Gaussian distribution with α level of significance.
The daily, weekly, and monthly average components of CSPt and CJt are then
constructed in the same manner as RV(l). The model specification for the continuous
HAR-J, namely, HAR-CJ, is given by

RVt+h = β0+βc
dCSP

(1)
t +βc

wCSP
(5)
t +βc

mCSP
(22)
t +β

j

dCJ
(1)
t +βj

wCJ
(5)
t +β

j
mCJ

(22)
t +et+h.

(5)
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Note that compared with the HAR-J model, the HAR-CJ model explicitly controls
for the weekly and monthly components of continuous jumps. Thus, the HAR-J
model can be treated as a special and restrictive case of the HAR-CJ model for

βd = βc
d + β

j

d , βj = β
j

d , βw = βc
w + βj

w, and βm = βc
m + β

j
m.

To capture the role of the “leverage effect” in predicting volatility dynamics,
Patton and Sheppard [34] develop a series of models using signed realized measures.
The first model, denoted as HAR-RS-I, decomposes the daily RV in the standard
HAR model (3) into two asymmetric semi-variances RS+

t and RS−
t :

RVt+h = β0 + β+
d RS+

t + β−
d RS−

t + βwRV
(5)
t + βmRV

(22)
t + et+h, (6)

where RS−
t = ∑M

j=1 r2t,j · I(rt,j < 0) and RS+
t = ∑M

j=1 r2t,j · I(rt,j > 0).
To verify whether the realized semi-variances add something beyond the classical
leverage effect, Patton and Sheppard [34] augment the HAR-RS-I model with a
term interacting the lagged RV with an indicator for negative lagged daily returns
RV(1)

t · I(rt < 0). The second model in Eq. (7) is denoted as HAR-RS-II:

RVt+h = β0+β1RV
(1)
t ·I(rt < 0)+β+

d RS+
t +β−

d RS−
t +βwRV

(5)
t +βmRV

(22)
t +et+h,

(7)

where RV(1)
t · I(rt < 0) is designed to capture the effect of negative daily returns.

As in the HAR-CJ model, the third and fourth models in [34], denoted as HAR-SJ-I
and HAR-SJ-II, respectively, disentangle the signed jump variations and the BPV
from the volatility process:

RVt+h = β0 + β
j
d
SJt + β

bpv
d

BPVt + βwRV(5)
t + βmRV(22)

t + et+h, (8)

RVt+h = β0 + β
j−
d

SJ−t + β
j+
d

SJ+t + β
bpv
d

BPVt + βwRV(5)
t + βmRV(22)

t + et+h, (9)

where SJt = RS+
t − RS−

t , SJ
+
t = SJt · I(SJt > 0), and SJ−t = SJt · I(SJt < 0). The

HAR-SJ-II model extends the HAR-SJ-I model by being more flexible to allow the
effect of a positive jump variation to differ in unsystematic ways from the effect of
a negative jump variation.

The models discussed above can be generalized using the following formulation
in practice:

yt+h = xtβ + et+h
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for t = 1, . . . , n, where yt+h stands for RVt+h and variable xt collects all the
explanatory variables such that

xt ≡

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[
1,RV(1)

t ,RV(5)
t ,RV(22)

t

]
for model HAR in (3),[

1,RV(1)
t ,RV(5)

t ,RV(22)
t , Jt

]
for model HAR-J in (4),[

1,CSP(1)
t ,CSP(5)

t ,CSP(22)
t ,CJ(1)t ,CJ(5)t ,CJ(22)t

]
for model HAR-CJ in (5),[

1,RS−
t ,RS+

t ,RV(5)
t ,RV(22)

t

]
for model HAR-RS-I in (6),[

1,RV(1)
t Irt<0,RS

−
t ,RS+

t ,RV(5)
t ,RV(22)

t

]
for model HAR-RS-II in (7),[

1,SJt ,BPVt ,RV
(5)
t ,RV(22)

t

]
for model HAR-SJ-I in (8),[

1,SJ−t ,SJ+t ,BPVt ,RV
(5)
t ,RV(22)

t

]
for model HAR-SJ-II in (9).

Since yt+h is infeasible in period t , in practice, we usually obtain the estimated
coefficient β̂ from the following model:

yt = xt−hβ + et , (10)

in which both the independent and dependent variables are feasible in period t =
1, . . . , n. Once the estimated coefficients β̂ are obtained, the h-step-ahead forecast
can be estimated by

ŷt+h = xt β̂ for t = 1, . . . , n.

4 Machine Learning Strategy to Forecast Volatility

Machine learning tools are increasingly being used in the forecasting literature.10

In this section, we briefly describe five of the most popular machine learning algo-
rithms that have been shown to outperform econometric strategies when conducting
forecast. That said, as Lehrer and Xie [26] stress the “No Free Lunch” theorem of
Wolpert and Macready [41] indicates that in practice, multiple algorithms should be
considered in any application.11

The first strategy we consider was developed to assist in the selection of
predictors in the main model. Consider the regression model in Eq. (10), which
contains many explanatory variables. To reduce the dimensionality of the set of
the explanatory variables, Tibshirani [39] proposed the LASSO estimator of β̂ that

10For example, Gu et al. [19] perform a comparative analysis of machine learning methods
for measuring asset risk premia. Ban et al. [6] adopt machine learning methods for portfolio
optimization. Beyond academic research, the popularity of algorithm-based quantitative exchange-
traded funds (ETF) has increased among investors, in part since as LaFon [24] points out they both
offer lower management fees and volatility than traditional stock-picking funds.
11This is an impossibility theorem that rules out the possibility that a general-purpose universal
optimization strategy exists. As such, researchers should examine the sensitivity of their findings
to alternative strategies.
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solves

β̂
LASSO = argmin

β

1

2n

n∑

t=1

(yt − xt−hβ)2 + λ

L∑

j=1

|βj |, (11)

where λ is a tuning parameter that controls the penalty term. Using the estimates of
Eq. (11), the h-step-ahead forecast is constructed in an identical manner as OLS:

ŷLASSO
t+h = xt β̂

LASSO
.

The LASSO has been used in many applications and a general finding is that it is
more likely to offer benefits relative to the OLS estimator when either (1) the number
of regressors exceeds the number of observations, since it involves shrinkage, or (2)
the number of parameters is large relative to the sample size, necessitating some
form of regularization.

Recursive partitioning methods do not model the relationship between the
explanatory variables and the outcome being forecasted with a regression model
such as Eq. (10). Breiman et al. [10] propose a strategy known as classification
and regression trees (CART), in which classification is used to forecast qualitative
outcomes including categorical responses of non-numeric symbols and texts, and
regression trees focus on quantitative response variables. Given the extreme volatil-
ity in Bitcoin gives rise to a continuous variable, we use regression trees (RT).

Consider a sample of {yt , xt−h}nt=1. Intuitively, RT operates in a similar manner
to forward stepwise regression. A fast divide and conquer greedy algorithm
considers all possible splits in each explanatory variable to recursively partition the
data. Formally, at node τ containing nτ observations with mean outcome y(τ) of the
tree can only be split by one selected explanatory variable into two leaves, denoted
as τL and τR . The split is made at the explanatory variable which will lead to the
largest reduction of a predetermined loss function between the two regions.12 This
splitting process continues at each new node until the gain to any forecast adds little
value relative to a predetermined boundary. Forecasts at each final leaf are the fitted
value from a local constant regression model.

Among machine learning strategies, the popularity of RT is high since the results
of the analysis are easy to interpret. The algorithm that determines the split allows
partitions among the entire covariate set to be described by a single tree. This
contrasts with econometric approaches that begin by assuming a linear parametric
form to explain the same process and as with the LASSO build a statistical model
to make forecasts by selecting which explanatory variables to include. The tree

12A best split is determined by a given loss function, for example, the reduction of the sum of
squared residuals (SSR). A simple regression will yield a sum of squared residuals, SSR0. Suppose
we can split the original sample into two subsamples such that n = n1 + n2. The RT method finds
the best split of a sample to minimize the SSR from the two subsamples. That is, the SSR values
computed from each subsample should follow: SSR1 + SSR2 ≤ SSR0.
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structure considers the full set of explanatory variables and further allows for
nonlinear predictor interactions that could be missed by conventional econometric
approaches. The tree is simply a top-down, flowchart-like model which represents
how the dataset was partitioned into numerous final leaf nodes. The predictions of a
RT can be represented by a series of discontinuous flat surfaces forming an overall
rough shape, whereas as we describe below visualizations of forecasts from other
machine learning methods are not intuitive.

If the data are stationary and ergodic, the RT method often demonstrates gains in
forecasting accuracy relative to OLS. Intuitively, we expect the RT method to per-
form well since it looks to partition the sample into subgroups with heterogeneous
features. With time series data, it is likely that these splits will coincide with jumps
and structural breaks. However, with primarily cross-sectional data, the statistical
learning literature has discovered that individual regression trees are not powerful
predictors relative to ensemble methods since they exhibit large variance [21].

Ensemble methods combine estimates from multiple outputs. Bootstrap aggre-
gating decision trees (aka bagging) proposed in [8] and random forest (RF)
developed in [9] are randomization-based ensemble methods. In bagging trees
(BAG), trees are built on random bootstrap copies of the original data. The BAG
algorithm is summarized as below:

(i) Take a random sample with replacement from the data.
(ii) Construct a regression tree.
(iii) Use the regression tree to make forecast, f̂ .
(iv) Repeat steps (i) to (iii), b = 1, . . . , B times and obtain f̂ b for each b.
(v) Take a simple average of the B forecasts f̂BAG = 1

B

∑B
b=1 f̂ b and consider the

averaged value f̂BAG as the final forecast.

Forecast accuracy generally increases with the number of bootstrap samples in
the training process. However, more bootstrap samples increase computational time.
RF can be regarded as a less computationally intensivemodification of BAG. Similar
to BAG, RF also constructs B new trees with (conventional or moving block)
bootstrap samples from the original dataset. With RF, at each node of every tree only
a random sample (without replacement) of q predictors out of the total K (q < K)

predictors is considered to make a split. This process is repeated and the remaining
steps (iii)–(v) of the BAG algorithm are followed. Only if q = K , RF is roughly
equivalent to BAG. RF forecasts involve B trees like BAG, but these trees are less
correlated with each other since fewer variables are considered for a split at each
node. The final RF forecast is calculated as the simple average of forecasts from
each of these B trees.

The RT method can respond to highly local features in the data and is quite
flexible at capturing nonlinear relationships. The final machine learning strategy we
consider refines how highly local features of the data are captured. This strategy
is known as boosting trees and was introduced in [21, Chapter 10]. Observations
responsible for the local variation are given more weight in the fitting process. If the
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algorithm continues to fit those observations poorly, we reapply the algorithm with
increased weight placed on those observations.

We consider a simple least squares boosting that fits RT ensembles (BOOST).
Regression trees partition the space of all joint predictor variable values into disjoint
regions Rj , j = 1, 2, . . . , J , as represented by the terminal nodes of the tree. A
constant j is assigned to each such region and the predictive rule is X ∈ Rj ⇒
f (X) = γj , where X is the matrix with tth component xt−h. Thus, a tree can
be formally expressed as T (X,Θ) = ∑J

j=1 γj I(X ∈ Rj), with parameters Θ =
{Rj , γj }Jj=1. The parameters are found by minimizing the risk

Θ̂ = argmin
Θ

J∑

j=1

∑

xt−h∈Rj

L(yt , γj ),

where L(·) is the loss function, for example, the sum of squared residuals (SSR).
The BOOST method is a sum of all trees:

fM(X) =
M∑

m=1

T (X; Θm)

induced in a forward stagewise manner. At each step in the forward stagewise
procedure, one must solve

Θ̂m = argmin
Θm

n∑

i=1

L
(
yt , fm−1(xt−h) + T (xt−h; Θm)

)
. (12)

for the region set and constants Θm = {Rjm, γjm}Jm

1 of the next tree, given the cur-
rent model fm−1(X). For squared-error loss, the solution is quite straightforward. It
is simply the regression tree that best predicts the current residuals yt −fm−1(xt−h),
and γ̂jm is the mean of these residuals in each corresponding region.

A popular alternative to a tree-based procedure to solve regression problems
developed in the machine learning literature is the support vector regression (SVR).
SVR has been found in numerous applications including Lehrer and Xie [26] to per-
form well in settings where there a small number of observations (< 500). Support
vector regression is an extension of the support vector machine classification method
of Vapnik [40]. The key feature of this algorithm is that it solves for a best fitting
hyperplane using a learning algorithm that infers the functional relationships in the
underlying dataset by following the structural risk minimization induction principle
of Vapnik [40]. Since it looks for a functional relationship, it can find nonlinearities
that many econometric procedures may miss using a prior chosen mapping that
transforms the original data into a higher dimensional space.
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Support vector regressionwas introduced in [16] and the true data that one wishes
to forecast was known to be generated as yt = f (xt ) + et , where f is unknown to
the researcher and et is the error term. The SVR framework approximates f (xt ) in
terms of a set of basis functions: {hs(·)}Ss=1:

yt = f (xt ) + et =
S∑

s=1

βshs(xt ) + et ,

where hs(·) is implicit and can be infinite-dimensional. The coefficients β =
[β1, · · · , βS]� are estimated through the minimization of

H(β) =
T∑

t=1

Vε (yt − f (xt )) + λ

S∑

s=1

β2
s , (13)

where the loss function

Vε(r) =
{

0 if |r| < ε

|r| − ε otherwise

is called an ε-insensitive error measure that ignores errors of size less than ε.
The parameter ε is usually decided beforehand and λ can be estimated by cross-
validation.

Suykens and Vandewalle [38] proposed a modification to the classic SVR that
eliminates the hyperparameter ε and replaces the original ε-insensitive loss function
with a least squares loss function. This is known as the least squares SVR (LSSVR).
The LSSVR considers minimizing

H(β) =
T∑

t=1

(yt − f (xt ))
2 + λ

S∑

s=1

β2
s , (14)

where a squared loss function replaces Ve(·) for the LSSVR.
Estimating the nonlinear algorithms (13) and (14) requires a kernel-based

procedure that can be interpreted as mapping the data from the original input space
into a potentially higher-dimensional “feature space,” where linear methods may
then be used for estimation. The use of kernels enables us to avoid paying the
computational penalty implicit in the number of dimensions, since it is possible to
evaluate the training data in the feature space through indirect evaluation of the inner
products. As such, the kernel function is essential to the performance of SVR and
LSSVR since it contains all the information available in the model and training data
to perform supervised learning, with the sole exception of having measures of the
outcome variable. Formally, we define the kernel function K(x, xt) = h(x)h(xt)

�
as the linear dot product of the nonlinear mapping for any input variable x. In our
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analysis, we consider the Gaussian kernel (sometimes referred to as “radial basis
function” and “Gaussian radial basis function” in the support vector literature):

K(x, xt ) = exp

(
−‖x − xt‖2

2σ 2
x

)
,

where the hyperparameters σ 2
x and γ .

In our main analysis, we use a tenfold cross-validation to pick the tuning
parameters for LASSO, SVR, and LSSVR. For tree-typemachine learning methods,
we set the basic hyperparameters of a regression tree at their default values. These
include but not limited to: (1) the split criterion is SSR; (2) the maximum number
of split is 10 for BOOST and n − 1 for others; (3) the minimum leaf size is 1;
(4) the number of predictors for split is K/3 for RF and K for others; and (5) the
number of learning cycles is B = 100 for ensemble learning methods. We examine
the robustness to different values for the hyperparameters in Sect. 7.3.

5 Social Media Data

Substantial progress has been made in the machine learning literature on quickly
converting text to data, generating real-time information on social media content.
To measure social media sentiment, we selected an algorithm introduced in [17]
that pre-trained a five-hidden-layer neural model on 124.6 million tweets containing
emojis in order to learn better representations of the emotional context embedded in
the tweet. This algorithm was developed to provide a means to learn representations
of emotional content in texts and is available with pre-processing code, examples
of usage, and benchmark datasets, among other features at github.com/bfelbo/
deepmoji. The pre-training data is split into a training, validation, and test set, where
the validation and test set are randomly sampled in such a way that each emoji is
equally represented. This data includes all English Twitter messages without URLs
within the period considered that contained an emoji. The fifth layer of the algorithm
focuses on attention and takes inputs from the prior levels which uses a multi-class
learners to decode the text and emojis itself. See [17] for further details. Thus, an
emoji is viewed as a labeling system for emotional content.

The construction of the algorithm began by acquiring a dataset of 55 billion
tweets, of which all tweets with emojis were used to train a deep learning model.
That is, the text in the tweet was used to predict which emoji was included with
what tweet. The premise of this algorithm is that if it could understand which emoji
was included with a given sentence in the tweet, then it has a good understanding
of the emotional content of that sentence. The goal of the algorithm is to understand
the emotions underlying from the words that an individual tweets. The key feature
of this algorithm compared to one that simply scores words themselves is that it
is better able to detect irony and sarcasm. As such, the algorithm does not score

github.com/bfelbo/deepmoji
github.com/bfelbo/deepmoji
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individual emotion words in a Twitter message, but rather calculates a score based
on the probability of each of 64 different emojis capturing the sentiment in the full
Twitter message taking the structure of the sentence into consideration. Thus, each
emoji has a fixed score and the sentiment of a message is a weighted average of
the type of mood being conveyed, since messages containing multiple words are
translated to a set of emojis to capture the emotion of the words within.

In brief, for a random sample of 10% of all tweets every minute, the score is
calculated as an equal tweet weight average of the sentiment values of the words
within them.13 That is, we apply the pre-trained classifier of Felbo et al. [17] to
score each of these tweets and note that there are computational challenges related
to data storage when using very large datasets to undertake sentiment analysis. In
our application, the number of tweets per hour generally varies between 120,000
and 200,000 tweets per hour in our 10% random sample. We denote the minute-
level sentiment index as the U.S. Sentiment Index (USSI).

In other words, if there are 10,000 tweets each hour, we first convert each tweet
to a set of emojis. Then we convert the emojis to numerical values based on a fixed
mapping related to their emotional content. For each of the 10,000 tweets posted in
that hour, we next calculate the average of these scores as the emotion content or
sentiment of that individual tweet. We then calculate the equal weighted average of
these tweet-specific scores to gain an hourly measure. Thus, each tweet is treated
equally irrespective of whether one tweet contains more emojis than the other. This
is then repeated for each hour of each day in our sample providing us with a large
time series.

Similar to many other text mining tasks, this sentiment analysis was initially
designed to deal with English text. It would be simple to apply an off-the-shelf
machine translation tool in the spirit of Google translate to generate pseudo-
parallel corpora and then learn bilingual representations for downstream sentiment
classification task of tweets that were initially posted in different languages. That
said, due to the ubiquitous usage of emojis across languages and their functionality
of expressing sentiment, alternative emoji powered algorithms have been developed
with other languages. These have smaller training datasets since most tweets are in
English and it is an open question as to whether they perform better than applying
the [17] algorithm to pseudo-tweets.

Note that the way we construct USSI does not necessarily focus on sentiment
related to cyptocurrency only as in [29]. Sentiment, in- and off-market, has been
a major factor affecting the price of financial asset [23]. Empirical works have
documented that large national sentiment swing can cause large fluctuation in asset
prices, for example, [5, 37]. It is therefore natural to assume that national sentiment
can affect financial market volatility.

13This is a 10% random sample of all tweets since the USSI was designed to measure the real-time
mood of the nation and the algorithm does not restrict the calculations to Twitter accounts that
either mention any specific stock or are classified as being a market participant.
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Data timing presents a serious challenge in using minutely measures of the USSI
to forecast the daily Bitcoin RV. Since USSI is constructed at minute level, we
convert the minute-level USSI to match the daily sampling frequency of Bitcoin
RV using the heterogeneous mixed data sampling (H-MIDAS) method of Lehrer
et al. [28].14 This allows us to transform 1,172,747minute-level observations for
USSI variable via a step function to allow for heterogeneous effects of different
high-frequency observations into 775 daily observations for the USSI at different
forecast horizons. This step function produces a different weight on the hourly levels
in the time series and can capture the relative importance of user’s emotional content
across the day since the type of users varies in a manner that may be related to
BTC volatility. The estimated weights used in the H-MIDAS transformation for our
application are presented in Fig. 2.

Last, Table 1 presents the summary statistics for the RV data and p-values from
both the Jarque–Bera test for normality and the Augmented Dickey–Fuller (ADF)
tests for unit root. We consider the first half sample, the second half sample, and
full sample. Each of the series exhibits tremendous variability and a large range
across the sample period. Further, none of the series are normally distributed or
nonstationary at 5% level.

6 Empirical Exercise

To examine the relative prediction efficiency of different HAR estimators, we
conduct an h-step-ahead rolling window exercise of forecasting the BTC/USD RV
for different forecasting horizons.15 Table 2 lists each estimator analyzed in the
exercise. For all the HAR-type estimators in Panel A (except the HAR-Full model
which uses all the lagged covariates from 1 to 30), we set l = [1, 7, 30]. For the
machine learning methods in Panel B, the input data includes all covariates as the
one for HAR-Full model. Throughout the experiment, the window length is fixed
at WL = 400 observations. Our conclusions are robust to other window lengths as
discussed in Sect. 7.1.

To examine if the sentiment data extracted from social media improves forecasts,
we contrasted the forecast frommodels that exclude the USSI to models that include
the USSI as a predictor. We denote methods incorporating the USSI variable with

14We provide full details on this strategy in the appendix. In practice, we need to select the lag
index l = [l1, . . . , lp] and determine the weight set W before the estimation. In this study, we set
W ≡ {w ∈ R

p : ∑p

j=1 wj = 1} and use OLS to estimate β̂w. We consider h = 1, 2, 4, and 7 as in
the main exercise. For the lag index, we consider l = [1 : 5 : 1440], given there are 1440 minutes
per day.
15Additional results using both the GARCH(1, 1) and the ARFIMA(p, d, q) models are available
upon request. These estimators performed poorly relative to the HAR model and as such are not
included for space considerations.
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(a) H-MIDAS Weights with h = 1
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(b) H-MIDAS Weights with h = 2
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(c) H-MIDAS Weights with h = 4
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(d) H-MIDAS Weights with h = 7

Fig. 2 Weights on the high-frequency observations under different lag indices. (a) H-MIDAS
weights with h = 1. (b) H-MIDAS weights with h = 2. (c) H-MIDAS weights with h = 4. (d)
H-MIDAS weights with h = 7

Table 1 Descriptive statistics

Statistics Realized variance USSI

First half Second half Full sample

Mean 43.4667 12.1959 27.8313 117.4024

Median 31.2213 7.0108 17.4019 125.8772

Maximum 197.6081 115.6538 197.6081 657.4327

Minimum 5.0327 0.5241 0.5241 −866.6793

Std. dev. 38.0177 15.6177 32.9815 179.1662

Skewness 2.1470 3.3633 2.6013 −0.8223

Kurtosis 7.8369 18.2259 11.2147 5.8747

Jarque–Bera 0.0000 0.0000 0.0000 0.0000

ADF test 0.0000 0.0000 0.0000 0.0000

∗ symbol in each table. The results of the prediction experiment are presented in
Table 3. The estimation strategy is listed in the first column and the remaining
columns present alternative criteria to evaluate the forecasting performance. The
criteria include the mean squared forecast error (MSFE), quasi-likelihood (QLIKE),
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Table 2 List of estimators

Panel A: conventional regression

(1) AR(1) A simple autoregressive model

(2) HAR-Full The HAR model proposed in [11] with l = [1, 2, . . . , 30], which is
equivalent to AR(30)

(3) HAR The conventional HAR model proposed in [11] with l = [1, 7, 30]
(4) HAR-J The HAR model with jump component proposed in [4]

(5) HAR-CJ The HAR model with continuous jump component proposed in [4]

(6) HAR-RS-I The HAR model with semi-variance components (Type I) proposed in
[34]

(7) HAR-RS-II The HAR model with semi-variance components (Type II) proposed in
[34]

(8) HAR-SJ-I The HAR model with semi-variance and jump components (Type I)
proposed in [34]

(9) HAR-SJ-II The HAR model with semi-variance and jump components (Type II)
proposed in [34]

Panel B: machine learning strategy

(10) LASSO The least absolute shrinkage and selection operator by Tibshirani [39]

(11) RT The regression tree method proposed by Breiman et al. [10]

(12) BOOST The boosting tree method described in [21]

(13) BAG The bagging tree method proposed by Breiman [8]

(14) RF The random forest method proposed by Breiman [9]

(15) SVR The support vector machine for regression by Drucker et al. [16]

(16) LSSVR The least squares support vector regression by Suykens and Vandewalle
[38]

mean absolute forecast error (MAFE), and standard deviation of forecast error
(SDFE) that are calculated as

MSFE(h) = 1

V

V∑

j=1

e2Tj ,h, (15)

QLIKE(h) = 1

V

V∑

j=1

(
log ŷTj ,h + yTj ,h

ŷTj ,h

)
, (16)

MAFE(h) = 1

V

V∑

j=1

|eTj ,h|, (17)

SDFE(h) =

√√√√√ 1

V − 1

⎛

⎝eTj ,h − 1

V

V∑

j=1

eTj ,h

⎞

⎠
2

, (18)
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Table 3 Forecasting performance of strategies in the main exercise

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: h = 1

HAR 1666.8492 0.5356 17.0279 40.8271 0.3173

HAR-CJ 1690.4306 0.5299 17.1844 41.1148 0.3076

HAR-RS-II 2377.5159 0.5471 17.6936 48.7598 0.0262

LASSO 1726.2453 0.5649 17.4025 41.5481 0.2929

BOOST 3003.8597 2.3176 27.7473 54.8075 −0.2304

RF 1680.2756 0.4374 16.7922 40.9912 0.3118

BAG 1628.2674 0.4504 16.8285 40.3518 0.3331

SVR 2218.8594 1.3751 20.0765 47.1048 0.0912

LSSVR 1628.6800 0.4858 16.0397 40.3569 0.3329

HAR∗ 1459.7257 1.5488 19.2790 38.2064 0.4021

HAR-CJ∗ 1477.1162 1.7526 19.3398 38.4333 0.3950

HAR-RS-II∗ 2047.5427 1.5013 19.9458 45.2498 0.1613

LASSO∗ 1497.0621 1.8256 19.1215 38.6919 0.3868

BOOST∗ 1312.6693 2.4524 18.6123 36.2308 0.4623

RF∗ 1178.6862 0.3794 14.4059 34.3320 0.5172

BAG∗ 1035.7081 0.3635 13.8235 32.1824 0.5758
SVR∗ 2226.7603 1.4075 20.2407 47.1886 0.0879

LSSVR∗ 1494.0104 1.2801 16.4454 38.6524 0.3881

Panel B: h = 2

HAR 2066.1864 0.6681 18.6000 45.4553 0.1558

HAR-CJ 2110.0401 0.6696 19.0773 45.9352 0.1379

HAR-RS-II 2028.5347 0.6838 18.8080 45.0393 0.1712

LASSO 2081.8131 0.6936 18.9990 45.6269 0.1494

BOOST 3615.6614 3.1268 28.7990 60.1304 −0.4772

RF 1880.7996 0.5376 17.1419 43.3682 0.2316

BAG 1994.2700 0.5733 17.8611 44.6572 0.1852

SVR 2224.9431 1.3804 20.1089 47.1693 0.0910

LSSVR 1872.4412 0.6192 16.5504 43.2717 0.2350

HAR∗ 1803.3278 1.5095 21.2684 42.4656 0.2632

HAR-CJ∗ 1832.2437 1.9863 21.4102 42.8047 0.2514

HAR-RS-II∗ 1783.0826 2.3170 21.4938 42.2266 0.2715

LASSO∗ 1817.9238 1.8877 20.8886 42.6371 0.2573

BOOST∗ 1832.3453 2.8026 21.2695 42.8059 0.2514

RF∗ 1511.0049 0.4593 15.5323 38.8716 0.3827

BAG∗ 1428.6900 0.4654 15.1394 37.7980 0.4163
SVR∗ 2232.1703 1.4105 20.2573 47.2458 0.0880

LSSVR∗ 1702.2016 1.0489 17.0578 41.2577 0.3045

(continued)
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Table 3 (continued)

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel C: h = 4

HAR 2064.3686 0.8043 19.5208 45.4353 0.1610

HAR-CJ 2100.3712 0.8181 20.0445 45.8298 0.1464

HAR-RS-II 2057.6179 0.8077 19.6796 45.3610 0.1638

LASSO 2068.0111 0.8231 19.8920 45.4754 0.1595

BOOST 2348.6453 4.6780 24.2304 48.4628 0.0455

RF 1936.6858 0.5980 17.5443 44.0078 0.2129

BAG 2035.9166 0.6470 17.9963 45.1211 0.1726

SVR 2235.8229 1.3882 20.1259 47.2845 0.0913

LSSVR 1963.1437 0.9329 17.3076 44.3074 0.2022

HAR∗ 1630.8296 2.5250 21.8847 40.3835 0.3372

HAR-CJ∗ 1641.7051 2.0302 22.0168 40.5180 0.3328

HAR-RS-II∗ 1638.4781 2.1343 21.9431 40.4781 0.3341

LASSO∗ 1636.6835 2.3301 21.5890 40.4559 0.3348

BOOST∗ 1447.7824 3.3492 20.7355 38.0497 0.4116

RF∗ 1205.4310 0.4396 14.4692 34.7193 0.5101

BAG∗ 1075.4364 0.4579 14.8433 32.7938 0.5629
SVR∗ 2241.9418 1.4129 20.2578 47.3491 0.0889

LSSVR∗ 1526.7558 1.3300 17.1047 39.0737 0.3795

Panel D: h = 7

HAR 2108.7457 0.8738 19.9327 45.9211 0.1497

HAR-CJ 2119.8357 0.8872 20.2362 46.0417 0.1452

HAR-RS-II 2142.9983 0.9661 20.2572 46.2925 0.1359

LASSO 2100.7324 0.8939 20.2446 45.8337 0.1529

BOOST 2616.8282 2.9902 24.2636 51.1549 -0.0552

RF 1769.0548 0.5524 15.7001 42.0601 0.2867

BAG 1822.8425 0.5648 16.3405 42.6948 0.2650

SVR 2253.5470 1.4045 20.1991 47.4715 0.0913

LSSVR 2000.7088 0.8148 17.7411 44.7293 0.1933

HAR∗ 1703.6884 1.6255 22.3689 41.2758 0.3130

HAR-CJ∗ 1705.7788 1.7958 22.2928 41.3011 0.3122

HAR-RS-II∗ 1716.5970 1.5604 22.4318 41.4318 0.3078

LASSO∗ 1710.4945 4.1087 22.1347 41.3581 0.3103

BOOST∗ 1589.2483 2.8654 19.7297 39.8654 0.3592

RF∗ 1273.7997 0.4656 14.4000 35.6903 0.4864

BAG∗ 1257.6470 0.5070 15.1803 35.4633 0.4929
SVR∗ 2257.5369 1.4195 20.2793 47.5135 0.0897

LSSVR∗ 1561.7929 1.0831 18.0236 39.5195 0.3702

The best result under each criterion is highlighted in boldface
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where eTj ,h = yTj ,h − ŷTj ,h is the forecast error and ŷiTj ,h is the h-day ahead
forecast with information up to Tj that stands for the last observation in each of
the V rolling windows. We also report the Pseudo R2 of the Mincer–Zarnowitz
regression [32] given by:

yTj ,h = a + bŷTj ,h + uTj , for j = 1, 2, . . . , V , (19)

Each panel in Table 3 presents the result corresponding to a specific forecasting
horizon. We consider various forecasting horizons h = 1, 2, 4, and 7.

To ease interpretation, we focus on the following representative methods: HAR,
HAR-CJ, HAR-RS-II, LASSO, RF, BAG, and LSSVR with and without the USSI
variable. Comparison results between all methods listed in Table 2 are available
upon request. We find consistent ranking of modeling methods across all forecast
horizons. The tree-based machine learning methods (BAG and RF) have superior
performance than all others for each panel. Moreover,methods with USSI (indicated
by ∗) always dominate those without USSI, which indicates the importance of
incorporating social media sentiment data. We also discover that the conventional
econometric methods have unstable performance, for example, the HAR-RS-II
model without USSI has the worst performance when h = 1, but its performance
improves when h = 2. The mixed performance of the linear models implies that this
restrictive formulation may not be robust to model the highly volatile BTC/USD RV
process.

To examine if the improvement from the BAG and RF methods is statistically
significant, we perform the modified Giacomini–White test [18] of the null hypoth-
esis that the column method performs equally well as the row method in terms of
MAFE. The corresponding p values are presented in Table 4 for h = 1, 2, 4, 7.
We see that the gains in forecast accuracy from BAG∗ and RF∗ relative to all other
strategies are statistically significant, although results between BAG∗ and RF∗ are
statistically indistinguishable.

7 Robustness Check

In this section, we perform four robustness checks of our main results. We first vary
the window length for the rolling window exercise in Sect. 7.1.We next consider dif-
ferent sample periods in Sect. 7.2. We explore the use of different hyperparameters
for the machine learning methods in Sect. 7.3. Our final robustness check examines
if BTC/USD RV is correlated with other types of financial markets by including
mainstream assets RV as additional covariates. Each of these robustness checks that
are ported in the main text considers h = 1.16

16Although not reported due to space considerations, we investigated other forecasting horizons
and our main findings are robust.
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7.1 Different Window Lengths

In the main exercise, we set the window length WL = 400. In this section, we
also tried other window lengths WL = 300 and 500. Table 5 shows the forecasting
performance of all the estimators for various window lengths. In all the cases BAG∗
and RF∗ yield smallest MSFE, MAFE, and SDFE and the largest Pseudo R2. We
examine the statistical significance of the improvement on forecasting accuracy
in Table 6. The small p-values on testing BAG∗ and RF∗ against other strategies
indicate that the forecasting accuracy improvement is statistically significant at the
5% level.

7.2 Different Sample Periods

In this section, we partition the entire sample period in half: the first subsample
period runs from May 20, 2015, to July 29, 2016, and the second subsample period
runs from July 30, 2016, to Aug 20, 2017. We carry out the similar out-of-sample
analysis with WL = 200 for the two subsamples in Table 7 Panels A and B,
respectively. We also examine the statistical significance in Table 8. The previous
conclusions remain basically unchanged under the subsamples.

7.3 Different Tuning Parameters

In this section, we examine the effect of different tuning parameters for the machine
learning methods. We consider a different set of tuning parameters: B = 20 for
RF and BAG, and λ = 0.5 for LASSO, SVR, and LSSVR. The machine learning
methods with the second set of tuning parameters are labeled as RF2, BAG2, and
LASSO2. We replicate the main empirical exercise in Sect. 6 and compare the
performance of machine learning methods with different tuning parameters.

The results are presented in Tables 9 and 10. Changes in the considered
tuning parameters generally have marginal effects on the forecasting performance,
although the results for the second tuning parameters are slightly worse than those
under the default setting. Last, social media sentiment data plays a crucial role on
improving the out-of-sample performance in each of these exercises.

7.4 Incorporating Mainstream Assets as Extra Covariates

In this section, we examine if the mainstream asset class has spillover effect on
BTC/USD RV. We include the RVs of the S&P and NASDAQ indices ETFs (ticker
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Table 5 Forecasting performance by different window lengths (h = 1)

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: WL = 300

HAR 1626.1783 0.4658 17.3249 40.3259 0.3036

HAR-CJ 1691.6375 0.4806 17.3407 41.1295 0.2756

HAR-RS-II 2427.8630 0.4611 17.8985 49.2733 -0.0397

LASSO 1676.9910 0.4912 17.6299 40.9511 0.2819

BOOST 3902.5683 5.0682 30.7322 62.4705 -0.6712

RF 1725.6296 0.4611 18.2421 41.5407 0.2610

BAG 1633.2346 0.4540 17.5508 40.4133 0.3006

SVR 2017.5537 1.3343 19.3042 44.9172 0.1360

LSSVR 1632.6040 0.4961 17.3568 40.4055 0.3009

HAR∗ 1473.7240 1.8110 19.4883 38.3891 0.3689

HAR-CJ∗ 1526.2976 2.4053 19.6475 39.0679 0.3464

HAR-RS-II∗ 2159.5044 1.6874 20.1350 46.4705 0.0752

LASSO∗ 1510.2217 2.0658 19.4269 38.8616 0.3533

BOOST∗ 1531.6126 5.0383 20.4951 39.1358 0.3441

RF∗ 1277.5211 0.3751 15.7195 35.7424 0.4529

BAG∗ 1182.1547 0.3602 14.7103 34.3825 0.4938
SVR∗ 2022.3680 1.3688 19.4026 44.9707 0.1340

LSSVR∗ 1492.9071 1.8484 17.1765 38.6382 0.3607

Panel B: WL = 500

HAR 2149.6161 0.5193 20.8155 46.3640 0.3510

HAR-CJ 2219.6210 0.5281 20.1791 47.1129 0.3298

HAR-RS-II 2851.7670 0.5199 21.5077 53.4019 0.1390

LASSO 2205.3996 0.5226 20.7104 46.9617 0.3341

BOOST 3106.4917 4.1749 29.2914 55.7359 0.0621

RF 2144.2577 0.4679 20.7959 46.3061 0.3526

BAG 2256.8494 0.4779 21.5526 47.5063 0.3186

SVR 2870.1779 1.2920 22.2445 53.5740 0.1334

LSSVR 2216.1386 0.4999 19.2678 47.0759 0.3309

HAR∗ 1686.7126 1.5249 21.6946 41.0696 0.4907

HAR-CJ∗ 1737.9884 1.5219 21.5992 41.6892 0.4753

HAR-RS-II∗ 2228.9633 2.0233 22.6721 47.2119 0.3270

LASSO∗ 1731.5366 1.6110 21.5009 41.6117 0.4772

BOOST∗ 1595.2616 4.8013 23.3670 39.9407 0.5184

RF∗ 1380.9952 0.3759 16.9718 37.1617 0.5830

BAG∗ 1115.9729 0.3669 16.1018 33.4062 0.6631
SVR∗ 2879.3386 1.3206 22.3949 53.6595 0.1307

LSSVR∗ 1890.4027 2.3489 19.2429 43.4788 0.4292

The best result under each criterion is highlighted in boldface



Data Science Tools for Extremely Volatile Assets Forecasting 315

T
ab

le
6

G
ia
co
m
in
i–
W
hi
te
te
st
re
su
lt
s
by

di
ff
er
en
tw

in
do
w
le
ng
th
s
(h

=
1)

H
A
R

H
A
R
-C

J
R
S-
II

L
A
SS

O
B
O
O
S
T

R
F

B
A
G

SV
R

L
SS

V
R

H
A
R

∗
H
A
R
-C

J∗
R
S-
II

∗
L
A
SS

O
∗

B
O
O
S
T

∗
R
F∗

B
A
G

∗
SV

R
∗

Pa
ne
lA

:
W

L
=

30
0

H
A
R

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

H
A
R
-C

J
0.
93
38

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

H
A
R
-R

S-
II

0.
48
18

0.
44
62

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

L
A
SS

O
0.
03
07

0.
21
19

0.
74
66

–
–

–
–

–
–

–
–

–
–

–
–

–
–

B
O
O
S
T

0.
00
00

0.
00
00

0.
00
00

0.
00
00

–
–

–
–

–
–

–
–

–
–

–
–

–

R
F

0.
37
21

0.
41
72

0.
84
16

0.
54
19

0.
00
00

–
–

–
–

–
–

–
–

–
–

–
–

B
A
G

0.
81
10

0.
83
83

0.
83
32

0.
93
16

0.
00
00

0.
04
77

–
–

–
–

–
–

–
–

–
–

–

SV
R

0.
07
36

0.
10
37

0.
44
29

0.
12
29

0.
00
00

0.
23
29

0.
03
87

–
–

–
–

–
–

–
–

–
–

L
SS

V
R

0.
97
51

0.
98
85

0.
76
17

0.
78
60

0.
00
00

0.
10
28

0.
71
48

0.
00
85

–
–

–
–

–
–

–
–

–

H
A
R

∗
0.
00
11

0.
00
25

0.
16
50

0.
00
59

0.
00
00

0.
26
36

0.
06
97

0.
87
91

0.
05
94

–
–

–
–

–
–

–
–

H
A
R
-C

J∗
0.
00
03

0.
00
06

0.
10
28

0.
00
24

0.
00
00

0.
22
79

0.
06
15

0.
78
62

0.
05
48

0.
29
51

–
–

–
–

–
–

–

H
A
R
-R

S-
II

∗
0.
00
25

0.
00
15

0.
00
10

0.
00
79

0.
00
00

0.
26
72

0.
11
92

0.
64
77

0.
11
85

0.
41
68

0.
49
72

–
–

–
–

–
–

L
A
SS

O
∗

0.
00
10

0.
00
23

0.
17
59

0.
00
46

0.
00
00

0.
27
27

0.
06
87

0.
91
74

0.
05
99

0.
65
47

0.
27
94

0.
38
00

–
–

–
–

–

B
O
O
S
T

∗
0.
00
90

0.
01
28

0.
12
89

0.
01
88

0.
00
00

0.
04
83

0.
00
73

0.
37
69

0.
01
00

0.
40
46

0.
49
57

0.
82
60

0.
37
61

–
–

-
–

R
F∗

0.
09
32

0.
11
71

0.
18
26

0.
04
80

0.
00
00

0.
00
00

0.
00
02

0.
00
00

0.
00
12

0.
00
02

0.
00
03

0.
00
73

0.
00
02

0.
00
00

–
–

–

B
A
G

∗
0.
02
30

0.
03
46

0.
08
77

0.
01
10

0.
00
00

0.
00
00

0.
00
02

0.
00
00

0.
00
09

0.
00
00

0.
00
00

0.
00
20

0.
00
00

0.
00
00

0.
11
09

–
–

SV
R

∗
0.
06
07

0.
08
77

0.
41
18

0.
10
27

0.
00
00

0.
19
32

0.
02
93

0.
00
00

0.
00
58

0.
94
36

0.
84
67

0.
68
72

0.
98
37

0.
41
77

0.
00
00

0.
00
00

–

L
SS

V
R

∗
0.
88
87

0.
88
63

0.
68
80

0.
66
41

0.
00
00

0.
09
08

0.
54
88

0.
00
79

0.
66
27

0.
01
64

0.
01
73

0.
07
67

0.
01
60

0.
00
45

0.
00
16

0.
00
08

0.
00
55

Pa
ne
lB

:
W

L
=

50
0

H
A
R

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

H
A
R
-C

J
0.
00
07

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

H
A
R
-R

S-
II

0.
59
14

0.
31
32

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–

L
A
SS

O
0.
68
62

0.
07
06

0.
53
93

–
–

–
–

–
–

–
–

–
–

–
–

–
–

(c
on
tin

ue
d)



316 S. F. Lehrer et al.

T
ab

le
6

(c
on
ti
nu
ed
)

H
A
R

H
A
R
-C

J
R
S-
II

L
A
SS

O
B
O
O
S
T

R
F

B
A
G

SV
R

L
SS

V
R

H
A
R

∗
H
A
R
-C

J∗
R
S-
II

∗
L
A
SS

O
∗

B
O
O
S
T

∗
R
F∗

B
A
G

∗
SV

R
∗

B
O
O
S
T

0.
00
01

0.
00
00

0.
00
58

0.
00
01

–
–

–
–

–
–

–
–

–
–

–
–

–

R
F

0.
98
27

0.
50
18

0.
72
48

0.
92
71

0.
00
00

–
–

–
–

–
–

–
–

–
–

–
–

B
A
G

0.
35
67

0.
09
66

0.
98
03

0.
30
41

0.
00
01

0.
09
50

–
–

–
–

–
–

–
–

–
–

–

SV
R

0.
19
30

0.
04
59

0.
72
89

0.
17
45

0.
00
37

0.
23
97

0.
58
26

–
–

–
–

–
–

–
–

–
–

L
SS

V
R

0.
08
67

0.
30
51

0.
29
39

0.
12
49

0.
00
00

0.
01
94

0.
00
34

0.
00
18

–
–

–
–

–
–

–
–

–

H
A
R

∗
0.
33
61

0.
11
73

0.
91
17

0.
30
96

0.
00
06

0.
44
61

0.
89
91

0.
70
49

0.
03
97

–
–

–
–

–
–

–
–

H
A
R
-C

J∗
0.
37
95

0.
12
78

0.
95
62

0.
34
64

0.
00
06

0.
49
30

0.
96
66

0.
64
94

0.
04
53

0.
38
77

–
–

–
–

–
–

–

H
A
R
-R

S-
II

∗
0.
15
98

0.
06
91

0.
19
72

0.
14
40

0.
01
33

0.
33
75

0.
52
70

0.
83
85

0.
09
68

0.
40
19

0.
35
61

–
–

–
–

–
–

L
A
SS

O
∗

0.
42
66

0.
14
72

0.
99
67

0.
36
29

0.
00
05

0.
53
62

0.
96
15

0.
59
75

0.
05
01

0.
37
00

0.
65
29

0.
31
85

–
–

–
–

–

B
O
O
S
T

∗
0.
17
98

0.
10
15

0.
47
20

0.
17
66

0.
00
70

0.
14
71

0.
32
13

0.
60
14

0.
03
25

0.
34
94

0.
32
91

0.
76
75

0.
30
65

–
–

–
–

R
F∗

0.
00
11

0.
00
95

0.
03
33

0.
00
24

0.
00
00

0.
00
01

0.
00
00

0.
00
08

0.
03
25

0.
00
00

0.
00
00

0.
00
19

0.
00
00

0.
00
02

–
–

–

B
A
G

∗
0.
00
02

0.
00
18

0.
01
15

0.
00
05

0.
00
00

0.
00
01

0.
00
00

0.
00
02

0.
00
81

0.
00
00

0.
00
00

0.
00
03

0.
00
00

0.
00
00

0.
15
47

–
–

SV
R

∗
0.
15
20

0.
03
30

0.
67
68

0.
13
74

0.
00
46

0.
19
69

0.
50
57

0.
00
59

0.
00
12

0.
62
98

0.
57
54

0.
89
49

0.
52
60

0.
65
15

0.
00
06

0.
00
01

–

L
SS

V
R

∗
0.
10
08

0.
33
79

0.
27
43

0.
14
05

0.
00
00

0.
06
46

0.
01
03

0.
01
03

0.
97
00

0.
00
08

0.
00
12

0.
05
16

0.
00
15

0.
02
37

0.
00
60

0.
00
14

0.
00
73

p
-v
al
ue
s
sm

al
le
r
th
an

5%
ar
e
hi
gh
lig

ht
ed

in
bo
ld
fa
ce



Data Science Tools for Extremely Volatile Assets Forecasting 317

Table 7 Forecasting performance by different sample periods (h = 1)

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: first half

HAR 2124.1237 0.4650 22.9310 46.0882 0.2335

HAR-CJ 2355.2555 0.4492 21.7508 48.5310 0.1500

HAR-RS-II 2603.1374 0.4914 24.0043 51.0210 0.0606

LASSO 2138.6650 0.4666 23.3848 46.2457 0.2282

BOOST 3867.2799 2.0069 32.0598 62.1875 -0.3956

RF 2099.9254 0.3727 19.6797 45.8249 0.2422

BAG 2106.6674 0.4048 19.5280 45.8984 0.2398

SVR 2153.3053 0.5631 22.7778 46.4037 0.2229

LSSVR 2040.2006 0.3860 21.1425 45.1686 0.2637

HAR∗ 1489.5345 2.9636 26.6309 38.5945 0.4625

HAR-CJ∗ 1541.1336 7.4995 26.9735 39.2573 0.4438

HAR-RS-II∗ 1711.2464 1.9009 27.7648 41.3672 0.3825

LASSO∗ 1448.5859 1.9891 26.4592 38.0603 0.4772

BOOST∗ 1273.8670 1.4514 22.1323 35.6913 0.5403

RF∗ 1201.8716 0.2606 16.8897 34.6680 0.5663

BAG∗ 840.0199 0.2629 15.4812 28.9831 0.6969
SVR∗ 2153.5420 0.5633 22.7812 46.4063 0.2228

LSSVR∗ 1331.7041 2.7236 19.8550 36.4925 0.5194

Panel B: second half

HAR 3412.6612 0.4790 23.4856 58.4180 0.2370

HAR-CJ 3591.3391 0.4739 24.8167 59.9278 0.1970

HAR-RS-II 5357.5796 0.4995 25.1334 73.1955 −0.1979

LASSO 3575.5839 0.5118 24.0981 59.7962 0.2005

BOOST 6151.3787 4.0402 41.1825 78.4307 −0.3754

RF 3314.1729 0.5416 25.1547 57.5689 0.2590

BAG 3152.0846 0.5716 24.3284 56.1434 0.2952

SVR 3917.5789 1.9247 23.9854 62.5906 0.1241

LSSVR 3187.9434 0.5683 24.3457 56.4619 0.2872

HAR∗ 2747.1766 1.4813 24.0375 52.4135 0.3858

HAR-CJ∗ 2908.1546 1.4502 24.5958 53.9273 0.3498

HAR-RS-II∗ 4324.7752 2.3995 25.4931 65.7630 0.0330

LASSO∗ 2869.5404 0.7703 24.2617 53.5681 0.3584

BOOST∗ 2624.4054 5.9681 30.0566 51.2290 0.4132

RF∗ 2337.9213 0.3759 21.4734 48.3521 0.4773

BAG∗ 2110.7631 0.3847 20.6086 45.9430 0.5281
SVR∗ 3924.9867 1.9806 24.0556 62.6497 0.1224

LSSVR∗ 2952.6849 0.5104 24.0650 54.3386 0.3398

The best result under each criterion is highlighted in boldface
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Table 9 Forecasting performance by different tuning parameters (h = 1)

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: without sentiment

LASSO 1726.2453 0.5649 17.4025 41.5481 0.2929

BOOST 3003.8597 2.3176 27.7473 54.8075 -0.2304

RF 1680.2756 0.4374 16.7922 40.9912 0.3118

BAG 1628.2674 0.4504 16.8285 40.3518 0.3331
SVR 2218.8594 1.3751 20.0765 47.1048 0.0912

LSSVR 1628.6800 0.4858 16.0397 40.3569 0.3329

LASSO2 1736.6334 0.5546 17.4325 41.6729 0.2887

BOOST2 2965.5740 2.1399 27.2208 54.4571 -0.2147

RF2 1765.2329 0.4706 17.2435 42.0147 0.2770

BAG2 1659.4408 0.4611 16.7576 40.7362 0.3203

SVR2 2218.8594 1.3751 20.0765 47.1048 0.0912

LSSVR2 1635.2935 0.4900 16.0911 40.4388 0.3302

Panel B: with sentiment

LASSO∗ 1497.0621 1.8256 19.1215 38.6919 0.3868

BOOST∗ 1312.6693 2.4524 18.6123 36.2308 0.4623

RF∗ 1178.6862 0.3794 14.4059 34.3320 0.5172

BAG∗ T1035.7081 0.3635 13.8235 32.1824 0.5758

SVR∗ 2226.7603 1.4075 20.2407 47.1886 0.0879

LSSVR∗ 1494.0104 1.2801 16.4454 38.6524 0.3881

LASSO2∗ 1501.9018 2.1237 19.3177 38.7544 0.3848

BOOST2∗ 1324.7603 14.1393 18.2779 36.3973 0.4574

RF2∗ 1250.0685 0.3932 14.8282 35.3563 0.4880

BAG2∗ 1007.2093 0.3842 13.9225 31.7366 0.5874
SVR2∗ 2226.7603 1.4075 20.2407 47.1886 0.0879

LSSVR2∗ 1504.4609 1.7125 16.4577 38.7874 0.3838

The best result under each criterion is highlighted in boldface

names: SPY and QQQ, respectively) and the CBOE Volatility Index (VIX) as extra
covariates. For SPY and QQQ, we proxy daily spot variances by daily realized
variance estimates. For the VIX, we collect the daily data from CBOE. The extra
covariates are described in Table 11

The data range is from May 20, 2015, to August 18, 2017, with 536 total obser-
vations. Fewer observations are available since mainstream asset exchanges are
closed on the weekends and holidays. We truncate the BTC/USD data accordingly.
We compare forecasts from models with two groups of covariate data: one with
only the USSI variable and the other which includes both the USSI variable and
the mainstream RV data (SPY, QQQ, and VIX). Estimates that include the larger
covariate set are denoted by the symbol ∗∗.

The rolling window forecasting results with WL = 300 are presented in
Table 12. Comparing results across any strategy between Panels A and B, we
do not observe obvious improvements in forecasting accuracy. This implies that
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Table 11 Descriptive
statistics

Statistics SPY QQQ VIX

Mean 0.3839 0.7043 15.0144

Median 0.2034 0.3515 13.7300

Maximum 12.1637 70.6806 40.7400

Minimum 0.0143 0.0468 9.3600

Std. Dev. 0.6946 3.1108 4.5005

Skewness 10.1587 21.3288 1.6188

Kurtosis 158.5806 479.5436 6.3394

Jarque–Bera 0.0010 0.0010 0.0010

ADF Test 0.0010 0.0010 0.0010

Table 12 Forecasting performance

Method MSFE QLIKE MAFE SDFE Pseudo R2

Panel A: with sentiment

HAR∗ 1265.3736 1.7581 21.7060 35.5721 0.4299

HAR-CJ∗ 1258.1112 1.4488 21.4721 35.4699 0.4332

HAR-RS-II∗ 1312.9602 1.6025 22.4346 36.2348 0.4085

LASSO∗ 1251.4556 1.7235 21.3984 35.3759 0.4362

BOOST∗ 1135.0482 9.2958 19.0763 33.6905 0.4886

RF∗ 1015.7416 0.3845 15.1202 31.8707 0.5424

BAG∗ 884.8778 0.3674 14.3677 29.7469 0.6013
SVR∗ 1934.5500 1.4254 21.1660 43.9835 0.1284

LSSVR∗ 1311.5350 1.2829 18.2171 36.2151 0.4091

Panel B: with sentiment and extra covariates

HAR∗∗ 1298.6001 8.7030 21.6841 36.0361 0.4149

HAR-CJ∗∗ 1299.4404 1.4853 21.7684 36.0478 0.4145

HAR-RS-II∗∗ 1349.2130 2.0542 22.4713 36.7316 0.3921

LASSO∗∗ 1251.6195 1.3544 21.1397 35.3782 0.4361

BOOST∗∗ 1489.1772 4.9792 22.1760 38.5899 0.3291

RF∗∗ 1024.0401 0.3846 15.3587 32.0006 0.5386

BAG∗∗ 885.8634 0.3687 14.3526 29.7635 0.6009
SVR∗∗ 1934.5502 1.4254 21.1660 43.9835 0.1284

LSSVR∗∗ 1336.3343 1.2665 17.7219 36.5559 0.3979

The best result under each criterion is highlighted in boldface

mainstream asset markets RV does not affect BTC/USD volatility, which reinforces
the fact that crypto-assets are sometimes considered as a hedging device for many
investment companies.17

Last, we use the GW test to formally explore if there are no differences in forecast
accuracy between the panels in Table 13. For each estimator, we present the p-

17PwC-Elwood [36] suggests that the capitalization of cryptocurrency hedge funds increases at a
steady pace since 2016.
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values from different covariate groups in bold. Each of these p-values exceeds 5%,
which support our finding that mainstream asset RV data does not improve forecasts
sharply, unlike the inclusion of social media data.

8 Conclusion

In this chapter, we compare the performance of numerous econometric and machine
learning forecasting strategies to explain the short-term realized volatility of the
Bitcoin market. Our results first complement a rapidly growing body of research
that finds benefits from using machine learning techniques in the context of financial
forecasting. Our application involves forecasting an asset that exhibits significantly
more variation than much of the earlier literature which could present challenges
in settings such as ours with fewer than 800 observations. Yet, our result further
highlights that what drives the benefits of machine learning is the accounting for
nonlinearities and there are much smaller gains from using regularization or cross-
validation. Second, we find substantial benefits from using social media data in our
forecasting exercise that hold irrespective of the estimator. These benefits are larger
when we consider new econometric tools to more flexibly handle the difference in
the timing of the sampling of social media and financial data.

Taken together, there are benefits from using both new data sources from the
social web and predictive techniques developed in the machine learning literature for
forecasting financial data. We suggest that the benefits from these tools will likely
increase as researchers begin to understand why they work and what they measure.
While our analysis suggests nonlinearities are important to account for, morework is
needed to incorporate heterogeneity from heteroskedastic data in machine learning
algorithms.18 We observe significant differences between SVR and LSSVR so the
change in loss function can explain a portion of the gains within machine learning
relative to econometric strategies, but not to the same extent as nonlinearities, which
the tree-based strategies also account for and use a similar loss function based on
SSR.

Our investigation focused on the performance of what are currently the most
popular algorithms considered by social scientists. There have been many advances
developing powerful algorithms in the machine learning literature including deep
learning procedures which consider more hidden layers than the neural network
procedures considered in the econometrics literature between 1995 and 2015.
Similarly, among tree-based procedures, we did not consider eXtreme gradient
boosting which applies more penalties in the boosting equation when updating

18Lehrer and Xie [26] pointed out that all of the machine learning algorithms considered
in this paper assume homoskesdastic data. In their study, they discuss the consequences of
heteroskedasticity for these algorithms and the resulting predictions, as well as propose alternatives
for this data.
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trees and residual compared to the classic boosting method we employed. Both
eXtreme gradient boosting and deep learning methods present significant challenges
regarding interpretability relative to the algorithms we examined in the empirical
exercise.

Further, machine learning algorithms were not developed for time series data and
more work is needed to develop methods that can account for serial dependence,
long memory, as well as the consequences of having heterogeneous investors.19

That is, while time series forecasting is an important area of machine learning (see
[19, 30], for recent overviews that consider both one-step-ahead and multi-horizon
time series forecasting), concepts such as autocorrelation and stationarity which
pervade developments in financial econometrics have received less attention. We
believe there is potential for hybrid approaches in the spirit of Lehrer and Xie [25]
with group LASSO estimators. Further, developing machine learning approaches
that consider interpretability appears crucial for many forecasting exercises whose
results need to be conveyed to business leaders who want to make data-driven
decisions. Last, given the random sample of Twitter users from which we measure
sentiment, there is likely measurement error in our sentiment and our estimate
should be interpreted as a lower bound.

Given the empirical importance of incorporating social media data in our
forecasting models, there is substantial scope for further work that generates new
insights with finer measures of this data. For example, future work could consider
extracting Twitter messages that only capture the views of market participants rather
than the entire universe of Twitter users. Work is also needed to clearly identify
bots and consider how best to handle fake Twitter accounts. Similarly, research
could strive to understand shifting sentiment for different groups on social media in
response to news events. This can help improve our understanding of how responses
to unexpected news leads lead investors to reallocate across asset classes.20

In summary, we remain at the early stages of extracting the full set of benefits
from machine learning tools used to measure sentiment and conduct predictive
analytics. For example, the Bitcoin market is international but the tweets used to
estimate sentiment in our analysis were initially written in English. Whether the
findings are robust to the inclusion of Tweets posted in other languages represents

19Lehrer et al. [27] considered the use of model averaging with HAR models to account for
heterogeneous investors.
20As an example, following the removal of Ivanka Trump’s fashion line from their stores, President
Trump issued a statement via Twitter:

My daughter Ivanka has been treated so unfairly by @Nordstrom. She is a great person –
always pushing me to do the right thing! Terrible!

The general public response to this Tweet was to disagree with President Trump’s stance on
Nordstrom so aggregate Twitter sentiment measures rose and the immediate negative effects from
the Tweet on Nordstrom stock of a decline of 1% in the minute following the tweet were fleeting
since the stock closed the session posting a gain of 4.1%. See http://www.marketwatch.com/story/
nordstrom-recovers-from-trumps-terrible-tweet-in-just-4-minutes-2017-02-08 for more details
on this episode.

http://www.marketwatch.com/story/nordstrom-recovers-from-trumps-terrible-tweet-in-just-4-minutes-2017-02-08
http://www.marketwatch.com/story/nordstrom-recovers-from-trumps-terrible-tweet-in-just-4-minutes-2017-02-08
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an open question for future research. As our understanding of how to account for
real-world features of data increases with these data science tools, the full hype of
machine learning and data science may be realized.
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Appendix: Data Resampling Techniques

Substantial progress has been made in the machine learning literature on quickly
converting text to data, generating real-time information on social media content.
In this study, we also explore the benefits of incorporating an aggregate measure of
social media sentiment, the Wall Street Journal-IHS Markit US Sentiment Index
(USSI) in forecasting the Bitcoin RV. However, data timing presents a serious
challenge in using minutely measures of the USSI to forecast the daily Bitcoin RV.
To convert minutely USSI measure to match the sampling frequency of Bitcoin RV,
we hereby introduce a few popular data resampling techniques.

Let yt+h be target h-step-ahead future a low-frequency variable (e.g., the daily
realized variance) that is sampled at periods denoted by a time index t for t =
1, . . . , n. Consider a higher-frequency (e.g., the USSI) predictorXhi

t that is sampled
m times within the period of t:

Xh
t ≡

[
Xhi

t , Xhi

t− 1
m

, . . . , Xhi

t− m−1
m

]�
. (20)

A specific element among the high-frequency observations in Xhi
t is denoted by

Xhi

t− i
m

for i = 0, . . . ,m − 1. Denoting Li/m as the lag operator, then Xhi

t− i
m

can be

reexpressed as Xhi

t− i
m

= Li/mXhi
t for i = 0, . . . ,m − 1.

Since Xh
t on yt+h is measured at different frequencies, we need to convert the

higher-frequency data to match the lower-frequency data. A simple average of the
high-frequency observations Xh

t :

X̄t = 1

m

m−1∑

i=0

Li/mXh
t ,
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where X̄t is likely the easiest way to estimate a low-frequency Xt that can match
the frequency of yt+h. With the variables yt+h and X̄t being measured in the same
time domain, a regression approach is simply

yt+h = α + γ X̄t + εt = α + γ

m

m−1∑

i=0

Li/mXh
t + εt , (21)

where α is the intercept and γ is the slope coefficient on the time-averaged X̄t . This
approach assumes that each element in Xh

t has an identical effect on explaining
yt+h.

These homogeneity assumptions may be quite strong in practice. One could
assume that each of the slope coefficients for each element in Xhi

t is unique.
Following Lehrer et al. [28], extending Model (21) to allow for heterogeneous
effects of the high-frequency observations generates

yt+h = α +
m−1∑

i=0

γiL
i/mXhi

t + εt , (22)

where γi represents a set of slope coefficients for all high-frequency observations
Xhi

t− i
m

.

Since γi is unknown, estimating these parameters can be problematic when m

is a relatively large number. The heterogeneous mixed data sampling (H-MIDAS)
method by Lehrer et al. [28] uses a step function to allow for heterogeneous effects
of different high-frequency observations on the low-frequency dependent variable.
A low-frequency X̄

(l)
t can be constructed following

X̄
(l)
t ≡ 1

l

l−1∑

i=0

Li/mXhi
t = 1

l

l−1∑

i=0

Xhi

t− i
m

, (23)

where l is a predetermined number and l ≤ m. Equation (23) implies that we
compute variable X̄

(l)
t by a simple average of the first l observations in Xhi

t and
ignored the remaining observations. We consider different values of l and group all
X̄

(l)
t into X̃t such that

X̃t =
[
X̄

(l1)
t , X̄

(l2)
t , . . . , X̄

(lp)
t

]
,
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where we set l1 < l2 < · · · < lp. Consider a weight vector w = [
w1, w2, . . . , wp

]�

with
∑p

j=1 wj = 1; we can construct regressor Xnew
t as Xnew

t = X̃tw. The
regression based on the H-MIDAS estimator can be expressed as

yt+h = βXnew
t + εt = β

p∑

s=1

p∑

j=s

wj

lj

ls−1∑

i=ls−1

Li/mXh
t + εt = β

p∑

s=1

ls−1∑

i=ls−1

w∗
s Li/mXh

t + εt ,

(24)

where l0 = 0 and w∗
s = ∑p

j=s

wj

lj
.

The weights w play a crucial role in this procedure. We first estimate β̂w

following

β̂w = argmin
w∈W

∥∥∥yt+h − X̃t · βw

∥∥∥
2

by any appropriate econometric method necessary, whereW is some predetermined
weight set. Once β̂w is obtained, we estimate the weight vector ŵ by rescaling
following

ŵ = β̂w

Sum(β̂w)
,

since the coefficient β is a scalar.
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