
Optimization of Large-Scale Agent-Based
Simulations Through Automated
Abstraction and Simplification

Alexey Tregubov(B) and Jim Blythe

USC Information Sciences Institute, Marina Del Rey, CA, USA
{tregubov,blythe}@isi.edu

Abstract. Agent-based simulations of social media platforms often need
to be run for many repetitions at large scale. Often, researchers must
compromise between available computational resources (memory, run-
time), the scale of the simulation, and the quality of its predictions.

As a step to support this process, we present a systematic exploration
of simplifications of agent simulations across a number of dimensions
suitable for social media studies. Simplifications explored include sub-
sampling, implementing agents representing teams or groups of users,
simplifying agent behavior, and simplifying the environment.

We also propose a tool that helps apply simplifications to a simulation
model, and helps find simplifications that approximate the behavior of
the full-scale simulation within computational resource limits.

We present experiments in two social media domains, GitHub and
Twitter, using data both to design agents and to test simulation predic-
tions against ground truth. Sub-sampling agents often provides a sim-
ple and effective strategy in these domains, particularly in combination
with simplifying agent behavior, yielding up to an order of magnitude
improvement in run-time with little or no loss in predictive power. More-
over, some simplifications improve performance over the full-scale simu-
lation by removing noise.

We describe domain characteristics that may indicate the most effec-
tive simplification strategies and discuss heuristics for automatic explo-
ration of simplifications.

Keywords: Abstractions · Simplifications · Agent-based simulation ·
Massive scale simulations · Online social networks

1 Motivation

Large-scale simulations may be used for many purposes, including prediction and
exploration of what-if scenarios. Typically, a large number of parameters, such
as behavioral characteristics of individual agents, may not be known precisely
but are modeled probabilistically, requiring many iterations of the simulation as
parameters are varied systematically to arrive at an estimate that is accurate
c© Springer Nature Switzerland AG 2021
S. Swarup and B. T. R. Savarimuthu (Eds.): MABS 2020, LNAI 12316, pp. 81–93, 2021.
https://doi.org/10.1007/978-3-030-66888-4_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66888-4_7&domain=pdf
https://doi.org/10.1007/978-3-030-66888-4_7


82 A. Tregubov and J. Blythe

and whose dependence on the parameter space is known. This can be a very
expensive process.

A common solution is to iterate and test over smaller, simpler versions of
the problem that are chosen to provide a close estimate to the simulation out-
comes under test while requiring considerably less run-time and memory to run.
In some cases, the final estimate may be more precise although each individual
run may be less so, because many more iterations are possible. The simplifica-
tions used are typically drawn from a standard set of broad categories including
(1) reducing the number of agents and considering a sub-region of the original
simulation, (2) simplifying the agent decision processes to use less computation
and memory, (3) simplifying the representation of the environment, (4) selec-
tively replacing subsets of either the agents, the environment or both with direct
models of the behavior of a group of agents or region of the environment, and
(5) simplifying and/or reducing the communication that takes place between
agents, which often dominates the computational complexity of a simulation.
Domain-dependent simplifications, for example based on geographic constraints
of agents, may combine several of these categories. Often, developers follow an
ad hoc process: while the simulation may be simplified in many ways, only one
or two are typically used, without evidence for which simplification may yield
the best estimates of the parameters to optimize the full-scale simulation. While
transformations may be required in order to adapt the results from the abstract
problem into the full-scale problem, they are typically not explored in detail.

In this paper we take a first step towards an empirically-based tool for select-
ing an appropriate simplification from a rich set of possible approaches in a real-
istic domain. While other work, described below, has used formal methods to
show that an abstraction will provide the correct result and is as simple as possi-
ble, the empirical approach we propose can be applied to large simulations that
may require the use of code that is not sufficiently modeled to support a formal
approach. We define a number of ways in which a multi-agent simulation may be
simplified, and for each one we discuss the kinds of information about the full-
scale simulation that may be most faithfully estimated by this simplification. We
investigate a number of simplifications in the context of two domains: a massive
simulation of GitHub users, with trace data describing around 10 million users
and 30 million repositories, and a large simulation of Twitter containing 650 k
users and 1.6 million tweets. We introduce a full-scale simulation to predict the
next two months of activity on GitHub or Twitter based on four months of trace
data, in which each agent is described by statistics on their past history and a
set of parameters describing how future behavior may be produced based on the
history. Next, we explore a number of abstractions of the full-scale simulation
in order to optimize parameters for the agents, and discuss which abstractions
combine the most accurate estimates with the greatest savings of computational
resources. These abstractions may be used individually or in combination to
reduce the computational expense of running a simulation by several orders of
magnitude in some cases.



Optimization of Large-Scale Agent-Based Simulations 83

We find that, in a broad range of situations, simple domain-independent
modifications such as agent sub-sampling can yield simulations that provide
predictions similar to those of the full-scale simulation with a fraction of the
time or memory requirements. In other cases, domain-dependent simplifications
are required for such improvements, and we show how they can be derived from
domain-independent principles, such as reducing the action space of the agents
or aggregating agents. In a small but significant number of cases, the reduced
simulation yields better prediction results than the full-scale simulation using a
fraction of the resources. This happens when the agents, actions or world features
removed were predominantly a source of noise for the predictions of interest.

Finally we review other large-scale simulations from the literature to ver-
ify that the abstractions we consider make sense within those simulations and
may be expected to yield useful results. We also discuss how the framework
for abstractions may be used to run simplified simulations in cases where the
full-scale simulation is infeasible, and how experiments such as the ones we
describe may help indicate the most useful simplifications within a single par-
tially abstracted simulation. This is an active area of investigation within our
group.

The novel contributions of this paper include the first comparative, empiri-
cal exploration of a broad set of simplification criteria across multiple simulation
domains. While previous work, described below, investigated one or more sim-
plifications in a simulation domain, we compare an expanded set of techniques
within the same framework and discuss the extent to which they are domain-
independent or whether domain dependent modifications may be necessary to
apply them. Another contribution is an initial framework to help experimenters
to consider a broader set of possible simplifications that lays the groundwork for
semi-automated tools to simplify simulations.

2 Related Work

Struss [15] distinguishes abstraction, simplification and approximation in the
context of model-based reasoning. In this view, abstraction and approximation
are both special cases of simplification, which is a general change to a model,
perhaps altering relations between variables describing a problem, that reduces
some modeling details. An abstraction is a kind of simplification that proposes
a new model, e.g. by changing the set of variables or their domains. An approx-
imation may replace a function in the model with a simpler version, some of
whose values differ from the original. Our work broadly follows this categoriza-
tion. De Kleer [6] and others address the question of finding the appropriate
level of abstraction for a problem, defined as the simplest abstract version that
is adequate to solve the problem. Here we explore the same issue, but empiri-
cally rather than analytically, since elements of a simulation may take the form
of complex code for which such reasoning is intractable. In this paper, we use
term simplification for all abstractions, simplifications and approximations.

Work on abstractions in planning systems may be viewed as simplifications
to the decision space of a single agent or its environment, e.g. [9,10]. This work



84 A. Tregubov and J. Blythe

motivated us to explore reductions in the action space for agents in general
simulations. In a similar way, Cohen et al. derive abstractions in multi-agent
simulation systems that provably preserve certain temporal properties of the
simulation [5].

Simplifications and abstractions were explored in simulation of biochemi-
cal systems by Rhodes et al. [13]. To reduce model complexity Rhodes et al.
experimented with scale (number of agents), time step, complexity of inter-
agent messaging and conflict resolution. Authors used runtime and accuracy as
metrics to evaluate the impact of each simplification. They conclude that some
simplifications (e.g. number of agents, time step) can be varied significantly to
reduce runtime within the reasonable accuracy range. In this paper, in addition
to runtime we also explore memory usage and various accuracy metrics for social
networks.

Shirazi et al. [14] dynamically replace groups of agents that occupy the same
geographical area with a single agent representing the group. This is a spatial
version of the general principle of aggregating agents based on shared interac-
tion, which we define below and present a social network-based approach for in
Sect. 4.3.

There is a comprehensive body of research on developing domain and applica-
tion specific abstractions and simplifications [3,8,12,13]. However, finding sim-
plifications and identifying ranges of parameters that produce useful reductions
is often a manual process. Automated search is rarely discussed in literature.

3 Simplification Types

In this section we discuss a number of general types of simplification, shown
in Table 1. Some of these represent domain-independent simplification meth-
ods that can be used in any multi-agent simulation while others are domain-
independent principles that may or may not yield domain-dependent methods
for a given problem. As we discuss the trade-off of computational resources con-
sumed and accuracy below, we assume that there is some metric that is applied
to the simulation, for example it might be used to evaluate which is best of a set
of potential policies, or make predictions given some initial conditions. In the
absence of ground truth for the metric, we seek a simplification that performs
as closely as possible to the full-scale simulation on the metric, although it may
behave quite differently on measures that are not of interest to the problem.

3.1 Subsampling

Simulation of the entire population can be computationally expensive. Subsam-
pling identifies a smaller subset of agents and resources with the aim of repro-
ducing the behavior of the entire population in order to meet the original goal
of the simulation. Identifying a smaller subset of agents and resources that can
reproduce behavior of the entire population may require exploring a wide range
of parameters. One approach is to exploit any structure that might be found
within the simulation framework, for example:



Optimization of Large-Scale Agent-Based Simulations 85

Table 1. Types of simplifications. Rows correspond to aspects of the simulation to be
simplified, while columns denote whether the simplification is a reduction of a group
of objects or involves creating a new model.

Target Reduction Abstraction

Set of agents E.g.: Subsampling of
agents

E.g.: Aggregate agents
into meta-agents

Agents’ decision space E.g.: Reduce action
types

E.g.: Aggregate actions

Environment E.g.: Reduce resources
used

E.g.: Aggregate
resources,environment
data

Set of events E.g.: Reduce amount of
generated events

E.g.: Aggregate events

Agents’ communication E.g.: Frequency of
synchronization among
agents

– When simulating a social network one may select a smaller number of agents
and associated resources by selecting a small number of connected compo-
nents.

– For simulations where historical data on agents’ activity is available, one can
select agents that were active recently, disregarding agents which were not
active after some threshold.

– If the environment allows geographical segmentation, running the simulation
on a smaller number of segments can reduce the number of agents while
preserving local properties.

This class of simplifications may be one of the easiest to apply in a domain-
independent way, since it is possible to treat agents and their decisions and
communications as black boxes. For example, domain-independent strategies for
subsampling include random selection. In this paper we discuss random and
frequency-based subsampling of agents, resources and actions/events.

3.2 Simplifying Agents’ Decision Process

Each agent’s decision process may be complex, possibly depending on many
environmental conditions, leading to a heavy computational burden. To reduce
runtime we can simplify agents’ decision making process. Agents’ behavior sim-
plification can be applied to all agents or to just a subset. Making a small
simplification in the decision process in a simulation with millions of agents can
significantly reduce overall runtime.

There are different ways to approach agents’ decision process simplification:



86 A. Tregubov and J. Blythe

– Approximation of data and parameters needed to make decision. For exam-
ple, decision process can be approximated with probabilistic models using
historical data. This could be precomputed in advance.

– Simplification of decision rules, reducing the number of steps in the process.
– Reducing possible actions in agent’s decision process.

Additionally, depending on the process this approach can reduce size of the
agent and overall memory requirements. For example, if aggregate measurements
and values are no longer needed this memory can be released.

Simpler decision processes tend to require less external data, which makes
agents less dependent on the environment. This property is useful when parallel
simulation is developed, it simplifies synchronization of the shared environment.

This approach has limitations. Just as small simplifications to each of millions
of agents may have a significant impact on runtime and memory usage, small
discrepancies in the behavior of each agent may combine to produce significant
inaccuracies in metrics applied to the simulation.

This simplification is often domain-dependent since it modifies internal pro-
cesses of the agent.

3.3 Selectively Replacing Groups of Agents with One Agent

In a large-scale simulation it is often possible to identify classes of agents that
share similar properties and behavior. Some of these classes can be modeled as
one agent that represents activities of the group as a whole, effectively creating
a simulation that combines components modeled at different resolutions.

It is possible to apply simplifications of this type in a domain-independent
manner since external features of the agents, such as geographic location or
agent type, can be used to form groups while treating the agent as a black
box and aggregating the observed actions. However more effective groups tend
to be found using domain-dependent methods that can exploit regularities in
decision-making, for example, or allow communication to be localized.

3.4 Simplifying Communication Between Agents

In large-scale simulations communication can consume a lot of computational
and network capacity. In distributed parallel simulations, this problem is espe-
cially acute because of the network limitations.

We note that this is a distinct strategy from optimizing communication in
the simulation. In optimization, the same information is shared between agents
at the same time as in the original simulation. In simplification, communica-
tions may be degraded in content or timing, trading off fidelity of the simulation
for memory and run-time reductions. Methods for optimization include caching
frequently sent information and using communication hubs to decentralize infor-
mation distribution. In distributed parallel simulations, one may partition the
agents across computational nodes so as to minimize expensive cross-node
communications [1].

There are different approaches to simplifying communication among agents:



Optimization of Large-Scale Agent-Based Simulations 87

– Reduced/simplified communication, where messages may be strategically
dropped or summarized.

– Bulk information update, in which eventually the same information is com-
municated, but at any given time an agent may have received less information
than in a high-resolution communication environment.

Other simplifications can also help to reduce resource consumption (e.g.
memory) and allow researchers to use fewer compute nodes or in some cases
avoid parallel computations altogether. Reducing the number of communicating
compute nodes reduces communication overhead among agents and the environ-
ment. This simplification is often used in combination with others.

This simplification is often domain-dependent, because it requires knowledge
of the environment and agents’ communication protocols.

4 Experiments

4.1 Simplifications Support in FARM

FARM is an agent-based simulation framework with support for large-scale sim-
ulations. It is implemented in Python. FARM architecture provides components
to model social networks [1–3]. We conducted our experiments with simplifica-
tions using FARM. FARM supports some of the simplification operators for
simulation models described above. It also implements a simple search for oper-
ator parameters that yield a compromise between runtime and memory and a
quality metric of the simulation.

4.2 GitHub and Twitter Simulations

GitHub is a hosting platform for software repositories using the git version con-
trol protocol, that also provides additional features such as wikis, issue-tracking,
discussion boards. GitHub is an example of a social network where users can
comment on commits, fork repositories, create branches, make pull requests etc.

We developed a multi-agent GitHub and Twitter simulations using DASH
agents [4,11]. In our GitHub simulation model DASH communication hubs pro-
vide access to repositories and other shared state information. DASH agents
perform action on repositories (e.g. push to a repository, make a pull request,
etc.). Agents’ decision process is based on past history of interactions with repos-
itories which could is obtained from historical training data. If historical data
on interactions is not available agents use generalized model to choose action
and repository. Frequency of actions is obtained from historical training data as
well.

In our Twitter simulation model DASH communication hubs provide access
to popular tweets and conversation threads. DASH agents perform actions such
as tweet, retweet, quote, reply, etc.



88 A. Tregubov and J. Blythe

4.3 Experiment Setup

The following simplification operators were applied to the GitHub simulation:

Random Subsamples of User Agents. The following sample sizes were used:
0.1 M, 0.4 M, 0.8 M, 1 M, 1.2 M, 1.4 M, 1.8 M. One month of training data con-
tains 1.9 M users.

Random subsamples of repositories. The following sample sizes were used:
0.1 M, 0.2 M, 0.4 M, 0.8 M, 1.6 M, 2.4 M. One month of training data contains
2.8 M repositories.

Random subsamples of training events. The following sample sizes were
used: 10 K, 0.1 M, 1 M, 10 M, 20 M. The total number of events in the training
data (1 month) was 31 M.

Different amount of training data − 1d, 2d, 4d, 1 week, 2 weeks, 1 month,
2 months of training intervals were used. This simplification picks a chronological
window and keeps only the agents, repositories and events that appear in that
window.

Simplifying agent’s behavior by reducing the number of possible event types
users can produce.

Random subsamples of training events and different event types com-
bined together. This is simplification applies to operators: Random subsam-
ples of training events (10 K, 0.1 M, 1 M, 10 M, 20 M events) and simplification
of agents’ behavior by reducing the number of possible event types users can
produce (only half of the most frequent event types was used).

Frequency-based subsampling of user agents. Only agents with the highest
rates of actions were selected. We used the following subsample sizes: 0.1 M,
0.4 M, 0.8 M, 1 M, 1.2 M

Frequency-based subsampling of user repositories. Only agents that inter-
act with repositories that have highest rates of actions on them were selected.
We used the following subsample sizes: 0.1 M, 0.2 M, 0.4 M, 0.8 M, 1.6 M

Push star agents is a simplification of agent actions. It was observed
that some users tend to produce long sequences of action (in this case it was
push to a repository) that are repeated over time. Push star agents instead of
making each push individually produce batched of such actions, which should
potentially reduce time on handling each action individually.

Agents aggregated into team/group agents. We ran experiments with
100 K, 400 K, 700 K users grouped into teams. Teams are defined as sub-clusters
(sub-graphs) of users that interact with shared set of repositories. Team agent is
a simplification that aggregates properties of all users of the team and interacts
with repositories of this team.

The following simplification operators were applied to Twitter simulation:



Optimization of Large-Scale Agent-Based Simulations 89

Random subsamples of user agents. The following sample sizes were used:
10 K, 50 K, 0.1 M, 0.2 M, 0.4 M, 0.6 M. One month of training data contains
0.65 M users.

Random subsamples of tweets. The following sample sizes were used: 0.1 M,
0.2 M, 0.4 M, 0.8 M, 1.6 M. One month of training data contains 1.6 M events.

Random subsamples of training events (tweets, retweets, quotes,
replies, etc.). The following sample sizes were used: 0.1 M, 0.2 M, 0.4 M, 0.8 M,
1.6 M.

Different amount of training data − 1d, 2d, 4d, 1 week, 2 weeks, 1 month,
2 months of training intervals were used.

Frequency-based subsampling of user agents. Only agents with the highest
rates of actions were selected. We used the following subsample sizes: 0.1 M,
0.2 M, 0.3 M, 0.4 M, 0.6 M.

These simplifications are not mutually exclusive. In many instances they are
applied together. We experimented with random subsamples of training events
applied together with reducing the actions considered by each agent. Another
example is the different amount of training operator, which can be applied
together with any simplification operator.

One month of training data with all users and resources (repositories, tweets,
etc.) is considered a full-scale simulation, although it is also just one possible
value of the operator.

5 Results

To evaluate quality of predictions of our simulation models we used we use the
following metrics for the GitHub simulation:

User popularity - top 5000 most popular users, popularity measured as the
total number of watch and fork events on repositories owned by user. Calculated
as Rank-Biased Overlap between ground truth and simulation (RBO) [16].

Community Contributing users - the proportion of users who interact with a
community and who are active contributors, making commits and pull requests
to community repositories. Calculated as absolute difference between ground
truth and simulation.

User activity distribution - the distribution of the number of events produced
by users. Calculated as Jensen-Shannon (JS) divergence [7].

For Twitter simulation we used the following metrics:

User activity distribution - the distribution of the number of events produced
by users. Calculated as JS divergence (ground truth vs. simulation).

Most active users - the top 5000 users with the most events. Calculated as
Rank-Biased Overlap between ground truth and simulation (RBO) [16].



90 A. Tregubov and J. Blythe

Every point in each figure represents a simplification operator applied to
the original simulation model. Each point corresponds to a specific configura-
tion parameter of the operator. For example, subsample size is a configuration
parameter of random user, repository, event subsampling operators; the number
of supported events is a parameters of the reduction of event types generated
by agent. Each point is an average of 7 runs, confidence intervals are plotted on
both axes.

Ranges of operators’ parameters were selected manually. Automated search
may allow to find suboptimal settings with fine granularity for a given metric
and resource (memory and runtime) constraints.

For all metrics higher is better, 1 is the best value (perfect prediction), 0 is the
lowest possible value. Figures 1 a, b show GitHub simulation evaluation metrics,
runtime and memory used. As a baseline for comparison we chose simulation
that uses one month of training and instantiates all agents and uses all resources
from training data. For GitHub it is 1.9 M users and 3.2 M repositories, baseline
simulation consumes 24.5 Gb of memory and 26 min of runtime. For Twitter it
is 650 K users and 1.6 M tweets, baseline simulation consumes 7.8 Gb of memory
and 172 min of runtime.

Fig. 1. GitHub: a) User popularity, b) Community contributing users

In Fig. 1a, the random event subsampling shows the same results as random
user subsampling and performs better on most of the data points. The random
event subsampling operator reduces simulation runtime by 48% compare to ran-
dom user subsampling and different amount of training operators. Applying this
operator allows almost twice as many iterations as the full-scale simulation with
perfect performance, or six times as many with 97% of the original score.



Optimization of Large-Scale Agent-Based Simulations 91

In Fig. 1b reducing the types of actions that GitHub agents perform reduces
noise and produces better scores than the full-scale simulation. Most subsam-
pling operators converge on values close to 0.9 (10% difference between ground
truth and simulation) where the reduced number of events operator shows values
close to 0.98. At the same time it also reduces runtime and memory use in half
compared to baseline.

Applying both random event subsampling and reducing the number of event
types simultaneously improved performance on the community contributing
users metric. This means that combining different operators can potentially pro-
duce better results than individual operators applied separately.

In the Twitter simulation both metrics (most active users - Fig. 2a, user
activity distribution - Fig. 2b most of the simplification operators significantly
reduce runtime and memory. For example, the frequency-based user subsampling
that takes top 300 K users (about 50% of the whole data set) reduces runtime
from 172 min to 43 min and memory from 7.8 Gb to 5.3 Gb. Random tweet sub-
sampling reduces runtime to 20 min and memory use to 6 Gb on 100K tweet
sample.

Fig. 2. Twitter: a) Most active users, b) User activity distribution

6 Semi-automated Search for Effective Simplifications

As can be seen from the previous section, some simplifications may have a dra-
matic effect on runtime and memory consumption for some metrics while main-
taining high performance. However the best simplification is problem-dependent:
random user subsampling predicts user popularity on GitHub very well in a small



92 A. Tregubov and J. Blythe

fraction of the time, for example, but performs poorly on both metrics for Twit-
ter, where frequency-based subsampling shines. Removing the right subset of
actions in GitHub can reduce errors in predicting community contributing users
by over 90% while running in half the time.

Finding a set of simplifications, their configurations and combinations for
a simulation model is an optimization problem where the objective function
balances the quality of simulation results and resource usage. We propose a tool
that partially automates this process and allows researchers to find simplification
configurations that yield the best results within given resource constraints. Each
simplification can be viewed as a parameterized operator that is applied to the
original simulation. The developer may supply domain-dependent simplification
operators that make use of domain features.

If an operator’s parameter space has an ordering, it is possible to use gradient
descent optimization algorithms to find optimal configurations for parameters, or
to use various heuristics to traverse the parameter space in search of suboptimal
solution. For example, a subsampling simplification can be used with binary
search on the proportion of agents to keep. This approach complements analytic
approaches of e.g. [6] since it is empirical, relying on observed performance of
simplified simulations. Accretion and removal operators can be used to search
for the optimal set of actions for a simplified agent to consider.

7 Conclusions and Future Work

Our experiments with simplifications show that it is possible to reduce com-
putational complexity (memory and runtime) of the simulation and preserve
accuracy of the simulation. Simplifications can use domain agnostic and domain
dependent algorithms. They may target specific quality metrics and properties
of the simulation model. Simplifications may be applied in combination with
each other.

In our experiments we demonstrated several instances of simplifications with
different quality metrics on simulation of two social networks - GitHub and Twit-
ter. In several cases simplifications reduced runtime of Twitter simulation by
85% and memory by 32%. In GitHub simulations simplifying agents’ behavior
by reducing the number of supported actions/events reduced error in simula-
tion predictions to the ground truth by 90%. These findings show that applying
simplifications can be useful if computational resources are constrained and sim-
ulation models requires many runs.

Possible combinations of simplifications (possible parameter values) as well
as their configurations create a parameter space. The process of finding simplifi-
cation settings that fit resource constraints can also be automated. Our prelimi-
nary experiments with automated search for parameters under specified runtime
and memory constraints show that it is feasible to automatically identify good
configurations and simplification parameters. In the future work we will explore
various strategies for simplifications and their parameters. We will also add the
capability for our search tool to propose and apply combinations of simplification
operators dynamically.



Optimization of Large-Scale Agent-Based Simulations 93

Acknowledgements. The authors thank the Defense Advanced Research Projects
Agency (DARPA), contract W911NF-17-C-0094, for their support.

References

1. Blythe, J., Tregubov, A.: FARM: architecture for distributed agent-based social
simulations. In: Lin, D., Ishida, T., Zambonelli, F., Noda, I. (eds.) MMAS 2018.
LNCS (LNAI), vol. 11422, pp. 96–107. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-20937-7 7

2. Blythe, J., et al.: The darpa socialsim challenge: massive multi-agent simulations
of the github ecosystem. In: Proceedings of AAMAS, pp. 1835–1837 (2019)

3. Blythe, J., et al.: Massive multi-agent data-driven simulations of the github ecosys-
tem. In: Demazeau, Y., Matson, E., Corchado, J.M., De la Prieta, F. (eds.) PAAMS
2019. LNCS (LNAI), vol. 11523, pp. 3–15. Springer, Cham (2019). https://doi.org/
10.1007/978-3-030-24209-1 1

4. Blythe, J., Tregubov, A.: DASH website (2020). https://dash-agents.github.io/
5. Cohen, M., Dam, M., Lomuscio, A., Russo, F.: Abstraction in model checking

multi-agent systems. In: Proceedings of AAMAS, pp. 945–952 (2009)
6. Kleer, J.: Dynamic domain abstraction through meta-diagnosis. In: Miguel, I.,

Ruml, W. (eds.) SARA 2007. LNCS (LNAI), vol. 4612, pp. 109–123. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73580-9 11

7. DeDeo, S., Hawkins, R., Klingenstein, S., Hitchcock, T.: Bootstrap methods for
the empirical study of decision-making and information flows in social systems.
Entropy 15(12), 2246–2276 (2013). https://doi.org/10.3390/e15062246

8. Edmonds, B., Moss, S.: From KISS to KIDS – An ’Anti-simplistic’ Modelling
Approach. In: Davidsson, P., Logan, B., Takadama, K. (eds.) MABS 2004. LNCS
(LNAI), vol. 3415, pp. 130–144. Springer, Heidelberg (2005). https://doi.org/10.
1007/978-3-540-32243-6 11

9. Giunchiglia, F., Walsh, T.: A theory of abstraction. Artif. Intell. 57(2–3), 323–389
(1992)

10. Knoblock, C.A.: Automatically generating abstractions for planning. Artif. Intell.
68(2), 243–302 (1994)

11. Murić, G., et al.: The darpa socialsim challenge: cross-platform multi-agent simula-
tions. In: Proceedings of the 19th International Conference on Autonomous Agents
and MultiAgent Systems. AAMAS 2020 (2020)

12. Onggo, B.S., Karpat, O.: Agent-based conceptual model representation using
BPMN. In: Proceedings of the Winter Simulation Conference, pp. 671–682 (2011)

13. Rhodes, D.M., Holcombe, M., Qwarnstrom, E.E.: Reducing complexity in an agent
based reaction model-benefits and limitations of simplifications in relation to run
time and system level output. Biosystems 147, 21–27 (2016)

14. Shirazi, A.S., Davison, T., von Mammen, S., Denzinger, J., Jacob, C.: Adaptive
agent abstractions to speed up spatial agent-based simulations. Simul. Model.
Pract. Theor. 40, 144–160 (2014)

15. Struss, P.: A theory of model simplification and abstraction for diagnosis. In: Pro-
ceedings of 5th International Workshop on Qualitative Reasoning, pp. 25–57 (1991)

16. Webber, W., Moffat, A., Zobel, J.: A similarity measure for indefinite rankings.
ACM Trans. Inf. Syst. 28(4), 1–38 (2010)

https://doi.org/10.1007/978-3-030-20937-7_7
https://doi.org/10.1007/978-3-030-20937-7_7
https://doi.org/10.1007/978-3-030-24209-1_1
https://doi.org/10.1007/978-3-030-24209-1_1
https://dash-agents.github.io/
https://doi.org/10.1007/978-3-540-73580-9_11
https://doi.org/10.3390/e15062246
https://doi.org/10.1007/978-3-540-32243-6_11
https://doi.org/10.1007/978-3-540-32243-6_11

	Optimization of Large-Scale Agent-Based Simulations Through Automated Abstraction and Simplification
	1 Motivation
	2 Related Work
	3 Simplification Types
	3.1 Subsampling
	3.2 Simplifying Agents' Decision Process
	3.3 Selectively Replacing Groups of Agents with One Agent
	3.4 Simplifying Communication Between Agents

	4 Experiments
	4.1 Simplifications Support in FARM
	4.2 GitHub and Twitter Simulations
	4.3 Experiment Setup

	5 Results
	6 Semi-automated Search for Effective Simplifications
	7 Conclusions and Future Work
	References




