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Abstract. Distributed agent-based simulations often suffer from an
imbalance in computational load, leading to a suboptimal use of
resources. This happens when part of the computational resoures are
waiting idle for another process to finish. Self-adaptive load-balancing
algorithms have been developed to use these resources more optimally.
These algorithms are typically implemented ad-hoc, making re-usability
and maintenance difficult. In this work, we present a generic self-adaptive
framework. This methodology is evaluated with the Acsim framework on
two simulations: a micro-traffic simulation and a cellular automata simu-
lation. For each of these scenarios a scalable and adaptive load-balancing
algorithm is implemented, showing significant improvements in execution
time of the simulation.

Keywords: Distributed agent-based simulation - Adaptivity -
MAPE-K - Dynamic load balancing

1 Introduction

Although Agent-Based Simulation (ABS) is a relatively new simulation paradigm
[16], it has been used as an effective tool in a wide range of research domains
[1,2,4,20]. The main characteristic in ABS is the concept of an agent, which is a
self-contained autonomous entity, with the ability to interact with other agents
and with the environment. These interactions can lead to complex emergent
behavior [6]. Agent-Based Simulation is, therefore, one of the most powerful and
natural tools to simulate emergent phenomena using a bottom-up approach.
ABS has been used to evaluate and analyze behavior of complex large-scale
dynamic systems such as traffic systems [1] or complex Internet of Things sys-
tems such as smart city environments [4]. However, traditional monolithic ABS
simulations quickly run into problems when the scale of the simulation increases.
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This is the case This becomes especially problematic when the application of
these simulations is time-critical. Therefore, reducing the computational cost
and the run-time of these simulations is vital.

With this motivation, researchers have replaced the classic monolithic set-up
by a distributed architecture. This can be achieved by partitioning the simu-
lation into separate logical processes. This allows the simulation to be divided
among multiple processors and servers, thus allowing to simulate larger systems
and reducing the simulation run-time. This however also increases the complex-
ity and may add inefficiencies such as the need for synchronization and slow
remote communication between simulation partitions. Furthermore, the inher-
ently dynamic aspect of agent-based simulation makes static partitioning ineffi-
cient because the computational load of each process changes during the simula-
tion. This can lead to a significant waste of resources, for example, the simulation
can start perfectly balanced, but over time the distribution of these agents can
become highly imbalanced. Such distribution imbalance is often due to agents
that change their locations, increase communications or change their internal
load. A direct consequence of such imbalances is a significant increase in run-
time and under-utilization of computational resources. As stated by Long et al. it
is likely that such load imbalances occur in distributed agent-based simulations
[15].

In this paper, we propose to organize the distribution adaptively by dynam-
ically reacting to imbalances in computational load, synchronization load, and
communication load. Most state-of-the-art load-balancing mechanisms are imple-
mented in an ad-hoc manner, making them hard to reuse and maintain. The
contribution of this paper is a generic framework to implement self-adaptivity
in distributed agent-based simulators. We evaluate this method using two differ-
ent implementations: a large-scale micro-traffic simulation with a graph-based
environment and a cellular automata simulation with the Sugarscape model.

The second section of this paper discusses the concept of adaptivity and
related work. Section three presents the architecture of the distributed agent-
based simulation framework Acsim, that will be used to evaluate the experi-
ments. Section four presents the main principles of a MAPE-K loop and its
implementation in Acsim. Section five presents the specific examples and the
conclusions are drawn in Sect. 6.

2 Adaptivity in Agent-Based Simulation

Adaptivity in agent-based simulations can be related to the notion of activity
which was introduced by Muzy et al. as a measure of the number of events occur-
ring during a discrete event simulation [18]. As stated by Y. Van Tendeloo et
al. activity can be interpreted depending on the particular resource one wishes
to focus on (time, memory, energy,..) [23]. Therefore both the communicational
load and the computational load can be seen as types of ‘activity’. For exam-
ple, from a communicational load perspective, an agent has high activity if it
generates many messages in a fixed time window. From the computational load



Adaptivity in Distributed Agent-Based Simulation 3

perspective, an agent has high activity if its step duration takes a long time to
process.

Given this definition of activity, we can go ahead and define adaptivity as the
property of a distributed simulation framework to dynamically react to imbal-
ances of activity with the aim to restore the balance and improve overall simu-
lation run-time.

Adaptivity is typically implemented as a load balancing optimization prob-
lem based on global information [5,24]. The activity is defined as a function of
computational load, synchronization load and communication load. The disad-
vantage of these approaches is that they require global information to be stored
or synchronized centrally and that the optimization algorithm is computation-
ally intensive and thus less scalable. It is also possible to use heuristics that only
require local information, making these solutions computationally much more
efficient, but the obtained optimum might be local. For example, D’Angelo et al.
present in their work a range of heuristics that trigger agent migrations based
on local and remote communication patterns [8] and Q. Long et al. present a
distributed load balancing algorithm based on partial local information [15].

But adaptivity is not constrained to solving load balancing problems only. In
[10] and [3] the authors show that adaptivity can be used to dynamically switch
abstraction levels of a single agent or a collection of agents. Switching to a higher
abstraction level leads to a reduction in the computational load at the cost of
losing accuracy.

Most of the related work rely on ad-hoc implementations of adaptivity. An
exception is the work of Franceschini et al. who are using a MAPE-K control loop
to implement an automatic simulation abstraction solution [10]. In the following
sections, we expand on this work and present the integration of a MAPE-K
control loop in the Acsim distributed simulation framework. Furthermore, we
show that MAPE-K can also be used effectively for adaptive load-balancing.

3 Distributed Simulation Architecture: Acsim

Acsim is a distributed Python-based agent-based framework, developed by the
authors, inspired by Mesa [17]. It has been developed as a prototyping simulation
framework. The goal of the framework is not to be a production-ready simulation
framework but to allow for the validation of state-of-the-art techniques regard-
ing simulation scalability. We hope that these techniques will eventually inspire
production-ready distributed agent-based simulation frameworks.

One of the main motivations for the development of Acsim is the observa-
tion that there is an increasing need for large scale simulators in the context of
Internet of Things (IoT) and Smart Traffic applications. Due to the increase of
connectivity of smart devices and the availability of real-time data, simulation
platforms provide the opportunity to simulate entire cities. Simulation technol-
ogy enables the creation of a virtual testbed of large-scale IoT applications and
allows for real-time simulation-based optimization. An application of this tech-
nology is, for example, a real-time city-wide and simulation-based traffic light
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optimization platform. But state-of-the-art simulators are limited in their scal-
ability capabilities to support such technology. This is the challenge that Acsim
tackles. Although Acsim focuses on large scale IoT and traffic simulation, it can
also support other agent-based simulations.

Acsim relies on a conservative time-stepped synchronization mechanism.
Where time is collectively progressed after the completion of each individual
agent step. The architecture of the simulator is displayed in Fig.1. Acsim con-
sists of three main building blocks: 1) Agent: represents an entity at its highest
granularity, an agent contains a state, can adapt its state at each time-step
and has the possibility to interact with other agents using message-passing and
interact with the environment. 2) Model: a model serves as a container for a
specific type of agent and is responsible for the initialization of all agents of
this type. For example, a class of car agents will be part of a car model. This
car model will initialize all cars, generate routes and collects car-related logging
information. 3) Logical Processes: Acsim consists of multiple sub-simulator or
LP’s. Each LP manages a part of the environment and a collection of agents
that are located in this partial environment. It runs a dedicated process and
is responsible for low-level simulation tasks such as handling agent migrations,
managing message-passing between local and remote agents, collecting logs and
initiating agent steps. An agent step is a discrete step forward in time. Only as
part of a step can an agent adapt its state or communicate with other agents and
the environment. The global synchronization is managed by the master coordi-
nator. The coordinator orders all LP’s to execute the next step. Furthermore,
the coordinator collects and stores logs generated by the LP’s. Finally, Acsim
has extensive monitoring capabilities, enabling an in-depth analysis of local and
global simulator performance.
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Fig. 1. Acsim - Distributed simulator architecture. Acsim contains a cluster of nodes
and a node represents a physical device with one or more CPU cores, connected to
other nodes via the network.
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4 MAPE-K as a Generic Framework for Adaptivity

Due to the ever-increasing complexity of computing infrastructure, a shift to self-
managing systems is observed in the field of software development. In 2005, IBM
introduced MAPE-K loops to deal with this complexity [11]. Measure Analyze
Plan Execute - Knowledge (MAPE-K) loops are closed feedback loops which can
handle the complexities of self-adaptivity. More recently, [12] described templates
on how to utilize MAPE-K control loops to different distributed applications.
The implementation of most adaptive optimization strategies in a simulation is
ad-hoc and cannot be reused efficiently. We propose the application of a MAPE-
K control loop as a generic solution that will allow existing adaptivity strategies
to be efficiently implemented and maintained.

As mentioned above, the Acsim framework is step-based which results in the
simulation being as fast as the slowest simulator in the distribution. There is no
guarantee that this local optimization leads to a global optimum. The overhead
of calculating the global optimum, at a master node, increases with the scale
of the simulation. Because of the varying load-distribution over time, the global
optimum shifts and a new optimization iteration is needed. Our approach focuses
on a distributed solution to partitioning/merging environments. Our approach
is generic, each simulator can easily implement its specific logic as part of the
MAPE-K framework implemented in Acsim. Execution of the MAPE-K loop is
handled by the Acsim framework. We put extra emphasis during development
that the MAPE-K framework is implemented in a modular way, as part of the
simulation coordination engine. Its architecture can therefore be transferred to
most agent-based simulators and be integrated without significant changes. This
is because the MAPE-K framework breaks the barrier between simulation appli-
cation and simulation engine. We can refer to this as leaky abstraction. This
design choice has been made in order for the framework to be implemented in
other simulation engines without breaking existing simulation applications. The
trade-off however is that a simulation application developer needs to be aware
of low-level aspects of the simulation engine when developing a MAPE-K imple-
mentation for its application. Next, we will go in-depth on the structure of the
MAPE-K framework integrated into Acsim:

1. Monitor: During this phase, logs are retrieved from each subpart of the
Acsim framework regarding the model, simulator and environment. When a
MAPE-K iteration starts these logs are stored to the shared knowledge. This
knowledge base is located at the master node. To enhance the scalability, only
low compute algorithms are used at the master level.

2. Analyze: This has access to the shared knowledge base to identify bottle-
necks and flag optimization opportunities. These identifications do not pro-
vide a solution but an indication of the performance of a certain entity in the
framework.

3. Plan: This step collects all flags and generates an optimization plan without
execution. There could be multiple optimization plans in a single MAPE-K
loop.
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4. Execute: This phase of the loop runs distributed after receiving an optimiza-
tion request from the planning phase. This phase has the highest computation
requirement in the loop. The optimization algorithms used can vary from each
application. When a local optimization is complete, a synchronization mes-
sage is sent to all relevant entities involved in the optimization.

5. Knowledge: This part is shared between the first three steps of the loop.
The execute step does not need the knowledge base as it only executes the
plans created during the previous step. During each iteration, the knowledge
can be expanded to store relevant information for future MAPE-K loops.

Each simulation will have access to the simulation logs, these are stored in
the knowledge class. The MAPE-K framework implemented in Acsim allows
easy implementation of the phases and allow for reuseable, maintaineable and
application-specific adaptivity behavior. The loop can be executed both locally
and centrally. Also a hierarchy of multiple loops, affecting each other is supported
by the framework.

5 Motivating Examples

In the previous sections we introduced the concept of adaptivity and how we can
implement it generically in the Acsim framework using the MAPE-K framework.
In this section we validate this approach on two different agent-based simulations.
In both scenarios we implement a novel activity load balancing heuristics. As
stated in Sect. 4, we differentiate compared to classical adaptive load balancing
algorithms by making sure the heuristics are not performed centrally but at the
level of a LP to ensure scalability. In the experiments our aim is to improve
the global step duration GSD of the entire simulation. We can express it as
follows: GSD = max;(LSD?), where LSD" is the local step duration of LP i.
In other words, the global step duration is always equal to the worst LP step
duration. The reason for this is that Acsim relies on a conservative time-stepped
synchronization algorithm, as discussed in Sect.3. In the examples below the
goal is to improve the activity balance with each MAPE-K iteration. To gain
insight in how LP’s are performing, we distinguish the different contributions to
the step duration (as discussed in detail in [8]): the Model Computation Cost
(MCC), the Remote Communication Cost (RCC), the Local Communication
Cost (LCC) and the Model Synchronisation Cost (MSC). The weight of each
contribution is application-specific. When an imbalance occurs, for each variable
a different optimization strategy could be used. When optimizing on a local level,
each LP calculates their cost balance using only local information.

5.1 Adaptive Local Optimization of Compute Cost - A Micro-traffic
Example

In this example we perform a micro-traffic simulation of a 20 km by 20 km urban
area where cars are making random trips. Each car is an agent, managing its state
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and adapting its acceleration based on speed regulation and the acceleration
of leading cars. The implemented models are based on the Intelligent Driver
Model [22], which is a state-of-the-art car following model and the lane-changing
model MOBIL (Minimizing Overall Braking Induced By Lane Changing) [14].
This implementation leads to both realistic local behavior and realistic emerging
behavior. All cars comply to standard traffic regulations and priority rules.

The environment is represented by a directed graph datastructure. Edges
are roads (with single or more lanes) and nodes are junctions. A car agent
can interact with the environment by requesting where nearby cars are located.
Car agents can also interact with each-other to request acceleration and related
information or with traffic light agents to request the state of a traffic light.

During initialization the environment is partitioned based on the number of
available cores. The partitioning algorithm is a multilevel recursive algorithm for
multi-constraint graph partitioning as presented [13]. It attempts to balance node
cost of the graph partitions and minimizes edge cut. A single LP will manage
a single environment partition and the agents located in this partition. When
agents leave the environment partition they will migrate to a simulator that
manages one of the neighboring partitions. At the edges of a partition, car agents
require state information of agents that are located in the neighbouring partition.
Therefore, we include a synchronization mechanism. This mechanism broadcasts
the state of an agent, located at a border area, to neighboring partitions after
each state update. In this scenario the cost of a step depends on two activity
parameters: Model Computation Cost, M CC and Model Synchronization Cost
MSC. In the remainder of this section we elaborate on how we can dynamically
load balance these activity parameters using local information only in order to
reduce the global step duration.

Optimization Algorithm: A significant amount of research has been done in
the context of distributed micro-traffic simulation. The load balancing problem
is one of the most discussed problems within this context. As stated in [19] it is
necessary for all simulation processes to consume similar amount of computing
power in order to run at the same speed and the communication among the pro-
cesses should be minimal. Ramamohanar et al. [21] introduce a spatial workload
balancing approach where they partition the environment in grids. As pointed
out by the authors, this approach is static, and unable to react to changes in
computational load introduced by agent migrations. Cordasco et al. presented a
distributed extension to the Agent-Based Simulation framework MASON [7]. In
their work to put extra emphasis to the partitioning and load balancing prob-
lem. But also their implementation is not generic nor dynamic. Instead, other
work, such as Xu et al.’s work that presents an adaptive graph partitioning app-
roach [24]. They essentially execute the graph partitioning algorithm multiple
times, on the entire traffic network, when imbalances are detected. The problem
with this approach is that the algorithm runs on the entire network, making a
distributed approach difficult.

To solve this problem, we propose a heuristic-based approach, powered by the
MAPE-K framework presented in the previous section, that is able to run in a
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distributed way. The global idea of the algorithm is that we keep track of activity
using an activity graph. For example, assuming car agent computational load
is homogeneous, we keep track of the number of cars located on the incoming
edges of a node. When imbalances are detected between neighboring environment
partitions we allow an overloaded partition to migrate a collection of its border
nodes and edges to a neighboring, less occupied partition. This is visualized
in Fig.2. The amount of nodes and edges that gets migrated depends on the
amount of activity that needs to be transferred in order to reestablish the activity
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Fig. 2. Heuristic: Load balancing using local activity graphs

Experiment: The implementation of the computational load balance algo-

rithm in the MAPE-K framework is explained below:

1.

2.

Monitor: We keep track of the global step duration (GSD) and the local step

durations of the simulators (LSD?).

Analyze: The average LSD is calculated. When one of the LSD exceeds the
average by 20% or more, the algorithm evaluates if part of the computational
activity can be offloaded to the neighbors (this is achieved by migrating nodes,

edges and agents). If this is the case a ‘migration flag’ is set.

Plan: When a migration flag is found, a plan of execution will be created.
This plan orders the overloaded area to migrate a given amount of activity

to one of its neighboring areas that has been selected in the Analyze step.

Execute: The overloaded area will calculate which nodes it can offload. Con-
sequently, both the originating area and the destination area will update their

graph datastructure accordingly.
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We ran an experiment to test this implementation. In the experiment we
randomly generate trips in a city center. We introduced an initial imbalance of
1/10. This could be a realistic scenario when people are leaving a residential
area to an industrial area in the morning. We expect the algorithm to restore
this imbalance over time. Thirty runs of this experiment were executed, the
average and standard error are displayed in Fig. 3. In both graphs we compare a
non-adaptive approach with an adaptive approach. The MAPE-K optimization
is performed at time-step 250. Note that this time-step has been chosen based
on the application related observations and requirements. As this is mostly a
domain-specific decision, the time-step interval can be easily adapted by the
simulation developer. We observe a significant reduction of step duration when
the optimization occurs.

a) b) c)
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Fig. 3. Results - with and without MAPE-K adaptive optimization, micro-traffic sim-
ulation

Balancing Synchronization Cost: As explained in the introduction, the step
duration not only depends on Model Computation Cost (M CC). It also depends
on Model Synchronization Cost (M SC). The impact largely depends on the sce-
nario. When there is a large amount of traffic at the border areas of environment
partitions, the M SC will be significant and cannot be ignored. Therefore, fur-
ther optimization will be required. We propose a technique that can be explored
in future work. The general idea is that we can measure the synchronization cost
based on the amount of agents located in a border area. When an imbalance in
synchronization cost is observed between areas, we can simulate the synchroniza-
tion cost after incremental expansion of the graph. This is similar to incremental
expansion demonstrated in Fig.2. When the synchronization cost of the incre-
mental expansion is lower than the initial cost, we can perform a migration of
nodes and edges.

In conclusion, the proposed synchronization heuristic combined with the com-
putational cost balancing heuristic we expect it to lead to a further reduction in
step duration. The proposed heuristics will improve upon sub-optimal scenarios
where imbalances are observed in neighboring areas, in a scalable and compu-
tationally efficient manner. But, it is limited to finding local optimal solutions,
not a global optimal solution.
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5.2 Adaptive Local Optimization of Communication Cost
- A Cellular Automata Example

In this example we use the agent-based simulation Sugarscape [9] with a cellular
automata environment. This example was chosen as it is a well-known agent-
based simulation and because the type of the environment Sugarscape uses is
used by many other agent-based simulators. This shows that ideas presented
here are transferable to similar agent-based simulations. These simulations typi-
cally lead to emergent behaviour and can be used in, for example, biology [2]. In
Sugarscape, sugar is grown in each cell of the environment at a certain rate and
the goal of the agents is to survive by collecting enough sugar. If an agent cannot
satisfy his metabolism, he is replaced by a randomly initiated agent at a random
vacant position. The agents are characterised by a metabolic rate and range of
sight. At each step they search for sugar by looking in the four perpendicular
directions and move one step towards the cell with the highest sugar level, col-
lecting the sugar at their new location. The environment regrows sugar at each
step in the cells according to a fixed rate until a maximal sugar level is reached.
The model computation cost (MCC) the agent is relatively small but instead
the step duration depends mainly on the Local Communicaton Cost (LCC) and
the Remote Communication Cost (RCC') (with RCC being significantly more
expensive). The RCC is the result of agents that are close to the edge of a
simulator and searches within the next simulator for sugar. This consists of two
messages that are send between the simulators: one to ask for the amount of
sugar on the cells of interest and one with the corresponding answer. Our opti-
mization algorithm keeps track of a communication based activity graph, where
imbalances in LCC and RCC' between simulators are monitored and dynami-
cally improved by migrating parts of the environment. The MAPE-K cycle is
implemented as follows:

1. Monitor: The local and remote (both contributions due to received and send
messages) compute time for each cell is logged.

2. Analyze: Bottleneck simulators are identified by comparing their Local Step
Duration (LSD) to the Global Step Duration (GSD).

3. Plan: A plan is created to partition certain sections of the simulator’s envi-
ronment to restore imbalances that might have manifested over time. Each
section is evaluated using its logged LCC' and RCC'. During partitioning, the
algorithm can decide to migrate a section which will switch LCC to RCC
(and possibly vice versa), and as a consequence reduce overall cost.

4. Execute: Each simulator executes his part of the established plan and pos-
sibly migrates parts of its environment to another simulation process.

To evaluate the performance of the adaptive approach, we ran 30 random
initiated Sugarscape simulations and compared them to 30 non-adaptive simu-
lations. Both simulations are initiated with four LP’s managing each a quarter of
the environment. The simulation stops after 800 steps, the MAPE-k framework is
executed every 50th step. The results are illustrated in Fig. 4. Image a represent
the initiated environment divided over the four LP’s. Figure Image b shows the
same environment where the borders are optimized based on the current activ-
ity. Finally, c illustrates the average step duration and the standard error. From
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Fig. 4. Results - with and without MAPE-K adaptive optimization, Sugarscape.

these results we can see that once the random activity of the agents is replaced
with emerging behaviour, the adaptive approach improves performance.

6 Conclusion

In this work we presented a MAPE-K loop as a generic and effective framework to
implement a self-adaptive distribution for agent-based simulations. We evaluated
this framework by implementing two examples: a distributed traffic simulation
and a sugarscape simulation. We showed that MAPE-K can be used effictively
in multiple simulations to implement adaptivity. Furthermore, the results of
the proposed adaptive load-balancing heuristics show a significant reduction in
computational cost while being executed decentralized. In future work we will
further optimize the presented heuristics and perform an empirical comparison
with MAPE-K implementations of state-of-the-art load-balancing techniques.
Furthermore, we want to explore the benefits of a hybrid decentralized and
centralized adaptive load balancing approach in micro traffic simulation. In this
hybrid scenario we envision two MAPE-K loops: 1) a decentralized heuristic,
as proposed in this paper, and 2) a centralized load balancing algorithm that is
able to find global optimum, as proposed in the related work of Sect. 5.1. We also
want to validate the generality of the approach by implementing the MAPE-K
approach in other distributed simulation frameworks.
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