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Preface

The Multi-Agent-Based Simulation (MABS) Workshop series, which began in 1998,
aims to bring together researchers interested in MAS engineering with researchers
focused on finding efficient solutions to model complex social systems, in such areas as
economics, management, organizational and social sciences in general. Its scientific
focus lies at the confluence of social sciences, and multi-agent systems, with a strong
application/empirical vein, and its emphasis is on (i) exploratory agent-based simula-
tion as a principled way of undertaking scientific research in the social sciences, and
(ii) using social theories as an inspiration for new frameworks and developments in
multi-agent systems.

The 21st edition of the workshop, collocated with the 19th International Conference
on Autonomous Agents and Multi-Agent Systems (AAMAS), was held virtually
(through Zoom) due to the COVID-19 lockdown, on 10th May, 2020. A total of 12
papers were submitted to the workshop and nine were accepted after peer review.
These papers were reviewed by two or more PC members using a single-blind review
method. This workshop also featured invited talks on the topic of the role of
multi-agent-based simulation in addressing global problems from Professor Frank
Dignum, Dr Maite Lopez-Sanchez, Dr Cristian Jimenez, Dr Mario Paolucci, Dr Jason
Thompson, Ms. Fatema T. Johora and Ms. Kaidi Wang. Also, a general discussion
centered around the same topic was held. About 25 participants attended the workshop.

This volume represents 8 revised papers (out of 9 accepted for the workshop), which
were extended and revised based on the peer reviews received from the workshop. The
revisions made to the papers were reviewed by one of the workshop chairs, and this
formed the second round of peer review. We are confident this process has resulted in
high-quality papers.

The workshop could not have taken place without the contribution of many people.
We are very grateful to our invited speakers as well as to all the MABS 2020 par-
ticipants who took part in the discussions. We are also very grateful to all the members
of the Program Committee for their hard work. Thanks also go to Jaime Sichman and
Mehdi Dastani (AAMAS 2020 workshop chairs), and to Amal El Fallah Seghrouchni
and Gita Sukthankar (AAMAS 2020 general co-chairs). We also thank EasyChair for
the use of their conference management system.

November 2020 Samarth Swarup
Bastin Tony Roy Savarimuthu
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Adaptivity in Distributed Agent-Based
Simulation: A Generic Load-Balancing

Approach

Stig Bosmans1(B), Toon Bogaerts1, Wim Casteels1, Siegfried Mercelis1,
Joachim Denil2, and Peter Hellinckx1

1 IDLab - Faculty of Applied Engineering, University of Antwerp - Imec,
Sint -Pietersvliet 7, 2000 Antwerp, Belgium

{stig.bosmans,toon.bogaerts,wim.casteels,siegfried.mercelis,
peter.hellinckx}@uantwerpen.be

2 Flanders Make, University of Antwerp,
Groenenborgerlaan 171, 2020 Antwerp, Belgium

joachim.denil@uantwerpen.be

Abstract. Distributed agent-based simulations often suffer from an
imbalance in computational load, leading to a suboptimal use of
resources. This happens when part of the computational resoures are
waiting idle for another process to finish. Self-adaptive load-balancing
algorithms have been developed to use these resources more optimally.
These algorithms are typically implemented ad-hoc, making re-usability
and maintenance difficult. In this work, we present a generic self-adaptive
framework. This methodology is evaluated with the Acsim framework on
two simulations: a micro-traffic simulation and a cellular automata simu-
lation. For each of these scenarios a scalable and adaptive load-balancing
algorithm is implemented, showing significant improvements in execution
time of the simulation.

Keywords: Distributed agent-based simulation · Adaptivity ·
MAPE-K · Dynamic load balancing

1 Introduction

Although Agent-Based Simulation (ABS) is a relatively new simulation paradigm
[16], it has been used as an effective tool in a wide range of research domains
[1,2,4,20]. The main characteristic in ABS is the concept of an agent, which is a
self-contained autonomous entity, with the ability to interact with other agents
and with the environment. These interactions can lead to complex emergent
behavior [6]. Agent-Based Simulation is, therefore, one of the most powerful and
natural tools to simulate emergent phenomena using a bottom-up approach.

ABS has been used to evaluate and analyze behavior of complex large-scale
dynamic systems such as traffic systems [1] or complex Internet of Things sys-
tems such as smart city environments [4]. However, traditional monolithic ABS
simulations quickly run into problems when the scale of the simulation increases.
c© Springer Nature Switzerland AG 2021
S. Swarup and B. T. R. Savarimuthu (Eds.): MABS 2020, LNAI 12316, pp. 1–12, 2021.
https://doi.org/10.1007/978-3-030-66888-4_1
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This is the case This becomes especially problematic when the application of
these simulations is time-critical. Therefore, reducing the computational cost
and the run-time of these simulations is vital.

With this motivation, researchers have replaced the classic monolithic set-up
by a distributed architecture. This can be achieved by partitioning the simu-
lation into separate logical processes. This allows the simulation to be divided
among multiple processors and servers, thus allowing to simulate larger systems
and reducing the simulation run-time. This however also increases the complex-
ity and may add inefficiencies such as the need for synchronization and slow
remote communication between simulation partitions. Furthermore, the inher-
ently dynamic aspect of agent-based simulation makes static partitioning ineffi-
cient because the computational load of each process changes during the simula-
tion. This can lead to a significant waste of resources, for example, the simulation
can start perfectly balanced, but over time the distribution of these agents can
become highly imbalanced. Such distribution imbalance is often due to agents
that change their locations, increase communications or change their internal
load. A direct consequence of such imbalances is a significant increase in run-
time and under-utilization of computational resources. As stated by Long et al. it
is likely that such load imbalances occur in distributed agent-based simulations
[15].

In this paper, we propose to organize the distribution adaptively by dynam-
ically reacting to imbalances in computational load, synchronization load, and
communication load. Most state-of-the-art load-balancing mechanisms are imple-
mented in an ad-hoc manner, making them hard to reuse and maintain. The
contribution of this paper is a generic framework to implement self-adaptivity
in distributed agent-based simulators. We evaluate this method using two differ-
ent implementations: a large-scale micro-traffic simulation with a graph-based
environment and a cellular automata simulation with the Sugarscape model.

The second section of this paper discusses the concept of adaptivity and
related work. Section three presents the architecture of the distributed agent-
based simulation framework Acsim, that will be used to evaluate the experi-
ments. Section four presents the main principles of a MAPE-K loop and its
implementation in Acsim. Section five presents the specific examples and the
conclusions are drawn in Sect. 6.

2 Adaptivity in Agent-Based Simulation

Adaptivity in agent-based simulations can be related to the notion of activity
which was introduced by Muzy et al. as a measure of the number of events occur-
ring during a discrete event simulation [18]. As stated by Y. Van Tendeloo et
al. activity can be interpreted depending on the particular resource one wishes
to focus on (time, memory, energy,..) [23]. Therefore both the communicational
load and the computational load can be seen as types of ‘activity’. For exam-
ple, from a communicational load perspective, an agent has high activity if it
generates many messages in a fixed time window. From the computational load
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perspective, an agent has high activity if its step duration takes a long time to
process.

Given this definition of activity, we can go ahead and define adaptivity as the
property of a distributed simulation framework to dynamically react to imbal-
ances of activity with the aim to restore the balance and improve overall simu-
lation run-time.

Adaptivity is typically implemented as a load balancing optimization prob-
lem based on global information [5,24]. The activity is defined as a function of
computational load, synchronization load and communication load. The disad-
vantage of these approaches is that they require global information to be stored
or synchronized centrally and that the optimization algorithm is computation-
ally intensive and thus less scalable. It is also possible to use heuristics that only
require local information, making these solutions computationally much more
efficient, but the obtained optimum might be local. For example, D’Angelo et al.
present in their work a range of heuristics that trigger agent migrations based
on local and remote communication patterns [8] and Q. Long et al. present a
distributed load balancing algorithm based on partial local information [15].

But adaptivity is not constrained to solving load balancing problems only. In
[10] and [3] the authors show that adaptivity can be used to dynamically switch
abstraction levels of a single agent or a collection of agents. Switching to a higher
abstraction level leads to a reduction in the computational load at the cost of
losing accuracy.

Most of the related work rely on ad-hoc implementations of adaptivity. An
exception is the work of Franceschini et al. who are using a MAPE-K control loop
to implement an automatic simulation abstraction solution [10]. In the following
sections, we expand on this work and present the integration of a MAPE-K
control loop in the Acsim distributed simulation framework. Furthermore, we
show that MAPE-K can also be used effectively for adaptive load-balancing.

3 Distributed Simulation Architecture: Acsim

Acsim is a distributed Python-based agent-based framework, developed by the
authors, inspired by Mesa [17]. It has been developed as a prototyping simulation
framework. The goal of the framework is not to be a production-ready simulation
framework but to allow for the validation of state-of-the-art techniques regard-
ing simulation scalability. We hope that these techniques will eventually inspire
production-ready distributed agent-based simulation frameworks.

One of the main motivations for the development of Acsim is the observa-
tion that there is an increasing need for large scale simulators in the context of
Internet of Things (IoT) and Smart Traffic applications. Due to the increase of
connectivity of smart devices and the availability of real-time data, simulation
platforms provide the opportunity to simulate entire cities. Simulation technol-
ogy enables the creation of a virtual testbed of large-scale IoT applications and
allows for real-time simulation-based optimization. An application of this tech-
nology is, for example, a real-time city-wide and simulation-based traffic light
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optimization platform. But state-of-the-art simulators are limited in their scal-
ability capabilities to support such technology. This is the challenge that Acsim
tackles. Although Acsim focuses on large scale IoT and traffic simulation, it can
also support other agent-based simulations.

Acsim relies on a conservative time-stepped synchronization mechanism.
Where time is collectively progressed after the completion of each individual
agent step. The architecture of the simulator is displayed in Fig. 1. Acsim con-
sists of three main building blocks: 1) Agent: represents an entity at its highest
granularity, an agent contains a state, can adapt its state at each time-step
and has the possibility to interact with other agents using message-passing and
interact with the environment. 2) Model: a model serves as a container for a
specific type of agent and is responsible for the initialization of all agents of
this type. For example, a class of car agents will be part of a car model. This
car model will initialize all cars, generate routes and collects car-related logging
information. 3) Logical Processes: Acsim consists of multiple sub-simulator or
LP’s. Each LP manages a part of the environment and a collection of agents
that are located in this partial environment. It runs a dedicated process and
is responsible for low-level simulation tasks such as handling agent migrations,
managing message-passing between local and remote agents, collecting logs and
initiating agent steps. An agent step is a discrete step forward in time. Only as
part of a step can an agent adapt its state or communicate with other agents and
the environment. The global synchronization is managed by the master coordi-
nator. The coordinator orders all LP’s to execute the next step. Furthermore,
the coordinator collects and stores logs generated by the LP’s. Finally, Acsim
has extensive monitoring capabilities, enabling an in-depth analysis of local and
global simulator performance.

Fig. 1. Acsim - Distributed simulator architecture. Acsim contains a cluster of nodes
and a node represents a physical device with one or more CPU cores, connected to
other nodes via the network.
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4 MAPE-K as a Generic Framework for Adaptivity

Due to the ever-increasing complexity of computing infrastructure, a shift to self-
managing systems is observed in the field of software development. In 2005, IBM
introduced MAPE-K loops to deal with this complexity [11]. Measure Analyze
Plan Execute - Knowledge (MAPE-K) loops are closed feedback loops which can
handle the complexities of self-adaptivity. More recently, [12] described templates
on how to utilize MAPE-K control loops to different distributed applications.
The implementation of most adaptive optimization strategies in a simulation is
ad-hoc and cannot be reused efficiently. We propose the application of a MAPE-
K control loop as a generic solution that will allow existing adaptivity strategies
to be efficiently implemented and maintained.

As mentioned above, the Acsim framework is step-based which results in the
simulation being as fast as the slowest simulator in the distribution. There is no
guarantee that this local optimization leads to a global optimum. The overhead
of calculating the global optimum, at a master node, increases with the scale
of the simulation. Because of the varying load-distribution over time, the global
optimum shifts and a new optimization iteration is needed. Our approach focuses
on a distributed solution to partitioning/merging environments. Our approach
is generic, each simulator can easily implement its specific logic as part of the
MAPE-K framework implemented in Acsim. Execution of the MAPE-K loop is
handled by the Acsim framework. We put extra emphasis during development
that the MAPE-K framework is implemented in a modular way, as part of the
simulation coordination engine. Its architecture can therefore be transferred to
most agent-based simulators and be integrated without significant changes. This
is because the MAPE-K framework breaks the barrier between simulation appli-
cation and simulation engine. We can refer to this as leaky abstraction. This
design choice has been made in order for the framework to be implemented in
other simulation engines without breaking existing simulation applications. The
trade-off however is that a simulation application developer needs to be aware
of low-level aspects of the simulation engine when developing a MAPE-K imple-
mentation for its application. Next, we will go in-depth on the structure of the
MAPE-K framework integrated into Acsim:

1. Monitor: During this phase, logs are retrieved from each subpart of the
Acsim framework regarding the model, simulator and environment. When a
MAPE-K iteration starts these logs are stored to the shared knowledge. This
knowledge base is located at the master node. To enhance the scalability, only
low compute algorithms are used at the master level.

2. Analyze: This has access to the shared knowledge base to identify bottle-
necks and flag optimization opportunities. These identifications do not pro-
vide a solution but an indication of the performance of a certain entity in the
framework.

3. Plan: This step collects all flags and generates an optimization plan without
execution. There could be multiple optimization plans in a single MAPE-K
loop.
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4. Execute: This phase of the loop runs distributed after receiving an optimiza-
tion request from the planning phase. This phase has the highest computation
requirement in the loop. The optimization algorithms used can vary from each
application. When a local optimization is complete, a synchronization mes-
sage is sent to all relevant entities involved in the optimization.

5. Knowledge: This part is shared between the first three steps of the loop.
The execute step does not need the knowledge base as it only executes the
plans created during the previous step. During each iteration, the knowledge
can be expanded to store relevant information for future MAPE-K loops.

Each simulation will have access to the simulation logs, these are stored in
the knowledge class. The MAPE-K framework implemented in Acsim allows
easy implementation of the phases and allow for reuseable, maintaineable and
application-specific adaptivity behavior. The loop can be executed both locally
and centrally. Also a hierarchy of multiple loops, affecting each other is supported
by the framework.

5 Motivating Examples

In the previous sections we introduced the concept of adaptivity and how we can
implement it generically in the Acsim framework using the MAPE-K framework.
In this section we validate this approach on two different agent-based simulations.
In both scenarios we implement a novel activity load balancing heuristics. As
stated in Sect. 4, we differentiate compared to classical adaptive load balancing
algorithms by making sure the heuristics are not performed centrally but at the
level of a LP to ensure scalability. In the experiments our aim is to improve
the global step duration GSD of the entire simulation. We can express it as
follows: GSD = maxi(LSDi), where LSDi is the local step duration of LP i.
In other words, the global step duration is always equal to the worst LP step
duration. The reason for this is that Acsim relies on a conservative time-stepped
synchronization algorithm, as discussed in Sect. 3. In the examples below the
goal is to improve the activity balance with each MAPE-K iteration. To gain
insight in how LP’s are performing, we distinguish the different contributions to
the step duration (as discussed in detail in [8]): the Model Computation Cost
(MCC), the Remote Communication Cost (RCC), the Local Communication
Cost (LCC) and the Model Synchronisation Cost (MSC). The weight of each
contribution is application-specific. When an imbalance occurs, for each variable
a different optimization strategy could be used. When optimizing on a local level,
each LP calculates their cost balance using only local information.

5.1 Adaptive Local Optimization of Compute Cost - A Micro-traffic
Example

In this example we perform a micro-traffic simulation of a 20 km by 20 km urban
area where cars are making random trips. Each car is an agent, managing its state
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and adapting its acceleration based on speed regulation and the acceleration
of leading cars. The implemented models are based on the Intelligent Driver
Model [22], which is a state-of-the-art car following model and the lane-changing
model MOBIL (Minimizing Overall Braking Induced By Lane Changing) [14].
This implementation leads to both realistic local behavior and realistic emerging
behavior. All cars comply to standard traffic regulations and priority rules.

The environment is represented by a directed graph datastructure. Edges
are roads (with single or more lanes) and nodes are junctions. A car agent
can interact with the environment by requesting where nearby cars are located.
Car agents can also interact with each-other to request acceleration and related
information or with traffic light agents to request the state of a traffic light.

During initialization the environment is partitioned based on the number of
available cores. The partitioning algorithm is a multilevel recursive algorithm for
multi-constraint graph partitioning as presented [13]. It attempts to balance node
cost of the graph partitions and minimizes edge cut. A single LP will manage
a single environment partition and the agents located in this partition. When
agents leave the environment partition they will migrate to a simulator that
manages one of the neighboring partitions. At the edges of a partition, car agents
require state information of agents that are located in the neighbouring partition.
Therefore, we include a synchronization mechanism. This mechanism broadcasts
the state of an agent, located at a border area, to neighboring partitions after
each state update. In this scenario the cost of a step depends on two activity
parameters: Model Computation Cost, MCC and Model Synchronization Cost
MSC. In the remainder of this section we elaborate on how we can dynamically
load balance these activity parameters using local information only in order to
reduce the global step duration.

Optimization Algorithm: A significant amount of research has been done in
the context of distributed micro-traffic simulation. The load balancing problem
is one of the most discussed problems within this context. As stated in [19] it is
necessary for all simulation processes to consume similar amount of computing
power in order to run at the same speed and the communication among the pro-
cesses should be minimal. Ramamohanar et al. [21] introduce a spatial workload
balancing approach where they partition the environment in grids. As pointed
out by the authors, this approach is static, and unable to react to changes in
computational load introduced by agent migrations. Cordasco et al. presented a
distributed extension to the Agent-Based Simulation framework MASON [7]. In
their work to put extra emphasis to the partitioning and load balancing prob-
lem. But also their implementation is not generic nor dynamic. Instead, other
work, such as Xu et al.’s work that presents an adaptive graph partitioning app-
roach [24]. They essentially execute the graph partitioning algorithm multiple
times, on the entire traffic network, when imbalances are detected. The problem
with this approach is that the algorithm runs on the entire network, making a
distributed approach difficult.

To solve this problem, we propose a heuristic-based approach, powered by the
MAPE-K framework presented in the previous section, that is able to run in a
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distributed way. The global idea of the algorithm is that we keep track of activity
using an activity graph. For example, assuming car agent computational load
is homogeneous, we keep track of the number of cars located on the incoming
edges of a node. When imbalances are detected between neighboring environment
partitions we allow an overloaded partition to migrate a collection of its border
nodes and edges to a neighboring, less occupied partition. This is visualized
in Fig. 2. The amount of nodes and edges that gets migrated depends on the
amount of activity that needs to be transferred in order to reestablish the activity
balance.

Fig. 2. Heuristic: Load balancing using local activity graphs

Experiment: The implementation of the computational load balance algo-
rithm in the MAPE-K framework is explained below:

1. Monitor: We keep track of the global step duration (GSD) and the local step
durations of the simulators (LSDi).

2. Analyze: The average LSD is calculated. When one of the LSD exceeds the
average by 20% or more, the algorithm evaluates if part of the computational
activity can be offloaded to the neighbors (this is achieved by migrating nodes,
edges and agents). If this is the case a ‘migration flag’ is set.

3. Plan: When a migration flag is found, a plan of execution will be created.
This plan orders the overloaded area to migrate a given amount of activity
to one of its neighboring areas that has been selected in the Analyze step.

4. Execute: The overloaded area will calculate which nodes it can offload. Con-
sequently, both the originating area and the destination area will update their
graph datastructure accordingly.
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We ran an experiment to test this implementation. In the experiment we
randomly generate trips in a city center. We introduced an initial imbalance of
1/10. This could be a realistic scenario when people are leaving a residential
area to an industrial area in the morning. We expect the algorithm to restore
this imbalance over time. Thirty runs of this experiment were executed, the
average and standard error are displayed in Fig. 3. In both graphs we compare a
non-adaptive approach with an adaptive approach. The MAPE-K optimization
is performed at time-step 250. Note that this time-step has been chosen based
on the application related observations and requirements. As this is mostly a
domain-specific decision, the time-step interval can be easily adapted by the
simulation developer. We observe a significant reduction of step duration when
the optimization occurs.

Fig. 3. Results - with and without MAPE-K adaptive optimization, micro-traffic sim-
ulation

Balancing Synchronization Cost: As explained in the introduction, the step
duration not only depends on Model Computation Cost (MCC). It also depends
on Model Synchronization Cost (MSC). The impact largely depends on the sce-
nario. When there is a large amount of traffic at the border areas of environment
partitions, the MSC will be significant and cannot be ignored. Therefore, fur-
ther optimization will be required. We propose a technique that can be explored
in future work. The general idea is that we can measure the synchronization cost
based on the amount of agents located in a border area. When an imbalance in
synchronization cost is observed between areas, we can simulate the synchroniza-
tion cost after incremental expansion of the graph. This is similar to incremental
expansion demonstrated in Fig. 2. When the synchronization cost of the incre-
mental expansion is lower than the initial cost, we can perform a migration of
nodes and edges.

In conclusion, the proposed synchronization heuristic combined with the com-
putational cost balancing heuristic we expect it to lead to a further reduction in
step duration. The proposed heuristics will improve upon sub-optimal scenarios
where imbalances are observed in neighboring areas, in a scalable and compu-
tationally efficient manner. But, it is limited to finding local optimal solutions,
not a global optimal solution.
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5.2 Adaptive Local Optimization of Communication Cost
- A Cellular Automata Example

In this example we use the agent-based simulation Sugarscape [9] with a cellular
automata environment. This example was chosen as it is a well-known agent-
based simulation and because the type of the environment Sugarscape uses is
used by many other agent-based simulators. This shows that ideas presented
here are transferable to similar agent-based simulations. These simulations typi-
cally lead to emergent behaviour and can be used in, for example, biology [2]. In
Sugarscape, sugar is grown in each cell of the environment at a certain rate and
the goal of the agents is to survive by collecting enough sugar. If an agent cannot
satisfy his metabolism, he is replaced by a randomly initiated agent at a random
vacant position. The agents are characterised by a metabolic rate and range of
sight. At each step they search for sugar by looking in the four perpendicular
directions and move one step towards the cell with the highest sugar level, col-
lecting the sugar at their new location. The environment regrows sugar at each
step in the cells according to a fixed rate until a maximal sugar level is reached.
The model computation cost (MCC) the agent is relatively small but instead
the step duration depends mainly on the Local Communicaton Cost (LCC) and
the Remote Communication Cost (RCC) (with RCC being significantly more
expensive). The RCC is the result of agents that are close to the edge of a
simulator and searches within the next simulator for sugar. This consists of two
messages that are send between the simulators: one to ask for the amount of
sugar on the cells of interest and one with the corresponding answer. Our opti-
mization algorithm keeps track of a communication based activity graph, where
imbalances in LCC and RCC between simulators are monitored and dynami-
cally improved by migrating parts of the environment. The MAPE-K cycle is
implemented as follows:

1. Monitor: The local and remote (both contributions due to received and send
messages) compute time for each cell is logged.

2. Analyze: Bottleneck simulators are identified by comparing their Local Step
Duration (LSD) to the Global Step Duration (GSD).

3. Plan: A plan is created to partition certain sections of the simulator’s envi-
ronment to restore imbalances that might have manifested over time. Each
section is evaluated using its logged LCC and RCC. During partitioning, the
algorithm can decide to migrate a section which will switch LCC to RCC
(and possibly vice versa), and as a consequence reduce overall cost.

4. Execute: Each simulator executes his part of the established plan and pos-
sibly migrates parts of its environment to another simulation process.

To evaluate the performance of the adaptive approach, we ran 30 random
initiated Sugarscape simulations and compared them to 30 non-adaptive simu-
lations. Both simulations are initiated with four LP’s managing each a quarter of
the environment. The simulation stops after 800 steps, the MAPE-k framework is
executed every 50th step. The results are illustrated in Fig. 4. Image a represent
the initiated environment divided over the four LP’s. Figure Image b shows the
same environment where the borders are optimized based on the current activ-
ity. Finally, c illustrates the average step duration and the standard error. From
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Fig. 4. Results - with and without MAPE-K adaptive optimization, Sugarscape.

these results we can see that once the random activity of the agents is replaced
with emerging behaviour, the adaptive approach improves performance.

6 Conclusion

In this work we presented a MAPE-K loop as a generic and effective framework to
implement a self-adaptive distribution for agent-based simulations. We evaluated
this framework by implementing two examples: a distributed traffic simulation
and a sugarscape simulation. We showed that MAPE-K can be used effictively
in multiple simulations to implement adaptivity. Furthermore, the results of
the proposed adaptive load-balancing heuristics show a significant reduction in
computational cost while being executed decentralized. In future work we will
further optimize the presented heuristics and perform an empirical comparison
with MAPE-K implementations of state-of-the-art load-balancing techniques.
Furthermore, we want to explore the benefits of a hybrid decentralized and
centralized adaptive load balancing approach in micro traffic simulation. In this
hybrid scenario we envision two MAPE-K loops: 1) a decentralized heuristic,
as proposed in this paper, and 2) a centralized load balancing algorithm that is
able to find global optimum, as proposed in the related work of Sect. 5.1. We also
want to validate the generality of the approach by implementing the MAPE-K
approach in other distributed simulation frameworks.
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Abstract. Realistically modelling behaviour and interaction of hetero-
geneous road users (pedestrians and vehicles) in mixed-traffic zones
(a.k.a. shared spaces) is challenging. The dynamic nature of the envi-
ronment, heterogeneity of transport modes, and the absence of classical
traffic rules make realistic microscopic traffic simulation hard problems.
Existing multi-agent-based simulations of shared spaces largely use an
expert-based approach, combining a symbolic (e.g. rule-based) modelling
and reasoning paradigm (e.g. using BDI representations of beliefs and
plans) with the hand-crafted encoding of the actual decision logic. More
recently, deep learning (DL) models are largely used to derive and pre-
dict trajectories based on e.g. video data. In-depth studies comparing
these two kinds of approaches are missing. In this work, we propose an
expert-based model called GSFM that combines Social Force Model and
Game theory and a DL model called LSTM-DBSCAN that manipulates
Long Short-Term Memories and density-based clustering for multi-agent
trajectory prediction. We create a common framework to run these two
models in parallel to guarantee a fair comparison. Real-world mixed traf-
fic data from shared spaces of different layout are used to calibrate/train
and evaluate the models. The empirical results imply that both models
can generate realistic predictions, but they differ in the way of handling
collisions and mimicking heterogeneous behaviour. Via a thorough study,
we draw the conclusion of their respective strengths and weaknesses.
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1 Introduction

In comparison to conventional traffic design where road resources are allocated
to road users (agents) by time or space segregation, shared space largely removes
road signs, signals, and markings, forcing direct interaction between mixed traf-
fic participants (e.g. cars, bikes, pedestrians), guided by informal social proto-
cols and negotiation. This concept was first introduced by Monderman in the
1970s [9]. Shared spaces nowadays can be found in urban areas of many Euro-
pean cities; examples are the Laweiplein intersection in the Dutch town Drachten,
Skvallertorget in Norrköping, and Kensington High Street in London [14].

The absence of explicit traffic rules and thereby caused vagueness make it
critical to investigate safety issues, especially regarding vulnerable road users (i.e.
pedestrians) and traffic efficiency of shared spaces [14]. The foreseeable advent of
autonomous driving also raises the need for automated safety systems based on
the intent recognition of other road users [11]. However, understanding how road
users behave and predicting their actions is far from trivial as these actions are
a result of complex decision-making processes from heterogeneous road users.

There is a considerable body of research on microscopic models aimed at tack-
ling these challenges. In particular, we can distinguish two classes of methodolo-
gies: the so-called expert-based approaches [4,15,19,25,28,31,34] and data-driven
approaches [2,7,8,13,17,23,29]. Expert-based approaches involve human design-
ers to craft explicit decision rules and corresponding reasoning mechanism to
tackle the modelling problem. For example, in the Social Force Model (SFM) [15],
the rules of physical dynamics are used to mimic pedestrian movement behaviour
in crowded space. Game theory has been used in interaction modelling e.g., users
negotiating the right-of-way [5,19,31]. However, the requirement of human inter-
vention makes it difficult to scale these models for large or new problems. On
the other hand, data-driven modelling approaches can be trained by processing
the data extracted from real-world situations and deriving a complex neural
network structure with associated parameters or weights optimised via train-
ing [22]. Examples are e.g. Social-LSTM [2] and Social-GAN [13]. These models
are often black boxes, making them hard to understand and explain for humans;
The human modeller’s intention to guide the models to capture specific desired
patterns is difficult to support [16]. Up to now, there is no easy way to inter-
pret the latent features used by a DL model, especially when the structure is of
very high dimensionality. Thus, a lack of reliable control of the model may lead
to faulty or counter-intuitive behaviour. Besides, computational cost can be a
bottleneck for DL-based models [30].

However, it is not easy to fairly compare the expert-based and DL approaches
in modelling and predicting mixed traffic trajectories. Firstly, it is difficult to
create a common framework that both models can share for a fair compari-
son. Moreover, they may have different criteria in terms of performance. As an
example, expert approaches focus on generating realistic trajectories for agents
in simulation, while data-driven approaches focus on predicting trajectories as
close as possible to the real trajectories, the so-called ground truth. Hence, the
input and output of these approaches are often different.
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To our knowledge, there are no studies that compare expert-based and
DL approaches for microscopically modelling complex socio-technical systems,
namely, shared spaces. Our contributions are summarised below:

– We pursue two models: an expert-based (GSFM, combining a game-theoretic
and physics-based model) and a DL model (LSTM-DBSCAN, Long Short-
Term Memories with Density-Based Spatial Clustering of Applications with
Noise [10]).

– We create a common framework for a fair comparison. These two models take
the same data as input and generate predictions in the same format.

– The accuracy (in terms of realistic behaviour) of these two models is tested
on real-world shared-space scenarios using the same evaluation metrics. Their
strengths and weaknesses are experimentally compared and analysed.

2 Methodology

2.1 Problem Formulation

The prediction task is to generate realistic and collision-free future trajectories of
the vehicle and pedestrian agents in shared spaces. As preparation for empirical
data, all the trajectories with discrete time steps of 0.5 s e.g. (xt

i, y
t
i) ∈ R

2 on a
2D plane are received from video sequences recorded by static cameras, where
x and y are pixel coordinates for the given video, which can be easily converted
to meters using the given scale, i stands for agent ID and t for time step. The
time steps in observation are {1, · · · , k} and the time steps in prediction are
{k + 1, · · · ,m}. Accordingly, the visible trajectories for N agents are denoted
as X = X1,X2, ...,Xn, where Xi =

∑k
t=1(x

t
i, y

t
i) and i ∈ N . The prediction

of the future trajectories are Ŷ = Ŷ1, Ŷ2, ..., Ŷn, respectively. The task is to
predict each agent’s location at prediction time steps based on the locations at
observation time steps for both DL and expert-based models. Thus, the objective
is to minimise L(Y, Ŷ), where Ŷ = f(X) and Y is the ground truth, f( .) stands
for the prediction models, and L(., .) the loss function.

2.2 Game-Theoretic Social Force Model

We pursue an expert-based approach, called Game-Theoretic Social Force Model
(GSFM) [19]. In GSFM, the movement of each agent is modelled in three
modules: trajectory planning, force-based modelling, and game-theoretic decision-
making. Each module has different roles to perform. GSFM is built on a BDI
(Belief, Desire, Intention) platform, LightJason [3], to design and explain the
control flow among the modules. The BDI controller acts as the brain of the
agent to perceive the environment and activate one of these modules based on
the situation. Each module triggers the controller on the completion of their
respective task(s). Figure 1 visualises the overall structure of the GSFM model.
The trajectory planning module computes free-flow trajectories for each agent
by considering static obstacles like boundaries, or trees in the shared space. The
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force-based modelling and game-theoretic decision modules are responsible for
modelling interactions among agents. In GSFM, these interactions are classified
into two categories based on the observation of the video data and on the classi-
fication of road users’ behaviour given by Helbing et al. [15]: simple interaction
(percept → act) and complex interaction (percept → choose an action among
many alternatives → act).

The force-based module handles simple interactions. It uses the classical SFM
to capture the driving force of each agent (i) towards their destination (Do

i ), the
repulsive force from static obstacle (IiW ) and from other pedestrian (Iij), to the
target agent, and extends SFM to capture car following interaction (I following)
and pedestrian-to-vehicle reactive interaction (Istopping).

Do
i =

v∗
i(t) − vi(t)

τ
, (1)

Iij = V o
ij exp

[−dij(t)
σ

]

n̂ijFij , (2)

IiW = Uo
iW exp

[−diW (t)
R

]

n̂iW , (3)

I following =

{
n̂PXt

i
, ifdij(t) ≥ Dmin,

Decelerate, otherwise.
(4)

Here, i is the target agent, W and j denote static obstacle and other agent
(i.e. other pedestrian or car) respectively, τ denotes a relaxation time, v∗

i(t)
and vi(t) are the desired and current velocities of i respectively. Fij = λ +
(1−λ)1+cosϕij

2 represents an-isotropic behaviour of human, where λ denotes the
strength of interactions from behind and ϕij represents the angle between i and
j. V o

ij and Uo
iW indicate the interaction strengths, σ and R denote the range of

these repulsive interactions, dij(t) and diW (t) are the distances from i to j and
i to W at a specific time, n̂ij , n̂iW and n̂PXt

i
denote the normalised vectors.

In Eq. (4), P = Xt
i + v̂j(t) ∗ Dmin, a position behind the leader car and Xi is

the current position of i, Dmin is the minimum car distance, v̂j(t) denotes the
normalised velocity of j. In GSFM, Istopping happens only if pedestrian(s) have
already initiated walking in front to the car, so the car decelerates to let the
pedestrian(s) pass.

The game-theoretic module is responsible for handling complex interactions
i.e. pedestrian(s)-to-car(s) or car-to-car interaction. A sequential leader-follower
game, a.k.a. Stackelberg game is used to handle these interactions. In such a
game, both leader and follower players try to maximise their utility: the leader
player chooses a strategy first by considering all possible reactions of follower
players and the followers react based on the chosen strategy of the leader [31].
Note: the terminology leader and follower have different meanings in car following
(e.g., leader: the car in front) and in the Stackelberg game (e.g., leader: the agent
whos make decision first). We apply the sub-game perfect Nash equilibrium
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(SPNE) to find the optimal strategy pair, denoted by Eq. (5).

SPNE = {sl ∈ Sl|max(ul(sl, Bsf (sl)))}, ∀sl ∈ Sl. (5)

Bsf (sl) = {sf ∈ Sf |max(uf (sf |sl))}. (6)

Fig. 1. Trajectory prediction in shared spaces using
GSFM. Here, AF means added force to classical SFM
and A/D indicates activation/deactivation of a module
in GSFM.

Eq (6) is the best
answer from the follower.
Here, sl, sf , ul, uf and
Sl, Sf are the leader’s and
followers’ strategies, utili-
ties regarding the respec-
tive strategies and their
strategy sets respectively.
Each complex interaction
is resolved by playing
an individual Stackelberg
game and the games are
not dependent on each
other. For any game, the
number of leaders is set to
one and followers to one or
more, and the faster agent
(i.e. car) is chosen as the
leader. If any complex sit-
uation involves more than
one cars e.g, pedestrian(s)-
to-cars interaction, then
the one who detects the
conflict first is set as the leader. To calculate the payoff matrix of the game:
firstly, all strategies of the players are ordinarily valued with the assumption
that safety and efficiency are their main concerns; secondly, we consider some
relevant observable factors to capture courtesy behaviour and situation dynam-
ics, more details about payoff estimation is given in [19,20]. In GSFM, Continue,
Decelerate and Deviate (pedestrian only) are the possible strategies for agents.

– Continue: Any pedestrian α crosses vehicle β from the point Pα = Xt
β + Fs ∗

−→e β , if line(Xt
α, Eα) intersects line(Xt

β + Fs ∗ −→e β ,Xt
β − Fs

2 ∗ −→e β), otherwise
free-flow movement is continued. Here, −→e is the direction vector, Fs denotes
scaling factor, Xt and E represent current and goal positions respectively. In
case of vehicles, they always follow their free-flow movement.

– Decelerate: Road users decelerate and in the end stop (if necessary). For
pedestrians, newSpeedα = Speedα(t)

2 and in case of vehicles, newSpeedβ =
Speedβ(t) − decRate.

Here, decRate =

{Speedβ(t)

2 , if distance(α, β) ≤ Dmin,
Speed2

β(t)

distance(α,β)−Dmin
, otherwise.

Dmin is the critical spatial distance.
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– Deviate: A pedestrian α passes a vehicle β from behind from a position Pα =
Xt

β − Fs ∗ −→e β (as long as β stays in range of the field of view (FOV) of α)
and after that α resumes moving towards its original destination.

Although these modules take control alternatively, at the start of the simu-
lation, GSFM maintains a hierarchy among its modules: it starts with the tra-
jectory planning with the assumption that agents plan their trajectory before
starting walking/driving physically. Once agent gets there trajectory, force-based
module is activated to execute their physical movement. Conflict recognition is
performed at regular intervals using the algorithm proposed in our previous
paper [20]. Based on the situation context (i.e. simple or complex conflict), the
BDI controller activates either force-based or game module to decide on strate-
gies. Once the strategies are decided, the force-based module is activated again
(if not activated already) to execute them. The BDI controller also prioritises
the decision taken by these modules, i.e. Igame takes precedence over decision
of other modules, except for Istopping, with the premise that complex interac-
tion e.g. car-to-pedestrian is more critical than pedestrian-to-pedestrian or car
following interaction.

To sum up, the process of GSFM for predicting the movement behaviour
of any target agent i in any time step t is presented in Eq. (7)–(9). Here, i, j,
W , Zi, Xt

i , and Y t+Δt depict the target agent, competitive pedestrian, static
obstacle, input to the model, the agent’s position in current and next time step
respectively. The input profile Zi is derived from the observation of Xi, which
contains start, goal, speed profile of i, and minimum distance acceptance of i
with others. The goal of i is estimated by using the heading in the last observed
position and average speed over the observed time steps.

Pedestrian:
d
−→
vt

i

dt
=

(−→
Do

i + Σ
−→
I iW + Σ

−→
I ij

)
or

−→
I game, (7)

Car:
d
−→
vt

i

dt
=

−→
Do

i or
−→
I following or

−→
I game or

−→
I stopping, (8)

Ŷ t+Δt
i = f(Zi, (

d
−→
vt

i

dt
+ Xt

i )). (9)

2.3 LSTM with DBSCAN

We pursue a DL model, called Long Short-Term Memories with Density-Based
Spatial Clustering of Applications with Noise (LSTM-DBSCAN). For a target
agent i, f(Xi) is LSTM-DBSCAN that takes Xi as input and outputs Ŷi. The
LSTM-DBSCAN contains two modules: a mapping module for interaction pool-
ing and an LSTM module for motion planning, see Fig. 2.

The mapping module is used for pooling the interactions between the tar-
get agent and other neighbourhood agents at each time step. It follows the idea
of repulsive force in SFM [15] to map the collision probability based on safety
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Fig. 2. The structure of LSTM-DBSCAN for target agent i. ⊗ stands for the concate-
nation of the output of the mapping module and the target agent’s position at each
time step.

distance maintained by the target and neighbourhood agents, denoted by prob-
ability density mapping (PDM). Safety distance d (see Fig. 2) is measured from
the approximate mass points from the target agent to the neighbourhood agent.
If two agents approach each other, PDM increases exponentially. In addition, we
follow the same idea as [8] to extend safety distance with buffers for pedestrian
personal space [12] and car geometry, denoted by the egg shapes with approxi-
mate radius (r or R) in Fig. 2. Radius are extracted from real-world interactions
with the differentiation of road users’ transport mode.

However, short distance does not necessarily indicate high collision probabil-
ity. Pedestrians from one group tend to walk at the same speed and maintain
a certain distance, to synchronize their speed and distance for communication
and visibility between each other [28,32]. Therefore, inside the mapping mod-
ule, a DBSCAN cluster [10] is incorporated to detect pedestrian groups, so as
to cancel out erroneous collision indication and relax on close interactions for
group members. At each time step in the observation time, present agents are
clustered. The minimum number of points (MinPts) is set to two as the smallest
group (cluster) only contains two agents. The maximum Euclidean distance (ε)
from neighbourhood point to the core points in a DBSCAN cluster is set to
one meter. A neighbourhood agent is defined as a group member for the target
agent if they co-exist in the same cluster over 90% of the observed time steps.
Both ε and the overlap ratio of time steps are decided from the hyper-parameter
searching in [6]. During clustering, PDM is reset to zero for group members.

The LSTM module is used for motion planning, which takes the target agent’s
coordinates and the interactions with neighbourhood agents using PDM as input
at each observed time step. In prediction time, similar to Social-LSTM [2], the
LSTM module uses the encoded information from observed time steps to predict
the distribution of the next positions. While, our DL model differs from Social-
LSTM by semantically quantifying all the neighbourhood agents’ impact using
a collision probability, instead of occupancy grid within a predefined interactive



20 H. Cheng et al.

zone using binary values. It also differentiates the impact of group members and
non-group members on the target agent from a DBSCAN cluster.

In short, Eq. (10) describes the prediction process for the target agent i. For
simplicity, the time step is omitted in the equation. f(., .) stands for LSTM, φ( .)
for PDM, and ψ(., .) for DBSCAN.

Ŷi∈N = f(Xi∈N , φ(ψ(Xi∈N ,Xj∈N,j �=i))) (10)

3 Data Sets and Evaluation Metrics

3.1 Data Sets

To evaluate the performance of the proposed two models, we use two data sets
with mixed traffic trajectories extracted from shared spaces of different lay-
out (Fig. 3), namely, the Hamburg Bergedorf station data set (HBS) from Ger-
many [26] and the DUT data set from the campus of Dalian University of Tech-
nology in China [33]. The layout of HBS is a street with pedestrian crossing from
both sides. The DUT data set has 11 clips recorded in a roundabout and 17 clips
recorded in an intersection. The clip from HBS contains dynamic pedestrians-
to-vehicles interactions. Whereas, the clips from DUT have less vehicles, but
more vehicles-to-crowd interactions [33]. Table 1 summarises the statistics for
each data set. The first 1200 time steps of the HBS data set and 12 clips (8 from
the intersection and 4 from the roundabout) from the DUT data set are used for
extracting interaction scenarios for evaluation. In total, we manually extracted
89 scenarios that involve interactions between pedestrians and vehicles: 67 sce-
narios from HBS and 22 from DUT. Please note that due to the short length of
clips from DUT, scenarios extracted from DUT are shorter than the ones from
HBS. The rest of the two data sets are used for calibrating the expert-based
model GSFM and training the DL model LSTM-DBSCAN. There is no overlap
between the evaluation and training data.

Table 1. Statistics for each data set

Data set #Time steps Time-
step
duration

#Ped #Veh Layout description

HBS 3620 0.5 s 1115 338 1 clip in a street

DUT 648 0.5 s 1767 69 11 clips in a roundabout
17 clips in an intersection
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(a) HBS (b) DUT roundbout (c) DUT intersection

Fig. 3. Mixed trajectories from shared spaces of different layout

3.2 Evaluation Metrics

To evaluate the performance of GSFM and LSTM-BDSCAN in terms of realis-
tic trajectory prediction, i.e. to minimise the difference from the ground-truth
trajectories by considering both accident/conflict-avoidance and behaviour mod-
elling, we use displacement (Euclidean and Hausdorff distance) and heading
errors as metrics. As commonly used in other works [2,13], the average Euclidean
distance error (ADE) measures the aligned error for each step and we report the
value averaged over the paths. For the accumulated error, we use Hausdorff dis-
tance to measure the largest distance from the set of the predicted positions
of a trajectory to the set of true positions [24]. In most cases, the displacement
error accumulates with the increment of time steps. The Hausdorff distance error
is very similar to the displacement error for the final position. Heading (from
the previous position to the next position) error measures the pairwise absolute
heading difference over all positions between the predicted and ground truth
trajectories.

Due to the stochastic characteristics of human movement behaviour, different
road users may behave in different ways in a given situation [21]. In this regard,
it is very difficult to quantify which way of behaving is better than the other. The
quantitative evaluation metrics alone may not be sufficient to demonstrate the
feasibility of a trajectory prediction model. Therefore, we perform case studies
to analyse how both proposed models handle different real-world scenarios.

4 Experimental Results

GSFM is implemented using a BDI multi-agent framework, LightJason [3].
LSTM-DBSCAN is implemented using tensorflow [1] framework. The LSTM
units have a size of 128 and one vertical layer. It is trained using RMSProp
optimised with a learning rate of 0.003 and batch size of 16 for 300 epochs. The
observation sequence length is set to six time steps and the prediction sequence
length varies with a minimum length of six time steps. Both GSFM and LSTM-
DBSCAN are tested on real-world scenarios lasting different length of time steps,
unlike [2,13,29] that predict trajectories of a fixed length of time steps.
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4.1 Quantitative Results for Individual Models

Figure 4 shows the comparison among the ground-truth trajectories and the
trajectory predictions by LSTM-DBSCAN and GSFM along time horizon on
HBS and DUT, measured by Euclidean and Hausdorff distance, and heading
error.

Fig. 4. The performance of GSFM and GSFM-w-LSTM on different data sets.

In general, as the time step increases, the performance of both models
decreases on both data sets, as the uncertainty increases further into the future.
Figure 4a shows that LSTM-DBSCAN performs better in short-sequence predic-
tion (approximately 25 time-steps) than GSFM by all measurements for the HBS
data set, which contains many long-sequence interactions. However, the perfor-
mance of LSTM-DBSCAN degrades faster than GSFM with the increasing time
steps.

From Fig. 4b, the performance for LSTM-DBSCAN on DUT is significantly
better than GSFM regarding all the evaluation metrics. As mentioned before
(see Sect. 3.1), the scenarios from DUT are shorter and more complicated due
to the high density of traffic in the intersection and the roundabout than HBS.
Both of the proposed models have a limited capacity to deal with dense traffic.

4.2 Qualitative Results for Individual Models

Figure 5 shows the predictions made by GSFM and LSTM-DBSCAN in different
scenarios. In most scenarios denoted in the sub-figures, both GSFM and LSTM-
DBSCAN generate feasible trajectories in interactions within a small number of
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(a) HBS scenario 1 (b) HBS scenario 2

(c) HBS scenario 3 (d) DUT scenario 1

Fig. 5. Comparison of the predictions by GSFM and LSTM-DBSCAN. Ground-truth
trajectories are in black colour and predicted trajectories are colour-coded. Vehicles
are travelling in either diagonal or slightly horizontal directions. The arrows indicate
the moving directions of pedestrians and vehicles.



24 H. Cheng et al.

road users from the HBS data set. Whereas, both models have limited perfor-
mance in dealing with dense traffic in the DUT data set.

Based on the visualisation, the prediction from the GSFM model overlaps
the ground truth well and outperforms the LSTM-DBSCAN model when the
trajectories have a constant heading direction (see Fig. 5a).

However, when road users change their heading direction, GSFM may have
difficulty mimicking this behaviour. As can be seen in Fig. 5b, the trajectories
generated by GSFM are straight forward and homogeneous as the model only
specifies a limited number of behaviour patterns based on the assumption of
relatively fixed speed (i.e. a Gaussian distribution of speed). Else-ways, LSTM-
DBSCAN can automatically capture both the speed and orientation attributes
of each road user based on a short observation time.

Moreover, GSFM and LSTM-DBSCAN handle conflicts differently. GSFM
deals with conflicts explicitly either based on the social forces, where the repul-
sive force increases exponentially when two road users come closer [15] or by
game playing to negotiate on the priority over road spaces. In contrast, LSTM-
DBSCAN learns collision avoidance based on the training data with proba-
bility density mapping automatically. They may generate different negotiating
results even facing the same interactions. For example, in Fig. 5c, both GSFM
and LSTM-DBSCAN predict that both pedestrians crossing the street before
the upcoming vehicle, although LSTM-DBSCAN predicts a more aggressive
behaviour for the vehicle which results in a near collision with the crossing
pedestrians.

In Fig. 5d, both GSFM and LSTM-DBSCAN do not optimally predict the
trajectory for the vehicle approaching a large number of pedestrians. In GSFM,
the vehicle decelerates and some of the pedestrians accelerate for collision avoid-
ance. Whereas, LSTM-DBSCAN generates a very unfeasible trajectory for the
vehicle, which results in pedestrians deviating from the upcoming vehicle.

4.3 Pros and Cons of GSFM and LSTM-DBSCAN

Based on the empirical results, we summarise the strengths and weaknesses of
the GSFM and LSTM-DBSCAN models in Table 2.

Table 2. Pros and cons of GSFM and LSTM-DBSCAN

Model GSFM LSTM-DBSCAN

Pros Transparent, explainable, collision-free
trajectories, no need for labelled data,
easy to control

Less domain knowledge, not based on
rules, good short-term predictions,
realistic predictions in simple scenarios

Cons Domain knowledge, complicated rules,
homogeneous predictions, inflexible in
scaled problems, limited in dense
traffic

Not transparent, not explainable,
collision-free trajectories not
guaranteed, computationally
inefficient, might be over-fitted,
limited in dense traffic, require
labelled data, hard to control
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Some pioneer studies [16,27] indicate that a hybrid model can be used to
hoard the collective advantages of both kinds of approaches. Therefore, in future,
we consider to combine the expert-based and DL approaches to model collision-
free, explainable, and heterogeneous trajectories of agents.

5 Conclusion and Future Work

In this study, we propose an expert-based model and a deep learning model for
mixed traffic trajectory modelling and prediction in shared spaces of different
layout. Both of the two models take the same input data for a fair comparison.
Their performance is evaluated on real-world shared-space scenarios, such as
interactions between pedestrians and vehicles. In most cases, both models can
predict realistic trajectories for mixed traffic agents. The expert-based model,
using Social Force Model and Game theory, predicts collision-free trajectories.
While the predictions tend to be homogeneous. The deep learning model that
manipulates Long Short-Term Memories and density clustering predicts accu-
rate short-term trajectories. However, its performance decreases significantly for
longer-term prediction and it may generate (near) collision predictions. Both
models have limited performance in coping with a large number of agents.

To improve the performance and robustness of the individual models, more
open-source data sets of shared spaces will be used for training and evaluation.
We can build a hybrid model by combining the collision-avoidance mechanism
of the expert model with the motion planning techniques of the DL model [18],
to predict collision-free and realistic trajectories in mixed traffic environments.
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Abstract. The Smart City and Internet-of-Things revolutions enable
the collection of various types of data in real-time through sensors. This
data can be used to improve the decision tools and simulations used by
city planners. This paper presents a new framework for real-time traffic
simulation integrating an agent-based methodology with live CCTV and
other sensor data while respecting the privacy regulations. The frame-
work simulates traffic flows of pedestrians, vehicles and bicycles and their
interactions. The approach has been applied in Liverpool (NSW, Aus-
tralia) showing promising preliminary results and can easily ingest addi-
tional sensor data, e.g. air quality.

Keywords: Traffic simulation · Agent-based modelling · Data-driven
simulation · Edge computing · Smart city · Intelligent video analytics

1 Introduction

With massive increases in the world’s population and nearly 70% of the world
population projected to live in urban areas by 2050, cities face serious urban
planning challenges [1]. Not only do they face rapidly growing population, but
they also have to deal with social and sustainability challenges. To better cope
with changes, cities need long-term approaches leading to sustainability [2].

Rethinking cities to not only efficiently manage their current situation and
population, but also their future growth is exactly the main motivation behind
the concept of smart cities. While there is no consensual definition of what a
smart city is [3], it commonly involves the usage of Information and Commu-
nication Technologies (ICT) to design tools which should respond to people’s
needs through sustainable solutions for social and economic challenges.
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Bibri and Krogstie [4,5] proposed an interdisciplinary literature review of
smart and sustainable cities and pointed out the interest of a new generation
of urban planning tools for improving mobility and accessibility. A smart city
is then a significant tool for municipalities which can reduce their spending
and perform real-time monitoring of their transportation, energy and utilities
networks [6]. These planning tools require a large amount of data that can be
nowadays collected via different type of sensors and devices deployed within the
city.

Currently, many cities around the world are rapidly developing their existing
CCTV network. These large surveillance networks represent a major cost for the
councils in terms of maintenance, but are only used for investigating incidents
and monitoring anti-social behaviours in public places [7]. This is due to stringent
privacy regulations, as only the police and a few accredited operators are allowed
to view the live or recorded video feeds. This results in the expensive collection
of a vast amount of rich data that have been mostly unused so far.

This paper presents a new framework for real-time traffic simulation integrat-
ing an agent-based methodology with existing CCTV data, effectively address-
ing the issues of the surveillance camera maintenance cost by adding new usages
while respecting the privacy regulations.

The paper is organized as follows. Section 2 introduces the challenges of
obtaining traffic counts. Section 3 describes the Liverpool Smart Pedestrian
project monitoring mobility and air quality within the Australian city of Liv-
erpool. Section 4 then details the visual sensor used to capture the traffic flows
within the city. Section 5 describes the use of the collected data within an agent-
based traffic simulation. This is followed in Sect. 6 by preliminary results of the
approach applied in Liverpool. Concluding remarks and perspective are pre-
sented in the last section.

2 Collecting Traffic Counts

The first stage for monitoring and modelling traffic in a road network is collecting
traffic counts. Inductive loop detectors, pneumatic road tubes, and temporary
manual counts have been the primary methods for collecting such traffic data.
The development of automatic sensing technologies, to replace manual counting,
has allowed a higher frequency rate as well as the permanent monitoring of
the traffic counts [8]. Other classic traffic counter devices include piezo-electric
sensors and radar-based off-roads sensors [9,10]. While initially being designed
for vehicular traffic, most of them can also be adapted to count bicycles and
pedestrians [11].
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With the drastic reduction in the cost of electronic components, and recent
advances in machine learning and image processing, it is now possible to develop
at relatively low cost, edge computing solutions to monitor traffic. For example,
Gupta et al. [12] designed low-cost hardware using Wi-Fi strength as a signal to
monitor traffic. The passage of a car between a transmitter and a receiver pro-
duces a variation in signal strength that can be measured to count vehicles flows.
However, this approach still needs new infrastructures. Another approach is to
rely on already existing infrastructures to perform real-time monitoring. Indeed,
as cities have been massively investing in CCTV networks [13], retrofitting the
already existing CCTV infrastructure to transform classical CCTV into smart
CCTV becomes a promising approach to real-time monitoring of traffic. Conse-
quently, more and more research is being done using video analytics on CCTV
footage. For example, Kim et al. [14] used CCTV in an urban traffic information
system to determine traffic speed and volume, and combine this information
with on-board wireless equipment to estimate travel speed.

Finally, when using CCTV footage, ensuring privacy is a major issue. As
noted by Satyanarayanan et al. [15,16] and Shi et al. [17,18], the edge computing
paradigm offers a way to process data at the edge of the network to address
concerns such as bandwidth saving, as well as data safety and privacy. Indeed,
the privacy of the data is ensured by the processing which denatures the raw
data [19]. The resulting transmitted data has typically a significantly smaller
size than the original raw data as it contains only the relevant information for
the application.

The design of an edge computing device with the ability to perform real-time
analysis of CCTV would then allow not only to collect data but also to ensure
privacy as the image feeds would not leave the already existing CCTV network
and only denatured data would be produced by the device. This is the approach
retained in the project briefly introduced in the next section.

3 The Liverpool Smart Pedestrians Project

The Liverpool Smart Pedestrians project was funded under the Australian Gov-
ernment Smart Cities and Suburbs Program for a duration of one year starting
from February 2018. It was a collaboration between the Liverpool City Coun-
cil and the University of Wollongong. The project aimed to design innovative
solutions for the collection of data in a non-intrusive way to help inform urban
planning in Liverpool, a suburb of Sydney in New South Wales, Australia [19].

The city is growing rapidly, with more housing, offices and educational facil-
ities. The council’s redevelopment of its CBD is expected to bring in 30,000
additional pedestrians per day. All of this makes the city a good area for exper-
iments monitoring the effect of this redevelopment on the traffic.
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The results of workshops conducted with the community and the feedback
from the city urban planners highlighted the need for sensors monitoring the
traffic with the following requirements:

– Multi-modal detection and tracking : The sensors need to be able to detect
and track pedestrians, vehicles and cyclists.

– Privacy compliant : As sensors are going to be deployed over a city, the sensors
should be privacy compliant, meaning that no personal data should be stored
or exchanged. Since no raw image will be saved by the device, nor transmitted
to a centralised server, there are no privacy issues.

– Leveraging existing infrastructures: As cities already make huge investments
on CCTV systems [13], the solution should take advantage of the already
existing infrastructures in terms of networks and cameras. Retrofitting the
existing CCTV network to collect more data has been identified as a major
innovation.

– Scalability and interoperability : New sensors can be added at any time, regard-
less their technologies, meaning the sensor network can be easily expanded
and capture new type of data.

Thus, the project aims were to develop and evaluate mobility trackers using
CCTV live feeds. Twenty visual sensors have been deployed over the city centre
to monitor traffic flows. Fifteen of them use already existing CCTVs while five
of them are new mobile CCTV units allowing relocation if needed.

These new visual sensors are capable of tracking and automatically differ-
entiating various types of traffic components such as cars, buses, bicycles or
pedestrians in real-time. The processed data is then transmitted to a centralized
database and can be visualized on a dashboard in real-time or used to develop
an agent-based simulation to infer in real-time the dynamics of the traffic flows
in the road network.

As part of this pilot project, 20 air quality and noise sensors are also co-
located with the mobility trackers to evaluate the impact of the traffic on air
quality and noise pollution. Figure 1 displays a map of the town centre and the
location of the sensors.

4 An Edge Computing Device for Traffic Monitoring

The objective of the project was to deploy a fleet of these sensors enabling city-
wide traffic monitoring in real-time. For that purpose of monitoring the mobility
within a network, we have designed a sensor that is able to detect and track
entities of interest in a live video feed using intelligent video analytics. The most



32 Y. Qian et al.

important feature of the sensor is that it follows the edge computing paradigm,
i.e., the video analytics are run directly on the device and only the results of the
processing are transmitted. This has two main advantages:

– It lowers the network bandwidth requirement as no raw images are transmit-
ted, but only indicators and meta-data; and

– Thanks to the limited amount of information being transmitted, the device
is privacy compliant.

The privacy compliance of the device is critical for real world applications and
deployment in smart cities. Indeed, the system can be paired with existing CCTV
infrastructure while not transmitting the actual video feed captured from the
cameras. This lowers the deployment cost of the sensor as no additional camera
is needed while allowing uses of the already existing CCTV infrastructure.

The sensor performs the following steps iteratively on average 20 times each
second:

1. Frame acquisition;
2. Detecting the entities of interests in the current frame via YOLOv3 [20];

Fig. 1. Location of the visual sensors (triangles), and the air quality sensors (circles)
in Liverpool.
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3. Tracking by matching the current detections with the ones in the previous
frame via the SORT algorithm [21];

4. Updating the trajectories of entities already stored in the device database or
creating records for the newly detected objects.

In parallel, the device regularly transmits the outputs, i.e. the trajectories
and number of entities tracked, either over Ethernet or LoRaWAN networks, the
latter being a wireless long range, low power network well suited for the Internet
of Things. The interested reader can find a complete description of the visual
sensor in [19].

5 Using Live Data in Traffic Simulation

The proposed model receives in real-time data from the sensors which is used
to generate origin-destination matrices to estimate the demand on the network.
The origins and destinations correspond to the sensors’ locations in the network
which will be thus acting as generator of travelling agents and attractor for those
agents. A newly generated agent will then compute a path to a randomly selected
destination. The random draw is weighted against the traffic count observed by
the sensors. It should be noted that a travelling agent can represent either a
pedestrian, a bicycle or a vehicle as the smart visual sensor is able to detect and
differentiate those three types of entities.

The class diagram of the model, Fig. 2, shows the interaction between the dif-
ferent agents. Note that the air quality sensors and CCTV sensors are not merged
into a single class, as they do not share the same attributes. Like Rodrique et al.
[22] we make the difference between fixed agents, in the sense that they do not
affect the movements during the simulation, and travelling agents:

– Fixed agents:

• CCTV Sensor: They represent the smart visual sensors in Liverpool. The
travelling agents are created and removed at the sensors’ locations.

• Air Quality Sensor: They represent the air quality sensors in Liverpool.
The travelling agents are assigned pollution exposure based on those sensors.

• Traffic Signal: They represent the traffic lights in the road network. The
travelling agents stop at the traffic signals depending on their colour. If the
frequency of traffic light changes is known, the simulation is able to predict
the roads chosen by the travelling agents (pedestrians/vehicles).
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• Road: The roads of the road network on which the travelling agents move.
Note that in the model, a difference between the roads for pedestrians and the
roads for vehicles is made, as some roads are only accessible for pedestrians
and not for vehicles. In our class diagram, we merge both roads (roads for
vehicles and roads for pedestrians) into one agent road, as they share the
same attributes, e.g. direction, name, length, etc.

– Travelling agents: These agents travel between CCTV sensors and include:

• Vehicle: These agents move along the roads at a certain speed.
• Pedestrian: These agents represent the pedestrians walking within the net-

work.
• Bicycle: These agents illustrate the bicycles.

For simplification purposes, the three different moving entities are merged
into one agent TravellingAgent in the class diagram (Fig. 2). Finally, the concep-
tual model drawn for the multi-agents simulation is illustrated in Fig. 3. Figure 4
depicts the creation of the travelling agents using the following steps:

– When the time in the simulation tsimu equals to the time of our data tstart,
our simulation compares the number of travelling agents (pedestrian/vehicle)
seen in the simulation (#TS) to the number of travelling agents seen by
our smart visual sensors (#TR). If more travelling agents are seen in our
data than in our simulation, i.e. #TR > #TS, then create the number of
missing agents in our simulation. If, on the other hand, our simulation sees
more agents than our sensors, i.e. #TS > #TR, then remove that exceeding
number of agents from the simulation (as it would mean that less travelling
agents were recorded by the sensors). For each travelling agent created at
the different sensors, a destination (corresponding to a sensor) is randomly
created.

– As we increment a line in our data, we also increment the time, and the
travelling agents move on their path (the distance of their movement d will
depend on their speed v using d = v × t).

– If the travelling agent’s location in the simulation (xTSn
, yTSn

) corresponds
to its destination (xD, yD), i.e. the agent has arrived to its destination, then
remove the travelling agent from the simulation.

– End the simulation if all the data has been read.

The implementation relies on the GAMA platform1, a free and open agent-
based framework with a strong focus on spatial simulations.

1 https://gama-platform.github.io/.

https://gama-platform.github.io/
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CCTV_sensor
weights_for_next_target: undefined
real_TravellingAgent_count: Integer
seen_TravellingAgent_count: Integer

count_TravellingAgent()
get_target_for_TravellingAgent()

Traffic_signal
time_to_change: Integer
is_green: Boolean

initialize()
change_color()

Road
oneway: Boolean
road_name: String
length: Real
maxspeed: Real
max_capacity: Real
current_count_of_TravellingAgent: Integer

Travelling_agent
current_road: Road
origin: CCTV_sensor
destination: CCTV_sensor
speed: Real
max_speed: Real
at_red_light: Boolean
PM_exposure: Real

move()
speed_adapt()
stop_traffic_light()
remove()

AirQuality_sensor
PM10: Real
PM2.5: Real

reacts to

exposed to

is on

contains

1..*

1

is on

contains

1..*

1

is on

contains

1..*

1

travels on1..*

1

created by

Fig. 2. Model class diagram

6 Preliminary Results

Using the data collected from the smart sensors2 and the zone data obtained
through OpenStreetMap3, we construct a model simulating the traffic flow in
the city of Liverpool in real-time. This model allows us to infer the interactions
between the different type travelling agents (pedestrians, cyclists, vehicles) and
the fixed agents (sensors), as illustrated in Fig. 5.

Fig. 3. Design model of the proposed traffic simulation.

2 available at https://pavo.its.uow.edu.au.
3 https://www.openstreetmap.org/.

https://pavo.its.uow.edu.au
https://www.openstreetmap.org/
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tsimu = tstart

Initialize fixed agents

Compute difference between

nb of travelling agents seen by

sensors (#TR) and seen in simu

(#TS): N = #TR − #TS

Create set of travelling agents

TS = {TS1, TS2, ..., TSN} at origin

(O) and set their destination (D)

Increment line in data

New data

tsimu ← tsimu + 1

(xTS , yTS) ←
(xTS + Δx, yTS + Δy)

End simulation

tsimu = tdata

(xTSn , yTSn )
=

(xD, yD)

#TS ≤ #TR

Remove (#TS − #TR)

travelling agents

Remove TSn

no yes

yes

yes

no yes

no

no

Fig. 4. Activity flowchart. Used notations: tsimu is the time in the simulation, whereas
tstart and tdata are the times in the data. (xTSn , yTSn) represent the location of the
travelling agent at tsimu, and (xD, yD) the coordinates of its destination.
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Fig. 5. Traffic network: the red and green circles depict the traffic lights, whereas the
blue circles represent the visual sensors. The blue squares represent the vehicles, the
yellow triangles illustrate the pedestrians. The date and time of the simulation captured
in this picture is 9/11/2019 at 3.02PM.

Fig. 6. Traffic flow: number of pedestrians detected by the visual sensors (green) vs
number of pedestrians seen by the sensors in the simulation (red) per second (Color
figure online).

Furthermore, behaviours such as congested roads at certain peak times,
points of interests of the road network, exposure of the travelling agents to
pollutants, and the evolution of the number of travelling agents in the traffic
flow, can be inferred. This is illustrated in Fig. 6.

As it is driven by the data coming from sensors, the proposed model is able
to simulate the traffic flows of Liverpool at the macro-level (i.e. at the level of
the sensors) and can thus be used to monitor and predict different behaviours
of the traffic flows, while respecting the privacy of the citizens.
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(a) Around 10am (b) Around 10.30am

Fig. 7. Exposure of the travelling agents to particulate matter (PM) 2.5 on 10/11/2019.
The redder (or greener) the color of the cell, the higher (or lower) the PM 2.5 rate is
(Color figure online).

As mentioned earlier, air quality sensors are also deployed within Liverpool.
It thus possible to use their data and Air Quality agents to determine the air
pollution exposure of the travelling agents. This is illustrated in Fig. 7.

7 Conclusion and Future Work

Being able to accurately estimate and forecast traffic flows across urban networks
has become crucial for transport managers and urban planners to create more
liveable and caring cities [23]. Currently, traffic monitoring mostly still relies
upon inductive loop detectors associated with SCATS, an adaptive urban traf-
fic control system adopted by many Australian cities [24]. These detectors are
sparsely located at key crossroads in order to inform the syncing of traffic lights
across the city. However, their use for proper traffic estimation and simulation
is limited and often must be complemented by other means, including manual
surveys.

In this work, we are using a new sensor performing real-time traffic moni-
toring using existing CCTVs, while respecting the privacy regulations. The live
data collected from the sensors is then used in an agent-based simulation model
to infer the traffic dynamics in real-time. This method can be easily extended to
include other types of sensors and data, such as air quality and noise pollution.

The proposed approach does not only deliver a novel approach to accurately
monitor and predict different type traffic flows, their interactions and the result-
ing pollution in cities, but has the potential to be applicable to many other
situations where the structure of the network and some partial and local infor-
mation is known, but the global dynamics are still unknown.

Further work includes taking into consideration the weather data in order
to refine the model of the distribution of the air pollutants measured by the



Agent-Based Traffic Simulation with Live Data 39

air quality sensors [22], establishing a live connection to the data, using more
realistic traffic light frequencies, as well as improving the current traffic model
by using strategic agents [23] and a state-of-the-art car following model [25].
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Abstract. Electric power sharing among households based on the biddingmethod
is studied as a future service. In order to verify the feasibility of such a service,
a new multi-agent simulation model has been designed. We validated this model
through some evaluations. For example, it is confirmed that the market price on
this service stably changes according to the supply-demand balance between both
sold and purchased bid volumes. In addition to that, the results of the household
profit and contract rate of this service showed that the design for bid strategies
works as intended in most cases.

Keywords: Electric power sharing · Multi-agent simulation · Artificial market

1 Introduction

In Japan, the surplus power purchase system (FIT [Feed-in Tariff]) started in 2009
as part of the promotion of solar power generation (PV generation). FIT guarantees
customers’ surplus electricity obtained by subtracting residential consumption from PV
generation purchased at a fixed unit price during 10 years. Therefore, households whose
guarantee period ends (graduate FIT households) have appeared since November 2019.
This guaranteed price has been lower year by year from 48 yen/kWh in 2009 to 26
yen/kWh in 2018. New surplus power purchase services for graduate FIT households
have been announced by some electricity retailers, but the price is currently about 10
yen/kWh at most, and is expected to be significantly lower than the guaranteed price of
FIT. For this reason, and in order to increase the value of surplus power in graduate FIT
households, the promotion of self-consumption by introducing storage batteries and the
sharing of electric power are being studied. The latter option allows households to sell
surplus power to other households [1].

The electric power sharing principle is profitable to households if surplus electricity is
sold to other households at a higher price than sold to the electricity retailer. Households
that do not have PVcan also benefitwhen they purchase electricity fromother households
at a lower price than the purchase price from the electricity retailer. One of the merits
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other than money is environmental value. For example, if households that do not have
PV purchases electricity generated by PV from other households via the electric power
sharing, their ratio of renewable energy can be increased.

As demand (total amount of surplus power from households) and supply (total
amount of in-house consumption of households) do not always match, a method deter-
mining the trading partner for monetary value and environmental value of electricity is
required. Such trading methods include the bidding method used for trading between
power generation companies and electricity retailers on JEPX (Japan Electric Power
Exchange) [2]. There is a possibility that the monetary value and the environmental
value of electricity can be flexibly allocated according to the household’s situation and
values such as profit pursuit and eco-friendliness, through electric power sharing by the
bidding method.

Since there is almost no existing service for electric power sharing, verification of
service feasibility is required, such as the profits of households and electricity retailers,
the stability of market prices, and the number of service subscribers required for market
establishment. However, the bidding behavior of household changes depending on the
environment such as weather and seasons, and interacts with the bidding of other house-
holds. This type of system is called as a complex system, and verification of the electric
power sharing assuming bidding is not an easy task. One promising way to analyze such
a complex system is to use MAS (Multi-Agent Simulation) [3].

In this paper, we present a MAS model for electrical power sharing designed for
verifying the feasibility of electrical power sharing assuming bidding. One of the features
of the proposed MAS model is that the bid strategy reflects the household’s values
such as profit pursuit and eco-friendliness. We validate our MAS model through some
simulations under multiple conditions with varying PV ownership ratio, bid strategy
ratio and so forth. Specifically, we confirm that market price stability. In addition, we
confirm that household profits and contract rate are as expected, in order to see the
potential of the electrical power sharing by bidding to allocate the monetary value and
environmental value of electricity to households.

2 Related Works

As a main application example of MAS in the field of electric power and energy, there
is research to evaluate and verify the new system concerning the electric power mar-
ket and transmission and distribution system from the viewpoint of stability, efficiency
and effectiveness. As for the electric power market, agent simulation is used in many
researches in Japan and overseas [4, 5]. In the US, an agent-based large-scale electricity
market test bed AMES has already been established and used for the evaluation and
verification of the electricity market system [6].

Regarding power transmission and distribution systems, the efficiency of smart grid
systems which determine the behavior of power consumption agents using actual home
consumption data and PV power generation data is evaluated [7]. One study [8] verifies
the effective use of PV generation and household profit, assuming power sharing via
bidding among households in a small community. A bid strategy that changes the bid
price depending on the available capacity of the storage battery has been modeled.
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As described above, there are not many known examples of MAS application that
assumes electricity sharing between households by bidding. The study [8] has similar
assumptions, but the main purpose was the evaluation of effective use of PV generation
and bid strategy covers battery status. On the other hand, the purpose of this paper is
to verify the feasibility of the power sharing service. We have designed a MAS model
that places emphasis on evaluation and verification from the service perspective, such
as modeling different household’s values, such as profit pursuit and eco-friendliness,
and evaluating household profits. In addition, this paper examines the stability of market
prices and changes in household profit when the ratio of bid strategies and the supply-
demand balance are different.

3 Assumption of Electric Power Sharing

3.1 Outline of Electric Power Sharing Service

Electricity is purchased and sold through bidding from/to households. Buy and sell bids
are each made of 48 frames a day, with 30 min as one frame, with reference to JEPX
[2]. Each frame is given a frame ID (1 to 48). The electricity that can be sold is the
surplus power of PV generation. Accordingly, PV-owned households can be sellers in
the service. The electric power charged in the storage battery cannot be sold on the
service. This is because reverse power flow of storage batteries is not currently allowed
in Japan. All households can become buyers in the service. They can buy electricity
from other households for in-house consumption.

3.2 Assumptions

Contract with Electricity Retaile
It is assumed that, in addition to the electric power sharing service, each household has
contracted with an electricity retailer. In fact, it is not possible to cover the consumption
of each household by electric power sharing alone, especially at night when there is no
PV generation. In addition, considering that all selling bids may not be contracted, it is
assumed that households that can be sellers have a contract with an electricity retailer
for fixed price surplus purchase service.

Household’s Values on Electricity
This paper considers three different values on electricity for a household: profit pursuit,
eco-friendly, and indifference.

Profit pursuit households have an interest in money and seek to increase profits
through electric power sharing. In fact, interest in money is expected to be high, since
some retailers offer electricity services that highlight differences in electricity fee.

Eco-friendly households aim to improve their ratio of renewable energy consumption
through electrical power sharing. It buys and sells via the electric power sharing with
a price range that does not cause a loss compared to the fixed price of an electricity
retailer. It is assumed that there are a certain number of eco-friendly households, since
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some retailers has launched electricity services with a high proportion of renewable
energy. It is also expected that the number of eco-friendly households will increase in
the future due to the growing interest in global warming and CO2 reduction.

Indifference households do not care only if there is no loss compared to the fixed
price of their electricity retailer. Households who joins the electricity power sharing
service casually because they do not lose, or who have been less interested in the service
over time.

Contract Method
A blind single price auction is considered as the contract method. This is because this
auction is used in many electricity markets among electricity retailers and electricity
power generation companies both at domestic and abroad, e.g., JEPX and EPEX (Euro-
pean Power Exchange). In addition, this auction has a feature that the market price at
each frame time is determined as one. Hence, the market price can be considered as the
electricity value of the frame. This makes it easy to analyze changes in market prices.

Electric Power Flow
There are two possible power flows. The first one is a direct electricity flow between
households along with electric power sharing transactions. Second one is the virtual
transaction of electric power sharing without changing the existing electric power flow.
As the former requires large-scale renovation of the existing power infrastructure, it is
unrealistic to assume that a wide range of electric power sharing will be performed.
Therefore, this paper is considering the latter.

Transaction Flow
The householdwhose bid is contracted buys electricity fromand sells to other households
at a contract price. Households whose bid is not contracted buy and sell electricity at a
fixed price from/to electricity retailers.

There are two ways to execute contract: (1) before and (2) after the time when
electricity actually flows. In the first case, each household decides the amounts of bids
based on the predicted values of in-house consumption and PV generation. The contract
amount is determined based on this bid amount. If there is a prediction error in in-
house consumption and PV generation, it may not be possible to buy and sell exactly as
contracted, making transactions complicated. This paper is considering the second case,
so that the amounts of bids are based on actual value, making transactions simple.

The flow from bidding to contract is shown in Fig. 1, taking as an example of a frame
ID20 (9:30 to 10:00) in one day. Selling households S1 and S2 and buying householdsB1
and B2 determine bid prices before 9:30 (Fig. 1(1)). The bid amount of each household
is determined after the fact based on PV power generation and home consumption from
9:30 to 10:00 (Fig. 1(2)). The contract is then calculated based on the bid price and bid
amount (Fig. 1(3)). Based on the price priority principle of the blind single price auction,
a selling bid of 10 kWh from S1 and a buying bid of 10 kWh from B1 are contracted.
The remaining S2’s bid and B2’s bid are not contracted because the bid prices do not
match. Then, S2 sells its 10 kWh of electricity to an electricity retailer at a fixed price,
and B2 buys the required 5 kWh of electricity from an electricity retailer at a fixed price.



Design and Evaluations of Multi-agent Simulation Model 45

Fig. 1. Flow from bid to contract in the case of frame ID 20

4 Design of MAS Model

We designed a MAS model that simulates the electric power sharing and associated
transactions. The model consists of household agents and an electricity retailer agent.

4.1 Household Agent

A household agent has three attributes information that can be set: the owned equipment,
the contract information with the electricity retailer, and the bid strategy.

Owned Equipment
Information of owned equipment, such as PV and storage battery, can be set. If owned,
specification information of the owned equipment such as the rated output value [kW]
for PV and the capacity [kWh] for a storage battery is set.

Contract Information with Electricity Retailer
Information on the unit price of both electricity purchased from the electricity retailer
[yen/kWh] and electricity sold to an electricity retailer [yen/kWh] is set. These unit
prices can be set for each frame. This means that these can be a fixed value, regardless
of the frame, or they can be different during the day and at night.

Bid Strategy
One strategy among profit pursuit, eco-friendliness, and indifference is selected as a bid
strategy corresponding to the household’s values on electricity. The household deter-
mines the bid price according to the selected bid strategy. Here, a buying bid price
higher than the unit price of electricity purchased from an electricity retailer is irra-
tional. Similarly, a selling bid price lower than the unit price of electricity sold to an
electricity retailer is irrational. Therefore, common to all bidding strategies, the upper
limit P_MAXof the bid price is the unit price of electricity purchased from the electricity
retailer, and the lower limit P_MIN is the unit price of electricity sold to the electricity
retailer.

Profit Pursuit
The profit pursuit strategy changes the bid price according to past contract results and
market prices, in order to increase profit.
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Let bid(i, j) be the selling bid price of a household at frame ID j(j = 1, 2, · · · , 48)
on day i. bid(i, j) is calculated using information about the selling bid price of the same
household for the previous day at the same framebid(i − 1, j),market priceMP(i − 1, j),
and contract result of the same household for the previous day at the same frame, as
shown in Fig. 2(a). If it is not contracted at the same frame on the previous day, the
selling bid price is lowered by parameter a [yen/kWh] to facilitate the contract. On the
other hand, if it is contracted at the same frame on the previous day, the difference
between MP(i − 1, j) and bid(i, j) is checked. If this difference is less than or equal to
the threshold α, the selling bid price is maintained. This is because it is relatively likely
that the selling bid will not be contracted if the selling bid price is raised. Whereas,
if the difference is larger than the threshold α, the selling bid price is probabilistically
increased by a parameter b [yen/kWh] to increase profits. As ameans of probabilistically
increasing the sellingbid price, a randomnumberp (0 to 1) is used and it is increasedwhen
p > threshold β. Parameters a, b, α, and β are real number greater than 0, respectively.

Fig. 2. Way to determine bid price for profit pursuit strategy

The buying bid price of the profit pursuit strategy ask(i, j) is determined in a similar
way to that for the selling bid price of a household bid(i, j), using the buying bid price
of the same household for the previous day at the same frame ask(i − 1, j), market price
MP(i − 1, j), parameters a′, b′, α′, and β ′, as shown in Fig. 2 (b). These parameters are
real number greater than 0.

Eco-Friendly
The eco-friendly strategy always executes market orders to increase the contract rate. A
market order is a bidding method that does not specify a bid price, and is contracted prior
to a bid by other strategies that specify a bid price. Now, we consider the contract price
for the bid of a market order. As with other bids that specify prices, if the contract price
of the market order is also the market price, the market order is the optimal strategy for
profit as well as for the contract rate. To make the bid strategy different for profit pursuit
and eco-friendly, the contract price of the market order is set to the 80th percentile of the
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bid price of the bid contracted in the transaction. Hence, eco-friendly strategy is easier
to be contracted, but its profit per contract is lower, compared to profit pursuit strategy.

Indifference
The indifference strategy always executes bidding at the same bid price.

Common to profit pursuit and indifference strategies, the initial bid price for each
household is given as a uniform distribution between the unit price of electricity pur-
chased from the electricity retailer and the unit price of electricity sold to the electricity
retailer.

4.2 Electricity Retailer Agent

The electricity retailer agent aggregates both buying and selling bids of the household,
and performs the contract calculation. Then, it notifies each household agent of its
contract result andmarket price information. Based on the contract results, the electricity
retailer aggregates both buying and selling volume aswell as price through electric power
sharing. In addition, the electricity retailer agent calculates buying and selling volumes
via the electricity retailer. Finally, it calculates expenditures for electricity purchases and
income from selling electricity for each household.

5 Basic Evaluation of Electric Power Sharing MAS Model

We have developed a MAS model for electrical power sharing based on the design
described in Sect. 4. In this section, we validate the MAS model through some
simulations.

5.1 Evaluation Policy

With the goal of using the model to verify the feasibility of the electric power sharing
service, the validity of the model is confirmed through basic evaluation. Specifically, the
following two points are confirmed.

1. The market price of electric power sharing is formed stably according to the supply
and demand balance of the selling bid and the buying bid.

2. The household profit and contract rate for each profit pursuit, eco-friendly and
indifferent bid strategy is as designed (Sect. 4.1 Bid Strategy).

5.2 Evaluation Indicator

The market price trend, supply and demand balance, household profit, and contract rate
are used as evaluation indicators. The market price is calculated through the contract
calculation by matching both buying bid and selling bid in each frame. The balance
between supply and demand is calculated as (bid volume for selling [kWh]/bid volume
for buying [kWh]). The balance between supply and demand is zero at night and increases
with the increase in PV generation during the day.
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For easy analysis, household profit is aggregated as the amount of money obtained
by sharing electricity, starting from the income and expenditure when all electricity is
bought and sold with an electricity retailer. As a result, the household profit is 0 yen or
more. For example, the profit for households that do not buy or sell electricity through
electric power sharing is 0 yen. The contract rate is calculated as the contract amount
[kWh]/bid amount [kWh].

5.3 Input Data

Figure 3 shows an example of home consumption data, which is created by statistical
processing based on actual home consumption data of an electrical service.Onweekdays,
there is a peak after getting up around frame ID from 15 to 17 (7:00–8:30), and it is
decreased after going out around frame ID 18 (8:30–9:00). Whereas, on Saturdays,
Sundays, and holidays, the peak due to wake-up is slower than on weekdays, and in-day
home consumption tends to be higher than on weekdays.

Fig. 3. Home consumption data Fig. 4. PV generation data

Figure 4 shows an example of PV generation data. PV generation data was created
from 1st July to 31st July in Tokyo, using numerical simulations using sunrise and sunset
times and solar altitude information. The rated output of PV is set at 4 kW, which is a
general level, and peaked at noon on the summer solstice, and other days and time zones
are reduced according to the solar altitude. Reflecting the amount of sunshine on PV
generation is a topic for future investigation.

5.4 Conditions for Basic Evaluation

Table 1 shows the conditions for the basic evaluation. The simulation period is 1 month
from July 1 to July 31, and the number of households is 10,000. The unit price of elec-
tricity bought from an electricity retailer is 26 yen/kWh, and the unit price of electricity
sold to an electricity retailer is 5 yen/kWh, with reference to the general price in Japan.
These unit prices are fixed values common to 48 frames a day.

The ratios of bid strategy are 10:10:80 and 80:20:0 for profit pursuit strategy, eco-
friendly strategy and indifference strategy. The former is for easy analysis, because
indifference households which have the simplest bid strategy account for 80%. The
latter is for one of realistic examples. Though some services providing green electricity
with a little higher price have appeared even in japan, it is assumed that there are more
profit pursuit household than eco-friendly household.
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Table 1. Conditions for basic evaluation

Simulation period 1 month from July 1 to July 31

Number of households 10,000

Unit price of electricity bought from electricity retailer 26 yen/kWh

Unit price of electricity sold to electricity retailer 5 yen/kWh

PV ownership rate 2%, 10%, 20%

Bid strategy rate (Profit pursuit: Eco-friendly: Indifference) 10:10:80, 80:20:0

The PV ownership rate is set to 2%, 10% and 20%, in order to see changes in mar-
ket prices and household profits when the supply-demand balance is different. Current
ownership rate in Japan is around 2% and will be increased in the future for the purpose
of CO2 reduction. The ownership rate of storage batteries is assumed to be 0%, for the
sake of facilitating analysis.

The parameters of the profit pursuit strategy have been set as follows,a = 1yen/kWh,
b = 1 yen/kWh, α = 3 yen/kWh, and β = 0.3. a′ = 1 yen/kWh, b′ = 1 yen/kWh,
α′ = 3 yen/kWh, and β ′ = 0.3.

5.5 Evaluation Results

Market Price Trends and Supply-Demand Balance
Figure 5 shows supply-demand balance for each frame in the first 10 days when the
PV ownership rate is 2%, 10% and 20%. Figure 6 shows the market price trends in
the first 10 days in case of bid strategy rate of 10:10:80. For the sake of simplicity, the
market price of the frame where there is no contract is set at 0 yen/kWh. Regardless of
the PV ownership ratio, the supply-demand balance is zero every night due to no PV
generation. On the other hand, the supply-demand balance is larger than 0 and some
bids are contracted from around 5:30 sunrise to around 18:00 sunset.

Fig. 5. Supply-demand balance of each frame

When the PV ownership rate is 2%, the supply-demand balance is in the range of
0 to 0.19, and the selling bid volume is extremely small, at most 1/5 of the buying bid
volume. The market price is relatively high and ranges from 22.0 to 26.0 yen/kWh. In
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Fig. 6. Market price of each frame (bid strategy rate of 10:10:80)

the case of the PV ownership rate being 10%, the supply-demand balance is in the range
of 0 to 1.11, and there are frames where the selling bid amount exceeds the buying bid
amount. The market price is in the wide range of 14.9–26.0 yen/kWh. When the PV
ownership rate is 20%, the supply-demand balance is in the range of 0 to 2.48, and there
is a frame where the selling bid amount is 2.48 times the buying bid amount. The market
price is 10.0–26.0 yen/kWh, which is more widespread than when PV is 10%.

Next, Fig. 7 shows the daily market price trends of some frames when the PV
ownership rate is 20%. The sunrise (Frame ID 11) and sunset (Frame ID 36) have a
higher market price than 20 yen/kWh. This is because the supply-demand balance is
small due to the low amount of PV generation. During that time (Frame ID 18, 24, 30),
both the PV generation amount and the supply-demand balance are large, hence the
market price is around 10-15 yen/kWh.

Fig. 7. Daily market price trends of some frames (bid strategy rate of 10:10:80, PV ownership
rate is 20%)

As described above, the market price is high when the supply-demand balance is
low, and the market price is in the low range when the supply-demand balance is high.
In addition, the market price fluctuates as much as 10 to 26 yen/kWh depending on the
Frame ID in one day in the case of PV ownership rate of 20%, but the daily market
price of each frame is stable. When looking at the same frame, the daily supply-demand
balance does not change significantly. Therefore, it can be said that the market price is
stably formed by the supply-demand balance.

Household Profit
Figure 8 showshousehold average profit [yen/month] for eachbid strategy for households
with and without PV. In case of the bid strategy ratio of 10:10:80, regardless of the PV
ownership rate, the profit of pursuit profit is the largest, as designed. In case of the bid
strategy ratio of 80:20:0, there are two cases in which eco-friendly is more profitable
than profit pursuit. We will analyze these cases in Sect. 5.6.
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Fig. 8. Profit of PV-owned and non-PV-owned households for each bid strategy

As the PV ownership rate increases, the profits of PV-owned households become
smaller, while the profits of non-PV-owned households become larger. This is consistent
with the result (Fig. 5) that the market price shifts to a lower range as the PV ownership
rate increases.

Contract Rate
Figure 9 shows the contract rate for each bid strategy for PV-owned and non-PV-owned
households. Regardless of the bid strategy rate and the PV ownership rate, the eco-
friendly contract rate is the largest, and the results are as designed. As the PV ownership
rate is higher, the contracted rate of PV-owned households is lower, while the contracted
rate of non-PV-owned households increase. This is consistent with the fact that the higher
the PV ownership rate, the greater the supply-demand balance (Fig. 5).

Fig. 9. Contract rate for each bid strategy (bid strategy rate of 10:10:80)

5.6 Analysis

Profit pursuit gets the largest profit under many conditions, but eco-friendly profits may
be higher under certain conditions (Fig. 8 Case 1 and Case 2). We analyze these cases.
Figure 10 and 11 show the profit and the contract rate for each frame in Case 1 and
Case 2, respectively. Figure 10 (a) indicates that the magnitude relationship between the
profit pursuit and eco-friendly is switched by the frame in Case 1. Figure 11 (a) shows
that the eco-friendly profit is larger than the profit pursuit in all the frames in Case 2.
Figure 10 (a) and Fig. 11 (a) also show that there was a big gap in the contract rate
between eco-friendly and profit pursuit.
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Fig. 10. Profit and contract rate for each bid strategy for each frame in Case 1 (PV-owned
household for bid strategy rate of 80:20:0 for PV ownership rate of 20%)

Fig. 11. Profit and contract rate for each bid strategy for each frame in Case 2 (non-PV-owned
household for bid strategy rate of 80:20:0 for PV ownership rate of 10%)

Profit pursuit strategy is more profitable than eco-friendly strategy per contract, as
designed in Sect. 4.1 Bid Strategy. But it is speculated that profit pursuit obtains a lower
profit when the contract rate is significantly smaller than eco-friendly. These large gaps
in the contract rate occurred in selling bids when the supply-demand balance was high
(Case 1) as shown in Fig. 10 (b), and in buying bids when the supply-demand balance
was low (Case 2) as shown in Fig. 11 (b). In addition to supply-demand balance, bid
strategy ratios will be compared. In the case of a bid strategy ratio of 10:10:80, profit
pursuit households were able tomaintain the contract rate and profits by contracting with
indifferent households, which accounted for the majority. In the case of a bid strategy
ratio of 80:20:0, the profit pursuing households that occupy the majority contend for
profits, and the contract rate is considered to have declined. As a result, the profit of
eco-friendly household becomes larger than that of profit pursuit household.

We can conclude from the above the bid strategy for eco-friendly households always
follows the market order. On the other hand, it turned out that the bid strategy for
profit pursuit may change depending on the supply-demand balance and the ratio of bid
strategies of other participants.
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6 Conclusion

In order to verify the feasibility of electric power sharing service, we newly designed a
multi-agent simulationmodel. One of the features of the proposedMASmodel is that the
bid strategy reflects the household’s values such as profit pursuit and eco-friendliness.
Through evaluations of the MAS model, it is confirmed that the market price on this
service stably changes according to the supply-demand balance. In addition to that, the
results of household profit and contract rate of this service showed that the design for
bid strategies works in most conditions. This mean that the monetary value and the
environmental value of electricity can be allocated according to the household’s values
such as profit pursuit and eco-friendliness. The optimal bid strategy for profit pursuit
may change depending on the supply-demand balance and the ratio of bid strategies,
and the new bid strategy that can increase profits under various conditions is a subject
for future study. Evaluations with various ratios of both bid strategy and PV ownership
are also future works.
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Abstract. Controlling recurrent infectious diseases is a vital yet complicated
problem. A large portion of the controlling epidemic relies on patients visit clinics
voluntarily. However, they may already transmit the disease to their contacts by
the time they feel sick enough to visit the clinic, especially for conditions with a
long incubation period. Therefore, active screening/case finding was deployed to
provide a powerful yet expensive means to control disease spread in recent years.
To make active screening success a given limit budget, one of the challenges that
need to be addressed is that we do not know the exact state of each patient. Given
the number of horizon and budget we have in each time step, we also need to
plan our screening efficiently and screening the vital patients in time. Thus, we
apply a reinforcement learning approach to solve active screening problems on
the network SIS disease model. The first contribution of this work is that we iden-
tify three significant challenges in active screening problems: partially observable
states, combinatorial action choice, high-dimensional state-action space. We fur-
ther propose the corresponding solutions to overcome these challenges. Specif-
ically, we resolve the issue of high-dimensional state-action space by encoding
the actions and partially observable states into a lower dimension form, which
is done by either manually, using domain expertise, or automatically, using the
state of the art GCN approach. We show that our approach can scale up to large
graphs and perform decently compared to other baselines of previous literature
and current practice.

1 Introduction

Contagious diseases, such as influenza and sexually transmitted diseases (STDs) (e.g.,
gonorrhea and chlamydia) are critical public-health challenges that continue to threaten
lives and impose significant economic burden on society. For example, the economic
loss due to influenza in the USA alone is estimated to be $11.2 billion in 2015 [14].
While low-cost treatment programs are available, individuals ignore symptoms and
delay care, increasing transmission risk. As a result, health agencies engage in active
screening or contact tracing efforts, where individuals are asked to undergo diagnostic
tests and offered treatment if tests are positive [5,7]. However, active screening is expen-
sive in developing countries. Even in USA, Braxton et al. [4] state that “In 2012, 52% of
state and local STD programs experienced budget cuts. This amounts to reductions in
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clinic hours, contact tracing, and screening for common STDs.” Efficiently identifying
and intervening for infectious cases is therefore of vital importance.

However, in many settings, active screening/contact tracing is expensive and time
consuming. There is a huge body of literature on spread and control of recurrent dis-
eases (no permanent immunity). However, all these prior work assume perfect observa-
tion of who is infected and who is not. Also, most of these methods focus on eradication
of disease, which is not possible if the screening resources are limited. Thus, important
real world characteristics such as partial observation and limited resources have not
been handled in any prior work.

2 Problem Statement

In this work, we aim to use reinforcement learning to decide which patients to actively
screen in each time frame for a multi-round scenario with limited horizon. The envi-
ronment we considered is based on the well-known SIS model [1,2]. An individual can
either be in state S (a healthy individual susceptible to disease) or I (the individual
is infected). SIS models capture the dynamics of recurrent diseases, where permanent
immunity is not possible (e.g., TB, typhoid). We adopt a discrete time SIS model for
modeling the disease dynamics propagating on a given graph G = (V,E), where each
node represents a single patient and each edge indicates the link between people which
disease can spread. We assume the structure of the contact network G to be known yet
the states of patients to be unknown. We can only observe the patients’ current states
while actively screening the patients. At each round, we have k resources that allow
us to provide active screening to k patients. After being screened, the infected patients
recover back to susceptible healthy patients, while the susceptible patients remain sus-
ceptible.

Table 1. Notations
Notations Definition

Model
S susceptible state
I infected state
α transmission rate
c cure rate
t time step number
T terminal time step
k budget for each time step

δ(v) set of v’s neighbors
sv(t) state of v at time t

a(t) set of nodes actively screened as action
o(t) set of nodes naturally cured as observation
tv(t) true state vector of node v at time t

TN
v (t) true state transition matrix for V \ a(t)

TA
v (t) true state transition matrix for a(t)

Algorithm
bv(t) marginal probability of v being in I state
b(t) belief vector of all nodes being in I state
b̄(t) intermediate belief vector after knowing o(t)
BN

v (t) transition matrix for V \ a(t) ∪ o(t)
BA

v (t) transition matrix for a(t) ∪ o(t)

Given a contact network G(V,E), infection
spreads via the edges in the network. There are
|V | individuals, and we use δ(v) to denote neigh-
bors of node v in the network. Each individ-
ual (node) v in the network at time t is in state
sv(t) ∈ {S, I}. Let tv(t) denote the state vector
that represents the true state of node v at time t
where S is represented as [1, 0]� and I as [0, 1]�.
Given the initial state, an infected node infects
its healthy neighbors with rate α independently
and recovers with probability c. The latter term
represents the probability that the node may visit
a doctor on its own initiative. The health state
transition probabilities of a node is then given by
P [sv(t + 1) = {S, I}] = TN

v (t)tv(t) where

TN
v (t) =

S I[ ]
S 1 − qv c
I qv 1 − c

, (1)
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Fig. 1. The procedure of the ACTS problem.

and qv = 1 − (1 − α)|{u∈δ(v) | su(t)=I}|. The columns denote the state of v at time t
and the rows denote the state at t + 1. The transition probabilities follow the disease
dynamics described earlier. In particular, qv captures the exact probability that node v
becomes infected from its infected neighbors {u ∈ δ(v) | su(t) = I} and c captures
the probability that I individuals recover without active screening.

Given such transition probabilities and an initial state, if no intervention happens,
the network state evolves by flipping biased coins for each node to determine their next
true state in each round. The process is repeated until the terminal step T is reached.

Motivated by active screening/contact tracing campaigns that have been practiced
since the 1980s [5] and applied in various forms/diseases [4], we propose the Active
Screening (ACTS) Problem. Given the SIS model in the previous section, an active
screening agent seeks to determine the best node sets a(t) ⊂ V to actively screen and
cure with a limited budget of |a(t)| ≤ k at each round t. The agent does not know
the ground truth health state of all individuals. The agent knows the network structure
G(V,E), the infection probability α, and recovery probability c. In addition, the agent
observes the naturally cured node set o(t) at time t—because this set of patients come
to the clinic voluntarily. Active screening starts after the agent acquires information
about o(t). Let a(t) be the set of nodes that are actively screened at time t. A node
v ∈ a(t) becomes cured at time t+1. Thus, the transition matrix for a node v ∈ a(t) is
P [sv(t + 1) = {S, I}] = TA

v (t)tv(t), where

TA
v (t) =

S I[ ]
S 1 1
I 0 0

. (2)

The action the agent takes at time t does not affect the transition matrix TN
v (t) of

the nodes not involved in active screening.
Figure 1 illustrates an example of the problem procedure. The upper part of the

figure shows how the true state of the network evolves and the lower part of the figure
shows the information available to the algorithm. In this example, there are seven nodes
A∼G. In each round, infected nodes (nodes B, D, and G in the example) flip a coin and
report to the clinic with probability c. The algorithm acquires the information of the
nodes that eventually report to the clinic and are about to be cured, which is {G} this
round. Based on this information, the algorithm will choose a set of nodes, say {D},
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to actively screen. These two sets of nodes are guaranteed to be in S state in the next
round. After that, the state of the network transitions and the next round starts.

It is worth noting that although both the nodes that voluntarily report to the clinic
and the nodes that are actively screened are guaranteed to be in S state in the next round,
their neighbors may still be infected by them in the current round. In the example, node
E is infected by node D even though node D was actively screened. This allows us to
simplify the state transitions because curing and spreading infection occur at the same
time.

Our objective is to maximize the health quality of each individual at each round (in
contrast to past work, which primarily focuses on the cost of eradicating the disease
entirely). The objective of the ACTS problem is:

min
Ca(0),...,Ca(T )

E

[∑T

t=0
γt

∑
v∈V

1sv(t)=I

]
. (3)

where 0 ≤ γ ≤ 1 is a future discount factor.

Problem Statement (ACTS Problem) Given a contact network G(V,E), the disease
and active screening model, find an active screening policy such that the expectation of∑T

t=0

∑
v∈V 1sv(t)=I is minimized.

3 Challenges

In this paper, we first identify three main challenges that we are facing in ACTS prob-
lem.

– (a) Partially observable states
– (b) Combinatorial maximization problem
– (c) High-dimensional state-action space

The first challenge corresponds to the standard challenge in partially observable Markov
decision process (POMDP), where the state is unknown and only a partial state can be
observed by the agent. There are some POMDP solvers but the common issue of these
solvers is the scalability. POMDP solvers are extremely unscalable, which are not suit-
able for our case as we have a large state and action space. The second issue comes along
with large and combinatorial action choices. Any subset of patients with less than k ele-
ments is a feasible action, which can involve exponentially many actions and is hard to
find the optimal action. The action selection problem can also be treated as a combi-
natorial problem, where our goal is to select the optimal k patients to provide active
screening. In general, combinatorial maximization in active screening problem can be
NP-hard to solve. Therefore, an efficient greedy algorithm is needed in our case, which
will be discussed in the following section. The final challenge is the large state-action
space. This corresponds to the issue of representation, where we require a compact rep-
resentation of our state-action pair, while at the same time maintaining the information
included in these state-action pairs. We will address these challenges in the following
sections with our proposed solutions.
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4 Partially Observable States

The first issue is that we do not have access to the hidden state, falling into the category
of partially observableMarkov decision process (POMDP), which prohibits the standard
reinforcement learning methods to work here. There are also POMDP solvers that can
directly solve a POMDPwith partially observable states.However, these POMDPsolvers
are generally extremely slow and non-scalable. In our setting, the scale of our problem
is quite large. We have |V | hidden states, where each patient corresponds to an entry of
the hidden state. POMDP solvers do not apply to such high dimensional setting, which
urges us to think of other method to resolve the issue of partially observable state.

Fig. 2. Belief update based on action, observation, and previous state.

Fig. 3.MDP on the belief state.

Solution: The way we resolve this issue is to use the posterior belief b(t) estimate of
the current state s(t) as our fake state, which might lose some information but hopefully
is rich enough to represent the original state distribution. The posterior belief b(t) at
time t is affected by the previous observation o(t − 1), action a(t − 1), and belief
b(t − 1). As shown in Fig. 2, we can denote the belief update function as b(t) =
g(b(t−1),a(t−1),o(t−1)). Now this update function is achieved by an approximate
Bayesian approach, where people have been actively screened or observed in the clinic
in the last round will be healthy in this round, and the people with no information can
be updated by the conditional probability.

Once we get the posterior belief, we can use the belief as our new state, then
run basic online reinforcement learning methods afterward. The new MDP structure
is shown in Fig. 3.

5 Combinatorial Maximization Problem

The second issue is that we cannot easily compute the optimal action maxa∈A

Q(b,o,a). Notice that since this is in the partially observable setting, so at the begin-
ning of each round, an observation o will be given and can be used to determine the



Active Screening on Recurrent Diseases Contact Networks with Uncertainty 59

Fig. 4. Q function with belief, observation, and action as inputs. The function predicts a single
scalar value as the Q value of the given belief, observation, and action.

Fig. 5. Q function with belief and observation as inputs and with marginal improvement of select-
ing each patient as output. The predicted reward of a given action can be computed by taking
summation of the marginal improvement of curing patients in the action.

action. Given the exponential size of all feasible actions A, the maximization problem
is a combinatorial optimization problem, which can be computationally expensive to
solve. The way we try to resolve the issue is to employ different greedy algorithms. An
incorrect estimate of the maximum value Q value could lead to incorrect equilibrium
of Bellman equation, which might break the optimality of the equilibrium of Bellman
equation.

Solution: Our proposed solution here is to predict the improvement of each individual
patient selection instead of an aggregated improvement of the entire set of patients. As
shown in Fig. 4, the standard Q function takes belief and observation (state), and action
as inputs, and outputs a single scalar value as the predicted future reward after taking
this action. Instead, as shown in Fig. 5, our Q function outputs a scalar for each indi-
vidual patient, representing the predicted marginal improvement if we actively screen
this patient. By doing so, the optimization problem becomes much easier, where we
can directly estimate the improvement of screening an additional patient, which only
requires one additional access to the Q function. Nonetheless, this approach ignores the
correlation between patients. It also assumes the reward of an entire action is separable
into marginal improvement from each patients been screened. However, given the hard-
ness of the original combinatorial maximization problem, we have to sacrifice some
accuracy in exchange of the scalability. Using the Q function with marginal improve-
ment outputs, we will show two heuristics in the following section.

5.1 Incremental Selection

The first heuristic method is to incrementally add patients into the screening set until
we run out of the budget. Given the existing action, we can feed the action into the Q
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function to re-estimate the newmarginal improvement of screening all the other patients
again. This is aligned with the greedy algorithm in submodular maximization problems,
which has a nice theoretical guarantee. The time complexity of this heuristic is linear
in terms of the budget k, which can be a burden when the number of budget increases,
especially in networks with large population. In our problem, for each iteration of new
episode or each gradient update on a tuple of belief, observation, action, and next belief,
we require to run the above heuristic to find an approximate optimal next action with
time complexity O(k). Although each iteration is not too expensive, in the reinforce-
ment learning domain, iteratively training on this heuristic is still quite expensive.

5.2 One-Shot Selection

Instead of iteratively updating the marginal improvement by the updated action, we
can directly select the top k patients with the largest marginal improvement. This only
requires one single evaluation with time complexity O(1). It is also less accurate due
to the one-shot selection. However, we can see a significant speedup while using this
simplified heuristic.

A mixture of these two heuristics is to iteratively select a batch of patients and
update the resulting predictions afterward. It can balance between the accuracy and the
scalability, which is left as a future direction.

6 High-Dimensional State-Action Space

In Fig. 5, in order to estimate the Q(b,o,a) value, we need to feed the belief b, obser-
vation o, and action a into the Q function, which is a high-dimensional vector. From the
function approximation perspective, in order to learn from high-dimensional data, the
sample complexity could be much larger than of low-dimensional data. In the reinforce-
ment learning domain, it corresponds to the need of a huge amount of data to collect
and learn from. This is generally infeasible in the offline case and time consuming in
the online case. Therefore, we would like to have a compact representation but at the
same time maintaining the information containing in the input.

We first show a failed attempt and then show another two alternatives that we even-
tually use.

6.1 One-Hot Encoding

One naive and straightforward encoding method is to use one-hot encoding to encode
action and observation. This means we will have three vectors of length |V |, which are
b, o where ov = 1 if node v is observed and 0 and a where av = 1 if node v is selected
and 0 otherwise. Then we simply concatenate into one single vector with length 3|V |
and feed into our regression model.

However, this encoding method has many drawbacks. First, the dimension is high.
Second, it is hard for the regress to learn the close relationship of the i-th, i+ |V |-th and
i + 2|V |-th elements in the state vector, as they represents the same node. Finally, the
encoding method did not encode the fact that the observation and action set of nodes
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(o and a) are guaranteed to be cured in the next round and again relies the reinforcement
learning to figure that out. Given there are a great amount of information to learn, this
encoding method is not applicable due to its requirement of intensive amount of training
to reason the relations between its high dimensional features.

Therefore, we propose the following two alternatives.

6.2 Nodewise Encoding

Since feeding all the features at once is not working, an intuitive way is to consider each
node independently as shown in Fig. 6, where we feed the features related to node v to
the Q function to get the predicted marginal improvement of actively screening node v.
In order to take the graph structure into account, we can also include some local graph
features as the features related to node v, e.g., the degree of node v, average path length
starting from v etc. The belief, observation, action, and the graph features of node v
are fed into the Q function and get a single scalar value, representing the prediction of
node v. This can largely reduce the size of input by including only the features related
to the corresponding nodes. However, we know that the disease can spread from nodes
to their neighbors, which implies that we cannot simply ignore the neighbor nodes and
their features. Although such abrupt reduction can efficiently reduce the dimension, it
can lose a significant amount of information and graph structure at the same time.

Fig. 6. Instead of feeding all the features into a single Q function estimator, we can feed each
node-dependent feature only into the Q function estimator to reduce the dimensionality.

Fig. 7. Message passing in the convolutional layers can allow features like belief, observation,
and action to propagate to the neighbor nodes.



62 H. C. Ou et al.

6.3 Graph Convolutional Neural Networks

Another more structural ways to encode the features is to apply graph convolutional
neural networks (GCNs) [11]. We can encode the features related to node v as the node
features of v. The convolutional layers in GCNs can facilitate the nature of message
passing and automatically aggregate the neighbor features as shown in Fig. 7. By using
GCNs, we do not need to hand-craft graph features to represent the graph structure.
What we need to do is to make GCNs learn the underlying graph embedding and form
the corresponding representation.

Figure 8 demonstrates the flowchart of our GCN implementation. We replace the
Q function estimator by a GCN, which takes node features and the graph as input and
outputs a prediction for each node in the graph.

Fig. 8. Integrating GCN as our Q function can resolve the issue of high-dimensional input and
also automatically extract the graph structure and form a compact feature embedding.

7 Experiments

In this project, we implement the two different encodings mentioned in Sect. 6. For
the nodewise encoding, we follow the implementation of fitted Q learning [8] with
extra trees regressor [9] as the Q function approximator. For the GCN encoding, we
implement a deep Q network (DQN) [12] with GCN proposed by Morris et al. [13],
where we maintain a fixed-size replay memory to continuously train the GCN. For both
FQI and DQN implementation, we adopt the one-shot selection to speed up finding the
optimal action and the maximization problem. We consider the online setting, where
we can apply new policy and get data from the new policy.

7.1 Experiment Setup

We perform our experiments on real world contact networks that are publicly available.
We set our finite horizon to be T = 20 which represents about 10 years of active
screening with each period being six months [6]. We set the discount factor of 0.9. We
assume (α, c) = (0.1, 0.1) and the network structure is known by surveys or estimations
and set our budget k to be 10% of the population n in each period, thus the algorithm
needs to scale well according to budget as graph size grows. Finally, we set the random
policy probability to be ε = 0.05 in our learning process.

We compare the following screening strategies with our reinforcement learning
algorithm
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(1a) RANDOM: Randomly select nodes for active screening.
(1b) MAXDEGREE: Successively choose nodes with the largest degree until the budget

is reached.
(1c) EIGENVALUE: Greedily choose nodes that reduce the largest eigenvalue of A the

most until the budget is reached.

0
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1500

2000

2500

Test graph Hospital India Face-to-face
random maxdegree eigenvalue FQI DQN

Fig. 9. Reward of different methods on different dataset over 10 times average.

Other then simulated graph, we evaluate the performance on the following realistic
contact networks which is collected from diverse sources. The networks are carefully
selected to have significant variation in size |V |, average degree d, average shortest
path length ρL, assortativity ρD and epidemic threshold (spectral radius) 1

λ∗
A
as table 2

shows.

(2a) Test graph we use the spatial preferential attachment model to generate a graph
of 20 nodes. Such approach has the heavy-tailed degree distributions observed in
many real networks.

(2b) Hospital [15]: A dense contact network collected in a university hospital to study
the path of disease spread.

(2c) India [3]: A human contact network collected from a rural village in India where
active screening with limited budget may take place.

(2d) Face-to-face [10]: A network describing face-to-face behavior during the exhi-
bition INFECTIOUS: STAY AWAY in 2009 at the Science Gallery in Dublin, in
which influenza might spread through close contact of individuals.

7.2 Experiment Result

Table 2. Properties of the contact network data sets.
Network |V | 1

λ∗
A

d ρL ρD

Hospital [15] 75 0.027 15.19 1.60 -0.18
India [3] 202 0.095 3.43 3.11 0.02
Face-to-face [10] 410 0.042 6.74 3.63 0.23

In Fig. 9, we can see that our imple-
mentation of FQI with simple node-
wise feature embedding can outper-
form all the other baselines. Notice
that the maxdegree baseline can also
be treated as another simple nodewise
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feature embedding if we use the node
degree as the only feature and with a
simple Q function which directly returns the node degree as the predicted marginal
improvement. This maxdegree baseline performs quite poorly as it ignores the belief,
observation, and action, leading to a myopic action selection with poor performance.
In our FQI implementation, we train a regression tree to select and extract important
features to make the prediction, which allows us to deal with various features in a more
elegant way.

Our second algorithm DQN with GCN feature embedding can further improve the
solution quality. With the help of GCN, we do not need to hand-craft graph features
of each node. GCN can automatically learn a good node features embedding and use
them to make prediction. The DQN can also further improve the scalability and solution
quality by maintaining a replay memory and continuously update the memory and train
on it.

As presented, we can see that after encoding belief, observation, and the action,
our approaches exceed all the baselines. By either manually extracting node related
features or automatically maintaining the feature representation through GCN, FQI with
regression tree and nodewise encoding (manually) and DQN with GCN (automatically)
outperform other baselines.

Overall, as the graph size increases, we can also observe more improvement against
the standard baselines. However, we are still facing the issues of scalability, where our
implementations of FQI and DQN require a long training time compared to all other
myopic baselines. The memory requirement of DQN is also another issue. We will
leave the scalability issue as our future direction. Hopefully these reinforcement learn-
ing based approaches can be applied to larger networks and have a real impact to our
society.

8 Conclusion

We implement reinforcement learning on an active screening model by encoding the
high dimension action and state with large solution space into a low dimension, infor-
mative representation. This can be done either manually (FQI) or automatically (DQN).
“Teaching” the regressor by efficiently encode information using domain knowledge
helps improve the performance and reduce the amount of training needed. The future
direction of this work is to scale our solution to even larger networks with millions of
nodes and reach higher performance by overcoming the trade-offwemade for scalability.

9 Appendix

9.1 Belief Update

First, we can encode a(t) into b(t) using our knowledge toward the model. From the
model, we know that the node set in o(t) are resulted from infected nodes report with
probability c. Using the Bayesian posterior probability, we can update the original belief
vector to a intermediate belief vector b̄(t) as have
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b̄v(t) =

{
1, v ∈ o(t)

(1−c)bv(t)
(1−bv(t))+(1−c)bv(t)

, otherwise
(4)

Next, we need to encode the action a(t) and the fact that set o(t)∪ a(t) are guaran-
teed to be cured in the next round. To accomplish this, we simply update the intermedi-
ate belief state b̄(t) to the prediction of belief in the next round b(t + 1) and use it as
our state representation.

bv(t + 1) =

{
0, v ∈ o(t) ∪ a(t),
pv(1 − xv) + xv, otherwise

(5)

where pv = 1 − ∏
u∈δ(v)(1 − αb̄u(t)) and δ(v) represent the neighbor of v. This

maintance and update our belief of the next time step b(t + 1).
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Abstract. This paper investigates the impact of changes in agents’
beliefs coupled with dynamics in agents’ meta-roles on the evolution
of institutions. The study embeds agents’ meta-roles in the BDI archi-
tecture. In this context, the study scrutinises the impact of cognitive
dissonance in agents due to unfairness of institutions. To showcase our
model, two historical long-distance trading societies, namely Armenian
merchants of New-Julfa and the English East India Company are simu-
lated. Results show how change in roles of agents coupled with specific
institutional characteristics leads to changes of the rules in the system.

Keywords: Institutions · BDI · Agent-based simulation · Meta-roles ·
Cognitive dissonance

1 Introduction

Employing evolutionary methods to study economic change has attracted several
scholars. For instance, Nelson and Winter proposed the idea that “organisational
routines” are pivotal in the evolution of business firms (i.e. their role is similar
to the role of the genes in biological evolution) [28]. Also, they suggested that
“[metaphorically] [r]outines are the skills of an organisation”. However, differ-
ent scholars suggested various definitions of routines. For instance, Feldman and
Pentland called “a repetitive, recognizable pattern of interdependent actions,
involving multiple actors”, a routine [16]. Routines have similarities with insti-
tutions (e.g. ‘the rules of the game’ [25]), in terms of their collective attributes
[8] (i.e. they have rule-like conditions [23]). However, whether routines are sub-
consciously followed (they are simple rules) or they are open to amendments and
changes (they are ambiguous rules) is subject of controversy [7]. Hodgson [23]
criticised Nelson and Winter’s [28] method and pointed to some shortcomings
such as not considering ‘birth’ and ‘death’ in their method.
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Also, in computer science, role/meta-role based frameworks were devel-
oped to facilitate modelling. For instance, Riehle and Gross [29] developed
a role modelling approach ‘to describe the complexity of object collabora-
tions.’ Also, MetaRole-Based Modelling Language (RBML) was expressed in
the Unified Modeling Language (UML) to describe patterns’ attributes [18]. The
CKSW (Commander–textitKnowledge–Skills–Worker) framework was proposed
for meta-role modelling in agent-based simulation [27]. The idea of integrating
roles and institutions is already studied in the context of multi-agent systems.
For instance, nested ADICO refined Ostrom’s grammar of institutions [13] by
differentiating between roles (e.g. enforcer and monitoring agent) [19].

The BDI (beliefs-desires-intention) model is a cognitive agent architecture
[9] with some extensions, including the BOID [10], EBDI [26] and the BRIDGE
[14] models. This architecture was employed to model agents’ cooperation in
institutionalised multi-agent systems [5,6].

In light of earlier studies, this paper integrates agents’ meta-roles [27] in the
BDI architecture and also employs the theory of planned behaviour TPB [17]
to model different facets of beliefs. The integrated model is used to investigate
how dynamics in agents’ meta-roles may lead to the evolution of organisational
institutions. Meta-roles in this work are modelled using the CKSW framework
that helps modellers to decompose agents in a society based on the character-
istics of their roles [27]. The coupling of the CKSW framework within a BDI
architecture is investigated in the context of rule-making and -following (how
rules are established, interpreted, and followed).

2 An Overview of the Extended BDI Architecture

This extended BDI cognitive architecture is shown in Fig. 1. It can be observed
that there are two separate blocks, a left block called ‘Events’ and a right block
called ‘Cognitive architecture’. The Events block represents the events an agent
perceives from the environment (e.g. information collected from peers). The Cog-
nitive architecture block represents an agent’s cognitive decision-making compo-
nents. Note that when an action is performed by an agent, it will be an input
event for those agents interested in that event in the next iteration. A brief
description of the four high-level components is provided below. It should be
noted that the main focus of this paper is on the addition of Role component to
the BDI architecture (highlighted in Fig. 1).

– Roles: An agent has a set of roles in society regarding established institutions
(e.g. agents make those institutions or they monitor their implementations).
An agent’s role impacts its beliefs, based on individual and social experiences
(e.g. it personally may find the rule unfair). We discuss this module in more
detail in Sect. 3.

– Beliefs: To model beliefs, we are inspired by the idea of different belief com-
ponents of TPB [17]. This component indicates an agent’s perception about
the rule and the support the rule has. In other words, an agent has its own
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Enforcers (S)
Followers (W)

Rule-maker (C)
Monitor (K)

Events

Informa ve 
events (e.g. 
punishing or 
promo ons)

Observa on
ActionModify Roles

Intention,
revision, and 
actions

Fig. 1. Proposed cognitive architecture for this model.

internal belief about the rule, and also the perception about the social sup-
port for that rule (e.g. rebuking the rule), and an estimation of what an
organisation meant by the rule (e.g. consequences of minor violation).

– Desires: Agents have different desires, such as an agent’s goals and ideal
preferences.

– Intentions and decision: An agent’s intentions for an action and its decision
about the final action is formed in this module. The decision results in an
action which can be a modification of beliefs and roles or only performing a
task.

3 Meta-roles and Role Dynamics

To model agents’ roles and their interactions we use CKSW meta-roles [27]. Note
that CKSW is a generic model and since this paper concerns the rule-making
and rule-following context, we reinterpret those roles in this context as follows:

– Commander (C): This role is empowered with ultimate authority [27]. In this
context, they are the agents who are permitted to make or revise rules.

– Knowledge (K): This role concerns the know-what aspect of a society [27]. In
this context, these are agents who monitor and report the suspicious activities
of others.

– Skills (S): This role concerns agents who are known for their skills in society
(know-how). Unlike knowledge, skills are difficult to communicate and much
more so to apply [27]. In the rules context, those agents that have the skills
to interpret the rules judge reported agents’ activities.

– Worker (W): These agents perform basic jobs that do not require specialist
skills [27]. In this context, they are agents who do not formally collaborate in
monitoring, establishing, or interpreting the rules (i.e. the rest of agents).

We also consider two categories of roles, formal roles and informal roles:

– Formal roles: these roles are defined based on the agent’s position in an organ-
isation (one of CKSW meta-roles).
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– Informal (internalised) roles: these roles are unofficially and self-assigned
(e.g. based on values) by agents such as monitoring, and reporting suspi-
cious behaviours of other agents to managers. These are the role (s) that an
agent may perform in addition to its formal role (one or more out of the
CKSW meta-roles).
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Fig. 2. Transition of formal meta-roles and internalising informal meta-roles—the cir-
cles indicate roles that an agent really performs (including internalised roles), and the
bigger fonts indicate more involvement in such a role. The arrows indicate the possible
transitions in a society.

Figure 2 depicts how an agent’s meta-role may evolve1. In this example, a
worker (say clerk) of an organisation may be promoted to a higher rank after
demonstrating competence for such a promotion (say to a manager, a knowledge-
based role). If the manager has relevant education, skills and experience, it can
be promoted to an even higher position. In these positions, the manager may be
responsible for interpreting the situation and deciding about who to fire or hire
(i.e. promotion from Knowledge role to the role of a judge (skill)—represented
as SK in the figure). Under certain conditions an agent (Knowledge or Skill)
can be promoted to director role (i.e. to the Commander). Note that judges
(highlighted in blue) might not be explicitly present on an organisational level
for various reasons (e.g. sometimes legal cases go to international courts).

In Fig. 2, the initials for formal roles are indicated on top or bottom of each
agent (e.g. K1) and the list of all roles for an agent (i.e. informal and formal roles)
1 Note that most times agents are downgraded for economic issues or bad performance

of agents, and this downgrading can be considered as an extension of this model.
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are shown in circles placed near the agents. The font sizes of initials inside these
circles indicate the involvement level in such a role, with larger fonts involving
more involvement. The involvement is influenced by the ability of an agent to
perform a role, as well as the perceived importance of performing such roles
from an individual agent’s perspective. For instance, some worker agents may
adopt additional informal roles in a company (e.g., k for agent W2). Some worker
agents may monitor other agents or they may have a charismatic personality and
informally establish rules (i.e. norms) which are executed by the help of other
agents (see internalised roles of W1). Another example is the case of a knowledge
agent who may adopt the informal judging role voluntarily (note the addition of
S to K2’s formal current role K). Note this agent could adopt the monitoring role
for various reasons (e.g. to help stabilise the rule or to weaken the rule-following
by not reporting the violators).

Another example is the commanders who may also take additional roles such
as K and S (e.g. C1). They may take some informal roles to influence rule change.
For instance, even though they may establish a rule, they may feel that they do
not have the obligation to follow them and so they may overlook them, hence
impacting rule-following for the whole society. These examples described above
show how formal and informal roles can shape rule changes in an organisation.

4 Simulation, Algorithms, and Parameters

In this section, first, we discuss the underlying assumptions of this simulation.
Then, we provide an overview of two historical societies studied for simulation,
namely the English East India Company (EIC) and Armenian merchants of
New-Julfa (Julfa). Then we briefly discuss the aspects of these societies that are
of interest for us and the simulation procedures used to represent their agents’
behaviour in the simulation context.

4.1 Assumptions

In societies, the rules that exist may not be honoured by agents. Although, the
agents know the existence of such rules, they don’t follow them and the agents
justify this behaviour through the resolution of cognitive dissonance. Cognitive
dissonance is defined as tensions formed by conflicts between different cogni-
tions (for instance, one likes to smoke, but loathes to get cancer) [3]. These ten-
sions lead to creating some justification for taking one action (quit smoking or
continuing). This idea was used to attribute workers’ productivity to cognitive
dissonance regarding fairness of institutions [2]. In particular, studies showed
that procedural justice (having fair dispute resolution mechanisms) increases
public law obedience and cooperation with the police [32]. Also, underpaid or
overpaid persons alter their efforts put forth on the system (e.g. efforts or vol-
untarily performed tasks) to make the system fairer for themselves [1]. In this
work, we consider that agents justify the need for rule change (or don’t follow
rules), because they need to resolve this cognitive dissonance (i.e. they justify
not following rules, or the reason to keep following the rules).
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4.2 Societies

As stated earlier, in this paper, we investigate two long-distance trading soci-
eties, namely Armenian merchants of New-Julfa (Julfa) and the East India Com-
pany (EIC). The two societies were contemporaneous and shared the same areas
for trading products (e.g. the EIC managers granted Julfans permissions for
using the EIC infrastructures [4]). Also, both societies faced principal-agent
problem [24]—the dilemma where the self-interested decisions of a party (agent)
impact the benefits of the other person on whose behalf these decisions are made
(principal).

Armenian Merchants of New-Julfa (Julfa): Armenian merchants of New-
Julfa were originally from old Julfa in Armenia. They re-established a trader
society in New-Julfa (near Isfahan, Iran) after their forced displacement in the
early 17th century [4,22]. They used commenda contracts (profit-sharing con-
tracts) in the society and also used courts to resolve disputes [4,22].

The English East India Company (EIC): During the same time, the EIC
(AD 1600s–1850s) had a totally different perspective on managing the society.
The EIC faced a high mortality rate due to environmental factors in India.
EIC paid fixed wages and fired agents based on their own beliefs about their
trading behaviour. Furthermore, EIC’s trading period covers the English Civil
War (1642–1651), which led to inclusion of some of the senior mangers on the
board of directors and granting permission for private trade to the employees
(i.e. trading activities for individuals’ self-interests).

In both of these societies agents’ meta-roles changed over time. More precisely
in EIC, a mercantile or trader agent (W) after gaining experience was promoted to
a managerial position to monitor other mercantile agents (K). Also, in EIC, after
the English Civil War, managers had the opportunity to be part of the board of
directors (C). In Julfa, the promotions took place based on the ageing of the fam-
ily members (i.e. agents got promoted from one meta-role to the other gradually).
Additionally, in Julfa mercantile agents (W) and heads of families (C) formed the
courts (S). In this model, we use the EIC dynamics in organisational meta-roles
(i.e. promotion of agents) to make the two systems comparable. Note that this
change in dynamics decreases the opportunities for Julfans to revise their rules.
However, we know that the rules were deeply honoured by Julfans [4].

Environment: These societies had different mortality rates. On average an EIC
agent died before the age of 35 due to harsh environmental circumstances [20].
Julfan traders did not face such a situation [4] and the closed trading society of
Julfa would have collapsed under a high mortality rate [30].

Fairness: Another difference between the two historical long-distance trading
societies is associated with their payment schemes for employees and the adju-
dication processes (i.e. use of courts for resolving disputes about suspicious
behaviour). EIC rarely employed an adjudication process (e.g. agents were fired
based on their performance because of suspected cheating), and the agents were
paid low wages [21]. However, in Julfa a mercantile agent was paid based on his
performance [4]. Julfans had adjudication processes to resolve disputes, which
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considered available evidence [4]. Though Julfa appears to be fairer than EIC
in terms of payment, total fairness can be questioned—for instance, in the Julfa
society, the family wealth and trade was managed and controlled by the eldest
brother [22]. This rule deprived younger ones from managing their own share of
capital.

4.3 Algorithms

In this subsection, we discuss the procedures employed to simulate role changes
within the two societies. The simulation model is split into four distinctive proce-
dures. The first procedure models the societal level of simulation, including cre-
ating an initial population and staffing (hiring new mercantile agents) to create
a stable population. The second level describes procedures for mercantile agents’
(W) decision-making and learning the system’s parameters. The third level cov-
ers the decision-making and learning procedure associated with managers (K).
The last procedure is the meta-algorithm that sequentially executes the afore-
mentioned algorithms and updates appropriate parameters. In this algorithm,
agent meta-roles may change and the opportunity for institutional dynamics is
provided (i.e., promotion of K agents to C and changes in institutions).

Algorithm 1: Societal level set-up and initialisation
/* Intialise the system starting with iteration ← 0. */

1 Create 500 new agents with status ← new, random personality aspects, and
random parameters

2 Assign appropriate roles (i.e. mercantile, managers, and directors) to created
agents
/* n = deceased and fired agents (mercantile agents and managers) in

the previous iteration. */

3 The most experienced mercantile agents get promoted to a managerial role
4 Create n new agents with: status ← new, Experiene ← 0, and randomly

initialise parameters
/* Perceived environment and fairness for inexperienced agents. */

5 PEnvironment ← RandomUniform(0, 1)
6 Fair ← RandomUniform(0, 1)

Algorithm 1 shows how the societal level of the system is simulated. In
iteration 0, the system is initialised by creating 500 new agents with random
parameters (line 1). The roles are assigned to created agents (about 2% direc-
tors, 5% managers, and the rest mercantile agents).2 The organisation hires and
promotes agents to sustain the number of agents per role—i.e. replaces deceased
agents (lines 3–4). The rest of the algorithm is executed only for inexperienced
agents (i.e. new recruits). An agent has a completely random understanding of
the system’s characteristics (lines 5–6).
2 These numbers are inspired from the numbers in the EIC [20].
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Algorithm 2: Mercantile agent’s algorithm (for meta-role W)
/* Update parameters for new recruits. */

1 if Status = New then Set agent’s parameter using Algorithm. 1
2 if Experience > 3 then

/* Update role and the decision to perform private trade. */

3 if Dissonance(Fair) < DissonThresh then
/* Agent stops monitoring violations. */

4 Remove K from voluntarily performed roles

5 if
((

Fair < thresh
)
or

(No. PrivateTraderFriends

No. Friends
< JustifThresh

))
then

/* Agent decides to perform private trade. */

6 PrivateTrade ← OK

7 end

8 end
/* Agent voluntarily collaborates in monitoring. */

9 if Dissonance(Fair) > DissonThresh then Voluntarily perform K

10 end
/* learning; */

11 if Experience > 3 then
/* Reporting observed violations; */

12 if Voluntarily performing K then
/* The agent reports some of the cheaters observed. */

13 Agent reports connections who impose more costs on the organisation
than his tolerance (internalised S).

14 end

15 end
16 Learn parameters and adjust the beliefs about rules
17 Experience ← Experience + 1
18 if Rand(1) ≤ MortalityProbability(Experience + 15) then Die

Algorithm 2 shows the procedure associated with mercantile agents’
decision-making process. Note that in this algorithm #Rnd(x) indicates a ran-
dom number generated in the interval (0, x). As stated earlier, if the status of
the mercantile agent is new, he goes through an initialisation (see Algorithm
1, lines 3–4). Furthermore, experienced mercantile agents decide on their par-
ticipation in monitoring by considering cognitive dissonance incurred (based on
their perception of institutional fairness and dissonance toleration). They also
decide on performing private trade with respect to the perceived fairness and
their friends who perform such trades (lines 3–7). If the mercantile agent has
enough experience and has already decided to collaborate in monitoring, he helps
the system to identify violators, based on his interpretation of a fair action (lines
8–9). Finally, the mercantile agent updates his perception of system parameters
(e.g. fairness of the society), increases his experience, and may die (lines 10–12).

Algorithm 3 shows the procedures associated with managers (i.e. monitor-
ing agents (K)). A manager creates a set that consists of reported violators with
unacceptable violations (i.e. he tolerates violations to some extent, see line 1).
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Algorithm 3: Manager’s algorithm (for meta-role K)
/* Manager reports (and eventually punishes) a number of employees

who violate the rules of the organisation beyond its tolerance

level. We call the threshold TolPunish. */

1 PotPunish ← employees with violations more than TolPunish
2 if The number of members of PotPunish > MaxPunish then

/* The manager has a limit for the number of agents he can punish

called MaxPunish. */

3 Punish MaxPunish out of PotPunish that have the most violation

4 else
5 Punish all PotPunish members.
6 end
7 Experience ← Experience + 1
8 if Rand(1) ≤ MortalityProbability(Experience + 15) then Die

Note that the manager reports about the violators and punishes a certain num-
ber. If the number of violators exceeds a certain threshold, he punishes the worst
violators (lines 2–3). Otherwise, all the violators are punished (lines 4–5). Finally,
the agent’s experience and age increase, and the agent may die (lines 6–7).

Algorithm 4: Meta algorithm
/* Intialise the system starting with iteration ← 0. */

1 Create 500 new agents with status ← new and random parameters with
appropriate roles
/* Call algorithms in an appropriate sequence. */

2 repeat
3 Run Algorithm 1
4 Run Algorithm 2
5 Run Algorithm 3
6 if iteration = 70 then
7 Update board of directors (C) with new managers
8 if majority support private trade then legalise private trade and reduce

wages

9 end
10 iteration ← iteration + 1

11 until iteration = 250

Algorithm 4 is the main algorithm that calls the other procedures. In itera-
tion 0, the system is initialised by creating 500 new agents with random param-
eters. The roles are assigned to created agents (2% directors (C), 5% managers
(K), and the rest are mercantile agents (W)), and they have 0 years of experience
(line 1). Then, 250 iterations corresponding to 250 years, containing specific steps
(lines 3–9) are performed (250). The first step is to run the societal algorithm
(i.e. Algorithm 1, line 3). Then the algorithm associated with the mercantile
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agents is run (i.e. Algorithm 2). Finally, the manager’s decisions are made using
Algorithm 3 (line 5). When the simulation reaches the year that some of the
managers in the EIC (who started as mercantile agents) are promoted to the
board of directors (i.e. consequences of the English Civil War, iteration 70), a
decision about permitting (or legalising) private trade is made (lines 6–8).

4.4 Parameters

In this subsection, we discuss the important parameters employed in the simu-
lation (see Table 1), along with the reasons for choosing specific values for them.
Note that we used 250 iterations to reflect the longevity of EIC (it was active
with some interruptions and changes in power from 1600 to 1850). In Table 1,
column ‘Name’ indicates the names of parameters, column ‘Comment’ shows
additional information if required, column ‘Distribution’ indicates the probabil-
ity distribution used for these parameters, and column ‘Values’ indicates the
values of parameters estimated for the two societies. Note that these parameters
can be modified to reflect other societies.

Table 1. Parameters associated with the model

Variable name Comment Distribution Values

Fairness Unfair: Fair Constant −0.4 : 0.6

Perception of
environment and
fairness of system

Uniform (−1, 1)

Thresholds Dissonance
Environment Fired
agents

Uniform (0, 1) (0, 1) (0, 0.3)

Monitoring Boolean Bernoulli 0.5

Permission for private
trade

Percent of joined
managers who agreed
to change

Constant 70%

Fairness: Note that as discussed earlier, Julfa had fairer institutions than the
EIC. We set system fairness values to 0.6 and −0.4 for fair and unfair societies
respectively. We believe that neither of these two societies were totally fair or
unfair (e.g. EIC managers justified the firing of agents that indicates there has
some effort towards fairness).

Perceived Characteristics: Because of lack of prior experience, the new agents
have a totally random understanding of social characteristics.

Thresholds: These are the numbers that reflect an agent’s tolerance of different
aspects and characteristics of the system. All these thresholds are generated at
random except for firing. For the proportion of fired agents, we assume that a
manager would fire 30% of the suspected employees.
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Monitoring: In the model, a recruit may voluntarily decide to participate in
monitoring—we use a random boolean generator to represent this.

Permission for Private Trade: In this simulation, we assume that permission
is granted if more than 70% in the board of directors agree to such a decision
(i.e. 8 out of 11).

Furthermore, we parametrise the agents’ learning as follows. Agents discount
information using a weight of 30% for the past. This reflects the importance of
recent information for agents.

5 Results

In this section, we describe the simulation results considering four different com-
binations of two characteristics, namely a) environmental circumstances and b)
fairness of institutions. With two different values for each of these characteristics,
four combinations are possible (see Table 2).

Table 2. System specification based on different characteristics

Characteristics E0F0 (EIC) E0F1 E1F0 E1F1 (Julfa)

Environment ✗ ✗ ✓ ✓

Fairness ✗ ✓ ✗ ✓

The configurations (i.e., societies) are identified by the first letter of the
characteristics, namely E and F that are representatives of the environmental
characteristic of (E) and fairness of the institutions (F), respectively. A tick
indicates that the society possesses such an attribute, and a cross indicates the
society does not possess such an attribute. In this table, we gradually change
characteristics of the EIC (E0F0) to get closer to Julfa (E1F1), to examine
their effects on the success of these societies. We utilised NetLogo to perform
our simulations [33]. We also used 30 different runs for each set-up and then
averaged their results. Finally, note that the patterns observed in simulation
results are compared to the patterns reported from the EIC and Jufla, because
we had access to the qualitative data.

5.1 Permissions for Private Trade

Table 3 presents the percentage of simulation runs (out of 30) where the per-
mission for private trade was granted (see row “Permission granted”). Note
that this change in rule (granting of permission) happened due to changes in
agents’ meta-roles where a mercantile agent progresses to the board of direc-
tors (and advocates the decision to permit private trade). As can be seen from
the results, both unfair societies (F0) had higher percentage of runs where the
private trade is permitted (>50%), although with a large difference (93% and
57% respectively). In fair societies, none of the runs resulted in private trade
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being approved. This result mirrors the evidence from Julfa. In Julfa, mercan-
tile agents (W) and peripheral managers (K) were the ones who eventually ran
the family business (C). Also, mercantile agents and managers made decisions
regarding violations and acted as juries in certain courts [4]. The aforementioned
situation, combined with keeping private trade illegal [22], indicate that this rule
was socially accepted3. Also, we know that in the EIC, the permission for pri-
vate trade was granted once the managers had the opportunity to be part of the
board of directors [15].

Table 3. Percentage of runs where private trade was permitted (out of 30 runs).

Societies Permission granted for private trade

E0F0 (EIC) 93%

E0F1 0%

E1F0 57%

E1F1 (Julfa) 0%
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Fig. 3. Monitoring strength and firing in simulated societies.

3 Because in none of the simulation runs of Julfa the permission was granted, we
believe that using a similar dynamics to Julfa would not change the results.
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5.2 Fired Violators (Monitoring Strength)

Now we discuss the impact of aforementioned two characteristics on the moni-
toring strength of the system (see Fig. 3). Figures 3a–3d present the percentage
of the cheating agents fired. In these figures, the y-axis indicates the percentage
of fired cheaters. As can be seen, the most fired agents belong to society E1F1

and then E0F1. These indicate the importance of fairness of institutions on the
system’s monitoring strength.

This impact that we see in Fig. 3 is a consequence of two informal roles
performed by agents, namely a) mercantile agents (W) that monitor and report
suspicious behaviours (internalised K) to managers (formal K), and b) managers
(K) who interpret rules based on the situations and tolerate some behaviours
(S). For example, managers who think the system isn’t fair, may not report
the cheating behaviour of agents (agents who are involved in private trades).
And these same managers who become a part of the board of directors allow
for these private trades to happen legally (but with the reduction in wages
further, though). Also, in organisations with unfair institutions, after granting
permissions for private trade (year 70), agents’ collaboration in monitoring the
cheaters (for theft etc.) decreases. Note that the evidence for interpretation of
the rules can be found in EIC managers’ correspondence4. Also, these results
mirror the evidence of rare cheating and successful monitoring mechanisms in
Julfa [4] and the popularity of cheating and collusion in the EIC [11].

6 Discussion and Concluding Remarks

This study has presented an extension of the BDI cognitive architecture to inves-
tigate its interaction with agents meta-roles. Also, using this extension, the study
has investigated the impact of a combination of a) dynamics in agents’ roles and
b) the institutional characteristics (i.e. mortality rate and fairness) on organi-
sational rule dynamics (i.e. change of rule). As the role of individuals changes
(e.g. W to K), their beliefs formed based in their previous role impacts their
new decisions. Finally, our study has used the evidence from empirical studies
to simulate two historical long-distance trading societies, namely Armenian mer-
chants of new Julfa (Julfa) and the English East India Company (EIC) and has
demonstrated what may cause rule changes (i.e. role change and institutional
characteristics).

The simulation results mirrored historical evidence. It has shown that the
fairness of institutions is a pivotal characteristic to drive their stability (i.e. avoid-
ing revisions in rules) and in facilitating agents’ collaboration in monitoring each
other’s behaviours. These results (i.e. changes in rules and weak monitoring and
reporting) mirror concerns in the modern context about the division of “rules
into the two categories of rules-in-use and rules-in-form” [31]. For instance, it is

4 For instance, in the early years, some managers defended mercantile agents’ private
trade by stating: “if some tolleration [sic] for private trade be not permitted none
but desperate men will sail our ships” [11].
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noted that rules-in-use (followed rules) in some provinces of Canada might have
been rules-in-forms (unfollowed rules that do not have any effect on behaviour)
in others [31]. There exist some obstacles in a law in becoming a rule-in-use [12].
An instance of this obstacle is the activities of monitoring agents who interpret
the law differently and thus hamper its effectiveness (e.g. through not monitor-
ing violations) and hence can aid the formation of new rules similar to what has
been observed in results from Table 3 and Fig. 3.

A future extension of the study, will involve detailed examination of the inter-
action between other modules of the cognitive architecture presented in Fig. 1.
Also, the simulation can be extended to take account of other characteristics of
these historical societies, such as the personalities of agents, to provide a more
fine-grained model.
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Abstract. Agent-based simulations of social media platforms often need
to be run for many repetitions at large scale. Often, researchers must
compromise between available computational resources (memory, run-
time), the scale of the simulation, and the quality of its predictions.

As a step to support this process, we present a systematic exploration
of simplifications of agent simulations across a number of dimensions
suitable for social media studies. Simplifications explored include sub-
sampling, implementing agents representing teams or groups of users,
simplifying agent behavior, and simplifying the environment.

We also propose a tool that helps apply simplifications to a simulation
model, and helps find simplifications that approximate the behavior of
the full-scale simulation within computational resource limits.

We present experiments in two social media domains, GitHub and
Twitter, using data both to design agents and to test simulation predic-
tions against ground truth. Sub-sampling agents often provides a sim-
ple and effective strategy in these domains, particularly in combination
with simplifying agent behavior, yielding up to an order of magnitude
improvement in run-time with little or no loss in predictive power. More-
over, some simplifications improve performance over the full-scale simu-
lation by removing noise.

We describe domain characteristics that may indicate the most effec-
tive simplification strategies and discuss heuristics for automatic explo-
ration of simplifications.

Keywords: Abstractions · Simplifications · Agent-based simulation ·
Massive scale simulations · Online social networks

1 Motivation

Large-scale simulations may be used for many purposes, including prediction and
exploration of what-if scenarios. Typically, a large number of parameters, such
as behavioral characteristics of individual agents, may not be known precisely
but are modeled probabilistically, requiring many iterations of the simulation as
parameters are varied systematically to arrive at an estimate that is accurate
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and whose dependence on the parameter space is known. This can be a very
expensive process.

A common solution is to iterate and test over smaller, simpler versions of
the problem that are chosen to provide a close estimate to the simulation out-
comes under test while requiring considerably less run-time and memory to run.
In some cases, the final estimate may be more precise although each individual
run may be less so, because many more iterations are possible. The simplifica-
tions used are typically drawn from a standard set of broad categories including
(1) reducing the number of agents and considering a sub-region of the original
simulation, (2) simplifying the agent decision processes to use less computation
and memory, (3) simplifying the representation of the environment, (4) selec-
tively replacing subsets of either the agents, the environment or both with direct
models of the behavior of a group of agents or region of the environment, and
(5) simplifying and/or reducing the communication that takes place between
agents, which often dominates the computational complexity of a simulation.
Domain-dependent simplifications, for example based on geographic constraints
of agents, may combine several of these categories. Often, developers follow an
ad hoc process: while the simulation may be simplified in many ways, only one
or two are typically used, without evidence for which simplification may yield
the best estimates of the parameters to optimize the full-scale simulation. While
transformations may be required in order to adapt the results from the abstract
problem into the full-scale problem, they are typically not explored in detail.

In this paper we take a first step towards an empirically-based tool for select-
ing an appropriate simplification from a rich set of possible approaches in a real-
istic domain. While other work, described below, has used formal methods to
show that an abstraction will provide the correct result and is as simple as possi-
ble, the empirical approach we propose can be applied to large simulations that
may require the use of code that is not sufficiently modeled to support a formal
approach. We define a number of ways in which a multi-agent simulation may be
simplified, and for each one we discuss the kinds of information about the full-
scale simulation that may be most faithfully estimated by this simplification. We
investigate a number of simplifications in the context of two domains: a massive
simulation of GitHub users, with trace data describing around 10 million users
and 30 million repositories, and a large simulation of Twitter containing 650 k
users and 1.6 million tweets. We introduce a full-scale simulation to predict the
next two months of activity on GitHub or Twitter based on four months of trace
data, in which each agent is described by statistics on their past history and a
set of parameters describing how future behavior may be produced based on the
history. Next, we explore a number of abstractions of the full-scale simulation
in order to optimize parameters for the agents, and discuss which abstractions
combine the most accurate estimates with the greatest savings of computational
resources. These abstractions may be used individually or in combination to
reduce the computational expense of running a simulation by several orders of
magnitude in some cases.
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We find that, in a broad range of situations, simple domain-independent
modifications such as agent sub-sampling can yield simulations that provide
predictions similar to those of the full-scale simulation with a fraction of the
time or memory requirements. In other cases, domain-dependent simplifications
are required for such improvements, and we show how they can be derived from
domain-independent principles, such as reducing the action space of the agents
or aggregating agents. In a small but significant number of cases, the reduced
simulation yields better prediction results than the full-scale simulation using a
fraction of the resources. This happens when the agents, actions or world features
removed were predominantly a source of noise for the predictions of interest.

Finally we review other large-scale simulations from the literature to ver-
ify that the abstractions we consider make sense within those simulations and
may be expected to yield useful results. We also discuss how the framework
for abstractions may be used to run simplified simulations in cases where the
full-scale simulation is infeasible, and how experiments such as the ones we
describe may help indicate the most useful simplifications within a single par-
tially abstracted simulation. This is an active area of investigation within our
group.

The novel contributions of this paper include the first comparative, empiri-
cal exploration of a broad set of simplification criteria across multiple simulation
domains. While previous work, described below, investigated one or more sim-
plifications in a simulation domain, we compare an expanded set of techniques
within the same framework and discuss the extent to which they are domain-
independent or whether domain dependent modifications may be necessary to
apply them. Another contribution is an initial framework to help experimenters
to consider a broader set of possible simplifications that lays the groundwork for
semi-automated tools to simplify simulations.

2 Related Work

Struss [15] distinguishes abstraction, simplification and approximation in the
context of model-based reasoning. In this view, abstraction and approximation
are both special cases of simplification, which is a general change to a model,
perhaps altering relations between variables describing a problem, that reduces
some modeling details. An abstraction is a kind of simplification that proposes
a new model, e.g. by changing the set of variables or their domains. An approx-
imation may replace a function in the model with a simpler version, some of
whose values differ from the original. Our work broadly follows this categoriza-
tion. De Kleer [6] and others address the question of finding the appropriate
level of abstraction for a problem, defined as the simplest abstract version that
is adequate to solve the problem. Here we explore the same issue, but empiri-
cally rather than analytically, since elements of a simulation may take the form
of complex code for which such reasoning is intractable. In this paper, we use
term simplification for all abstractions, simplifications and approximations.

Work on abstractions in planning systems may be viewed as simplifications
to the decision space of a single agent or its environment, e.g. [9,10]. This work
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motivated us to explore reductions in the action space for agents in general
simulations. In a similar way, Cohen et al. derive abstractions in multi-agent
simulation systems that provably preserve certain temporal properties of the
simulation [5].

Simplifications and abstractions were explored in simulation of biochemi-
cal systems by Rhodes et al. [13]. To reduce model complexity Rhodes et al.
experimented with scale (number of agents), time step, complexity of inter-
agent messaging and conflict resolution. Authors used runtime and accuracy as
metrics to evaluate the impact of each simplification. They conclude that some
simplifications (e.g. number of agents, time step) can be varied significantly to
reduce runtime within the reasonable accuracy range. In this paper, in addition
to runtime we also explore memory usage and various accuracy metrics for social
networks.

Shirazi et al. [14] dynamically replace groups of agents that occupy the same
geographical area with a single agent representing the group. This is a spatial
version of the general principle of aggregating agents based on shared interac-
tion, which we define below and present a social network-based approach for in
Sect. 4.3.

There is a comprehensive body of research on developing domain and applica-
tion specific abstractions and simplifications [3,8,12,13]. However, finding sim-
plifications and identifying ranges of parameters that produce useful reductions
is often a manual process. Automated search is rarely discussed in literature.

3 Simplification Types

In this section we discuss a number of general types of simplification, shown
in Table 1. Some of these represent domain-independent simplification meth-
ods that can be used in any multi-agent simulation while others are domain-
independent principles that may or may not yield domain-dependent methods
for a given problem. As we discuss the trade-off of computational resources con-
sumed and accuracy below, we assume that there is some metric that is applied
to the simulation, for example it might be used to evaluate which is best of a set
of potential policies, or make predictions given some initial conditions. In the
absence of ground truth for the metric, we seek a simplification that performs
as closely as possible to the full-scale simulation on the metric, although it may
behave quite differently on measures that are not of interest to the problem.

3.1 Subsampling

Simulation of the entire population can be computationally expensive. Subsam-
pling identifies a smaller subset of agents and resources with the aim of repro-
ducing the behavior of the entire population in order to meet the original goal
of the simulation. Identifying a smaller subset of agents and resources that can
reproduce behavior of the entire population may require exploring a wide range
of parameters. One approach is to exploit any structure that might be found
within the simulation framework, for example:
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Table 1. Types of simplifications. Rows correspond to aspects of the simulation to be
simplified, while columns denote whether the simplification is a reduction of a group
of objects or involves creating a new model.

Target Reduction Abstraction

Set of agents E.g.: Subsampling of
agents

E.g.: Aggregate agents
into meta-agents

Agents’ decision space E.g.: Reduce action
types

E.g.: Aggregate actions

Environment E.g.: Reduce resources
used

E.g.: Aggregate
resources,environment
data

Set of events E.g.: Reduce amount of
generated events

E.g.: Aggregate events

Agents’ communication E.g.: Frequency of
synchronization among
agents

– When simulating a social network one may select a smaller number of agents
and associated resources by selecting a small number of connected compo-
nents.

– For simulations where historical data on agents’ activity is available, one can
select agents that were active recently, disregarding agents which were not
active after some threshold.

– If the environment allows geographical segmentation, running the simulation
on a smaller number of segments can reduce the number of agents while
preserving local properties.

This class of simplifications may be one of the easiest to apply in a domain-
independent way, since it is possible to treat agents and their decisions and
communications as black boxes. For example, domain-independent strategies for
subsampling include random selection. In this paper we discuss random and
frequency-based subsampling of agents, resources and actions/events.

3.2 Simplifying Agents’ Decision Process

Each agent’s decision process may be complex, possibly depending on many
environmental conditions, leading to a heavy computational burden. To reduce
runtime we can simplify agents’ decision making process. Agents’ behavior sim-
plification can be applied to all agents or to just a subset. Making a small
simplification in the decision process in a simulation with millions of agents can
significantly reduce overall runtime.

There are different ways to approach agents’ decision process simplification:
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– Approximation of data and parameters needed to make decision. For exam-
ple, decision process can be approximated with probabilistic models using
historical data. This could be precomputed in advance.

– Simplification of decision rules, reducing the number of steps in the process.
– Reducing possible actions in agent’s decision process.

Additionally, depending on the process this approach can reduce size of the
agent and overall memory requirements. For example, if aggregate measurements
and values are no longer needed this memory can be released.

Simpler decision processes tend to require less external data, which makes
agents less dependent on the environment. This property is useful when parallel
simulation is developed, it simplifies synchronization of the shared environment.

This approach has limitations. Just as small simplifications to each of millions
of agents may have a significant impact on runtime and memory usage, small
discrepancies in the behavior of each agent may combine to produce significant
inaccuracies in metrics applied to the simulation.

This simplification is often domain-dependent since it modifies internal pro-
cesses of the agent.

3.3 Selectively Replacing Groups of Agents with One Agent

In a large-scale simulation it is often possible to identify classes of agents that
share similar properties and behavior. Some of these classes can be modeled as
one agent that represents activities of the group as a whole, effectively creating
a simulation that combines components modeled at different resolutions.

It is possible to apply simplifications of this type in a domain-independent
manner since external features of the agents, such as geographic location or
agent type, can be used to form groups while treating the agent as a black
box and aggregating the observed actions. However more effective groups tend
to be found using domain-dependent methods that can exploit regularities in
decision-making, for example, or allow communication to be localized.

3.4 Simplifying Communication Between Agents

In large-scale simulations communication can consume a lot of computational
and network capacity. In distributed parallel simulations, this problem is espe-
cially acute because of the network limitations.

We note that this is a distinct strategy from optimizing communication in
the simulation. In optimization, the same information is shared between agents
at the same time as in the original simulation. In simplification, communica-
tions may be degraded in content or timing, trading off fidelity of the simulation
for memory and run-time reductions. Methods for optimization include caching
frequently sent information and using communication hubs to decentralize infor-
mation distribution. In distributed parallel simulations, one may partition the
agents across computational nodes so as to minimize expensive cross-node
communications [1].

There are different approaches to simplifying communication among agents:
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– Reduced/simplified communication, where messages may be strategically
dropped or summarized.

– Bulk information update, in which eventually the same information is com-
municated, but at any given time an agent may have received less information
than in a high-resolution communication environment.

Other simplifications can also help to reduce resource consumption (e.g.
memory) and allow researchers to use fewer compute nodes or in some cases
avoid parallel computations altogether. Reducing the number of communicating
compute nodes reduces communication overhead among agents and the environ-
ment. This simplification is often used in combination with others.

This simplification is often domain-dependent, because it requires knowledge
of the environment and agents’ communication protocols.

4 Experiments

4.1 Simplifications Support in FARM

FARM is an agent-based simulation framework with support for large-scale sim-
ulations. It is implemented in Python. FARM architecture provides components
to model social networks [1–3]. We conducted our experiments with simplifica-
tions using FARM. FARM supports some of the simplification operators for
simulation models described above. It also implements a simple search for oper-
ator parameters that yield a compromise between runtime and memory and a
quality metric of the simulation.

4.2 GitHub and Twitter Simulations

GitHub is a hosting platform for software repositories using the git version con-
trol protocol, that also provides additional features such as wikis, issue-tracking,
discussion boards. GitHub is an example of a social network where users can
comment on commits, fork repositories, create branches, make pull requests etc.

We developed a multi-agent GitHub and Twitter simulations using DASH
agents [4,11]. In our GitHub simulation model DASH communication hubs pro-
vide access to repositories and other shared state information. DASH agents
perform action on repositories (e.g. push to a repository, make a pull request,
etc.). Agents’ decision process is based on past history of interactions with repos-
itories which could is obtained from historical training data. If historical data
on interactions is not available agents use generalized model to choose action
and repository. Frequency of actions is obtained from historical training data as
well.

In our Twitter simulation model DASH communication hubs provide access
to popular tweets and conversation threads. DASH agents perform actions such
as tweet, retweet, quote, reply, etc.
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4.3 Experiment Setup

The following simplification operators were applied to the GitHub simulation:

Random Subsamples of User Agents. The following sample sizes were used:
0.1 M, 0.4 M, 0.8 M, 1 M, 1.2 M, 1.4 M, 1.8 M. One month of training data con-
tains 1.9 M users.

Random subsamples of repositories. The following sample sizes were used:
0.1 M, 0.2 M, 0.4 M, 0.8 M, 1.6 M, 2.4 M. One month of training data contains
2.8 M repositories.

Random subsamples of training events. The following sample sizes were
used: 10 K, 0.1 M, 1 M, 10 M, 20 M. The total number of events in the training
data (1 month) was 31 M.

Different amount of training data − 1d, 2d, 4d, 1 week, 2 weeks, 1 month,
2 months of training intervals were used. This simplification picks a chronological
window and keeps only the agents, repositories and events that appear in that
window.

Simplifying agent’s behavior by reducing the number of possible event types
users can produce.

Random subsamples of training events and different event types com-
bined together. This is simplification applies to operators: Random subsam-
ples of training events (10 K, 0.1 M, 1 M, 10 M, 20 M events) and simplification
of agents’ behavior by reducing the number of possible event types users can
produce (only half of the most frequent event types was used).

Frequency-based subsampling of user agents. Only agents with the highest
rates of actions were selected. We used the following subsample sizes: 0.1 M,
0.4 M, 0.8 M, 1 M, 1.2 M

Frequency-based subsampling of user repositories. Only agents that inter-
act with repositories that have highest rates of actions on them were selected.
We used the following subsample sizes: 0.1 M, 0.2 M, 0.4 M, 0.8 M, 1.6 M

Push star agents is a simplification of agent actions. It was observed
that some users tend to produce long sequences of action (in this case it was
push to a repository) that are repeated over time. Push star agents instead of
making each push individually produce batched of such actions, which should
potentially reduce time on handling each action individually.

Agents aggregated into team/group agents. We ran experiments with
100 K, 400 K, 700 K users grouped into teams. Teams are defined as sub-clusters
(sub-graphs) of users that interact with shared set of repositories. Team agent is
a simplification that aggregates properties of all users of the team and interacts
with repositories of this team.

The following simplification operators were applied to Twitter simulation:
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Random subsamples of user agents. The following sample sizes were used:
10 K, 50 K, 0.1 M, 0.2 M, 0.4 M, 0.6 M. One month of training data contains
0.65 M users.

Random subsamples of tweets. The following sample sizes were used: 0.1 M,
0.2 M, 0.4 M, 0.8 M, 1.6 M. One month of training data contains 1.6 M events.

Random subsamples of training events (tweets, retweets, quotes,
replies, etc.). The following sample sizes were used: 0.1 M, 0.2 M, 0.4 M, 0.8 M,
1.6 M.

Different amount of training data − 1d, 2d, 4d, 1 week, 2 weeks, 1 month,
2 months of training intervals were used.

Frequency-based subsampling of user agents. Only agents with the highest
rates of actions were selected. We used the following subsample sizes: 0.1 M,
0.2 M, 0.3 M, 0.4 M, 0.6 M.

These simplifications are not mutually exclusive. In many instances they are
applied together. We experimented with random subsamples of training events
applied together with reducing the actions considered by each agent. Another
example is the different amount of training operator, which can be applied
together with any simplification operator.

One month of training data with all users and resources (repositories, tweets,
etc.) is considered a full-scale simulation, although it is also just one possible
value of the operator.

5 Results

To evaluate quality of predictions of our simulation models we used we use the
following metrics for the GitHub simulation:

User popularity - top 5000 most popular users, popularity measured as the
total number of watch and fork events on repositories owned by user. Calculated
as Rank-Biased Overlap between ground truth and simulation (RBO) [16].

Community Contributing users - the proportion of users who interact with a
community and who are active contributors, making commits and pull requests
to community repositories. Calculated as absolute difference between ground
truth and simulation.

User activity distribution - the distribution of the number of events produced
by users. Calculated as Jensen-Shannon (JS) divergence [7].

For Twitter simulation we used the following metrics:

User activity distribution - the distribution of the number of events produced
by users. Calculated as JS divergence (ground truth vs. simulation).

Most active users - the top 5000 users with the most events. Calculated as
Rank-Biased Overlap between ground truth and simulation (RBO) [16].
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Every point in each figure represents a simplification operator applied to
the original simulation model. Each point corresponds to a specific configura-
tion parameter of the operator. For example, subsample size is a configuration
parameter of random user, repository, event subsampling operators; the number
of supported events is a parameters of the reduction of event types generated
by agent. Each point is an average of 7 runs, confidence intervals are plotted on
both axes.

Ranges of operators’ parameters were selected manually. Automated search
may allow to find suboptimal settings with fine granularity for a given metric
and resource (memory and runtime) constraints.

For all metrics higher is better, 1 is the best value (perfect prediction), 0 is the
lowest possible value. Figures 1 a, b show GitHub simulation evaluation metrics,
runtime and memory used. As a baseline for comparison we chose simulation
that uses one month of training and instantiates all agents and uses all resources
from training data. For GitHub it is 1.9 M users and 3.2 M repositories, baseline
simulation consumes 24.5 Gb of memory and 26 min of runtime. For Twitter it
is 650 K users and 1.6 M tweets, baseline simulation consumes 7.8 Gb of memory
and 172 min of runtime.

Fig. 1. GitHub: a) User popularity, b) Community contributing users

In Fig. 1a, the random event subsampling shows the same results as random
user subsampling and performs better on most of the data points. The random
event subsampling operator reduces simulation runtime by 48% compare to ran-
dom user subsampling and different amount of training operators. Applying this
operator allows almost twice as many iterations as the full-scale simulation with
perfect performance, or six times as many with 97% of the original score.
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In Fig. 1b reducing the types of actions that GitHub agents perform reduces
noise and produces better scores than the full-scale simulation. Most subsam-
pling operators converge on values close to 0.9 (10% difference between ground
truth and simulation) where the reduced number of events operator shows values
close to 0.98. At the same time it also reduces runtime and memory use in half
compared to baseline.

Applying both random event subsampling and reducing the number of event
types simultaneously improved performance on the community contributing
users metric. This means that combining different operators can potentially pro-
duce better results than individual operators applied separately.

In the Twitter simulation both metrics (most active users - Fig. 2a, user
activity distribution - Fig. 2b most of the simplification operators significantly
reduce runtime and memory. For example, the frequency-based user subsampling
that takes top 300 K users (about 50% of the whole data set) reduces runtime
from 172 min to 43 min and memory from 7.8 Gb to 5.3 Gb. Random tweet sub-
sampling reduces runtime to 20 min and memory use to 6 Gb on 100K tweet
sample.

Fig. 2. Twitter: a) Most active users, b) User activity distribution

6 Semi-automated Search for Effective Simplifications

As can be seen from the previous section, some simplifications may have a dra-
matic effect on runtime and memory consumption for some metrics while main-
taining high performance. However the best simplification is problem-dependent:
random user subsampling predicts user popularity on GitHub very well in a small
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fraction of the time, for example, but performs poorly on both metrics for Twit-
ter, where frequency-based subsampling shines. Removing the right subset of
actions in GitHub can reduce errors in predicting community contributing users
by over 90% while running in half the time.

Finding a set of simplifications, their configurations and combinations for
a simulation model is an optimization problem where the objective function
balances the quality of simulation results and resource usage. We propose a tool
that partially automates this process and allows researchers to find simplification
configurations that yield the best results within given resource constraints. Each
simplification can be viewed as a parameterized operator that is applied to the
original simulation. The developer may supply domain-dependent simplification
operators that make use of domain features.

If an operator’s parameter space has an ordering, it is possible to use gradient
descent optimization algorithms to find optimal configurations for parameters, or
to use various heuristics to traverse the parameter space in search of suboptimal
solution. For example, a subsampling simplification can be used with binary
search on the proportion of agents to keep. This approach complements analytic
approaches of e.g. [6] since it is empirical, relying on observed performance of
simplified simulations. Accretion and removal operators can be used to search
for the optimal set of actions for a simplified agent to consider.

7 Conclusions and Future Work

Our experiments with simplifications show that it is possible to reduce com-
putational complexity (memory and runtime) of the simulation and preserve
accuracy of the simulation. Simplifications can use domain agnostic and domain
dependent algorithms. They may target specific quality metrics and properties
of the simulation model. Simplifications may be applied in combination with
each other.

In our experiments we demonstrated several instances of simplifications with
different quality metrics on simulation of two social networks - GitHub and Twit-
ter. In several cases simplifications reduced runtime of Twitter simulation by
85% and memory by 32%. In GitHub simulations simplifying agents’ behavior
by reducing the number of supported actions/events reduced error in simula-
tion predictions to the ground truth by 90%. These findings show that applying
simplifications can be useful if computational resources are constrained and sim-
ulation models requires many runs.

Possible combinations of simplifications (possible parameter values) as well
as their configurations create a parameter space. The process of finding simplifi-
cation settings that fit resource constraints can also be automated. Our prelimi-
nary experiments with automated search for parameters under specified runtime
and memory constraints show that it is feasible to automatically identify good
configurations and simplification parameters. In the future work we will explore
various strategies for simplifications and their parameters. We will also add the
capability for our search tool to propose and apply combinations of simplification
operators dynamically.
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Abstract. We compare synthetic population-based travel demand mod-
eling with the state of the art travel demand models used by metropolitan
planning offices in the United States. Our comparison of the models for
three US cities shows that synthetic population-based models match the
state of the art models closely for the temporal trip distributions and
the spatial distribution of destinations. The advantages of the synthetic
population-based method are that it provides greater spatial resolution,
can be generalized to any region, and can be used for studying correla-
tions with demographics and activity types, which are useful for modeling
the effects of policy changes.

Keywords: Travel demand · Transportation · Synthetic population

1 Introduction

Travel demand modeling refers to modeling population movements within a
region, typically over the course of a fixed time period such as day or a week.
Mobility depends on a number of factors, such as demographics, transportation
infrastructure, the build environment, and more.

Transportation planning and demand modeling are required to receive federal
transportation funds for larger urban areas in the U.S. [9]. Based the most recent
regulation, the Safe, Accountable, Flexible, Efficient Transportation Equity Act:
A Legacy for Users (SAFETEA-LU), transportation plans need to address many
requirements, such as air quality issues, multimodal planning, better manage the
existing system, expand public input, and financial requirements [15]. Trans-
portation demand models play very important roles in forecasting and assessing
whether the proposed transportation planning alternatives can help the region
c© Springer Nature Switzerland AG 2021
S. Swarup and B. T. R. Savarimuthu (Eds.): MABS 2020, LNAI 12316, pp. 94–105, 2021.
https://doi.org/10.1007/978-3-030-66888-4_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66888-4_8&domain=pdf
http://orcid.org/0000-0003-3013-8118
http://orcid.org/0000-0002-2517-8601
http://orcid.org/0000-0003-3363-2947
https://doi.org/10.1007/978-3-030-66888-4_8


Improved Travel Demand Modeling with Synthetic Populations 95

to meet the corresponding requirements. Therefore, all Metropolitan Planning
Organizations (MPOs) for areas with population more than 50,000 have to
develop, implement, and calibrate local travel demand models to evaluate a
broad range of alternatives [9].

This has some limitations. First, MPOs don’t do this planning for smaller
regions. Thus, the coverage doesn’t extend over the whole country. Second, there
is a lack of spatial refinement in existing models, as all trips are attributed to
Traffic Analysis Zones (TAZs), as we explain in the next section. Third, these
models are not applicable in abnormal situations, such as mobility during disas-
ters.

To address these limitations, we are exploring the use of synthetic popula-
tions [2,20], which provide a disaggregated model of the population, their activity
schedules, and activity locations. The synthetic population approach to gener-
ating travel demand is described in Sect. 3.

In the present work, we compare the synthetic population-derived travel
demand with the travel demand generated by two models used by MPOs, for
three US cities. The goals are to see how closely the models match, what the
differences are, and where the synthetic population approach might be improved.
Once the approach is validated, we can use it to do travel demand modeling for
all regions in the US.

2 State of the Art in Mobility Modeling

Currently, a majority of MPOs in the United States adopt two genres of travel
demand models, namely the conventional four-step travel demand model and the
latest activity-based travel model. The four-step model is a widely adopted trans-
portation demand forecast framework that can be dated back to the 1950s [19].
The model adopts four specific steps, including trip generation, trip distribution,
mode choice, and trip assignment, to forecast future travel demand given changes
in the spatial distribution in employment and population and performance of a
transportation system within a region. The first trip generation step estimates
the number of produced and attracted trips for each Traffic Analysis Zone (TAZ).
The trip distribution step connects trip origins to destinations, which results in
a person trip Origin-Destination (OD) matrix. The mode choice step divides the
person trip OD matrix by travel mode, such as passenger vehicles, transit, etc.,
and generates mode-specific OD matrices for vehicle trips by the time of the
day. The last trip assignment component forecasts the route for trips. The unit
of analysis for the four-step model is zone-level trips. Thus, the model is not
sensitive to demand and supply policies, as individual decision making is barely
incorporated in the model [9].

The activity-based model advances the four-step model by forecasting travel
demand at a more refined unit of analysis [5]. The activity-based model is typi-
cally developed at a disaggregated person level, enabling the model to evaluate
possible changes in travel behavior and system performances across policy sce-
narios. However, the modeled geographic unit is similar to the four-step model,
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which is typically TAZs. In other words, all activities, trip origins, and destina-
tions are assigned to TAZ centroids. Some MPOs tend to adopt more refined TAZ
boundaries in the activity-based model compared with the four-step model [4].
The activity-based models, however, are more data and computational resource-
consuming compared with the four-step model. Thus, only a limited number of
MPOs have adopted the activity-based model [10]. Though several MPOs have
started to migrate from the four-step model to the activity-based model, the
four-step model remains the most commonly used travel demand model in the
U.S [10].

Both of the aforementioned demand forecasting frameworks were developed
for regional planning purposes. In those scenarios, a TAZ-level model is consid-
ered sufficient for planning-related decision making. However, the model fails to
support policy making at refined spatial scales to address emerging transporta-
tion problems (e.g., chaotic curb uses) introduced by disruptive transportation
modes, especially ride-hailing services and the envisioned Shared and Private
Autonomous Vehicles (AVs). Even after incorporating these emerging travel
modes into the four-step [28] and activity models [12,30], the model outputs are
constrained at TAZ level, which are not very useful to support refined decision
making, such as block level curb spaces allocation. Meanwhile, the ride-hailing
companies, such as Uber and Lyft, are reluctant to release detailed trip data,
due to competition and privacy concerns. Finally, different MPOs tend to model
mobility demand using various data sources (e.g., National Household Travel
Survey [NHTS] vs. local household travel survey) and are calibrated using dif-
ferent base year data, rendering it difficulty to conduct research for cross-city
and region comparisons [19].

Therefore, in this study, we proposed a disaggregated travel demand model-
ing approach that is built upon synthetic populations (developed using multiple
datasets, as described in the next section) and nationally available transporta-
tion network and Point of Interest (PoI) data to fill the current demand model
and data gaps. We validate our modeling outputs by comparing spatiotemporal
distributions of synthesized trips with Origin-Destination (OD) matrices (i.e.,
the product of mode choice). The OD matrices contain the number of estimated
trips for each pair of origin and destination. Given that in most regions, vehicle
travel is the dominant travel mode, our comparison will only focus on vehicle
trips. We obtained OD matrices from three different regions with various urban
forms, travel patterns and current transportation infrastructures, namely Rich-
mond, VA, Seattle, WA, and Atlanta, GA. The adopted travel demand models
differ across these cities, in terms of travel demand data sources, modeling frame-
work, and modelled time periods, as displayed in Table 1.
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Table 1. Model settings for validation OD metrics

Model settings Atlanta, GA Richmond, VA Seattle, WA

Model framework Activity-based Four-step Four-step

Model data source 2011 local survey 2009 NHTS 2014–2015 local survey

Calibrated base year 2015 2012 2014

Model time periods 5 4 12

3 The Synthetic Population Approach

A “synthetic population” [2,11,16] is a very detailed model of a region, including
the resident population, their daily or weekly activity patterns, their networks
of interaction, and the built environment. The last includes buildings, and also
infrastructures for transportation, power, communication, etc.

Synthetic populations have been used as the basis for multi-agent simula-
tions in a variety of domains, including computational epidemiology [14], disas-
ter response [6], transportation planning [3,30], and more [24,27]. They provide
high resolution, high fidelity representations, enabling realistic simulations which
can be used for meaningful policy recommendations [7]. A synthetic population
is generated through a series of steps. We describe the initial steps briefly below,
and present the mobility modeling step (assigning locations to activities) in more
details. Further information is given in a technical report [20].

Generating Agents with Demographics: We use data from the Ameri-
can Community Survey [25], which provides demographic distributions for each
blockgroup and a 5% sample of complete records for a slightly larger area, known
as the Public Use Microdata Sample (PUMS). These are combined using the
statistical technique called Iterative Proportional Fitting (IPF) [8,13] to gen-
erate a joint distribution over selected demographic variables. We chose age of
householder, household income, and household size as the variables for the IPF
step. From this, we sample the resulting joint distribution and select matching
households from the PUMS data to create the population of synthetic agents.

Assigning Activity Patterns: Each person p created in the previous step is
assigned an activity sequence α(p) = (ai,p)i where each activity ai,p has a start
time, a duration, and an activity type. For the synthetic population used in this
work, the activity types are from the set

A = {Home, Work, School, Shopping, Religion, Other}. (1)

The activity sequence survey data was taken from the National Household Travel
Survey (NHTS) 2017 [23]. From this, consistent week-long activity sequences
were constructed and assigned using CART and the Fitted Values Means
method [18].
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Assigning Locations to Activities: This modeling step connects people and
their activities to the set L of residence- and activity locations of the given
region.

The first part of this modeling step constructs the locations. This is done
based on the MS Building Footprint data [21] which we have augmented
with a residential/non-residential classification based on the HERE Premium
StreetMap landuse classifications and extended POI listings [17]. Each non-
residence location, which we refer to as an activity location, is additionally aug-
mented with a weight for each non-Home activity reflecting the likelihood of
people conducting that particular activity at the given location. Each house-
hold is mapped to a residence location. The assignment of residence locations
is done for each blockgroup. First each possible residence location is assigned
one household, to ensure that there are no residence locations without at least
one household. The remaining households are assigned residence locations with
probability proportional to the area of the building footprint.

The second step assigns people’s activities to locations. Abstractly, for each
person p this step constructs a map λp : α(p) −→ L that assigns to each activity
ai,p of p a location � ∈ L. For the various activity types, this algorithm has the
following sequence of steps:

� Using NCES data [22], assign to each residence, the vector-valued ID con-
taining the nearest public school for each grade level;

� Construct the normalized county/county work commute flow matrix M
adjusted with county self-references using ACS commute flow data [1];

� For each person p:
� assign each activity ai of type Home to the residence location of p;
� assign each activity ai of type School to the age-appropriate school loca-

tion assigned to their residence location;
� select a work location using this 2-step process: (a) randomly select a

target county c′ using the probability distribution Mc where c is the
county of p. (b) For county c′, randomly select a work location � from
the set of activity locations LA|c′ of c′ using the probability distribution
induced by the locations’ Work weights. Assign all Work activities of p to
�. Thus, each working person has a consistent work location for the entire
period.

� if c′ supports Shopping (resp. Other), assign Shopping (resp. Other)
activities independently at random to the set of activity locations LA|c′ of
c′ using the distribution induced by their Shopping (resp. Other) weights.
If c′ has no activity locations supporting Shopping (resp. Other), repeat
this process using the home county c. If c does not support Shopping
(resp. Other), select a county using the probability distribution Mc and
repeat.

� if c supports Religion, randomly select a location � from the set of activ-
ity locations LA|c of c using the distribution induced by their Religion
weights. If c has no activity location supporting Religion, select a county
c′′ using the probability distribution Mc and repeat for c′′.
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� Additionally, one may construct a person-person contact network using some
form of location co-occupancy model; we do not need that for this work.

In the present work, we extract the collection of activities that take place on a
Tuesday. Travel demand is constructed from the activity schedules by extracting
the locations for successive activities. The start time for the travel is taken to be
the end time of the first activity. If two successive activities take place at the same
location, there is no travel, and this pair is not included in the travel demand
file. Next we describe the comparison between travel demand constructed from
synthetic populations and travel demand data obtained from three US MPOs,
who use traditional models.

4 Comparison of Results

We validated the synthetic approach by comparing the distributions of synthe-
sized trips with that of OD matrices generated by local travel demand models,
using data from three cities, namely Richmond, VA, Atlanta, GA, and Seattle,
WA. These three cities are selected because they tend to have significantly dif-
ferent urban forms and transit infrastructures. Cities like Richmond and Atlanta
have more urban sprawl and have limited transit systems, while Seattle is more
densely developed and maintains an extensive transit system. Specifically, we
compared the number of generated trips, the distributions of trip departure
times, as well as the spatial distributions of the trip origins and destinations, to
determine if the synthetic trips are representative and can replicate the distri-
butions generated by travel demand models, including both the activity-based
model and the conventional four-step model.

4.1 Trip Counts Comparison

The number of trips generated by each approach for each city is illustrated in
Table 2. For the three study areas, we only compare the trips that both start
and end within the city boundaries. The number of daily trips generated by
four-step travel demand model in Richmond is 370,998. Synthetic approach gen-
erates 401,042 daily trips, which is 8.1% more than that in four-step travel
demand model. Seattle also sees slightly more synthetic trips. Notice that the
Richmond travel demand model is calibrated using 2012 ACS data, while the
Seattle model is calibrated using 2014 ACS data. The accuracy of the projected
2017 OD matrices from these models may vary depending on the quality of local
population and employment forecasting model. The synthetic trips are generated
using 2017 ACS data, which should be considered as more accurate compared
with local forecasts. It is interesting that Atlanta’s activity model generates
significantly more trips than synthetic trips. ARC calibrated and validated the
activity-based model (ABM) using 2011 regional household travel survey and
then forecast travel demand in 2015, while the synthetic trip profiles are gen-
erated using 2017 NHTS data. This is largely because the synthetic population
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method assigns some destinations to locations outside the Census blockgroups
that are within the city of Atlanta. These get eliminated when we restrict our
analysis to travel demand in Atlanta. There may be two additional reasons for
the discrepancy in daily trip generation: (1) the trip generation rate for Atlanta
may decrease from 2011 to 2017, and (2) Atlanta NHTS data are not represen-
tative in the 2017 survey. In the concluding section, we address the possibility
of reducing this discrepancy by using other data sets. It is important to note
that the synthetic population model is generated for the entire state, so the total
number of trips taken by the residents of Atlanta are not fully represented here.
In other words, the discrepancy is not due to a systematic bias in the travel
demand, but due to the fact that we are restricting the analysis to a subregion.

Table 2. Trip counts comparison

City # of trips obtained
from MPO

# of synthetic trips Percentage
difference

Richmond 370,998 401,042 8.1%

Seattle 1,087,814 1,152,136 5.6%

Atlanta 1,087,418 796,688 −26.7%

4.2 Departure Time Comparison

The number and percentage of trips by the periods of departure time is shown
in Table 3 for each city. Overall, the temporal patterns of trips generated by the
travel demand model and synthetic approach are similar. The share of trips in
each of the time periods by the two methods is close. Thus, we conclude that the
distribution of departure time of synthetic trips matches that in demand models.
Notice that Seattle and Atlanta have more time periods in their travel demand
model. We aggregated the trips into 4 time periods to make the comparison more
intuitive. The MPO for Richmond defined AM period as 6:30 am–8:30 am and
PM period as 4:30 pm–6:30 pm. ARC has five periods in the ABM. i.e. early
morning, morning, midday, afternoon, evening. We collapsed early morning and
evening into a night period. Finally, the AM period is 6 am–10 am and PM
period is 3 pm–7 pm. Puget Sound Regional Council (PSRC), the MPO for
Seattle, used 12 periods in the demand model. We aligned the periods with the
other two cities as much as possible and end up with AM period between 7 am–10
am and PM period between 4 pm–8 pm. The synthetic population model gives
actual trip start times, so it can be aggregated for any definition of the bins.
In any case, the definition of time periods does not influence the comparison of
models as we compare for each period rather than across periods.
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Table 3. Trip count by time period

Period Model Richmond Seattle Atlanta

AM Synthetic 54,996 (14%) 251,371 (22%) 190,226 (24%)

Demand model 34,563 (9%) 191,111 (18%) 216,115 (20%)

MD Synthetic 201,063 (50%) 453,975 (39%) 258,049 (32%)

Demand model 198,413 (53%) 402,391 (37%) 399,421 (37%)

PM Synthetic 68,554 (17%) 316,430 (27%) 258,057 (32%)

Demand model 42,648 (11%) 371,374 (34%) 305,209 (28%)

NT Synthetic 76,429 (19%) 130,360 (11%) 90,356 (11%)

Demand model 95,374 (26%) 122,938 (11%) 166,673 (15%)

4.3 Spatial Distribution Comparison

We validated the spatial distributions of the trips by examining the spatial cor-
relation of buffered trip origins and destinations. Each origin or destination is
a traffic analysis zone (TAZ). There are 219 TAZs in Richmond, 856 TAZs in
Seattle and 829 TAZs in Atlanta. Table 4 shows the computed correlations using
data from two sources by time periods for each city. A buffered TAZ includes
a TAZ and its neighbor TAZs based on queen contiguity criteria, which means
if two TAZs share a vertex or edge, they are neighbors. The reason we do not
directly impute spatial correlation of origins and destinations is that the correla-
tion cannot reflect the actual spatial pattern. For example, the spatial correlation
of destinations could be extremely low even though the synthetic trips end in
areas close to the destinations of trips in demand model. Including neighbor
TAZs when comparing the distribution will mitigate this issue.

Table 4. Spatial distribution pearson correlation of origins and destinations

City AM MD PM NT

Correlations of origins

Richmond 0.85 0.79 0.73 0.81

Seattle 0.86 0.53 0.40 0.54

Atlanta 0.84 0.71 0.65 0.82

Correlations of destinations

Richmond 0.62 0.77 0.85 0.83

Seattle 0.35 0.58 0.70 0.39

Atlanta 0.58 0.73 0.84 0.86

It can be observed that the spatial correlation of origins peaks in AM and
that of destinations peaks in PM or NT for all of the three cities. In contrast,
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they all experience least correlated origins in PM and destinations in AM. The
low correlation is because of different methods of estimating employment in the
two approaches. MPOs estimate employment based on ACS block-level data
while the synthetic approach uses county-level commute flows. The destinations
in AM and origins in PM are mostly the locations of jobs. Therefore, the dif-
ferent estimates lead to low correlations. This indicates one aspect in which the
synthetic population model can be refined.

As shown in Table 4, the destinations in AM in Seattle is the least spatially
correlated in all the cities and periods. Their spatial distribution is illustrated in
Fig. 1. Both maps demonstrate that the trips tend to end in commercial zones
such as downtown Seattle in the middle, industrial district in the southeast and
Northgate in the north. Only a small portion of trips travel to Northeast Seattle
and Ballard, where most land use type is residential zones. Notice that the very
west and very east areas in the map are mostly water areas. Therefore, few trips
end there. In general, the spatial distribution of synthetic trips matches that of
trips generated by the MPOs well.

Fig. 1. Distribution of destinations in AM in Seattle

5 Conclusion

This study evaluated the synthetic population-based model by comparing it with
the state of the art travel demand models used by Metropolitan Planning Offices
in the United States. This was done by comparing the spatial and temporal dis-
tribution of the trips generated by the two approaches. The results indicate that
the trip count estimated by synthetic approach is close to that estimated by
travel demand model. The synthetic approach matches demand models for the
distribution of departure times. The spatial correlations of origins and destina-
tions are mostly high except some specific periods. The low spatial correlation



Improved Travel Demand Modeling with Synthetic Populations 103

of origins in PM and destinations in AM reflects the difference of the two mod-
els. The synthetic population model uses ACS county-county commuter flows,
but within counties chooses destinations randomly (though weighted by an esti-
mate of building capacity). Switching to a higher resolution, such as the Census
LODES data product [26], might help with this.

Synthetic population-based models are more flexible compared to four-step
travel demand model. They are less computationally expensive compared to
activity-based model while providing more details on the trips and the travelers.
Besides, this approach is generalizable that most areas can use it to estimate
travel demand. Thus it can be used to do a multiple city study as it enables direct
comparison between cities. Future work can also be to combine it with research
on automated vehicles. For example, the social interaction potential could be
explored with a shared automated vehicle (SAV) system using synthetic trips
as input, e.g., by integrating with simulations of potential shared autonomous
vehicle use [28,29].
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