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1 Introduction

In manufacturing industries, unplanned downtime is known to negatively impact
profitability, and will be a barrier to implementing lean and zero-defect manufac-
turing. Also, operational safety could be compromised through unexpected failures,
particularly when human operators are involved [1]. To tackle the challenge, predic-
tive maintenance based on Prognostics and Health Management (PHM) has been
developed to predict the failure points of working components (such as bearings
and cutting tools) [2–6]. Based on that, a component in a manufacturing system
can be replaced just before it fails. Thus, component lifetime can be maximized,
system downtime can be minimized, and therefore optimal productivity and produc-
tion quality can be achieved. In Computerized Numerical Control (CNC) machining
processes, cutting tool wear leads to various manufacturing problems, ranging from
stoppage downtime for redressing and tool replacement, to scraps and reworks of
machined components due to degradation in surface quality [7]. Therefore, accu-
rate prediction of the Remaining Useful Life (RUL) for a cutting tool is essential to
mitigate such failures [8].

In the aspect, physics-based approaches on empirical models have been devel-
oped, such as the Taylor, Extended Taylor, Colding, and Coromant Turning model
(a more detailed review can be found in [9]). However, these approaches are sensi-
tive to variations in machining parameters (e.g., cutting speed, feed rate, cutting
depth, cutting tool properties such as the number of teeth), which vary depending

M. Marei · S. E. Zaataria · W. D. Li (B)
Faculty of Engineering, Environment and Computing, Coventry University, Coventry, UK
e-mail: weidong.li@coventry.ac.uk

W. D. Li
School of Logistics Engineering, Wuhan University of Technology, Wuhan, China

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
W. Li et al. (eds.), Data Driven Smart Manufacturing Technologies
and Applications, Springer Series in Advanced Manufacturing,
https://doi.org/10.1007/978-3-030-66849-5_7

151

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66849-5_7&domain=pdf
mailto:weidong.li@coventry.ac.uk
https://doi.org/10.1007/978-3-030-66849-5_7


152 M. Marei et al.

on component materials and machining set-up. Moreover, profound expert knowl-
edge of machining processes is also expected to conduct effective and accurate RUL
prediction. In contrast to physics-based approaches, data-driven approaches have
been developed to leverage historical and real-time data to support decision-making.
Deep learning algorithms (e.g., Convolutional Neural Networks (CNNs)) have been
explored to facilitate data-driven approaches (a related review can refer to [10]).
For instance, to attain a wide scope of image features from a variety of applica-
tions, CNNs models, such as ImageNet [11] (and the subsequent ImageNet Large
Scale Visual Recognition Challenge (ILSVRC) [12]), CIFAR-10 and CIFAR-100
[13], can be trained on millions of images of natural and synthetic objects. These
approaches excel at extracting discriminative features and learning hidden relation-
ships between problem parameters (i.e., feature learning), opposed to feature engi-
neering approaches where human experts specify the features to learn [14]. However,
the accuracy and reliability of deep learning enabled data-driven approaches may be
reduced significantlywhendata are scarce or insufficiently descriptive of the problem.
To address the issue, in recent years, transfer learning enabled approaches have been
developed to improve pre-trained deep learning models to perform prediction on
new problems with limited available data [15, 16]. The transfer learning strategy is
to retain and reuse domain-invariant features learn from a task in one domain (called
the source domain), to enhance the performance of another task in its corresponding
domain (called the target domain). On the other hand, though transfer learning has
shown its great potentials in different applications, there are still limited research
works reported on manufacturing applications, especially for estimating the RUL of
cutting tools.

In this chapter, it is aimed to develop a transfer learning enabled CNNs approach
for RUL estimation of cutting tools and further establish PHM based on analyzing
the images of healthy and worn tools. The problem of limited data available during
machining processes is tackled by integrating transfer learning into CNNs. The main
characteristics of this research are summarized as follows:

1. Developing a transfer learning enabled CNNs approach with gradient descent
optimization algorithms based on normalized Maximum Mean Discrepancy
(MMD) and Mean Square Error (MSE) for algorithm training with learnable
weights;

2. Benchmarking the performance of the approach through evaluating severalCNNs
architectures and transfer learning for tool RUL prediction and PHM;

3. Providing recommendations for training techniques and data augmentation based
on benchmarking and analysis results.

2 Related Works

Abrief review on priorworks in deep learning for PHMapplications is presented here
with a focus on implementations in the manufacturing domain. Relevant literature
aligning with CNNs and transfer learning are also highlighted.
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2.1 Deep Learning for PHM

In recent years, there have been increasing reviews on investigating the develop-
ment of deep learning approaches for PHM applications [10]. Most deep learning
approaches for PHM exploit an inflow of continuous real-time data, such as vibration
signals [5], acoustic emission sensor data [8], force measurements [7, 17], temper-
ature [8], power/current, etc. Alternatively, other approaches were developed and
tested with an existing RUL dataset at the validation stage (some examples of these
datasets are mentioned in [9]). The C-MAPSS (aero-engine health degradation simu-
lation) tool [17] was used to create datasets extensively studied in prior works on
PHM, with varying research perspectives [18]. In addition, the PHM society holds
an annual challenge for PHM techniques based on data that it provides, in which the
2010 dataset focuses on high-speed CNCmachining [19]. While numerous architec-
tures of deep learning were implemented for PHM, several primary models can be
summarized into the following types:

• CNNs and their variants: these approaches use a series of shallow or deep convo-
lutional filters that extract spatial features from images or image-like data. These
approaches are particularly efficient at learning meaningful representations of the
data from individual and grouped clusters of filters across several depth chan-
nels [20]. Deeper CNNs layers are typically capable of extracting distinct visual
features like parts of the general shape of the image, whereas shallower layers
typically extract image intensity or color variation across a limited image window
[21]. While predominantly used for failure classification in PHM [22], several
researchers successfully used CNNs for regression-related feature extraction for
RUL prediction [23]. A few approaches were developed to perform both classifi-
cation and regression [23]. However, few approaches utilized images as input for
predicting the health state of cutting tools.

• Recurrent Neural Networks (RNNs and their variants: these models learn from
data sequences with explicit time dependencies between input samples (i.e.,
sequence prediction problems), due to series of gateswithin the architecturewhich
retain the outputs from previous inputs. The output from one neuron is fed forward
into the adjacent neuron, so that the hidden representation or the output of the
neuron is influenced by past inputs [11]. Long Short-Term Memory (LSTM)
networks [24] are similar to RNNs but can retain memory over a longer time
horizon due to a more complex gate structure that preserves long-term dependen-
cies. A combination of gates with different activation functions determine what
portion of the cell state to retain or transform for input into the subsequent layer.
LSTM and their variants have achieved widespread success at time series-based
prediction problems, therefore are especially popular for PHM applications [21].

• Auto-Encoders (AEs) and their variants: AEs are feedforward neural networks
comprising an encoder and a decoder. The encoder is trained to find the hidden
representation of the input data via a nonlinear mapping of the weights and biases.
The decoder attempts to find an output to the inverse function of the hidden
representation to the data, i.e., a nonlinear mapping between the encoder function
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and the hidden representation. To avoid human-assisted feature identification for
Tool Condition Monitoring (TCM), Shi et al. used a novel Feature Multi-Space
Sparse Auto-Encoder (FMSSAE) to classify four different wear states from TCM
data in the time domain (TD), frequency domain (FD) andWavelet Domain (WD)
[25]. Their methodology reported to achieve 96% accuracy in classification.

• Hybrid approaches: which combine and adapt several architecture designs to
conduct feature extraction and time-based prediction, e.g., Zhao et al. used a
Convolutional Bi-directional Long Short-Term Memory (CBLSTM) to extract
local and informative sequence features, followed by a bi-directional LSTM to
identify long-term time dependencies, leading to linear regression for target value
prediction [6]. The approach was demonstrated to predict tool wear based on raw
sensory data.

2.2 Transfer Learning Enabled Deep Learning

In the reviewed literature, an ongoing theme is to develop approaches that are trained
or validated on publicly available datasets or those collected in individual experi-
ments. Consequently, the replicability of these studies that leverage closed-source
data may be called into question [11]. An additional limitation to the data being
generated for PHMstudies relates to the classic imbalance problem (whereby healthy
data samples are much more prominent than faulty data samples) [11]. Meanwhile,
the accuracy and reliability of the approaches are significantly hindered by insuffi-
cient manufacturing data: a key limitation for most deep learning approaches is their
reliance on large quantities of data, typically in the order of ~1000 samples per class
(for classification type problems).

Transfer learning has presented its potential to address the above problems [15,
16, 26]. With transfer learning, knowledge acquired from one domain might be
retained and reused in a new domain. In general, the methodologies of transfer
learning can be classified into the following four categories according to what and
how the knowledge is transferred: (1) Instance based transfer learning—the labelled
datasets from the source domain are reused in the target domain; (2) Feature based
transfer learning—the features in the source domain are reused in the target domain
if the features of the source domain match those in the target domain; (3) Parameter
based transfer learning—the setting parameters of a machine learning algorithm in
the source domain are re-used in the target domain; (4) Relational knowledge-based
transfer learning—the relationship between the data from the source domain and the
target domain is established, which is the base for knowledge transfer between the
two domains.

In essence, transfer learning models repurpose the weights of deep learning
approaches learned in classification tasks, corresponding to features in a similar or
different domain (e.g., general-purpose image classification challenge datasets like
ILSVRC[8] andPlaces [27]), to performpredictions for a new task. Suchmodels typi-
cally achieved remarkable success, leading to a new research direction in exploring
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this generalizability by evaluating the classification or regression performance in
new tasks (i.e., domain adaptation [27]). In particular, for transfer learning, many
approaches work well under a pre-requisite condition: the cross-domain datasets are
drawn under the same feature distribution. When the feature distribution changes,
most deep learning based approaches need to be re-trained from scratch.

In recent years, various research works have been conducted to integrate transfer
learning into deep learning algorithms, i.e., deep transfer learning. For instance, Lu
et al. developed a deep transfer learning algorithm based on deep neural network
and feature based transfer learning for domain adaptation [28]. In the research, the
distribution difference of the features between the datasets from the source domain
and target domain was evaluated based on theMaximumMean Discrepancy (MMD)
in a Reproducing Kernel Hilbert Space (RKHS). Weight regularization was carried
out by an optimization algorithm to minimize the difference of the MMD for the
two domains in implementing knowledge transfer. Xiao et al. designed another
deep transfer learning algorithm for motor fault diagnostics [29]. In the algorithm, a
feature based transfer learning approachwas developed to facilitate knowledge learnt
from labelled data under invariant working conditions to the unlabeled data under
constantly changing conditions. MMD was incorporated into the training process to
impose constraints on the parameters of deep learning to minimize the distribution
mismatch of features between two domains.Wen et al. proposed a novel deep transfer
learning algorithm for fault diagnosis. A cost function of weighted fault classification
loss and MMD was used to fine-tune the model weights [30].

2.3 Images in PHM Applications

Traditionally, images are used within PHM for visual inspection when assessing the
condition of the damaged component or machine. However, similar image data could
be used as a viable tool to predict (or localize) faults within a machine component,
particularly if the frequencyof such imagemeasurements is sufficiently large.Despite
their recent success in several time–frequency applications for PHM, applications of
CNNs to process image data in a PHMcontext are still not frequent.Most approaches
use either 2D representations of time- or frequency-domain data (e.g., engine sensor
data in [31], vibration signals in bearings in [5]). Comparatively few examples exist
where the failure mode of a machine was classified by a pre-trained CNNs model
based on visual data. In particular, Janssens et al. utilized pre-trained versions of
the VGG-16 CNNs model [32, 33]. The model was re-trained on thermal video
images to classify the failure type, firstly by the image intensity, and secondly based
on the degree of imbalance of the rotating machine. Their approach combines a
CNNs trained to extract spatial features from thermal images, and another trained to
extract temporal information from differenced images to represent the motion due to
imbalances. In their first case study, 12 different health conditions were successfully
classified with 91.67% accuracy using a deep learning approach, versus conventional
approach that classified the 12 health conditions with 55.00% accuracy. Additionally,
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they implemented the same methodology to perform binary classification on another
system, reporting an accuracy of 86.67% with the feature learning vs 80% with the
conventional approach. The work provides a promising first step towards intelligent
PHM for real-time fault prediction.

The above research predominantly relies on a large number of images to
perform RUL prediction or failure classification for diagnosis. While demonstrating
widespread success on their individual dataset, these methodologies are ineffec-
tive for the cases of limited images available. The methodology in this research
leverages transfer learning enabled CNNs for PHM applications, through which the
extensibility to other problems within PHM are also demonstrated.

3 Methodology

An overview of the developed methodology is described here, first by introducing
the overall workflow and then by detailing its constituent components.

3.1 Problem Definition and Overall Methodology

The overall methodology is shown in Fig. 1. The objective of this research is to
predict the RUL of a cutting tool, given the image of the tool as an input and the
corresponding normalized tool wear measurement as a prediction target. In other
words, the objective is to determine:

∼
y= wT x + b (1)

where
∼
y is the matrix for the predicted regression output, w and b are the trainable

weights and biases of a CNNs model respectively, and x is the input matrix for the
images.

A pre-trained CNNs model is deployed for predicting the RUL of a cutting tool.
The weights of the CNNs model are then adjusted through adaptively learning the
images of cutting tools based on a transfer learning process. Meanwhile, to facilitate
the CNNsmodel for the prediction, the end layers, which consist of the loss classifier
and the classification output layer, are replacedwith a designed regression layer stack
as a regression problem.

More details of the developed approach are in the following steps: (1) forward
computation of the CNNs is carried out by using the datasets of both the source
domain (datasets for pre-training the CNNs) and the target domain (the images for
tool heath state) as input for tool RUL prediction; (2) back propagation computation
in the CNNs is performed tominimize the feature distribution discrepancy for the two
domains and the prediction errors of the tool RUL. Gradient descent optimization
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Fig. 1 The detailed procedure of the approach for tool RUL prediction

algorithms are evaluated and used for the minimization process, and the updated
CNNs is deployed for tool RUL prediction. illustrates the above steps. More details
on constituent components are given in the following sub-sections.

3.2 The Input Data for Transfer Learning

The dataset used for transfer learning comprises microscope images of the carbide
cutting tool flank, collected at set intervals throughout the experiment, along with
recorded flank tool wear width v in mm. The cutting experiments were conducted
under varying conditions of cutting speed vc, feed rate f d , and cutting width ae. In
total, 25 experiments were used to vary these parameters following a Taguchi Design
of Experiments (DoE) approach, with 3 factors (vc, f d , and ae), 5 levels per factor,
and 1 response variable (i.e., the measured flank wear width, v). The purpose is to
analyze the effects of varying these parameters on the longevity of the tools.
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In addition to the cutting tool images, the flank wear width was measured for each
tool with a wear threshold of vb = 0.4 mm indicating the tool has failed. Several
image views of the cutting tool were recorded, but the analysis was focused on one
particular variant of image views, at a magnification factor of 100 and a full frontal
view of the tool.

Figure 2 illustrates the tool life trend of the 25 cutting tools within this experiment.
In Fig. 3, the images of the post-processed cutting toolswere captured for Experiment
#1. In addition, some tool wear measurements (in particular those corresponding to
early failure events, e.g., Experiment #15) had a final values v < 0.4 mm; others had
much larger values (e.g., Experiment #21) with v ~ = 1 mm. In total, 327 images
of cutting tools with appropriate tool wear width were used, split into 195 images
(59.94%) for training and 132 (40.06%) for validation. To simplify benchmarking,
the same pre-shuffled training and validation data were used. For original images,
the function of image batch processing was implemented to perform a boundary
cropping operation to remove the excess image backgrounds, yielding 800 × 800
pixel images. To avoid discarding additional data that could be relevant, the training
and validation data were normalized between 0 (indicating a healthy tool) and 1 (for
a fully worn tool).

3.3 CNNs Models and Regression Stack

For the approach developed in this paper, transfer learning allows the knowledge
obtained from original tasks to be repurposed for different tasks. This means that the
weights and biases of pre-trained CNNs models could be adjusted or fine-tuned with
new training data. While the earlier feature pool layers of CNNs typically extract
general image features that are considered safely transferable, specialized features
are typically extracted in deeper layers. The degree of specialization often leads to
some levels of pre-training bias, where the models retain features learned from the
pre-training phase even despite being trained for extensive durations. It is intuitive
to select models with a good performance in general classification to be further fine-
tuned via transfer learning. This is because such a model would have been trained to
accurately recognize features belonging to a multitude of different classes. Feature
transferability is addressed using minimization optimization procedures for MMD
and RUL prediction errors, described in Sect. 4 later on.

When selecting pre-trained CNNs models for transfer learning, another impor-
tant consideration is the computational complexity of the models. While it is often
observed that deeper models tend to outperform shallower ones at certain tasks, it
is not always the case. The SqueezeNet architecture, for instance, was able to attain
AlexNet-level accuracy on the ImageNet data challenge with nearly 50 times fewer
parameters [34]. Therefore, comparing a variety of CNNs models quantitatively is
useful to help evaluate their merits and appropriateness of this research. The CNNs
models were chosen based on their classification performances in general-purpose
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Fig. 3 Experiment #1: pre-processed tool wear images recorded at W m cutting intervals. The
cutting interval in earlier measurements was kept small to capture the early wear trend

Fig. 4 ResNet-18 predictions versus targets using three optimizer variants

Table 1 Pre-trained CNNs models investigated in this study, with performance reported in terms
of top-1 and top-5 percentage accuracy when trained on ILSVRC 2012

Network Top-1
Accuracy (%)

Top-5
Accuracy (%)

Parameters (Millions) Input Size

AlexNet [21] 63.3 84.6 61.0 227 × 227

ResNet-18 71.78 90.58 11.7 224 × 224

ResNet-50 77.15 93.29 25.6 224 × 224

ResNet-101 78.25 93.95 44.6 224 × 224

SqueezeNet 60.4 82.50 1.24 227 × 227

InceptionV3 78.95 94.49 23.9 299 × 299
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classification tasks. Table 1 highlights the model size, input image size, and results
from classification challenges for the CNNs models.

The regression stack is a collection of layers that progressively adapt the outputs
of the pre-trained CNNs to make themmore suitable for regression-based prediction.
It comprises the following layers:

• A 4096-channel fully-connected layer, which function is to further down-sample
the outputs of the previous pooling layer (which is a common design choice for
CNNs models);

• Abatch normalization layer, responsible for normalizing the inputs of the previous
layer;

• Rectified Linear Unit (ReLU), which applies a non-linear transformation to the
prior layer outputs;

• A 410 fully-connected layer, which down-samples the previous layer inputs;
• A sigmoid layer, which transforms the outputs of the previous layer to the range

(0, 1) via the sigmoidal activation function;
• A regression output layer, which computes the loss of the prediction y

∧

i .

As opposed to a classification layer that computes the probability of an image
belonging to a given image class, the regression output layer computes the loss as
theMSE (Mean Square Error) of the prediction y

∧

i given the target yi . MSE is defined
as:

MSE = 1

N

N∑

i=1

√

( yi − y
∧

i )
2 (2)

where N is the node number of the layer.

3.4 Transfer Learning Process

The CNNs model with the regression stack is re-trained on the training dataset
of 195 images through the procedure illustrated in Fig. 1. In order to transfer the
knowledge from the source domain (pre-trained CNNs) to the target domain (trained
CNNs for tool RUL prediction), the developed approach should be subject to the
condition that features are in similar distributions between domains. To address
feature distribution mismatch during transfer learning, an error minimization opti-
mization strategy is applied through back propagation computing on the pre-trained
CNNs. In the previous literature, MMD (Maximum Mean Discrepancy) was popu-
larly used to measure the distance metric for probability distribution between two
domains. That is, the datasets in the source domain and the target domain are
represented as DS = {XS, P(xs)} and DT = {XT , P(xT )} respectively. Mean-
while, XS = ∏ns

i=1

{
xis, y

i
s

}
with ns samples, and XT = ∏nt

i=1

{
xiT

}
with nt samples

respectively. Their MMDs are defined below:
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MeanH (XS) = 1

ns

∑ns

i=1
H

(
xis

)
(3)

MeanH (XT ) = 1

nt

∑nt

j=1
H

(
x j
T

)
(4)

MMDH (XS, XT ) = sup[MeanH (XS) − MeanH (XT )] (5)

where sup(·) represents the supremum of the aggregate; H(·)is a RKHS (Repro-
ducing Kernel Hilbert Space).

In this research, the above concept of MMD is adopted for measuring the feature
distribution difference of domain invariant features. To achieve similar distributions
from two domains, MMDH (XS, XT ) is considered as the optimization objective to
regularize the weights of the CNNs. Meanwhile, during the re-weighting process on
the CNNs, the prediction error should be minimized as well. Thus, the prediction
error is considered as another optimization objective.

As discussed earlier, the total loss function Loss can be calculated based on
MMDH (XS, XT )andMSE. Since MMDH (XS, XT ) andMSE are in different value
ranges, normalization is required. In this research, Nadir and Utopia points are
utilized to normalize the above three objectives in an effectivemeans [35]. TheUtopia
point ziU provides the lower bound of No. i objective obtained by minimizing the
objective as below:

zi
U = min f (i) (6)

The Nadir point zi N provides the upper bound of No. i objective by maximizing
the objectives:

zi
N = max

1� j<I
f ( j) (7)

where I is the total number of the objective functions.
According to Eqs. (5) and (6), the normalized MMDH (XS, XT )and MSE can be

calculated below:

NMMDH = (MMDH1(XS, XT ) − z1
u)/(z1

N − z1
u) (8)

Nmse = (MSE − z2
u)/(z2

N − z2
u) (9)

where NMMDH and Nmse are the normalized MMDH (XS, XT )and MSE respec-
tively.

The total loss function Loss can be calculated based on the weighted sum of the
two normalized objectives:
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Table 2 Fine-tuning the
transfer learning enabled
CNNs using different
optimizers

1. Imagesize = size of image input layer

2. Identify the last (tune-able) layers in the network

3. Set learning rate to 0 for other layers

4. For each optimizer

5. If optimizer is ADAM or RMSProp

6. Set initial learning rate to 4e-5

7. Else if optimizer is SGDM

8. Set initial learning rate to 2e-2

9. Pre-initialize augmenter which augments the input images
by resizing and performing random transformations

10. Train the network on augmented images

11. End

Loss = w1 · NMMDH + w2 · Nmse (10)

where w1 − w2 are the weights of the two objectives, and
∑2

i=1 wi = 1.
Based on the above process, three variants of training optimization algorithmwere

investigated and compared, including Stochastic Gradient Descent with Momentum
(SGDM), Root Mean Square Propagation (RMSPROP) and Adaptive Moments
(ADAM) [36]. SGDM has been a popular choice for training ANNs since its incep-
tion in 1999, and its subsequent resurgence when used in AlexNet. RMSProp is
another popular algorithm for gradient descent training to eliminate the need for
learning rate adjustment. ADAM combined the heuristics of both Momentum and
RMSProp to achieve faster convergence.

The CNNs models were trained according to the procedure illustrated in Table 2,
after being converted to a layerGraph (the MATLAB structure that retains the CNNs
configuration). Firstly, a helper function searches the layerGraph of the CNNsmodel
for a Softmax layer, its preceding layer (a fully-connected layer with 1000 outputs)
and subsequent classification layer. The function returns the names and indices of
these layers in the layerGraph, after which they are removed using a helper function,
and replaced with the baseLayers configuration described in the regression stack.

Themodels were trained for 750 epochs in 12 iterations per epoch (9000 iterations
total), with amini-batch size of 16 images. The training functionwas set to shuffle the
mini-batch every epoch. To speed up training, validationwas done every 40 iterations.
During training, image augmentation operations were implemented on each training
mini-batch, to vary the input images by introducing some aspects of visual variation
to the images (random translations, rotations, and scaling). This has the effect of
inflating the dataset, allowing the CNNs model to consider more examples of the
data than are available.
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4 Experimental Results and Discussions

4.1 Experiment Data Collection

Table 3 details the benchmarking results for fine-tuning the 6 CNNs models by the
transfer learning process, where the 3-run average of each model variant’s output
was recorded. To evaluate the quality of prediction, the models were assessed with
the following performance criteria:

(1) Training time (in seconds).
(2) Mean Absolute Error (MAE), which is defined below:

MAE = 1

N

N∑

i=1

( yi− y
∧

i )
2 (11)

(3) Mean Square Error (MSE), which has been defined in Formula (2).
(4) acc10,20,30, the accuracies of all predictions are below 10%, 20% or 30% error

thresholds from the targets. The threshold of the T percentage accuracy is:

accT = 1

N

N∑

i=1

1T
(
( y
∧

i

)
(12)

1T
(−
yi

)
:=

{
1, ( y

∧

i ≥ T × ∣
∣max

(
yi

)∣
∣

0otherwise
(13)

where the range of T is determined by T ∈ [0.1, 0.2, 0.3].
The threshold of 10% accuracy indicates the percentage of prediction that falls

within 10% of this error in either direction. In most cases, due to the proportion of
healthy samples compared to faulty or worn tool images, the prediction errors are
on the lower end of the range, i.e., ~10% below the target value. The performance
measures of 20% and 30% accuracy are considered additional qualitative metrics
indicating whether predictions can be accepted.

4.2 Result Analysis and Observations

In Table 3, comparing these results, ResNet-18 (trained with ADAM) can offer the
best performance in terms of average prediction error and acc10, with a reasonable
training time considering the number of iterations attempted. ResNet-50 andResNet-
101 variants are both longer to train and generally less accurate based on MAE and
MSE. Meanwhile, despite being much deeper than other models, the InceptionV3



Deep Transfer Learning Enabled Estimation … 165

Ta
bl
e
3

B
en
ch
m
ar
ki
ng

re
su
lts

fo
r
fin

e-
tu
ni
ng

th
e
6
C
N
N
s
m
od
el
s

Pr
e-
tr
ai
ne
d
M
od
el

T
ra
in
in
g
D
et
ai
ls

M
od
el
Pe
rf
or
m
an
ce

O
pt
im

iz
er

L
ea
rn
in
g
R
at
e

B
at
ch

Si
ze

M
A
E

M
SE

ac
c1
0
(%

)
ac
c2
0

(%
)

ac
c3
0

(%
)

T
ra
in
in
g
T
im

e
(s
)

A
le
xN

et
[3
4]

ad
am

4e
-5

16
0.
08
29

0.
16
84

81
.6
8

90
.8
4

91
.6
0

21
24
.8

sg
dm

2e
-2

16
0.
08
68

0.
17
23

79
.3
9

90
.0
8

91
.6
0

19
40
.1

rm
sp
ro
p

4e
-5

16
0.
09
03

0.
17
26

77
.8
6

90
.0
8

90
.8
4

20
27
.6

R
es
N
et
-1
8
[3
1]

ad
am

4e
-5

16
0.
07
73

0.
16
54

83
.9
7

90
.8
4

92
.3
7

33
58
.4

sg
dm

2e
-2

16
0.
08
20

0.
15
91

78
.6
3

90
.0
8

92
.3
7

26
49
.0

rm
sp
ro
p

4e
-5

16
0.
07
91

0.
15
94

80
.1
5

90
.0
8

92
.3
7

28
53
.5

R
es
N
et
-5
0
[3
1]

ad
am

4e
-5

16
0.
08
68

0.
17
64

80
.9
2

86
.2
6

90
.8
4

14
,7
90

sg
dm

2e
-2

16
0.
11
24

0.
19
67

74
.0
5

84
.7
3

90
.0
8

91
84
.2

rm
sp
ro
p

4e
-5

16
0.
10
50

0.
19
54

76
.3
4

83
.9
7

90
.0
8

12
,6
89

R
es
N
et
-1
01

[3
1]

ad
am

4e
-5

16
0.
08
33

0.
16
57

74
.8
1

89
.3
1

92
.3
7

17
,7
50

sg
dm

2e
-2

16
0.
09
92

0.
15
65

74
.0
5

89
.3
1

93
.8
9

15
,1
22

rm
sp
ro
p

4e
-5

16
0.
08
82

0.
17
40

77
.8
6

86
.2
6

90
.8
4

16
,6
54

Sq
ue
ez
eN

et
[3
7]

ad
am

4e
-5

16
0.
08
91

0.
17
32

79
.3
9

88
.5
5

91
.6
0

21
51
.8

sg
dm

2e
-2

16
0.
08
68

0.
17
84

79
.3
9

89
.3
1

91
.6
0

17
63
.5

rm
sp
ro
p

4e
-5

16
0.
08
82

0.
17
10

77
.6
8

88
.5
5

91
.6
0

18
78
.0

In
ce
pt
io
nV

3
[3
2]

ad
am

4e
-5

16
0.
08
86

0.
17
84

79
.3
9

85
.5
0

91
.6
0

20
,3
34

sg
dm

2e
-2

16
0.
10
40

0.
19
31

77
.1
0

85
.5
0

90
.0
8

14
,6
53

rm
sp
ro
p

4e
-5

16
0.
09
16

0.
17
28

79
.3
9

87
.0
2

91
.6
0

18
,7
80



166 M. Marei et al.

Fig. 5 Prediction histogram comparison between six benchmarked CNNs models

variants were amongst the worst performing models considering MAE, MSE and
the accuracy thresholds. Furthermore, the increase in model depth from ResNet-
18 to ResNet-101 has increased training time fivefold, without an improvement in
performance. This emphasizes a key observation that increase of the model depth
does notmean increase in prediction accuracy accordingly. Sample prediction outputs
using the three optimizers chosen (ADAM, RMSPROP and SGDM) are illustrated
in Fig. 4.

Figure 5 shows a histogram plot of the prediction outputs of the six CNNs. Some
further observations can be made regarding the performance of these models:

• Overall best fit: It shows that ResNet-18 produced the closest prediction output
distribution to the validation target data, across the three optimizer training
variants.

• Overfitting:Allmodels over-fit the results significantly in the “healthy” categories,
with the performance of ResNet-18 (ADAM) being the best out of the compared
model variants in terms of overfitting, where the less themodel over-fits, the better
its performance.

• Generalization performance: Comparatively, ResNet-50 produced the worst
general fit results, indicated by its comparatively higher MAE and MSE as well
as lower accuracy across all thresholds. This might indicate that the model has
a tendency to over-fit the data more strongly than other models. In fact, the
generalization performance of SqueezeNet, which is close to 20 times smaller
in parameters, is markedly better consider the relative difference in model size.

• Anomalous predictions:With the exception of ResNet-18, all models trained with
SGDM have a tendency to produce negative outputs, despite the sigmoid layer
(whose function is to force its outputs to be between 0 and 1) being the last layer
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prior to the regression output layer. This is a property of SGDM which enables it
to generalize better than the other training algorithms. However, in doing so the
SGDM variants predict results in the reverse direction of what is desired. This
contrasts to tool wear width values, which must always be indicated by a positive
value.

• Training duration: It is alsoworthmentioning that increasing the number of epochs
to 9000 did not have a profound impact on the accuracy. Some initial trials with
fewer iterations (i.e., 150 instead of 750) yielded similar results for most of the
models. It is common to select a short training duration for the fine-tuning process.

Figures 6, 7, 8, 9 compare the results (accuracy, log(training time), MAE, and
MSE) from all the model variants (ADAM, SGDM and RMSPROP). ResNet-18 is
clearly shown to have the highest average accuracy and lowest MAE, despite being
slightly longer to train than AlexNet in training time. ResNet-18 is also amongst the
best performing models for MSE, bested only by ResNet-101 trained with SGDM.
It therefore concludes that ResNet-18 is the best performed CNNs at learning a new
task (regression output of normalized tool wear state) from images of tools using
transfer learning.

From the above analysis, the prediction workflow of tool health state based on
transfer learning enabled ResNet-18 variants can be more effective in early stages
(i.e., good tool health). However, data imbalance and overfitting have considerable
negative impacts on prediction accuracy, where classes are not uniformly distributed
across the dataset. This is evident in the collected data in this research, where many
more examples of healthy tools (i.e., v < 0.4) are available than those of less healthy
tools (v ≥ 0.4). This is made further apparent in Fig. 10 that shows the distribution
of the normalized training and testing dataset targets; there are much fewer values

Fig. 6 CNNs models’ accuracy for all training variants
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Fig. 7 CNNs models’ log (training times) for all training variants

Fig. 8 CNNs models’ Mean Absolute Error (MAE) for all training variants

close to 1 in the normalized scale, corresponding to v values close to 0.4. Therefore,
further investigations should be made:

• To address the imbalance between healthy and faulty tool states, classification-
then-regression methods could be further explored, where weights are assigned
based on class probability. Alternatively, cumulative attribute-based methods
could help improve accuracy by reformulating the regression problem in amanner
similar to classification. Another alternative could be explored based on parameter
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Fig. 9 CNNs models’ Mean Square Error (MSE) for all training variants

Fig. 10 The data distribution of the training and validation target data

transfer approaches, where a source task (and its corresponding source domain
data) is used to pre-train the model.

• Additional works are required to improve the accuracy of prediction across
increasing wear levels (i.e., where the normalized wear value exceeds 0.5). Some
additional pre-manipulations of the data need to be implemented, by adding extra
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safety margins to the hand-measured wear values, for example. Increasing the
cost parameters for the regression layer, for example by increasing regularization
L2-norm penalties, could reduce overfitting.

• Investigating maximum likelihood estimation methods for regression could help
with improving predictions across the full range of expected outputs, thereby
reducing prediction bias.

• As a supplement or alternative to these aforementioned approaches, some tech-
niques to re-balance the classes of datasets, or implement class penalties using
target RUL functions, could enhance the accuracy of the CNNs-based regression
workflow.

• An end-to-end approach to incorporate additional model inputs such asmachining
parameters or categorical labels, combinedwithCNNs toolwear estimation, could
be developed.

5 Conclusions

Deep learning algorithms have been increasingly applied for PHM due to their
great potentials in the applications. Nevertheless, they are still ineffective in prac-
tical manufacturing applications as sufficient amounts of training dataset are not
usually available. Seeking to overcome these limitations, in this chapter, a transfer
learning enabledCNNs approach is developed to effectively predict tool RUL inCNC
machining processes based on a limited number of the images of cutting tools. Quan-
titative benchmarks and analysis are conducted on the performance of the developed
approach using several typical CNNs models and training optimization techniques.
Experimental results indicate that the transfer learning approach, particularly using
ResNet-18, can predict the health state of the cutting tool (as a normalized value
between 0 and 1) with up to 84% accuracy and with a prediction mean absolute error
of 0.0773. Based on these results, it demonstrates that the developed approach can
achieve effective predictions on the health state of cutting tool in the early stages of
tool wear.

A further research work is to integrate additional information to predict the tool
RUL for increased accuracy (such as temperature, power dissipation, or current
signals from the machine). The applicability of the methodology developed in this
approach is not restricted to PHM alone; it could be used for other applications with
only limited datasets in a target domain are available.
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