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Abstract. Accurate detection of anatomical landmarks is an essential
step in several medical imaging tasks. We propose a novel communicative
multi-agent reinforcement learning (C-MARL) system to automatically
detect landmarks in 3D medical scans. C-MARL enables the agents to
learn explicit communication channels, as well as implicit communica-
tion signals by sharing certain weights of the architecture among all
the agents. The proposed approach is evaluated on two brain imaging
datasets from adult magnetic resonance imaging (MRI) and fetal ultra-
sound scans. Our experiments show that involving multiple cooperating
agents by learning their communication with each other outperforms
previous approaches using single agents.

1 Introduction

Robust and fast landmark localization is an essential step in medical imaging
analysis applications including biometric measurements of anatomical structures
[13], registration of 3D volumes [9] and extraction of 2D clinical standard planes
[8]. Manual labeling of such landmarks is often a time-consuming and tedious
task, which is also error-prone and requires human experts. Developing accurate
and automatic detection methods will help reduce the human error and speed the
diagnosis process. Recent advances in reinforcement learning (RL) have shown
a significant contribution to clinical applications such as automated medical
diagnosis, object localization, and landmark detection [21]. RL enables learning
from reward signals that guide the agent towards the target solution in sequential
steps during training. It learns to perform a non-exhaustive search without using
the full 3D image as an input. RL can be data efficient by using the same 3D
image for training with different starting points and states. RL has proven to
achieve the best performance for landmark detection outperforming supervised
methods [2,6,7].

Related Work: Previous works detecting anatomical landmarks have examined
approaches including statistical shape priors, regression forests [5,12], Hough
voting [3], supervised convolutional neural network (CNN) [8] and attention-
based autoencoder [22]. With the recent advances of deep RL, Ghesu et al. [6]
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introduced the application of RL to detect anatomical landmarks by learning
sequential actions towards the target landmark, while outperforming supervised
methods. Alansary et al. [2] then evaluated multiple deep Q-network (DQN)
variants for the detection task, namely DQN [10], double DQN [16], dueling DQN
[19], and double dueling DQN. They also incorporated hierarchical steps with
the multi-scale search strategy, which significantly decreased the search time.
Multi-scale agents have proven to outperform fixed-scale agents for detecting the
majority of landmarks [2,7]. Vlontzos et al. [17] proposed the first multi-agent
system for landmark detection, where the agents communicate efficiently by
sharing the convolutional weights of the CNN model. Furthermore, RL has been
utilized in various medical applications such as the detection of standardized view
planes in MRI scans [1], organ localization in CT scans [11], and re-identifying
the location of brain landmarks in pre- and post-operative images [18].

Contributions: (I) We propose a novel communicative multi-agent reinforce-
ment learning for multiple landmarks detection. (II) Experiments are evaluated
on two different brain imaging datasets from adult MRI and fetal ultrasound,
outperforming previously published RL state-of-the-art results. (III) The imple-
mentation of the code is publicly available.

2 Background

Reinforcement learning (RL) is a sub-field of machine learning (ML), which lies
under the bigger umbrella of artificial intelligence (AI). Inspired from behavioral
psychology and neuroscience [15], an RL agent takes actions within an envi-
ronment and receives updated states with associated rewards during training.
These reward signals guide the agent to take correct actions towards the target
solution, and penalize otherwise. Thus, the agent learns a policy π directly from
high-dimensional inputs. In most modern applications, including ours, agents
will not have total knowledge of all environment’s states. This is referred to as a
partially observable Markov decision process (MDP). RL offers an efficient solu-
tion to deal with the MDP by learning a policy that maximizes the total rewards.
For instance, Q-learning [20] seeks to find a q-value that measures the quality of
taking an action a given a current state s by learning a policy π that maximizes
the total reward during training. Mnih et al. [10] proposed to approximate these
q-values using a deep neural network (θ), named DQN. The Q-function is based
on the Bellman equation [4], and defined as the expected discounted cumulative
rewards:

Qπ(st, at) = Eπ[
∞∑

k=0

γkrt+k+1|st, at], (1)

where st and at represent the state and action at step t. γk is the discount factor
at k-th future state. DQN introduces another target network Q̂ that stabilizes the
training, and reduce the overestimation of the maximum Q-value [10]. Whereas
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at every predefined interval during training, the weights θ of the Q-network are
copied to the target network θ̂. The DQN loss function is defined as:

Li(θi) = Es,a,r,s′

[(
r + γ max

a′
Q̂(s′, a′; θ̂i) − Q(s, a; θi)

)2
]

, (2)

where s′ and a′ are the next state and action. Van Hasselt et al. [16] introduced
a modification to the DQN loss function to decouple the selected action from
the target network, known as double DQN. This changes the loss function to,

Li(θi) = Es,a,r,s′

[(
r + γQ̂(s′, argmax

a′
Q(s′, a′; θ); θ̂i) − Q(s, a; θi)

)2
]

. (3)

The dueling network [19] uses the hypothesis that Q-values are only important in
key states. It has two sequences of fully connected layers to separately estimate
state-values and the advantages for each action as scalars.

Alansary et al. [2] have shown that the optimal DQN architecture depends on
each landmark, where there was no overall best architecture for all landmarks.
Thus, we use the double DQN as a baseline architecture.

3 Methods

In this work, we propose a communicative DQN-based RL agents for the detec-
tion of anatomical landmarks in brain images. These agents are designed to
learn by communication during their search for different landmarks in 3D med-
ical scans. This is motivated by the fact that anatomical landmarks are usually
spatially correlated in the brain. Figure 1 demonstrates a schematic visualization
of these navigating agents in a 3D scan or environment E.

Fig. 1. A schematic diagram of the proposed multi-agents interacting with the 3D
image environment E. At each step, each agent takes an action towards a target land-
mark. The learned policy is formed by the path between the starting points and the
target landmarks after taking the sequential actions.
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States: Each state s is defined as a region of interest (ROI) of size 45× 45× 45
voxels, and centered around each agent. To improve the network’s stability and
convergence, it takes as an input a history of the last 4 states [10]. Each agent
starts at a random location within the 80% of the inner region of the image at
the beginning of each episode. An agent terminates navigating when it finds the
target landmark. During inference the terminal state is triggered when the agent
oscillates around a target point.

Action Space: It is defined based on the six directions in the 3D Cartesian
coordinates, namely left, right, up, down, forward or backward. Similar to [2],
we adopt a multi-scale search strategy with hierarchical steps by reducing the
step and ROI size when the agent oscillates around a target point. We use three
levels of scales {3, 2, 1} mm. The episode is terminated when all agents reach
their terminal states at the 1mm scale.

Rewards: First, we calculate the Euclidean distance between the current point
of interest and target landmark dt, and between the point of interest of the
previous step and the target landmark dt−1. The reward signal is then calculated
using the difference between dt−1 and dt, and clipped between −1 and 1. This
ensures that positive rewards are given, if the movements of the agent are towards
the target solution.

Communicative Agents: We leverage two types of communications between
the agents. Implicit communication is learned by sharing the convolutional lay-
ers of the model among all the agents [17]. Besides, communication signals are
learned explicitly by sharing communication channels in the fully connected (FC)
layers [14]. This is implemented by averaging the output of each FC layer for
each agent, which is then concatenated with the input of the next FC layer, as
seen in Fig. 2.

Network Architecture: Figure 2 shows the architecture of the proposed C-
MARL model, which takes as an input a tensor of size number agents×4×45×
45 × 45. It consists of four 3D convolutional and three 3D max pooling layers,
followed by four FC layers. Whereas the convolutional layers are shared between
all the agents, and each agent has its own FC layer. The output of all FC layers
of each agent are averaged and concatenated with the input of the next FC layer.
The size of the last FC layer is the same size of the action space. Finally, the
model is trained using Eq. 3.

4 Experiments

The performance of the proposed C-MARL agents for anatomical landmark
detection is tested on two brain imaging datasets, and evaluated against a sin-
gle RL agent [2] and multi-agents that share only their convolutional layers



Communicative Reinforcement Learning Agents 181

(Collab-DQN) [17]. Clinical experts manually annotated all selected landmarks
using three orthogonal views. We have randomly split both datasets into train
(70%), validation (15%) and test (15%) subsets. Best model is selected during
training based on the best accuracy on the validation subset. The Euclidean
distance error between the detected and target landmarks is used to measure
the reported accuracy. The agents follow an ε-greedy policy, where each agent
can take a random action step uniformly sampled from the action space with an
initial probability of ε = 1 to ε = 0.1, instead of selecting the step with the high-
est Q-value. During testing, agents follow a full greedy policy with ε = 0. The
episode ends when all agents oscillate at the smallest scale, or after a predefined
maximum number of 200 steps. Figure 3 shows C-MARL performing with five
agents to detect five different landmarks from a brain MRI scan.

Fig. 2. The proposed C-MARL architecture for anatomical landmark detection. Here
is an example of two agents sharing the same convolutional layers. They learn to
communicate by averaging the output of the FC layer of each agent, which is then
concatenated to the input of the next FC layer.

Fig. 3. An example of our proposed C-MARL system consisting of 5 agents. These
agents are looking for 5 different landmarks in a brain MRI scan. Each agent’s ROI
is represented by a yellow box and centered around a blue point, while the red point
is the target landmark. ROI is sampled with 3 mm spacing at the beginning of every
episode. The length of the circumference of red disks denotes the distance between the
current and target landmarks in z-axis. (Color figure online)
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4.1 Results

Experiment (I): We use 832 T1-weighted 1.5T MRI brain scans from the
Alzheimer’s disease neuroimaging initiative (ADNI)1. All brain images are skull-
stripped, and have an isotropic 1 mm3 voxel size. The selected subjects include
patients with cognitively normal (CN), mild cognitive impairment (MCI), and
early Alzheimer’s disease (AD). We select 8 landmarks, namely the anterior
commissure (AC), the posterior commissure (PC), the outer aspect, the inferior
tip and inner aspect of the splenium of the corpus callosum (SCC), the outer
and inner aspect of the Genu of corpus callosum (GCC), and the superior aspect
of pons.

Table 1 demonstrates the performance of the different approaches, whereas
C-MARL with three agents achieves the best accuracy for all the three selected
landmarks. The table also shows experiments using larger number of agents (five
and eight). These experiments results in a decrease in the accuracy in most of the
landmarks compared to the results using three agents. Thus, intuitively, increas-
ing the number of agents may require architectures with a bigger capacity to be
able to learn more communications. Another explanation can be that adding
more landmarks, that are not strongly correlated, may affect the detection
accuracy.

Table 1. Comparison between single, multiple, and communicative agents for landmark
detection in brain MRIs. Distance errors are in mm.

Single

agent [2]

Collab-DQN [17] C-MARL

Landmark 3 agents 5 agents 8 agents 3 agents 5 agents 8 agents

AC 1.14 ± 0.53 1.16 ± 0.59 1.13 ± 0.64 1.21 ± 0.92 1.04±0.58 1.12 ± 0.65 1.84 ± 0.91

PC 1.18 ± 0.55 1.25 ± 0.57 1.19 ± 0.61 1.22 ± 0.93 1.13± 0.66 1.25 ± 0.55 1.38 ± 0.64

Outer SCC 1.47 ± 0.64 1.38 ± 0.75 1.51 ± 0.77 1.46 ± 0.90 1.35± 0.66 1.62 ± 0.79 5.20 ± 13.49

Inferior SCC 2.40 ± 1.13 – 1.39± 0.85 1.53 ± 0.87 – 1.50 ± 0.89 1.87 ± 1.28

Inner SCC 1.46 ± 0.73 – 1.53 ± 0.97 2.09 ± 3.65 – 1.53± 0.76 3.56 ± 9.42

Experiment (II): We use 72 subjects of 3D fetal head ultrasound scans from
the iFIND project2. All images are resampled to isotropic voxel size with average
dimensions of 324 × 207 × 279 voxels. We select the right and left cerebellum
(RC and LC respectively), the cavum septum pellucidum (CSP) and the center
and anterior head (CH and AH respectively) landmarks.

Table 2 shows multiple agents have a lower distance error across all fetal land-
marks, while C-MARL significantly outperforms the other methods for detecting
the CSP and CH. Similar to the previous experiment, increasing the number of
agents did not necessarily improve the detection accuracy. However, the AH land-
mark has significantly benefited from increasing the number of agents. In this
1 http://adni.loni.usc.edu.
2 http://www.ifindproject.com.

http://adni.loni.usc.edu
http://www.ifindproject.com
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experiment, results show that multi-agent system is superior in all landmarks,
but rather suggest the best architecture depends on the landmark.

Table 2. Comparison between single, multiple, and communicative agents for landmark
detection in fetal head ultrasound. Distance errors are in mm.

Single

agent [2]

Collab-DQN [17] C-MARL

Landmark 3 agents 5 agents 8 agents 3 agents 5 agents 8 agents

RC 7.23 ± 3.54 2.73± 1.71 4.20 ± 3.76 3.39 ± 2.36 6.53 ± 4.21 4.06 ± 2.95 4.75 ± 3.28

LC 4.37 ± 1.45 4.20± 2.87 5.98 ± 8.58 5.42 ± 4.50 5.10 ± 3.66 4.43 ± 32.26 4.64 ± 3.16

CSP 9.90 ± 3.13 5.18 ± 2.05 8.02 ± 5.34 5.74 ± 5.07 5.78 ± 3.04 5.13± 3.51 7.08 ± 4.13

CH 29.43 ±
17.83

– 14.45 ± 5.25 16.83 ± 12.54 – 13.00± 4.97 16.29 ± 8.94

AH 5.73 ± 2.88 – 8.11 ± 5.22 4.10± 2.26 – 4.33 ± 2.96 8.89 ± 4.91

Experiment (III): The previous experiments are conducted in the scenario
of using a single agent for the detection of one landmark. In this experiment,
we proceed to evaluate the performance of using multi-agents for detecting the
same single landmark. The final location of the agents are averaged at the end of
an episode. To give a baseline, we include a column for five single agents looking
for the same landmark in parallel. We report the results on a selected landmark
from each dataset used in the previous two experiments, namely AC and CSP.
Table 3 shows C-MARL’s results are much better than in any of the previous
methods. Parallel single agents are not significantly better than the results with
only one agent.

Table 3. Results from using five agents looking for the same landmark. Distance error
are in mm.

Landmarks Single agents [2] Collab-DQN [17] C-MARL

AC 0.97 ± 0.40 0.81 ± 0.36 0.75± 0.34

CSP 10.43 ± 4.28 6.66 ± 4.19 5.10± 4.25

Experiment (IV): We further evaluate using multi agents for detecting multi-
ple landmarks, where each single landmark have multiple agents. In this exper-
iment, we train four agents to detect the AC and PC landmarks, where each
landmark has two dedicated agents. Similar to the previous experiment, to give
a baseline, we compare with four non communicating agents as a baseline. Table 4
shows that C-MARL agents perform better than the baseline, but worse than
using five agents for a single landmark from Experiment (III). Finally, these
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experiments show that multiple cooperative agents trained to detect one single
landmark can outperform the same number of agents detecting different land-
marks.

Table 4. Results from using two pairs of agent looking for two landmarks (four agents
in total). Distance error are in mm.

Landmarks Single agents [2] C-MARL

AC 1.17 ± 0.61 0.95± 0.43

PC 1.12 ± 0.55 0.97± 0.46

Implementation: We run each experiment for four days, but each would con-
verge usually after one or two days. We used Nvidia Tesla or Nvidia GeForce
GTX Titan Xp with 12 GB RAM, using CUDA v10.0.130 and Torch v1.4. A
24-core/48 thread Intel Xeon CPU was used with 256 GB RAM. In four days,
collab-DQN ran 30k episodes while our proposed method only ran 20k episodes.
The memory space during training is mostly driven up by the memory buffer,
which we set to 100,000

#agents episodes. As for the model’s size, more agents take
up more space and communication channels are added on the collab-DQN’s
architecture. More precisely, our model size is 5, 504, 759 and 8, 144, 365 bytes
for three and five agent respectively, while for collab-DQN it is 3, 529, 451 and
4, 852, 185 bytes. For comparison, three single agents working independently
have model size 2, 206, 723 × 3 = 6, 620, 169 bytes and for five single agents
it is 2, 206, 723 × 5 = 11, 033, 615 bytes. This shows multi-agent models greatly
reduce the models’ trainable parameters. For the testing speed, our method takes
around 2.5 and 4.9 s per episode for three and five agents respectively and those
figures are 2.2 and 4.2 s for collab-DQN. The code is publicly available on Github,
https://github.com/gml16/rl-medical.

5 Conclusion

We introduced a communicative multi-agent reinforcement learning (C-MARL)
system for detecting multiple anatomical landmarks from brain medical images.
Multi-agents share the weights of the convolutional layers to learn implicit com-
munications. They also learn explicit communication channels calculated from
the output of their fully connect layers, which are then shared among them by
concatenating to the input of the following fully connected layers. C-MARL was
evaluated on adult brain MRI and fetal head ultrasound, outperforming single-
and multi-agents approaches.

https://github.com/gml16/rl-medical
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Future Work: The optimal number of agents and combination of landmarks
will be further investigated. It will be also interesting to research weighted com-
munication channels based on nearby agents to reduce noise from distant land-
marks. We will incorporate more complex communication channels, e.g. skip
connections and temporal units. Another direction is to investigate competitive
approaches for communication instead of collaboration between the agents.
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Ž., McClelland, J., Kybic, J., Goksel, O. (eds.) WBIR 2020. LNCS, vol. 12120, pp.
81–90. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50120-4 8

19. Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., Freitas, N.: Dueling
network architectures for deep reinforcement learning. In: International Conference
on Machine Learning, pp. 1995–2003 (2016)

20. Watkins, C.J., Dayan, P.: Q-learning. Mach. Learn. 8(3–4), 279–292 (1992)
21. Yu, C., Liu, J., Nemati, S.: Reinforcement learning in healthcare: a survey. arXiv

preprint arXiv:1908.08796 (2019)
22. Zhong, Z., Li, J., Zhang, Z., Jiao, Z., Gao, X.: An attention-guided deep regression

model for landmark detection in cephalograms. In: Shen, D., et al. (eds.) MICCAI
2019. LNCS, vol. 11769, pp. 540–548. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-32226-7 60

https://doi.org/10.1007/978-3-030-32251-9_29
https://doi.org/10.1007/978-3-030-32251-9_29
https://doi.org/10.1007/978-3-030-50120-4_8
http://arxiv.org/abs/1908.08796
https://doi.org/10.1007/978-3-030-32226-7_60
https://doi.org/10.1007/978-3-030-32226-7_60

	Communicative Reinforcement Learning Agents for Landmark Detection in Brain Images
	1 Introduction
	2 Background
	3 Methods
	4 Experiments
	4.1 Results

	5 Conclusion
	References




