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Abstract. Magnetic resonance imaging (MRI) is the primary clinical
tool to examine inflammatory brain lesions in Multiple Sclerosis (MS).
Disease progression and inflammatory activities are examined by lon-
gitudinal image analysis to support diagnosis and treatment decision.
Automated lesion segmentation methods based on deep convolutional
neural networks (CNN) have been proposed, but are not yet applied in
the clinical setting. Typical CNNs working on cross-sectional single time-
point data have several limitations: changes to the image characteristics
between single examinations due to scanner and protocol variations have
an impact on the segmentation output, while at the same time the addi-
tional temporal correlation using pre-examinations is disregarded.

In this work, we investigate approaches to overcome these limita-
tions. Within a CNN architectural design, we propose convolutional
Long Short-Term Memory (C-LSTM) networks to incorporate the tem-
poral dimension. To reduce scanner- and protocol dependent variations
between single MRI exams, we propose a histogram normalization tech-
nique as pre-processing step. The ISBI 2015 challenge data was used for
network training and cross-validation.

We demonstrate that the combination of the longitudinal normaliza-
tion and CNN architecture increases the performance and the inter-time-
point stability of the lesion segmentation. In the combined solution, the
dice coefficient was increased and made more consistent for each subject.
The proposed methods can therefore be used to increase the performance
and stability of fully automated lesion segmentation applications in the
clinical routine or in clinical trials.
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1 Introduction

Multiple sclerosis (MS) is a chronic inflammatory disease of the central nervous
system (CNS) that produces demyelination and axonal/neuronal damage [9].
The demyelinating process is associated with persistent inflammation throughout
the CNS and, as a result, the demyelinated lesion, also known as plaque, is the
main pathological feature of MS [1,10]. Due to its high sensitivity, magnetic
resonance imaging (MRI) is extensively used for diagnosis and monitoring of
MS [29]. However, manual segmentations by trained experts are tedious, time-
consuming and often lack reproducibility [24]. For this reason, automated MS
lesion segmentation techniques have been developed during the last years [29],
and particularly convolutional neural networks (CNN) have gained popularity
for this task, after proving their effectiveness in other neuroimaging tasks [26].

From the perspective of how the data is used to train a model, MS lesion seg-
mentation algorithms can be classified as either longitudinal or cross-sectional.
Longitudinal approaches make use of the time information provided by sub-
sequent scans (known as time-points or visits) of the same patient. In cross-
sectional approaches, all scans, even if belonging to the same patient, are treated
as independent scans and no time information is considered. Only few CNN-
based approaches can be found in the literature that tackle the problem of MS
lesion segmentation in a longitudinal manner.

The first CNN-based longitudinal method found in the literature was pro-
posed in [6]. Although the CNN is used only for classifying candidates extracted
using intensity and atlas information, the method employs different time-points
to perform the task. Another longitudinal method is described in [19], where
the goal is to detect lesion load change using CNNs. To achieve this, a hybrid
between the U-Net [23] and the Dense-Net [16] was used as basis. A special type
of loss function generates probabilities that are used together with the segmen-
tation masks for obtaining information about lesion change. Following this idea
of detecting changes, a CNN is proposed in [27] for detecting new T2-weighted
(T2-w) lesions. This architecture consists of a first block based on Voxelmorph
[4] to learn deformation fields and register the baseline image to the follow-up
images, and a second block to perform the segmentation of new lesions using the
results of the first block.

One important issue when using longitudinal data is the normalization across
time-points, or longitudinal normalization. The goal is to increase the similarity,
in terms of image intensity regarding tissue classes, of the different time-points,
without modifying the structures whose changes are due to pathological condi-
tions. MS lesions are an example of those structures, as they can persist, change
or disappear in time [25]. A statistical normalization method is proposed in [28],
in which all histograms are centered using statistical measures obtained from
the white matter voxels. Other methods based on histograms use landmarks to
perform the normalization across different time-points [21]. Another longitudi-
nal normalization method is presented in [25]. In this case voxel changes in time
are modeled mathematically depending on temporal intensity variations and the
lesion priors are used for keeping the lesion voxels unchanged.
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Following the idea that including longitudinal information in CNNs can pro-
duce better segmentation results [6], this work proposes an effective pipeline
based on the Chi-Square metric and convolutional long short-term memory (C-
LSTM) [15] networks, for the exploitation of longitudinal MRI data for segmen-
tation of MS lesions. To the best of our knowledge, this is the first MS lesion
segmentation longitudinal method that combines traditional CNNs with convo-
lutional recurrent neural networks (C-RNN).

2 Method

2.1 Longitudinal Normalization

A simple yet effective MRI longitudinal normalization based on the Chi-Square
metric χ2 is proposed. The Chi-Square test is commonly used for analyzing the
difference between observed and expected distributions [30], but in this case
only the metric is used to measure and maximize the similarity between the
histograms of volumes of the same modality for different patients and different
time-points. Equation 1 shows the Chi-Metric as a means of comparison of two
histograms Ha and Hb, for voxel intensities I.

Let s, t and m represent subject, time-point and modality, respectively. For
each modality m a reference volume V

(m)

ŝt̂
is selected to normalize the other

volumes V
(m)
st of that modality, with s �= ŝ, t �= t̂. For each V

(m)
st an optimal

scalar θ
(m)
st is found using Eq. 2, where H

(m)

ŝt̂
and H

(m)
st are the histograms of the

normal appearing white matter (NAWM) of V
(m)

ŝt̂
and V

(m)
st , respectively. The

normalized images are the result of the product θ
(m)
st V

(m)
st . To obtain the NAWM

masks, the Computational Anatomy Toolbox (CAT12) [13] applied within the
Statistical Parametric Mapping (SPM12) [22] toolkit was used.

distχ2(Ha,Hb) =
∑

I

[Ha(I) − Hb(I)]2

Ha(I)
(1)

θ
(m)
st = argmin

θ

∑

I

[H(m)

ŝt̂
(I) − H

(m)
st (θ · I)]2

H
(m)

ŝt̂
(I)

(2)

2.2 Network Architecture

In order to exploit time information, an extension of the architecture presented
in [20] is proposed for the segmentation of MS lesions from longitudinal multi-
modal brain images. This architecture is a hybrid between the well known U-Net
and the Convolutional Long Short-Term Memory (C-LSTM) network. Figure 1
shows the architecture. The input patches have size (T , M , H, W , D), where T
and M represent the number of selected time-points to process for each sample
and the number of modalities, respectively. H, W and D represent the height,
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width and depth of the patches in each volume. The patches are extracted from
the volumes that have been previously pre-processed. Just like in the U-Net
architecture, there is an encoder for extracting hierarchical features, but these
are extracted for each time-point separately. These features are then combined,
at the deepest level and for all time-points, by a C-LSTM. After the features
are processed by the first C-LSTM, a decoder upsamples them so that the input
dimensions can be reached again. At the output of the decoder, a second C-LSTM
combines again the features of the different time-points. Finally, the feature maps
corresponding to a specific time-point (e.g. the one in the middle, if T is odd)
are selected and a last convolution takes place to reduce the number of maps to
2, one for each class, lesion or non-lesion.

Fig. 1. U-Net ConvLSTM architecture. Patch dimensions are included in gray text,
where T and M denote the number of selected time-points and number of modalities,
respectively. H, W and D denote the spatial dimensions of the patches in the volumes.
Dashed lines denote skip connections by copying and concatenation.

2.3 Post-processing

After a segmentation is produced, a post-processing step is performed to exclude
potential false-positive (FP) detected lesions. This is achieved by imposing a
minimal lesion size of 3 mm3, as it has been found to improve the performance
of MS lesion segmentation methods [12].

3 Experimental Setup

3.1 Dataset

One of the most popular datasets for MS lesion segmentation is the one pro-
vided by the longitudinal MS lesion segmentation challenge, which was part of
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the International Symposium on Biomedical Imaging (ISBI) in 2015 [17] and
continues to be publicly available. The dataset, acquired with a 3T scanner,
is subdivided into training (5 subjects) and testing (14 subjects) sets. Only the
training set contains lesion segmentation masks generated by two different expert
raters. Each subject contains between 4 and 6 time-points, each of which consists
of T1-weighted (T1-w) magnetization prepared rapid gradient echo (MPRAGE),
T2-weighted (T2-w) and Proton Density weighted (PDw) produced with double
spin echo (DSE) and Fluid Attenuated Inversion Recovery (FLAIR) images. The
average time between subsequent time-points is 1 year [8,17].

Both the original and the pre-processed images are available for use. For this
work, the pre-processed images were used. The pre-processing steps are: first N4
correction, skull-stripping, dura stripping, second N4 correction and registration
to an isotropic MNI template. The proposed longitudinal normalization was
applied on the images that resulted from this pre-processing procedure.

3.2 Longitudinal Normalization Configuration

One important step for the longitudinal normalization is the white matter seg-
mentation. The segmentation was performed on each volume using CAT with the
default parameters. For finding the values of θ

(m)
st , the first time-point of subject

01 was selected as reference for each modality and the Nelder–Mead Simplex
method [11] was employed for the minimization of the distance function.

For comparison purposes, the min-max normalization (Eq. 3) was used as
default normalization. This type of normalization, in which intensity values are
mapped to the interval [0, 1], is one of the methods that can be used as pre-
processing in MRI data [5,7,14]. In Eq. 3 Iorig, Imin and Imax represent the
original, minimum and maximum intensities of a volume, respectively, and Inorm

is the assigned intensity.

Inorm =
Iorig − Imin

Imax − Imin
(3)

3.3 Training and Implementation Details

After having normalized the pre-processed images, a leave-one-out (subject-wise)
cross-validation was performed on the training set. For each fold, from the 4
subjects not used for testing, one was used for validation and 3 for training.
The model was trained using 32 × 32 × 32 patches with step size 16 × 16 ×
16, and extracted only from the brain region using a brain mask generated by
thresholding the pre-processed volumes. All four modalities were used (M = 4)
and three time-points were taken for each training sample (T = 3). Sampling in
time was performed using padding by repeating the first and last time-points.
Training was performed using the Adam optimizer [18] for a maximum of 200
epochs with an early stopping condition of 20 epochs, and a batch size of 16.
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To deal with the class imbalance (more normal tissue as compared to lesion
tissue), the dice loss function was used. All models were trained with only one
segmentation mask (mask1) of the two available, and the validation subjects were
randomly chosen a first time obtaining the order 03, 03, 04, 05, 02, and then
set to be the same for all experiments. No data augmentation was performed in
order to increase the comparability between different experiments.

The proposed model was implemented in PyTorch, using a GPU NVIDIA
Tesla T4.

3.4 Evaluation

Four experiments were carried out for determining the advantages of the nor-
malization procedure and the longitudinal architecture: the cross-sectional ver-
sion of the model (without ConvLSTM blocks and without considering the time
dimension), which is a normal 3D U-Net, for both min-max and the proposed
normalization; and the proposed model (Fig. 1) also for both types of normal-
ization.

In order to evaluate the performance of the method, the Dice score (DSC),
lesion-wise false positive rate (LFPR) and lesion-wise true positive rate (LTPR)
were used. The DSC is computed according to Eq. 4, where TP, FP and FN
denote number of true positive, false positive, and false negative voxels, respec-
tively. The LFPR is the number of lesions in the produced segmentation that
do not overlap with a lesion in the ground truth, divided by the total number
of lesions in the produced segmentation. The LTPR is computed as the num-
ber of lesions in the ground truth that overlap with a lesion in the produced
segmentation, divided by the total number of lesions in the ground truth [2].

DSC =
2 × TP

2 × TP + FP + FN
(4)

4 Results

The results of the normalization process are presented in Fig. 2 for all pre-
processed training subjects of the dataset.

Table 1 shows the mean values of the metrics for the four evaluated cases,
computed for all time-points of all subjects. An increase is noticed in the DSC
and LTPR, particularly, when the longitudinal approach is combined with the
proposed normalization. Figure 3 shows an example of a segmentation result for
which a higher DSC in the longitudinal approach denotes a better segmentation
quality with respect to the cross-sectional (3D U-Net) version.
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Fig. 2. Histograms of training cases for both considered normalization techniques. Only
brain tissue is considered in the computation of the histograms.

Table 1. Cross-validation comparison of the proposed longitudinal normalization and
architecture with the min-max normalization and U-Net architecture using “mask1”
as ground truth. Standard deviations are presented in parenthesis.

Case Mean DSC Mean LFPR Mean LTPR

U-Net (min-max norm.) 0.636 (0.194) 0.396 (0.143) 0.616 (0.189)

U-Net (proposed norm.) 0.651 (0.148) 0.453 (0.240) 0.664 (0.198)

Proposed architecture (min-max norm.) 0.652 (0.146) 0.439 (0.213) 0.638 (0.185)

Proposed architecture (proposed norm.) 0.699 (0.090) 0.462 (0.190) 0.672 (0.174)

5 Discussion and Conclusion

We have proposed a supervised longitudinal pipeline for MS lesion segmenta-
tion from MRI images. The approach combines a whole-volume longitudinal
normalization scheme with a patch-based 3D CNN architecture that exploits
time information. The method was evaluated on data from the ISBI 2015 chal-
lenge, obtaining an improvement in the DSC and LTPR with respect to a cross-
sectional architecture and with respect to a simple normalization algorithm.
Time padding allowed to reduce the impact of the reduction of samples that
occurs when the time dimension is considered. Both intra- and inter-subject
standard deviations were reduced in comparison to the cross-sectional approach
for the DSC metric, which denotes more consistent segmentations in time. How-
ever, the LFPR increased for the proposed pipeline, which can be explained,
to a certain extent, by the fact that in several cases (e.g. Fig. 3), the normal-
ization and the C-RNN-based architecture allow to segment lesions that were
not segmented for example in the cross-sectional case. These new lesions can
represent a single lesion in the ground truth and therefore the LFPR is expected
to increase. Ensembling several models could be used for reducing the amount
of false positive lesions, while keeping high DSC and LTPR values. When com-
pared to other approaches like for instance [7] in which the DSC for the same
cross-validation was 0.684, or to [2] with a DSC of 0.698, our DSC (0.699) is
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Fig. 3. Example of resulting segmentation masks from cross-validation experiment for
patient 01, slice 89 from the ISBI training dataset for cross-sectional and longitudinal
models. Masks are shown on FLAIR images and t denotes time-point index. The stan-
dard cross-sectional approach (second column) leads to unsegmented lesions especially
on t = 2. Both proposed techniques improve the segmentation when applied individu-
ally (third and fourth columns), while the combined method (last column) yields the
best results as compared to the ground truth.

similar to these values, but it is lower than the best reported result, which is
0.765 [3]. Considering the absence of data augmentation in our experiments, our
approach offers promising results.

The proposed CNN architecture requires a higher training time (about 1.5x
the time of the cross-sectional approach), which can be seen as a limitation,
but the improvement in both the time consistency and values of segmentation
metrics justifies the increase in training time. The increase in training time also
strongly depends on the implementation of the C-LSTM, which in our case has
not yet been optimized for time efficiency.

In comparison to other normalization methods such as histogram match-
ing, the proposed method allows to preserve the basic shape of the histograms,
which prevents from loosing information about the lesions and other structures.
The optimization of the similarity reduces problems that peak/landmark based
methods can show when the histograms differ too much before normalization.
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We chose an approach using a pre-segmented WM mask, assuming that normal-
izing the surrounding tissue value of white matter lesions optimally supports the
detection of the pathological lesions. This approach relies on a rough segmenta-
tion of the white matter before applying the CNN. However, the normalization
can also be applied on the original histograms, at the cost of a higher influence
of the lesion volume in the quality of the normalization.

The longitudinal normalization pre-processing method increased the robust-
ness of a trained network in respect to the histogram variations of the input
data, which were present in the ISBI 2015 training data. Thus, it is a promising
technique to be applied also on MRI data from various sources, e.g. in the con-
text of multi-center trials. Future work of our group will therefore include the
validation of the algorithm on heterogeneous real-life data.

Diagnosis and treatment decision based on lesion inspection on MRI data is
a central aspect in MS. The clinical workflow also contains the comparison to
pre-examinations to assess inflammatory activity. This process is tedious when
looking at up to above 100 slices in high resolution imaging, at least four modal-
ities and several pre-examinations. Still, common solutions for automated lesion
segmentation do not rely on neural networks and are not typically applied in
the clinical setting. Thus, our work is highly relevant as it investigates ways to
improve the state-of-the art regarding the important aspect of longitudinal anal-
ysis, in order to make longitudinal lesion segmentation applicable and reliable
in clinical MS neuroimaging.
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