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Abstract. Nowadays, on the one hand, due to the increase of equipment and smart
environments, increasing attention to intelligence and the need to knowmore about
the pose and shape of humans in these smart environments, and on the other hand
the increase of being integrated the virtual world with the real world caused that
the proper representation of humans in the virtual world has a great importance.
Hence, human analysis of images has become very important. However, this work
of human analysis not only goes beyond estimating a two-dimensional pose for one
or multiple person, but it also goes beyond estimating a simple three-dimensional
skeleton.

The estimation of 3D human pose and shape of images has received special
attention due to various applications in the real world.

After studying and reviewing the papers in this field, it can be concluded that
the existing approaches to obtain these estimates can be broadly grouped into
two main approaches. An optimization-based approach and a deep learning-based
approach are presented in which deep learning-based approaches are made in two
methods: parametric and non-parametric.

Optimization-based approaches provide the most reliable solution for obtain-
ing these three-dimensional estimates. However, optimization-based approaches
are slow to implement, sensitive to appropriate initialization, and often fail due to
weak local minimums. So, the focus is on deep learning approaches that regress
poses and shapes directly from images. But on the drawbacks, can be said of these
deep learning-approaches require a lot of training data and time-consuming; in
the other words, their execution time is also high and produce low-resolution 3D
predictions. So after reviewing both available approaches, it is found that both
methods are challenged to obtain acceptable results. In this paper we have men-
tioned the optimization-based approaches in general and our main focus is on the
deep learning-based approaches.
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1 Introduction

Smarting is one of the most attractive topics that technology manufacturers and technol-
ogy customers have shown interest in recent years. A survey on the concept of smarting
can be found in a personal vehicle, smart cars, smart home, smart building, and even in a
smart city. For more detailed and perhaps more specialized examination of smartening,
an environment such as a home, a hospital, or an office with a smart management center
(or decision center) is considered. After studies and efforts to increase the smartening of
this environment, it is concluded that in these environments, to increase smartening, one
of the basic needs is to increase the ability of the management center to communicate
effectively with the environment and the elements in those environments.

Table 1. The table above shows the main approaches for estimation 3D human pose and shape

Given the most important element of any environment can be considered human, so
recognizing more and more human poses and shapes leads to a better understanding of
the environment, and as a result in many cases leads to increased smart decision-making
power. Therefore, with the increasing integration of virtual environments with humans
as the most important element in the scene and to increase the relationship between
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virtual environments and everyday life, one of the most basic and challenging tasks is
human perception of available two-dimensional images and its analysis. Estimation of
2D and 3D human pose and shape (mesh) from images is done for the purpose of under-
standing and analysis. Due to the comprehensiveness outputs of these estimating, it can
be immediately used in animation, correction, measurement, manipulate and reload to
be used. However, their most important application is in the smartening of environments
and buildings that deal with humans in some way.

In general, the proposed approaches for estimation 3D human pose and shape from
images categorized in optimization-based and deep learning-basedwhich is shown in the
Table 1. Each of these approaches has advantages and disadvantages, which according
to trade-off of speed and accuracy, one of the methods of these two approaches has been
used. All our efforts are to introduce the best methods for reconstructing and estimating
the human pose and shape from in-the-wild images so that we can use them to have
smarter environments. Therefore, in this article, we try to present the approaches and
methods for those who want to choose an approach and method according to their
datasets and environment by reviewing the approaches and summarizing the available
methods. Our main aim is on presenting the deep learning-based approaches, so the
optimization-based approaches are mentioned in general.

2 Optimization-Based Approaches

In optimization approaches [12], the best answer (according to a set of criteria) is selected
from a set of possible answers for a specific problem. The goal is minimizing or max-
imizing of a Real Function. In general, the term optimization refers to a process that
aims to find the best values of one (or more) functions in a defined domain. That is,
the problem is finding the best answer from a set of possible candidate answers. The
methods that use an intermittent optimization scheme to update parameters locally are
sensitive to initial values.

The work of Zhou et al. In 2015 [12] is a convex relation approach which estimate
3D Shape from 2D Landmarks. This method uses an augmented shape-space model,
in which a shape is represented as a linear combination of rotating base shapes. It can
show a linear representation of both intrinsic shape deformation and exterior viewpoint
changes. Convex relaxation of orthogonality constraint to convert the entire problem into
a spectral norm regularized linear inverse problem, which is a convex program. So this
convex relaxation provides an efficient algorithm for solving global convex applications.

Another method to this approaches is an Improved Method for 3D Shape Estimation
Using Active Shape Model (ASM), [20] which presented by Hoang et al. In 2017 [24].
This work uses the active shape model to estimate 3D poses and shapes as a linear
combination of predefined basic shapes and fits with the 2D input landmarks. This
model has improved the execution time and output accuracy by categorizing the data
into sub-spaces.
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3 Deep Learning-Based Approaches

Deep Learning-Based Approaches Description
Over the past decade, Deep Learning and Computer Vision have been among the inter-
esting areas of research in Artificial Intelligence and Machine Learning. Therefore, it
is normal for researchers in these two fields to pay more attention to the use of deep
learning models in computer vision, and the next logical step is to move forward in the
field of computer vision. As a result, the field of computer vision is shifting from statis-
tical methods to deep learning. There are still challenging problems in computer vision.
Nevertheless, deep learning methods are achieving state-of-the-art results to solve some
specific problems. One of the most important models of deep learning for computer
vision and its applications in related fields are convolutional neural networks (CNN)
which by applying it, state-of-the-art results have been obtained.

In this section, methods based on deep learning that has been done in both parametric
and non-parametric ways and their significant impact on the results are expressed.

3.1 Parametric Approaches

A parametric model records all its information about the existent data in its parameters.
That means to predict the amount of future data from the current state of the model,
only its parameters are needed. For example, linear regression with one variable has two
parameters. If these two parameters are available, a new value can be predicted. On the
other hand, a non-parametric model can capture more subtle aspects of data.

Parametric approaches, also considered “traditional”, require a number of hypothe-
ses. This approaches includes linear regression, logistic regression, linear differentiation
analysis and so on.

3.1.1 End-to-End Recovery of Human Shape and Pose

This is an end-to-end framework for the full 3D Human Mesh Recovery (HMR) of the
human body by a single RGB image [1]. This work describes the shape and angles
of parameterized 3D joints. The main purpose of which is minimizing the projection
function of key-points, (Due to its existing network, this approach makes it possible to
train the model with real images that only include 2D Ground truth interpretations. As
a result, it eliminates the need for costly 3D ground truth. It has also used an adversarial
training to check the reality of production parameters. To evaluate the productionmeshes
in an adversarial network, there is a database of 3D meshes of the human body with
various shapes and poses. These meshes do not necessarily need the corresponding
images, so this data is expressed as unpaired.

In this network, the Skinned Multi-person Linear (SMPL) model [11] is used, which
Parameterizes the body mesh by 3D joint angles (pose) and linear shape space (shape)
with low dimension. The full 3D mesh of the human body is reconstructed directly with
a forward-looking process of a single RGB image.

In this method Convolutional features of the image are sent to the iterative 3D
regression module whose objective is to infer the 3D human body and the camera such
that its 3D joints project onto the annotated 2D joints. The inferred parameters are also
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sent to an adversarial [11] discriminator network whose task is to determine if the 3D
parameters are real meshes from the unpaired data [7]. This encourages the network
to output 3D human bodies that lie on the manifold of human bodies and acts as a
weak-supervision for in-the-wild images without ground truth 3D annotations. Due to
the rich representation of the 3D mesh model, this data-driven prior can capture joint
angle limits, anthropometric constraints (e.g. height, weight, bone ratios), and subsumes
the geometric priors used by models that only predict 3D joint locations.

More concretely, the shape and pose resulting from SMPL [12] decomposition are
mirrored, and train a discriminator for shape and pose independently. The pose is based
on a kinematic tree, so the pose discriminators are decomposed and train one for each
joint rotation. An overview of this framework is shown in Fig. 1. HMR has the ability to
train with or without the use of any paired 2D-to-3D supervision. Because of that during
the training, all images are with 2D ground truth joint interpretations, and in some cases,
3D interpretations are considered. When Ground truth 3D information is available, it is
used as an intermediate loss. The overview of proposed framework:

Fig. 1. An image I is passed through a convolutional encoder. Then it sent to an iterative 3D
regression module that infers the latent 3D representation of the human that minimizes the joint
reprojection error. The 3D parameters also are sent to the discriminator D, whose goal is to tell us
if these parameters come from a real human shape and pose or not [1].

In this approach, amodelwithout any3Dmonitoringpairs is also trained.Allmethods
approximately rely on direct 3D supervision and cannot train without it. Given these
challenging learning setting, the results of this method are very competitive.

3.1.2 Learning to Estimate 3DHuman Pose and Shape from a Single Color Image

Conv-Net approaches do not work well for estimation due to the lack of training data
and low-resolution 3D predictions. Therefore, iterative optimization approaches prevail
in this way, despite the high execution time and their common failures due to local
minimums.
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The new solution is a direct prediction of the pose and shape of the color image,
and aims to bridge this gap and provide an effective Conv-Net-based approach. This
method is a two-step approach that is the main part of the SMPL statistical body shape
model combination approach in an end-to-end framework. Advantages of this method
Fully accurate 3D estimates, requiring a small number of parameters and direct net-
work prediction is possible, accurate and therefore easier using only 2D key points and
silhouettes. As a result, the limiting assumption of a lack of natural images with 3D
Grand truth for training is weakened. And while parametric model examples are used
to teach 2D to 3D inference, the available 2D image interpretations can be used to teach
2D inference. One of the important advantages of using this parametric model is that its
structure allows the use of a 3D loss at each vertex of the estimated 3D mesh at the time
of training, and optimizes it directly for the surface. This loss correlates better with the
3D head-to-head error typically used for evaluation, and improves training compared to
parametric regression.

Finally, a separable rendering is used for the 3D mesh effect generated by the 2D
image, whichmakes it possible to adjust a differentiable renderer to project the generated
3Dmesh back to the 2D image. A schematic framework of thismethod is shown in Fig. 2.
Schematic framework of the method:

Fig. 2. (1) An initial Conv-Net predicts heat-maps, and 2D masks using 2D pose data to train.
(2) The two networks estimate the parameters of the SMPL statistical model using examples of
parametric models for training. (3) The framework can be adjusted end-to-end without the need
for 3D grand truth images [11].

Instead of using twoConv-Nets, oneConv-Net is trained asHuman2D,which follows
a stacked hourglass design [2], (using 2 hourglasses) that deals well between accuracy
and execution time. And it has 2 outputs, one for key points and the other for silhouette.
The output is a key point in the form of heat maps, and the Silouette outputs has two
body and background channels using a pixel-wise binary cross-entropy. The second step
of the work requires estimating the pose and 3D shape of the whole body from these key
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points and 2D silhouettes. This mapping can also be learned from the data for which 2
components of the network are trained:

1) Pose-Prior:

Its inputs are 2D key-point locations with the confidence of the detections (realised
by the maximum value of each heat-map) and its outputs are estimates of 72 the pose
coefficients θ.

2) Shape-Prior:

Its inputs are the silhouette and its outputs are estimates of 10 the shape coefficients β.
This method creates a modular path (i.e. updating Pose-Prior without retraining the

entire network). The type of these inputs and outputs allows a large amount of training
data to be generated by producing SMPL model samples with different 3D poses and
shapes.

3.1.3 Neural BodyFitting:UnifyingDeepLearning andModel BasedHumanPose
and Shape Estimation

This model-based method estimates the parameters from a single color image by a
statistical body model. Traditional model-based approaches often have a goal function
that measures the fit between the model and image observations. They do not require
3D training data but must be initialized. While forward-looking models such as CNNs,
which directly predict key points, do not require initialization, images with 3D pose
interpretations should be available. The CNN architecture provides a link to take advan-
tage of both methods and does not require initialization and large amounts of 3D training
data. The Neural Body Fitting (NBF) approach [13] integrates a statistical body model
[12] within a CNN, leveraging reliable bottom-up semantic body part segmentation and
robust top-down body model constraints.

This work makes several principled steps towards a full integration of parametric 3D
human pose models into deep CNN architectures, and use a region-based 2D representa-
tion, namely a 12-body-part segmentation, as an intermediate step prior to the mapping
to 3D shape and pose. This segmentation provides full spatial coverage of a person as
opposed to the commonly used sparse set of key-points, while also retaining enough
information about the arrangement of parts to allow for effective lifting to 3D. The NBF
method is a linked architecture that integrates a human body model into a deep learning
architecture (CNN) and uses body partitioning as an intermediate representation. From
a color image or meaningful image segmentation, it directly predicts the model parame-
ters, and these parameters are transferred to the flexible and realistic SMPL body model
to produce 3D mesh, and then to evaluate the cost function in 2D space, 3D joints are
projected to 2D images. NBF therefore accepts both full 3D supervision (in the model
or 3D Euclidean space) and weak 2D supervision (if images with only 2D annotations
are available).
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The goal is to build a simple processing path with components that can be optimized
in isolation to reduce both the number of hyperparameters and interactions and to train
the components of the model sequentially.

There are 2 main step in this architecture:

1) Segment the predicted body parts from color images (first receives the input cut
(512 × 512) and produces a component segmentation. A RefineNet model (based
on ResNet-101) is used. This component partition is in the form of color code (color-
coded) and its size has been changed to (224 × 224) and is given to the second step
as an RGB image).

2) Use this segmentation to predict the lower dimension parameters of the mesh (this
step itself consists of two parts: a regression network (ResNet-50) whose output is
226 to the SMPL parameter (shape and pose) and a set of non-trainable from the
layers that implement the SMPL model and an projection image).

NBFpredicts the parameters of the bodymodel from a color-coded part segmentation
map I using a CNN-based predictor parameterized by weights w. The SMPL model and
a simple 2D projection layer are integrated into CNN estimator. Depending on the kind
of supervision used to train, output a 3D mesh, 3D skeleton joint locations or 2D joints.
This flexible implementation allows us to experiment with the 3D losses only for parts
of the data, moving towards a weakly supervised training scenario that avoids expensive
3D labeled data. With 3D information for only 20% of our training data, we could reach
similar performance as with full 3D annotations. This encouraging result is an important
finding for the design of future datasets and the development of 3D prediction methods
that do not require expensive 3D annotations for training.

3.1.4 3D Human Pose Estimation Using Cascade of Multiple Neural Networks

This method proposes a method called cascade of multiple neural networks (CMNN)
[24] in following two steps:

1) Create the initial estimated 3D shape using the Zhou et al. [28] method with a small
number of basis shapes,

2) Make this initial shape more alike to the original shape by using the CMNN. In com-
paring to existing works, the proposed method shows a significant outperformance
in both accuracy and processing time.

In this method, the problem of 3D-to-2D compatibility has been done according to
the ASM method. The way to use the CMNNs to estimate 3D shapes:

First, from the input 2D shape, the initial estimated 3D shape is created by using
Zhou et al. method. Then, this shape is adjusted by the CMNN [25] to make it more
resemblance to the real 3D shape. This proposedmethod uses the Zhou et al. methodwith
a small number of predefined basis shapes to make sure it can be used in the real-time
application.

Network input: includes the coordinates (x, y) of the 2D input (X), and the z coor-
dinates of S— (t−1). Network output: An update vector to generate the z coordinate of
S— (t). The structure if cascade is shown in Fig. 3. The cascade consists of T stages
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C = {C1, . . ., CT}. Each stage Ct includes L neural networks. Each neural network
predicts an update vector for q ∈ [1, p] joints, and consists of one input layer with 3 ×
P nodes, two hidden layers each containing 20 nodes, and an output layer with q nodes.
The update vector at stage t is the combination of the outputs of all neural networks in
this stage.

Fig. 3. The cascade consists of T stages. There are L neural networks in each stage. The combi-
nation of outputs of L neural networks is the update vector for the current estimated shape ˆ S.
Each neural network has four layers: an input layer, two hidden layers, and an output layer [25].

At the training step after learning the dictionary of basis 3D shapes, the 2D shapes of
all 3D shapes in the training data are created by projecting the 3D joints to a 2D plane.
Then, the initial-estimated shapes 3D shapes ˆ S(0)s of these 2D shapes are initialized
by using the method proposed by Zhou et al. The target to train the neural network is
the difference between the (z) coordinate of the current estimated shapes ˆ S(t − 1)s and
the ground truth shapes Ss of q joints corresponding to this neural network.

The overview of the CMNN:

3.1.5 ConvolutionalMeshRegression forSingle-ImageHumanShapeReconstruc-
tion

The purpose of this method is to address the problem of estimating posture and shape
by trying to reduce reliance on the parametric model, which is usually SMPL. In this
method, the poses and shapes are regressed directly from the images. This approach
[16] proposed to take a more hybrid route towards pose and shape regression. While
maintaining the SMPL mesh topology, for an input image, instead of directly predicting
the model parameters, the positions of the 3D mesh vertices are first estimated. To
achieve this, the Graph-CNN architecture is proposed, which explicitly encodes the
mesh structure and, while the regression target is for each vertex of its 3D location,
processes the image properties attached to its vertices. Each typical CNN is used to
extract the features attached to the coordinates of the vertex of the pattern mesh, and the
processing on the graph structure defined for Graph-CNN continues, and finally each
vertex deforms its 3D position in the mesh to finds targets.
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This makes it possible to retrieve the full 3D geometry of the human body without
the explicit need for a predefined parametric space, and after estimating the 3D position
for each vertex, if the existing prediction is required to match a particular model, the
parameters can be regressed it frommesh geometry. The first part of thework is an image-
based CNN that extracts the general feature of the input representation and follows the
Resnet-50 architecture whose final fully connected layer is ignored and only the 2048D
feature vector after the pulling layer. Is kept. To regress the 3D coordinates of the vertices
of the mesh from the CNN graph, this method starts from a template human mesh with
N vertices as depicted in Fig. 4. The architecture starts from a patterned human mesh
with N vertices, and according to the extracted feature vector 2048D, these attributes are
attached to the 3D coordinates of each vertex in the pattern mesh.

Fig. 4. Depending on an input image, CNNwill encode the image into a low-dimensional feature
vector. This feature vector is embedded by placing it in three-dimensional coordinates of each
vertex i in the graph specified by the template human mesh. It then processes through a series
of convolutional Layers and processes the coordinates of the three-dimensional vertices of the
deformed mesh [16].

TheCNNgraph uses the 3Dcoordinates of each vertex alongwith the input properties
as input, and the purpose of estimating the 3D coordinates for each vertex in the output is
the deformation mesh. The existing processes are by graph convolution layers, in which
the formulas of the approach ofKipf et al. [17] are used. For the graph convolution layers,
this work makes use of residual connections as they help in speeding up significantly
the training and also lead in higher quality output shapes. Also, Batch Normalization
[19] is replaced by Group Normalization [32]. Batch Normalization leads to unstable
training and poor test performance, whereas with no normalization the training is very
slow and the network can get stuck at local minima and collapse early during training.
Besides the 3D coordinates for each vertex, this Graph CNN also regresses the camera
parameters for a weak perspective camera model. Following Kanazawa et al. [12], this
work predicts a scaling factor s and a 2D translation vector t. Since the prediction of
the network is already on the camera frame, so there is no need to regress an additional
global camera rotation. The camera parameters are regressed from the graph embedding
and not from the image features directly. This way gets a much more reliable estimate
that is consistent with the output shape.



A Survey on Deep Learning-Based Approaches 901

In general, this hybrid approach is comparable to model-based approaches and is not
largely sensitive to the type of inputs. And it allows us to connect features extracted from
RGB pixels, segmentation of meaningful segmentations or even dense correspondence.
The overview of proposed Framework:

It should be noted that model-based approaches create precise meshes of naked
bodies under human clothing, but are unsuccessful in estimating the details and elements
of the model, such as hair or clothing. On the other hand Non-parametric volumetric
approaches estimate complete shapes but are limited in resolution and partial estimates.

3.1.6 Texture-Pose: Supervising Human Mesh Estimation with Texture Consis-
tency

Asmentioned, due to the lack of natural imageswith three-dimensional shape grand truth
for training, the main challenge is reliable resources. This work [4] has relied on more
clues that are present in natural images without the need for additional interpretations or
changes in network architecture and are often ignored. Texture-Pose is a neural network
training approach for model-based human pose estimation, with direct supervision of
natural images. This method uses the conclusion that a person’s appearance does not
change significantly in a short film or for multi-view images.

This seemingly insignificant and often overlooked cue goes a long way for model-
based pose estimation. This parametric model is used to calculate the texture map for
each frame, assuming it is fixed. Which makes each point of the texture map have the
same value in all frames. Due to the texture transfer in the space of this map, there
is no need to calculate the camera movement and assume that the frames are smooth.
This general formulation makes the approach flexible and practical, especially in video
images and duplicate images. The parametric model used in this work is also SMPL.
The joints of the body X are the linear composition of the vertices of the mesh, so using a
pre-trained linear regressor W, the mesh can be mapped to the desired joint (X = WM).
The overview of this work is shown in Fig. 5.

Fig. 5. Here, for simplicity, the input during the training contains two j, i images of the same
person. The basic assumption is that a person’s appearance does not change dramatically in the
input images (i.e., the frames are made from a single film, or from synchronized multimedia
cameras). The deep network works on both the image and estimates the shape of the person. After
that, the projected shape is scattered on the image and after creating visibility for any point on the
surface, texture maps Ai and Aj are created [4].
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SMPL production meshes are modifications of the original T pattern. The corre-
sponding UV map guides the pattern surface onto an A image, a texture map of each
pixel t called texel. Bymaking themapping between the textiles and themesh, the surface
coordinates become fixed and independent of the changes in the surface geometry in 3D.
The goal is to learn a predictor f that is perceived by a deep network and maps a single I
input image to the parameters of a person’s pose and shape on the image. The network
output specifies the SMPL position and shape parameters. This deep network, with the
exception of the output, regresses the 3D rotations with the representation provided by
Zhou et al. [31]. The overview of the proposed texture consistency supervision:

The important observation, (that the person’s appearance remains constant translates
to a texture consistency loss), forces the two texture maps to be equal for all points on
the Vij surface that can be seen in both images. This lass acts as a network monitor and
complements other weak lasses commonly used in training.

According to the parameters of the pose and the shape of the mesh M and the
corresponding 3D joints, X is generated.

The mesh can be projected to the image using the estimated camera parameters.
Through efficient computation (MPI-IS. Mesh processing library. https://github.com/
MPI-IS/mesh.), this work can infer the visibility for each point on the surface, and
as a result, for every texelt of the texture map A. To guarantee that this method gets
a valid 3D shape, this method used the adversarial prior, which factorizes the model
parameters into: (i) pose parameters θ, (ii) shape parameters β, and (iii) per-part relative
rotations, that is one 3D rotation for each of the 23 joints of SMPL. In the end, it trains
a discriminator D k for each factor of the body model. When there is access to multiple
views i and j of a subject at the same time instance, then the main additional constraint
it needs to enforce is that the pose of the person is the same across all viewpoints. This
could be incorporated, by simply forcing all the pose parameters to have the same value.
This generic formulation makes this approach particularly flexible and applicable in
monocular video and multi-view images alike.

3.1.7 Estimating Human Shape Under Clothing from Single Frontal View Point
Cloud of a Dressed Human

In general, model-basedmethods are not practical for estimating loose clothing, but non-
modeled, free-change methods, because they are not limited to the naked body space,
can hold clothing or other surface details but cannot shape Estimate the actual clogged
with clothing.

In this approach, the advantages of both methods are combined and a personalized
statistical body model is presented that describes the clothes as deviations from the
parametric model of naked man. This approach is the first method to accurately estimate
the parameters of the naked body shape from the depth or point cloud images of the
uniformed front view of a dressed man, which has been proposed to deal with the
situation of comfortable clothes, and a new target function has been designed that offers
the benefits ofmodel-based shape estimation and free variations for comfortable clothing.
Provides free changes to deal with casual wear. The task is to estimate the naked shape
parameters of a human wearing casual clothing from single-frame point cloud. Depth
images of humans are captured by only one Microsoft Kinect Sensor v2. So the point

https://github.com/MPI-IS/mesh
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clouds generated from depth images only contain part of clothed human surface which
is visible to the depth camera. The overview of this method is displayed in Fig. 6. The
overview of proposed method:

Fig. 6. At first, according to 3D joint locations which are automatically detected by algorithm [8]
integrated in Kinect, the shape and pose parameters of model are initialized. Then, according to
input front-view point cloud, multi-step searching for correspondences and optimizing are applied,
and finally, the estimated shape parameters and estimated model are obtained [6].

In order to personalize the original SMPL model [11] for dealing with the task of
estimating shape under casual clothes, a set of auxiliary variables Dcp applied to model
template T is used to describe personalized deviation for more accurate shape estima-
tion. Shape and pose parameters are initialized according to 3D articulated locations
automatically by the algorithm in the approach of Alldieck [22], Video-based remake on
Kinect. If the human height is known, the shape parameters are controlled to make the
model height more realistic, and if it is unknown, the human height can be calculated
with 3D joint locations. Then, due to the drastic changes in the human condition, the
focus is more on the global orientation of the body. Finally, the corresponding pairs of
vertices (vi, pi) are found, where v is the vertex of the body model and p belongs to
the point cloud. To be specific, they are achieved by calculating the rigid transformation
of torso, and 3D rotation of limbs respectively. The important part of this work is its
objective function which is minimized in the last step. In this work, theMicrosoft Kinect
v2 sensor is used for training. And the performance of the work is compared with other
methods that have different objective functions and the existing method is selected as
the most effective method.

3.1.8 Indirect Deep Structured Learning for 3D Human Body Shape and Pose
Prediction

This method [21] is used for indirect training of deep networks, for structural prediction
of three-dimensional human shape and pose, and has been proposed due to the need to
reduce reliance on expensive three-dimensional Grand truth labels. Unlike most modern
approaches, this method of training in real-world images does not require hard-to-obtain
3D human-shape tags, but instead uses the trained decoding power of artificial data. To
achieve this goal, an encryption-decryption network (Auto Encoder) is trained using the
two-step method described below.

In the first step, an encoder is trained to predict a body silhouette using SMPL
parameters (a statistical body shape model) as input. In the second step, the entire
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network is trained on the actual image and the corresponding silhouette pairs, while the
encoder is held constant. As a result, this method allows indirect learning of body shape
and posture from real images without the need for Grand truth parametric data. In this
work the encoder and decoder split into three units each, serving particular purposes
as described in Fig. 7. As a result, this method allows us for an indirect learning of
body shape and pose parameters from real images without the need for any ground truth
parameter data. Components of proposed encoder-decoder network:

Fig. 7. The figure above shows the main components of the encoder-decoder network of the
existing approach [21].

For ease of explanation, the encoder is divided into appearance, compression and
transmissionunits. The appearanceunit teaches convolutional filters for human silhouette
and background separation. The compression unit further compresses the output of the
appearance unit to a vector of dimensions 64 × 1 × 1. The transfer unit then converts
this vector into shape and pose parameters using three fully connected layers. Similarly,
decoders are divided into units of transmission, expansion, and learning. The transfer
unit converts 3D shape and pose parameters into a low-dimensional image (9 × 9), an
8-channel image through three fully connected layers, and a deformation layer. This
method has shown high accuracy in artificial images. While the accuracy of the method
in real-world images decreases, even when using training methods, by not exposing any
real image and a pair of corresponding shape and pose parameters, it can regain a close
fit to Grand truth. On the other hand, by implementing more complex architectures in
the network of this method and additional higher quality training data, it is possible to
enable the proposed method to compete with modern direct learning approaches.

3.2 Non-parametric Approach

The non-parametric model allows more information to be provided from the current
data set so that future data can be predicted. Usually these parameters can express the
properties of the data much better than the parametric models, have a greater degree
of freedom and are more flexible. For example, a Gaussian mixed model has more
flexibility. If more data is observed, future data can be predicted even better. So knowing
only the parameters is enough for a parametric model to predict new data. In the case of
a non-parametric model, the prediction of future data is based not only on the parameters
but also on the current state of the observed data.
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3.2.1 Moulding Humans: Non-parametric 3D Human Shape Estimation
from Single Images

While the recent progress in convolutional neural networks has allowed impressive
results for 3D human pose estimation, estimating the full 3D shape of a person is still
an open issue. Model-based approaches can output precise meshes of naked under-
cloth human bodies but fail to estimate details and un-modelled elements such as hair
or clothing. On the other hand, non-parametric volumetric approaches can potentially
estimate complete shapes but, in practice, they are limited by the resolution of the output
grid and cannot produce detailed estimates.

This method [23] uses a binary depth map representation to show and encode the
3D shape. To reconstruct the full 3D human shape, there are two depth maps, a depth
map that records the visible surface elements that are directly visible in the image, and
a hidden depth map that records the blocked surface of the estimate.

In general, this method designs an encoder decoder architecture that takes the sin-
gle image as input and simultaneously creates an estimate for both depth maps. These
depth maps are then combined to obtain a full 3D surface point cloud that can be easily
reconstructed using Poisson reconstruction. And produce high-resolution outputs with
the same amount of image input but much smaller dimensions than vertex-based vol-
ume representations (O (N2) compared to O (N3) where N is the size of the box that
restricts humans. Frames in the input image). This (depth or deep) depth-based model
also provides a competitive separator to improve the accuracy and humanity of 3D out-
put. To reconstruct the full 3D human shape, there are two depth maps, a depth map that
records the visible surface elements that are directly visible in the image, and a hidden
depth map that records the blocked surface of the estimate, which is shown in Fig. 8.
Non-parametric representation for human 3D shape:

Fig. 8. With a single image, “visible” and “hidden” depth maps are estimated from the camera.
Two depth maps can be viewed as two halves of a virtual “pattern” template [23].

Two 2D depth maps z vis and z hid according to a 3D mesh, obtained by animating a
3D human model or by reconstructing a real person from multiple views, and according
to a camera hypothesis, i.e. location and parameters, by ray-tracing is introduced. To
keep the depth values within a reasonable range and estimate themmore accurately, a flat
background a distance L behind the subject to define all pixels values in the depths maps
in the range [− z orig . . . L]. The method framework is based on the stacked hourglass
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network proposed by Newell et al. (Alejandro Newell et al. 2016), and designed a 2-
stack hourglass architecture that takes as input an RGB image I cropped around the
human and outputs the 2 depths maps zvis and zhid aligned with I. See Fig. 9. Each of
these modules has a set of convolutional and pooling layers that process features down
to a low resolution and then up-sample them until reaching the final output resolution.
The error obtained in mould-representating of this method is reduced and converged to
a minimum value that corresponds to surface details that cannot be correctly encoded
even with high resolution depth maps, i.e. when some rays intersect more than twice
with the human surface for particular poses.

Fig. 9. According to a single image, “visible” and “hidden” depth maps are estimated. 3D dot
clouds from these two depth maps are combined to form a 3D dot cloud of the whole body, as if
they hold two halves of a pattern [23].

Finally, a competitive trainingmethod is followed according to the Generative adver-
sarial network (GAN) [5], which is a framework for estimating productive models
through an adversarial process, in which two models simultaneously, a productive G
model that distributes the data. Obtains and teaches a discriminant model D that esti-
mates the probability of a sample coming from training data or from generator G. The
goal in this section is to accurately distinguish Grand truth depth maps from generated
ones. The overview of proposed approach:
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The 3D figure is reconstructed using Poisson [14] reconstruction, and to increase
the humanity of the estimate, a competitive training with a discriminator has been used.
This method can recover detailed surfaces while keeping the output to a reasonable
size. This makes the learning stage more efficient. And this architecture can also effi-
ciently incorporate a discriminator in an adversarial fashion to improve the accuracy and
“humanness” of the output.

Table 2. The table above shows an overview of the optimization-based and deep learning-based
approaches for estimation 3D human pose and shape.

Title Author date Techniques Dataset Properties

End-to-end
recovery of human
shape and pose

Kazanawa et al.
/2018

GAN LSP
LSP_ extended
MPII
MS COCO
Human 3.6 M
MPI_INF_3DHP

1. Infer 3D mesh
parameters,
directly from
image features

This avoids the need
for two stage
training and also
avoids throwing
away a lot of image
information
2. Going beyond

skeletons, so
output meshes,
which are more
complex and
more appropriate
for many
applications

3. Its framework is
trained in an
end-to-end
manner

4. It remains open
whether
increasing the
amount of 2D
data will
significantly
increase 3D
accuracy

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

Learning to
estimate 3D human
pose and shape
from a single color
image

Georgios Pavlakos
et al. /2018

The conventional
ConvNet-based
approach

UP-3D
SURREAL
Human 3.6 M

1. An end-to-end
framework

2. Incorporation of
a parametric
statistical shape
model,

SMPL, within the
end-to-end
framework,
enabling:
– Prediction of the
SMPL model
parameters from
ConvNet-
estimated 2D
key-points and
masks to avoid
training on
synthetic image
examples

– Generation of the
3D body mesh at
training time and
supervision based
on the 3D shape
consistency

– Use of a
differentiable
renderer for 3D
mesh projection
and refinement of
the network with
supervision based
on the
consistency with
2D annotations

3. Superior
performance
compared to
previous
approaches for
3D human pose
and shape
estimation at
significantly
faster running
time

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

Neural body fitting:
unifying deep
learning and model
based human pose
and shape
estimation

Mohamed Omran
et al. /2018

Neural Body Fitting
(NBF)
a. hybrid

architecture

UP-3D
Human 3.6 M

1. Directly predicts
the parameters of
the model

2. Admits both full
3D supervision
(in the model or
3D Euclidean
space) and weak
2D supervision
(if images with
only 2D
annotations are
available)

3. It requires neither
initialization nor
large amounts of
3D training data

4. Build a simple
processing
pipeline with
parts that can be
optimized in
isolation and
avoiding multiple
network heads

5. Analyze:
(1) How the 3D

model can be
integrated into a
deep neural
network,

(2) How loss
functions can be
combined and,

(3) How a training
can be set up
that works
efficiently with
scarce 3D data

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

3D Human pose
estimation using
cascade of multiple
neural networks

Van-Thanh Hoang
et al. /2018

Cascade of multiple
neural networks
(CMNN)

MoCap
Human 3.6 M

1. Create the initial
3D shape by
using the method
proposed by
ASM methods
with a small
number of
predefined basis
shapes

2) Make estimated
shape more
accurate by using
the CMNN

3. The proposed
method
outperforms in
both accuracy
and processing
time

4. Its speed is fast
enough to use in
the real-time
application

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

Convolutional
mesh regression for
single-image
human shape
reconstruction

Nikos Kolotouros
et al. /2019

Graph-CNN
architecture

Human 3.6 M
UP-3D
LSP

1. Reformulate the
problem of
human pose and
shape estimation
in the form of
regressing the 3D
locations of the
mesh vertices, to
avoid the
difficulties of
direct model
parameter
regression

2. Propose a Graph
CNN for this task
which encodes
the mesh
structure and
enables the
convolutional
mesh regression
of the 3D vertex
locations

3. Demonstrate the
flexibility of
framework by
considering
different input
representations

4. Current
limitations (e.g.,
low resolution of
output mesh,
missing details in
the recovered
shape)

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

TexturePose:
supervising human
mesh estimation
with texture
consistency

Georgios Pavlakos
et al. /2019

TexturePose, (an
approach to
train CNN)

Human 3.6 M
MPII
3LSP

1. A novel approach
to leverage
complementary
supervision from
natural images
through
appearance
constancy of each
human across
different frames

2. Demonstrate the
effectiveness of
texture
consistency

supervision in cases
of monocular video
and multi-view
capture, consistently
outperforming
approaches with
access to the same
or more annotations

Estimating human
shape under
clothing from
single frontal view
point cloud of a
dressed human

Wang et al. /2019 Using of point
cloud

Point Cloud 1. Proposed the first
method of
estimating 3D
naked body shape
parameters from
a single-frame
frontal view
point cloud of a
dressed human

2. Design a novel
objective
function that
combines the
advantages of
model-based
shape estimation
and free
deformation
method to deal
with casual
clothes

(continued)
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Table 2. (continued)

Title Author date Techniques Dataset Properties

Indirect deep
structured learning
for 3D
human body shape
and pose prediction

Jun Kai Vince Tan
et al. /2017

Autoencoder
(encoder-decoder
network)

Artificial Images
Real Images (the
Unite the People)

1. A novel
encoder-decoder
architecture for
3D body shape
and pose
prediction,

2. This method does
not require
hard-to-obtain
3D human shape
and pose labels
for training on
real world
images, but
instead leverages
the power of a
decoder trained
on artificial data

Moulding Humans:
Non-parametric 3D
Human Shape
Estimation from
Single Images

Gabeur et al./2019 Double depth map 3D HUMANS 1. This method can
recover detailed
surfaces while
keeping the
output to a
reasonable size.
This makes the
learning stage
more efficient

2. This architecture
can also
efficiently
incorporate a
discriminator in
an adversarial
fashion to
improve the
accuracy of the
output

3. This
representation
allows a higher
resolution output,
potentially the
same as the
image input, with
a much lower
dimension than
voxel-based
volumetric
representaions
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4 Discussion and Conclusion

The purpose of this article is to address the existing approaches and methods for the
problemof estimation of three-dimensional human pose and shape from images. Existing
approaches to this work are categorized into two forms optimization-based and deep
learning-based. In this paper, first, methods optimization-based and then in detailed
parametric and non-parametric deep learning-based approaches for estimation three-
dimensional human meshes were presented, which is shown in Table 2.

For this purpose, optimization-based approaches provide reliable results, but due
to the lack of proper initialization and the usual failures due to the weakness of the
minimum initialization, run time and slow convergence of the adaptation process, the
use of deep learning approaches, which regresses poses and shapes directly from images,
is enhanced by their high efficiency and accuracy.

Convolutional networks are not a practical candidate for this problem, due to the need
for a lot of training data and low-resolution of 3D predictions. However, by providing
a direct and efficient forecasting approach that is better than repetitive optimization
methods, it has been shown that convolutional networks can provide an attractive solution
to this problem. In general, the goal of all methods is a proper trade-off between the speed
and accuracy of the output results.

To achieve the best results in estimating of the human pose and shape in smart
environments, the best method must be studied and selected.

In general, it seems that non-parametric methods perform better than parametric
methods in these three-dimensional estimates of images, although they also have some
drawbacks.

Finally, we would like to thank all those who used to collect these articles, and
especially the articles whose photos we have used in this work. We have tried to mention
the names of all these people in our references.
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