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Abstract. Computing machines (supercomputers) have constantly evo-
lved to provide the greatest possible computing power for scientific appli-
cations. The trend for a decade has been clearly in favor of massively
parallel architectures.

To increase computing power, increasing the frequency of processors is
no longer possible; energy consumption is indeed becoming a critical issue
and multi-core architectures are a serious avenue to prevent the explo-
sion of this consumption. Parallelism is therefor an interesting solution for
computation-intensive simulations and storage capacity which will have to
run it on multi-core architectures. This article aims to highlight the possi-
bilities of enhancing the parallelism of applications simulation, in particu-
lar, by improving both the partitioning and load balancing quality which
are fundamental problems of parallel computing, other relevant aspects
are also discussed in order to make this review as complete as possible.
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1 Introduction

Computing machines have constantly evolved to provide the greatest possi-
ble computing power for scientific applications Fig. 1. However, the computing
power requirements of scientific simulations are constantly increasing, and many
applications and questions have so far remained unanswered due to the insuffi-
ciency of computing resources. Over the past decades, parallelism has become an
important topic of interest for a large scientific community, it has emerged as a
response to huge increases requirements in computing power. it is an interesting
solution for computation-intensive simulations and storage capacity which will
have to run it on multi-core architectures. For example, in the field of molecular
dynamics [1], especially for applications based on functional density theory like
BigDFT [2], L. Genovese et al. explained that the need for computation and
memory increases as the cube of the system size. For a 1,500 atom system, 3,000
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Fig. 1. Power evolution of supercomputers (source: www.top500.org).

GB of memory and one day of calculation are required on 1,500 CPU cores ina
modern calculation cluster for the optimization of atomic positions. The par-
allelization is, therefore, necessary to reduce the execution time but also for
the reasons of memory capacity. To achieve such computing capacities, parallel
machines are forced to multiply the number of CPUs that will operate jointly.

To achieve such computing capacities, multi-core architectures are forced to
use a large number of processors (several thousand), also called CPUs, which
will operate jointly. This parallel use of CPUs is a specificity introduced by
these multi-core architectures. Indeed, before the emergence of this paralleliza-
tion movement, computers contained only one CPU whose operating frequency
was the only characteristic allowing the performance of the machine to be evalu-
ated. The rule was then relatively simple: the higher the frequency, the faster the
CPU. Thus, it was then possible to allow a program limited by the speed of the
CPU to execute more quickly without any modification. However, the increase
in frequency within a CPU is limited by the appearance of multiple physical
obstacles, in particular in terms of miniaturization and heat dissipation. Paral-
lelism, therefore, appeared to be the solution to circumvent these difficulties in
order to increase the performance of computers.

The parallelization of an application on several computing nodes has been
studied for a long time to provide more possibility of development of the available
computing power, in addition, hundreds of research have been carried out for
several years in order to develop the concept of parallelism and improving its
efficiency in order to improve performance.

www.top500.org
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The model graph approach is widely used to establish how to distribute the
task and data for efficient parallel computation. its aim is to divide computations
uniformly over p processors by distributing the vertices, which represent the set
of tasks into P partition of the same size, while minimizing the inter-processor
communication which is represented by edges. However, the difficulty of treat-
ment of this problem lies in the fact that it is a multidisciplinary research field
with many problems that fall within the NP-hard field, in particular, that of the
balanced load distribution which is a fundamental problem relating to paral-
lelism. Inter-processor communication, and resource allocation are also research
axes among many others.

The purpose of this work is to bring together the future challenges that must
be taken up by researchers in order to improve the efficiency of parallelism.

The rest of this article has been organized as follows: We first introduce
the technique universally used to model the parallelization process in multi-core
systems which is graph partitioning, and some existing frameworks for graph
partitioning, then we discuss the different problems that hamper the performance
of parallel execution of scientific simulations. Ultimately, we conclude and discuss
some perspectives to overcome these challenges.

2 Related Works

2.1 Graph Partitioning Models

Computer scientists are regularly use graphs abstractions to model a simula-
tion applications. Dividing a graph into smaller parts is one of the important
algorithmic operations for parallelization.

Given a non-oriented graph G = (V, E), where V is the set of vertices and
E is the set of edges that connect pairs of vertices. Vertices and edges can be
weighted, where |V | is the weight of the vertex V, and where |E| is the weight
of the edge E. The problem of partitioning a graph is to divide G into disjoint k
partition Fig. 2. From a mathematical point of view, we can partition the vertices
or the edges. On the other hand, in most applications, we are only interested in
partitioning graph vertices.

Let G = (V, E) a set of k subsets of V, denoted Pk = V1, V2, ..., Vk. We say
that Pk is a partition of G if : The union of all the elements of Pk is V, and No
subset of V that is an element of Pk is empty:

⋃k
i=0 Vi = V Vi∩Vj = ∅ ∀i �= j,

and the elements Vk of Pk are called the parts of the partition . The parts must
be balanced, that is, of the same size : |V1| ≈ |V2| ≈ ... |Vk|, with a minimized cost
(cut) function that represents the communication time between the processors:
min(

∑ |ei,j |), vi ∈ Vk, vj ∈ Vp ∀ k �= p Where: ei,j weight of an edge ei,j =
(vi, vj).

2.2 Graph Partitioning Based Algorithms for Parallel Computing

Graph partitioning is extensively used to model the data dependencies within a
computation, and it is also used for solving optimization problems that arise in
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Fig. 2. Example of a graph partitioned in K = 4 parts.

many real-world applications [30,31]. There are many examples of graph parti-
tioning applications: data mining, design of electronic integrated circuits VLSI,
load distribution for parallel machines, fluid dynamics, matrix computing, air
traffic, etc.

Graph partitioning (GP) is an NP-complete problem [3,4] . We, therefore,
use different heuristics to be able to calculate a partition within a reasonable
time. The GP problem is well studied, and various of GP-based algorithms for
data distribution and load balancing have been developed: Spectral methods [17],
combinatorial approach [18], and multilevel framework [6]. The multilevel algo-
rithm appeared as a very efficient method for calculating a k-way balanced parti-
tion of a graph [5,6]. The multi-level approach makes it possible to speed up the
classical partitioning methods while maintaining good quality. This approach is
broken down into three steps, as shown in Fig. 3.

– The contraction step: First, the size of the graph is reduced by merging ver-
tices. This is repeated for several iterations, until a sufficiently small graph
is obtained. A series of graphs of decreasing size has thus been created: (G0,
G1,..., Gk).

– The initial partitioning: Once the graph has been sufficiently contracted, we
apply a partitioning heuristic to calculate the partition Pk of the graph Gk.
Any partitioning strategy can be applied here.

– The expansion step: The sequence of the different graphs constructed during
the contraction phase is then “reassembled”. The partition Pi + 1 of the
graph Gk + 1 is extended on the graph Gi then this new partition Pi is
refined using a heuristic which locally improves the cut.

These algorithms have various significant challenges that will be addressed later.
In the literature, there are several techniques and software that give good results
like: Metis [19] is one of the best known and used partitioners. It has two parti-
tioning method: recursive or k-way but the k-way method is based on recursive
bisections for its initial partitioning. ParMetis [20] it is a parallel version of Metis,
allowing to create a partition in parallel on at least 2 processes. Scotch [21] is
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Fig. 3. Phases of a multi-level partitioning.

a free licensed graph and mesh partitioner. It is very configurable and modu-
lar. It offers a wide variety of partitioning methods, but only bisection methods
are available for initial partitioning. PT-Scotch is the parallel multi-threaded,
multi-process version of Scotch. Zoltan [22] is a library allowing to manage the
distribution of data for parallel applications. In particular, it offers partitioner
functionality.

3 Main Issues and Challenges of Parallelism

Parallelization consists of decomposing a problem into sub-problems which will
be solved simultaneously on a parallel architecture. Each of the sub-problems
will be treated by one or more processors of the parallel machine. Consequently,
the processors of this machine do not have fast and direct access to the data of
the other processors because that would constitute a bottleneck. The memory
being distributed, the distribution of the calculations implies a distribution of
the data. A. Meade et al. claim in [8] that the process of parallelization consist
of four phases, as shown in Fig. 4:

– Decomposition phases: is to divide the problem into several sub-problems,it
consists in partitioning the computations and relative data into tasks which
are as independent as possible from one another. Two partitioning techniques
can then be differentiated. The first is task decomposition is partition the
computations first and then work with the data. The other technique; data
decomposition is to first study the data needed for the problem, then look for
the most suitable decomposition of these data and then identify the calcula-
tions that will be applied to them. These are two complementary techniques
that applied together during the parallelization of simulation.

– Communication: In this phase,a communication model is necessary for the
information exchange between the tasks.
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– Load balancing: this step is a melting of partitioning and communication
requirements, its aim is to divide evenly the computations into N parts of the
same size, while minimizing the communication overheads.

– Mapping: during dis phase the tasks of the parallel application are assigned
to the processors of the parallel architecture on which will be executed.

Fig. 4. Process of the parallelization of a simulation

In the literature the prallelization process has been described as more challeng-
ing and error prone [7–9,32]. Thus it is advantageous to take into consideration
several issues which may be a hindrance to achieving high degrees of paral-
lelism [10,11]: data and task decomposition, the number of processors, inter
processor communication, load balancing...etc.

3.1 Data-Task Decomposition

Parallelising simulation applications to operate in parallel architectures has been
described as an extremely challenging task. In particular, data decomposition is
one key issue among many other [12]. The data decomposition process entails
a communication cost that has a negative impact on the performance of the
simulation. Consequently, it is of crucial importance to define a data decom-
position strategy that increases computation while minimizing communication
through an available processor. In [13,14] the authors indicate that the process
of finding suitable decomposition of a complex problem is a balance of com-
peting forces, during the decomposition, we must take into account the size of
the tasks as granularity. A fine-grained decomposition creates a large number
of small tasks, then increases the communication and synchronization overhead.
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This might leads to poor performance, while coarse-grained decomposition may
generate not enough parallelism and an unbalanced load.

Having defined a very large number of fine-grained tasks in the early stages
of developing the parallel algorithm limits the efficiency of its execution on a
parallel architecture. The most critical point of such execution is the cost of
communication. In fact, with certain types of parallel programming models, cal-
culations are stopped when messages are received or sent. The performance of
the algorithm can, therefore, be considerably increased if the time spent com-
municating is reduced or covered. This improvement can, therefore, be obtained
by reducing the number of messages sent. This result can also be achieved by
using fewer messages while preserving the same amount of data in transit. This
is because the cost of a call includes a fixed cost and is not simply proportional
to the amount of data sent.

For a judicious decomposition, the partitioning of the initial problem must
include more tasks than processors available on the target machine in order
to be as efficient as possible during parallel execution. Otherwise, processors
would end up with no task to execute. But we must be careful not to create too
small tasks under the pretext of making all the processors work, because they
would undoubtedly involve a large number of communications and parallelization
would, therefore, be inefficient. There is therefore a compromise to be found
between the size of the tasks, their number, the quantity of communication
generated, as well as the number of processors to use.

3.2 Communication Cost

Another parallelization issue to consider is the communication cost between the
tasks, a large number of messages to be exchanged inter task may decrease overall
performance.

The cost of communication can become particularly marked when the archi-
tecture on which the program is executed is of the multi-processor type, that is to
say, when the communications and exchanges between the processes/processors
are carried out by the intermediary of a network. During the parallel execution
of a simulation, it frequently happens that the execution time is largely domi-
nated by the time required to carry out the communications between processors
the cost of communication can be several orders of magnitude higher than the
cost of execution of normal instruction. In this case, it may then be sufficient
to estimate the complexity of the number of communications required by the
simulation.

Several works are already carried out in this context to investigate the impact
of communication on the efficiency of execution of a simulation [12,15,16]. The
researchers claim that the most critical point of parallel simulation execution is
the communication cost. The evolution of communication cost change depend-
ing on several factors: number of partitions , the structure of the graph, and
the amount of information that any particular partition needs to send and
receive...etc.
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Fig. 5. Evolution of Normalized Communication Volume By increasing number of par-
titions

As it is shown in Fig. 5, the communication evolves rapidly by increasing the
number of partitions, which certainly leads to significant degradation of efficiency
as in Fig. 6. Performance can, therefore, be dramatically increased if the time
spent communicating is reduced or covered. This improvement can ,therefore,
be obtained either by reducing the number of messages sent or by the optimum
choice of the number of processors.

Fig. 6. Evolution of efficiency by increasing number of partitions

R. Muresano et al. in [29] indicate that performing intensive simulations on a
multi-core systems balancing computational speed and efficiency is a complicated
issue facing parallel computing. Therefor, communications on multi-core systems
must be carefully managed in order to enhance performance.
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In [16] Tintó Prims, O. et al. are explained that the paradigm of mes-
sage passing then developed with the introduction of parallel distributed mem-
ory machines. Message passing involves establishing a communication channel
between two execution streams to send and receive data. The MPI (Message
Passing Interface) library is, in this context, the most used. Running an appli-
cation implemented using this library can be very problematic when using a
large number of compute nodes made up of multi-core computers. The problem
is caused by the very large number of tasks relying on global communications
that a loosely coupled MPI application generates. Document passing is a special,
higher level case of message passing where data is typed.

3.3 Load Balancing

Load balancing is a key issue that conditions the performance of parallel numer-
ical simulations. The goal is to distribute evenly the workload among a given
number of processors, in order to minimize the overall execution time. Paral-
lel execution of scientific simulations in a multi-core system often imposes a
distribution of the workload among the available processors in order to ensure
efficient parallelization. Since memory is distributed, the distribution of compu-
tations implies a data partitioning procedure. In this context, the distribution
of data is done according to two objectives:

– the computational load assigned to the different processors must be balanced
to minimize the computing time;

– Inter-processor communications should be minimized.

Load balancing can be done in two different ways [23]: static balancing strat-
egy, assigns the workload to processors at the start of the simulation. In other
cases, in applications with changing or unpredictable workloads during run-time,
a dynamic strategy for redistributing calculations is necessary at run-time. Load
balancing is one of the major challenges facing multiprocessors and multi-cores
systems, however, several research works are carried out in this track [24–27],
indeed algorithms have been proposed in particular, graph partitioning algo-
rithms [5,6,17,18] described above to distribute the workload. Even if the success
and relevance of the existing partitioning methods for load balancing, research
challenges remain and new avenues for improvement should be proposed for the
efficient execution of simulations under multi-core architectures. In particular,
the choice of the right number of (partitions) processors and the efficient use of
resources of a parallel architecture are key challenges of load balancing.

3.4 Resource-Aware Load Balancing

– The choice of the number of partition
The partitioning methods for load balancing presented to calculate the dis-
tribution of a simulation’s computations and the associated data over a fixed
number of partitions, which can have a severe impact on the performance
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and scalability of the computation. The number of parts must be taken into
account during the partitioning process. Partitioning the problem on a small
number of partitions can generate insufficient parallelism and an unbalanced
load. However,partitioning in a large number of partitions results in poor per-
formance due to high communication costs, etc. In this context, the choice
of the number of partitions is crucial to achieving a high performance of a
simulation application.

– Processors allocation for a simulation
Another similar problem if taking into account the processors of the tar-
get machine to which the calculated partitions will be assigned. We suppose
that each part will be assigned to a processor, choosing the right number of
processors allocated to a simulation is essential to have good performance
or efficiency. If a simulation is run in parallel on too many processors, the
time spent communicating can become too long compared to the computa-
tion time. Using as many processors as possible is not always a good choice
depending on the size of the problem. As the size of the problem may vary
during simulation, the number of processors should vary accordingly.
The resource-aware load balancing issue is not well studied, however, there
are researchers who affirm that among the issues encountered to reach a maxi-
mum speed up it is the number of processors. In [28] L. yang et al. claim that
the pan-sharpening algorithms are data and computation intensive, there-
fore, they have adopted a parallel strategy to solve the existing problems on
a multi-core computer. however, they show that the choice of the number of
processors is a crucial and essential issue to achieve maximum speed. It is a
difficult and complicated problem to select a specific number of processors for
an application, as the factors determining the maximum speed are different
and varied. They give empirical suggestions based on experimental results
to define the number of processors in order to efficiently use the available
resource.

4 Perspectives and Future Works

In order to address the different issues and challenges presented in this work,
several avenues are considered and many different directions to explore as future
work:

4.1 Computation-Data Decomposition

For efficient partitioning, the data-computation decomposition of the initial
problem must include more tasks than processors available on the target machine
in order to be as efficient as possible during parallel execution. Otherwise, proces-
sors would end up with no task to execute. But we must be careful not to create
too small tasks under the pretext of making all the processors work, because
they would undoubtedly involve a large number of communications and paral-
lelization would therefore be inefficient. There is, therefore, a compromise to be
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found between the size of the tasks, their number, the quantity of communication
generated, as well as the number of processors to use.

4.2 Communication Cost

Knowing that the communication cost of an application depends on several fac-
tors such as the topology of the graph, the number of messages sent and received,
the number of partitions, ... etc, therefore the optimization of any of these fac-
tors is an unaffordable solution, for this reason, a thorough performance analysis
approach is required to identify bottlenecks and understand the impact of inter-
process communication on the performance.

Once these bottlenecks are revealed and the features impacting model per-
formance are defined, it would be appropriate to adopt a learning system such
as an artificial neural network (ANN) to predict in a more or less precise way
the maximum speedup and the ideal number of partitions (processors) for an
application.

4.3 Resource Allocation and Load Balancing

To address this challenge, it appears advantageous to develop an ANN predic-
tive module to predict the appropriate processor for each workload in order to
enhance the energy-efficiency and performance.

Resource allocation and load balancing are very useful in code coupling,
several parallel codes run simultaneously and must regularly exchange data.
This exchange phase is synchronizing. It is therefore, important that all the
codes concerned progress at the same speed to minimize the waiting time during
this synchronization.

The choice of the number of processors used by each code must be made by
taking into account the relative loads of each. This balancing between several
codes can be difficult, more particularly if a load of these codes can vary dynam-
ically. To rebalance these codes, one solution would, therefore, be to reallocate
resources from one code to another. The ideal number of processors allocated to
each code can therefore be approached experimentally by correcting during the
simulation the imbalances which would occur.

5 Conclusion

The computing power and frequency limitations remarked on single-core
machines have paved the way for multi-core systems and will be the indus-
try trend to move forward. However, full performance throughput can only be
achieved when the challenges of running simulations on multi-core processors
are fully resolved.

A graph partitioning model to establish how to distribute the task and data
for efficient parallel computation is presented, and the existing algorithms in the
literature are detailed.
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This paper also highlights the key issues and challenges of performing sim-
ulations on multi-core systems, especially computation-data partitioning, com-
munication overhead, resource-aware load balancing...etc. In addition, we try
to cite possible avenues for improvement in order to enhance the performance
execution on multi-core systems.
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