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Abstract. Aerial images are increasingly used for critical tasks, such
as traffic monitoring, pedestrian tracking, and infrastructure inspec-
tion. However, aerial images have the following main challenges: 1)
small objects with non-uniform distribution; 2) the large difference in
object size. In this paper, we propose a new network architecture, Clus-
ter Region Estimation Network (CRENet), to solve these challenges.
CRENet uses a clustering algorithm to search cluster regions contain-
ing dense objects, which makes the detector focus on these regions to
reduce background interference and improve detection efficiency. How-
ever, not every cluster region can bring precision gain, so each cluster
region difficulty score is calculated to mine the difficult region and elim-
inate the simple cluster region, which can speed up the detection. Then,
a Gaussian scaling function(GSF) is used to scale the difficult cluster
region to reduce the difference of object size. Our experiments show that
CRENet achieves better performance than previous approaches on the
VisDrone dataset. Our best model achieved 4.3% improvement on the
VisDrone dataset.

1 Introduction

Equipped with cameras and embedded systems, Unmanned Aerial Vehicles
(UAV) are endowed with computer vision ability and widely used for traffic
monitoring, pedestrian tracking, and infrastructure inspection. With the rapid
development of deep neural networks, the object detection framework based
on deep neural networks has gradually become the mainstream technology of
object detection. Although correlation detectors (such as R-CNN family [9–
11,29], YOLO family [1,26–28], SSD family [7,19], etc.) have achieved good
performance in natural images, they cannot achieve satisfactory results in aerial
images.

Compared to natural images such as COCO [18], ImageNet [4] and Pascal
VOC [6], aerial images have the following features:

(1) Small objects with the non-uniform distribution. Generally, a small object
refer to object with the area of less than 32×32 in an image. The main problems
of small objects are low resolution and small amount of information, which lead
c© Springer Nature Switzerland AG 2020
A. Bartoli and A. Fusiello (Eds.): ECCV 2020 Workshops, LNCS 12538, pp. 651–664, 2020.
https://doi.org/10.1007/978-3-030-66823-5_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66823-5_39&domain=pdf
https://doi.org/10.1007/978-3-030-66823-5_39


652 Y. Wang et al.

to weak feature expression. The traditional method of processing small objects
is to enlarge the image, which will increase the processing time and the memory
needed to store large feature maps. Another common method is uniform crop-
ping an image into several regions [8,20] and then detect in each region, which
solves the problem of storing a large feature map. However, the uniform cropping
ignores the sparsity of objects, and some regions may have few or no objects,
which will waste a lot of computing resources. As can be seen from Fig. 1, the
object distribution in the aerial image is uneven and the object is highly clus-
tered in a certain region. Therefore, one method to improve detection efficiency
is to focus the detector on these regions with a large number of objects.

Fig. 1. Visualization of uniform cropping vs cluster cropping. The first row is an exam-
ple of uniform cropping. The second row is an example of cluster cropping. Compared
with uniform cropping, cluster cropping has the following advantages: (1) concentrate
on computing resources in cluster regions with a large number of objects, (2) have no
background interference.

(2) Diversity of object size. When collecting UAV images, the shooting height
varies from tens of meters to hundreds of meters, which leads to huge difference
in the size of the same category of objects. It is a big problem for the anchor-
based detector to set the size of the anchor. For anchor-free detector, it is difficult
to directly regress the width and height of the object. Therefore, it is necessary
to reduce the difference in object size among images as much as possible.

To solve the above problems, this paper proposes a coarse-to-fine detection
framework CRENet. As shown in Fig. 2, CRENet is composed of three parts: a
coarse detection network (CNet), a cropping module, and a fine detection net-
work (FNet). The aerial image is first sent to the coarse detection network CNet
to get the initial detection results, which will get a rough distribution of the
object. Then the initial detection results are sent to the crop module. The first
we mentioned, the cluster region is obtained through a clustering algorithm.
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The second step is to calculate the difficult score of each cluster region, it is
believed that the cluster region with higher difficult score can bring greater accu-
rate gain to the detector, and the cluster region with a small score can be deleted
to improve the detection efficiency of the model. In the third step, we plug the
remaining difficult cluster region into a Gaussian scaling function(GSF), which
calculates the scaling factor for each of the difficult cluster regions. In particular,
we refer to the difficult cluster region after scaling as ROI1 (region of interest).
Finally, ROI is sent to the fine detection network to obtain fine detection results,
and the fine detection results are fused with the coarse detection results.

Fig. 2. Overview of CRENet framework. Firstly, CRENet sends the aerial image to the
coarse detector CNet to get the initial prediction. Then a clustering algorithm is used to
generate cluster regions for the initial prediction. And we mine difficult cluster regions,
and then use the Gaussian scaling function(GSF) to scale difficult cluster regions. The
difficult cluster regions are sent to the fine detector. Finally, the detection result of the
global image is fused with the detection result of ROI to generate the final detection
result. See Sect. 3 for more details.

Compared with previous detectors, the proposed CRENet has the follow-
ing advantages: (1) The computational resources are concentrated on a dense
region with a large number of objects, which reduces the computational cost
and improves the detection efficiency; (2) Because the cluster region has differ-
ent size, clustering algorithms are directly used to replace the network to predict
the cluster region, which avoids the problem of anchor setting and the cluster
region overlapping processing; (3) Calculating the difficult score of each cluster
region and eliminating the cluster region that can hardly bring the accuracy
gain can speed up the calculation; (4) Using Gaussian scaling function(GSF)
can reduce the difference of object size among different images.

To sum up, the contributions of this paper are as follows:

1) A new CRENet detector is proposed that it can adaptively search and sacle
regions with dense object for fine detection.

1 The ROI here is different from Faster RCNN [29]. The ROI of this paper contains
not just one object but multiple objects of interest, and it is used to represent the
region with dense objects.
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2) A Gaussian scaling function(GSF) is proposed to solve the problem of the
large size difference of objects in aerial images and improve the detection
accuracy.

3) We achieve more advanced performance on representative aerial image dataset
VisDrone [45] with fewer images.

The rest of this paper is organized as follows. Section 2 briefly reviews rele-
vant work. In Sect. 3, the proposed approach is described in detail. Section 4 for
experimental results and Sect. 5 for the conclusion.

2 Related Work

In this section, we will review the benchmark of anchor-based detectors and
anchor-free detectors for natural images and some recent efforts in aerial images.
Finally, we focus on searching the region of interest for fine detection.

2.1 Generic Object Detection

At present, the mainstream object detection algorithms are mainly based on
deep convolutional neural network, which can be divided into two types: anchor-
based detectors and anchor-free detectors. The anchor-based detectors can be
further divided into two categories: two-stage detector and single-stage detec-
tor. The two-stage detector consists of two steps: proposal region extraction
and region classification. The first stage produces proposal regions, containing
approximately location information of the object. In the second stage, the pro-
posal regions are classified, and the positions are adjusted. Representatives of
two-stage detectors include R-CNN family [9,10,29] and Mask RCNN [11]. The
single-stage detector does not need the stage of producing proposal region , but
directly generates the classification confidence and position of objects in only
one stage. Representatives of single-stage detectors include SSD family [7,19],
YOLO family [1,26–28], RetinaNet [17], etc. In general, the two-stage detector
has higher accuracy, and the single-stage detector has higher detection speed.
However, the anchor-based detector depends on the good prior anchor, and it is
difficult to estimate a suitable prior anchor for the large variation in object size.
In addition, in order to improve the recall rate, dense anchors are set, and most
anchors are negative. This leads to an imbalance between negative anchors and
positive anchors, which seriously affects the final detection performance.

The anchor-free detector is a method of object detection based on point
estimate. CornerNet [14] uses a convolutional neural network to predict the
upper left and lower right corner of an object and predicts embedding Vector of
each diagonal corner to determine whether the upper left or lower right corner
belong to the same object. CenterNet [45] directly predicts the center of the
object and regresses its length and width. ExtremeNet [44] detects vertex, left
point, bottom point, rightmost point, and the center point of the object.

It is difficult to find the suitable anchor size for all objects because of the large
difference of object size caused by the change of UAV flying height. Therefore,
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in this paper, the anchor-free detector CenterNet [45] is used as the detection
framework to solve this problem. Experiments also show that the anchor-free
detector has better performance on the aerial image datasets.

2.2 Aerial Image Detection

Compared with natural image object detection, aerial image object detection
faces more challenges: small objects, objects with uneven distribution, objects
with various perspectives and objects vary in size. According to the characteris-
tics of aerial images, people have proposed various solutions. Because the focus
of this works is deep learning, this paper only reviews the related work of aerial
image detection using deep neural networks. In [24], the tile method was used
in the training stage and testing stage to improve the detection ability of small
objects. In [35], the free metadata recorded by drones are used to learn Nui-
sance Disentangled Feature Transform (NDFT) to eliminate the interference of
the detector caused by flying altitude change, adverse weather conditions, and
other nuisances. Objects in the aerial image can be in any direction and any
position. [5,21,38] uses rotate anchors to detect objects in any direction. In [16],
the shape mask is allowed to flexibly detect objects in any direction without any
pre-defined rotate anchors. In [34], the researcher studied the scale variation of
aerial image object detection and proposed a Receptive Field Expansion Block
(RFEB) to increase the receptive field size for high-level semantic features and a
Spatial-Refinement Module (SRM) to repair the spatial details. In [25], a multi-
task object detection and segmentation model is proposed. The segmentation
map is used as the weight of self-attention mechanism to weight the feature map
of object detection, which reduces the signal of non-correlated regions.

2.3 Region Search in Detection

In object detection, searching the region of interest for fine detection is usually
used to detect small objects. The work of [20] proposes an adaptive detection
strategy, which can continuously subdivide the regions that may contain small
objects and spend computing resources in the regions that contain sparse small
objects. The method in [31,37], the clustering algorithm was used to get ROI’s
ground truth on the original datasets, then a special CNN was used to predict
ROI, and finally, ROI was sent to the fine detector. [42], using sliding window
method on the feature map, then calculating the difficulty score for each window,
and send the difficulty region to the fine detector. [8,32,33] solved the problem
of small object detection in large images, and used a reinforcement learning
method to find ROI for fine detection. [15] proposed an aerial image object
detection network based on a density map. According to the density map, we
can get a rough distribution of objects to search for the ROI.

Among the methods reviewed above, some use the network to predict the
ROI, some use fixed windows to slide on the feature map to search the ROI, and
some directly uniform crop the original image to get the ROI. Due to the different
shapes and sizes of ROI, it is difficult to set the size of an anchor or regress the
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width and height of ROI by the network. The size of ROI obtained by using the
fixed window sliding method and the uniform crop of the original image is fixed,
which is difficult to adapt to the real ROI. Therefore, this paper sends the images
to the coarse detection network to get the approximate distribution of objects,
and then uses the clustering algorithm to adaptively get the ROI. Through the
clustering algorithm, the ROI of various sizes can be obtained, which is more in
line with the actual situation.

3 Methodology

As shown in Fig. 2, detection of an aerial image can be divided into three stages:
the difficult cluster region extraction, fine detection of the ROI, and fusion of
the detection results. In the first stage, aerial images are first sent into CNet to
obtain an initial prediction. Then the cluster region is obtained by mean shift
[39] for initial detection. Besides, the difficulty score of each cluster region is
calculated, and the region with a higher score is regarded as a difficult cluster
region. In the second stage, firstly, we use the Gaussian scaling function(GSF)
to scale the difficult cluster region, so as to reduce the scale difference of objects.
The ROI, scaled difficult cluster region, is then finely detected using the FNet.
Finally, the third stage fuses the detection results of each ROI and global image
with soft-NMS [2].

3.1 Difficult Cluster Region Extraction

Difficult cluster region extraction consists of three steps: Firstly, aerial images
are fed into the trained CNet to obtain coarse detection results of objects. Then
the results are used to obtain a cluster region. Finally, the difficulty score for
each cluster region is calculated, and the non-difficult region is removed to speed
up the detection.

In previous work, [37] proposed to use the clustering algorithm to generate the
ground truth of the cluster region for each image and then trained a detector
to predict the cluster region. However, there is a large overlap between the
cluster regions predicted by the network. It is necessary to use the Iterative
Cluster Merging (ICM) for the cluster region, and the number of the cluster
region obtained is fixed. Especially, in aerial images, due to different camera
angles, shooting time, and other reasons, the number of cluster regions may
be different. Therefore, a fixed number of cluster regions is not suitable for all
cases. Another problem is that the cluster regions vary in shape. It is difficult
to manually set the anchor size in Faster-RCNN [29], and it is also difficult
to regress anchor. In this paper, We use the clustering algorithm instead of
the network to search the clustering region and avoid the problem of anchor
setting. Specifically, aerial images are sent into the CNet, so as to obtain the
initial prediction results of the object. The cluster region is obtained by using
mean shift [39] from the initial prediction. Because an object can only belong
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to one region, the overlap between cluster regions is very small. Unlike [37], our
algorithm is an unsupervised algorithm, whereas [37] is a supervised algorithm.

The aerial image is acquired at high altitude, so the background is complex
and the objects is small. As can be seen from Fig. 1, the objects are usually
gathered together. We can use a clustering algorithm to get the cluster region,
and then crop and enlarge it for fine detection, which can not only solve the
problem of small object detection but also reduce the interference of background.
The mean shift [39] is a dense-based clustering algorithm, which assumes that
the data of different clusters belong to different probability density distributions.
By inputting the initial detection into the mean shift [39] algorithm, the cluster
region of the image can be obtained adaptively.

It is worth noting that not every cluster region can get accurate gain. In order
to improve the detection efficiency of the detector, it is necessary to eliminate
the regions which cannot bring accurate gain or small accurate gain. This paper
assumes that the denser the objects are in the cluster region, the lower the
average confidence score is. The cluster region with denser objects or low average
confidence score can obtain greater the accuracy gain from the fine detection in
this region. According to this assumption, similar to [42], the initial prediction
results of aerial images are used to calculate a score for each cluster region, and
the regions whose score is greater than the difficulty threshold are retained.

M =
∑N

i=1 scorei
N

(1)

S =
N2

A × M
(2)

Using Eqs. (1) and (2) to calculate the difficulty score for region p, where N is
the number of the predicted boxes in p, M is the average of the confidence scores
of all the prediction boxes by the coarse detector for region p. It is believed that
the smaller the value of M is, the greater the accuracy gain will be. Therefore,
we place it in the denominator. Where A is the area of p, S is the final score
of p. N2

A represents the density of region p. It is believed that the denser the
region is, the more accuracy gain it can bring. Because in places where objects
are dense, they are usually accompanied by occlusion between objects. When
the occlusion is serious, the detector will miss detection. Therefore, for dense
regions, enlarging it can effectively reduce the missed detection.

3.2 Fine Detection on Region of Interest

After obtaining the difficult cluster region, a special detector FNet is utilized
to perform fine detection on these regions. But the difficult cluster region has
different shapes and different sizes of objects, it will bring a problem that it is
difficult to regress the width and height of objects. Different from the existing
approaches, [8,13,20] that directly send these regions to fine detection, inspired
by [41], this paper proposes a Gaussian scaling function(GSF) to reduce the
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size difference of objects. [41] uses the transformation function Scale Match to
scale the extra dataset, so that there is little difference in object size between
the targeted dataset and the extra dataset. In [41], MS COCO [18] is used as
an extra dataset to pre-train the detector and improve its performance on the
targeted dataset. Unlike [41], we do not scale the extra dataset, but the targeted
dataset. We use Gaussian scale functions(GSF) to scale difficult cluster regions.
First, select a mean value that is suitable for the receptive field of the backbone.
Then, we select the standard deviation based on the three Sigma rule of thumb.
The Gaussian scale functions(GSF) is made up of the mean value and standard
deviation. The Gaussian scale function (GSF) can be used to shrink large objects
and enlarge small objects. The implementation process is shown in Algorithm 1.

Algorithm 1: Gaussian Scaling Function

Input: Initial difficult cluster regions R = {Ri}NR
i=1

Output: ROI R′
= {Ri}NR

i=1

Note:Ri is i-th region in R, Bi represents all predicted boxes set in Ri.
Scaleregion is a function to scale region and predicted boxes with a given
scale factor. Uniform Crop is a function that uniform crop an region into
two regions; Padding is a function that uses the scaling factor to fill in the
region from the original image.
R′ ←− ∅
for (Ri, Bi) in R do

sample k ∼ gauss(μ, σ);
s ←− Mean (Bi);
c ←− s/k;
Ri, Bi ←− ScaleRegion (Ri, Bi, c);
if the size of Ri is to large then

R′ ←− R′ ∪ UniformCrop (Ri);
else if the size of Ri is to small then

R′ ←− R′ ∪ Padding (Ri, c);
else

R′ ←− R′ ∪ Ri;

AS (Gij) =
√

wij × hij (3)

In Algorithm 1, Eq. (3) is used to calculate the absolute size of each object
for each difficult cluster region. The ratio of the value randomly sampled from a
Gaussian function to the average absolute size of all objects in the region is used
as the scale factor for scaling the difficult cluster region. If the size of the difficult
cluster region after scaling is less than a certain range, the padding function is
used to pad the region proportionally. Otherwise, the uniform crop function is
used to divide it into two equal regions.
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After scaling the difficult cluster region, we get the ROI. Then, the detection
network (FNet) performs fine object detection. The architecture of the FNet
can be any state-of-the-art detectors. The backbone of the detector can be any
standard backbone networks, e.g., VGG [30], ResNet [12], Hourglass-104 [23].

3.3 Final Detection with Local-Global Fusion

NMS [22] is a post-processing step commonly used in object detection, which
is used to remove the duplicate detection box to reduce false detection. When
there are multiple prediction boxes on the same object, NMS will eliminate the
remaining prediction boxes whose IOU is greater than the threshold value with
the prediction box with the maximum confidence score. It can be seen that NMS
is too strict and soft-NMS [2] replaces the original score with a slightly lower
score instead of zero. The final detection of an aerial image is obtained by fusing
the detection results of ROI and global detection results of the whole image with
the soft-NMS [2] post-processing.

4 Experiments

4.1 Datasets and Evaluation Metrics

Datasets. The VisDrone [45] dataset was collected by using drones from 14 dif-
ferent cities in China under different weather and different lighting. The objects
in this dataset are mostly small, and the objects are often clustered together. It
contains a total of 10,209 images, including 6,471 training images, 548 validation
images, 1,610 test-dev images, and 1,580 test-challenge images. Except for the
test challenges, all other annotations are publicly available. The dataset contains
a total of 10 categories, and its image resolution is about 2000*1500 pixels. In
order to make a fair comparison with existing works [15,37], we evaluate the
detection performance in the validation set.

Evaluation Metric. We use the same evaluation protocol as proposed in MS
COCO [18] to evaluate our method. Six evaluation metrics of AP , AP50, AP75,
APsmall, APmedium, and APlarge are reported. The AP is the average precision
of all categories on 10 IOU thresholds, ranging from 0.50 to 0.95 with a step size
of 0.05. AP50 is the average precision of ten categories when the IOU threshold is
set to 0.5, and the IOU threshold of AP75 is set to 0.75. The APsmall means that
the AP for objects with area less than 32 × 32. The APmedium means that the
AP for objects with area less than 96 × 96. The APlarge means that the AP for
objects with area greater than 96 × 96. The number of ROI will affect inference
time. In the following experiments, we use #img to record the total number of
images, send to the detector, including both original images and cropped ROI.
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4.2 Implementation Details

We implemented the proposed CRENet on pytorch 1.4.0. Using an RTX 2080Ti
GPU to train and test the model. In common with training many deep CNNs,
we use data augmnetation. Specifically we use horizontal flipping. In this article,
CNet and FNet use the same detector, which is CenterNet [43] with the back-
bone network Hourglass-104 [23], and different detectors may be selected. After
obtaining the detection result of the aerial image through CNet, use mean shift
[39] to get the preliminary cluster region. The region with an area of fewer than
10000 pixels, the aspect ratio of more than 4 or less than 0.25, and the number
of objects less than 3 are excluded. The cluster regions with difficulty scores less
than 0.01 will be eliminated. The image input resolution for CNet and FNet
both are 1024*1024. We train the baseline detector for 140 epoch with Adam,
and the initial learning rate was 2.5 × 10−4.

4.3 Quantitative Result

CenterNet [43] with Hourglass-104 [23] is chosen as the baseline model. Table 1
shows that our approach with baselines, UC, RC, ClusDet [37], and DMNet [15].
We achieve the best performance using fewer images than other methods, and
even the small backbone network DLA-34 [40] with deformable convolution layers
[3], modified by CenterNet [43], achieves better performance than ClusDet [37]
and DMNet [15] both use Faster R-CNN [29] with ResNeXt [36]. We find that the
AP value of RC was lower than the baseline, possibly because RC truncates the
object when cropping the image. Experiments show that APsmall and APmedium

have more improvements, indicating that the method, the clustering algorithm
adaptive cropping regions we proposed, is of great help to the detection of small
and medium objects.

Table 1. The quantitative results on the validation set of VisDrone. #img is the
number of images that send to the detector. UC refers to the uniform cropping of the
aerial image into four parts, while RC refers to the random cropping of four 1024*1024
regions from the image each time.

Method Backbone #img AP AP50 AP75 APsmall APmedium APlarge s/img

Baseline Hourglass-104 548 30.6 53.1 29.9 21.6 44.0 57.6 0.194

ClusDet [37] ResNeXt 101 2716 28.4 53.2 26.4 19.1 40.8 54.4 0.773

DMNet [15] ResNeXt 101 2736 29.4 49.3 30.6 21.6 41.0 56.7 –

Baseline+RC(4) Hourglass-104 2740 30.2 52.3 29.5 21.6 42.7 56.6 1.046

Baseline+UC (2 × 2) Hourglass-104 2740 32.3 55.6 32.8 24.3 44.1 55.2 1.040

CRENet DLA-34 2413 30.3 53.7 29.2 21.6 41.9 50.6 0.561

CRENet Hourglass-104 2337 33.7 54.3 33.5 25.6 45.3 58.7 0.901
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4.4 Ablation Study

In this experiment, we show how the three components of the framework, clus-
tering algorithm, difficulty threshold, and Gaussian scaling function(GSF), affect
the final performance. We consider five cases: (a) Baseline: we use CenterNet [43]
with hourglass-104 [23] as the baseline model; (b) CRENet w/o difficult threshold
and GSF: a clustering algorithm is added to the baseline model to search clus-
ter regions, but the difficulty threshold and the Gaussian scaling function(GSF)
are not used to process regions; (c) CRENet w/o difficult threshold: clustering
algorithm produces regions that are not filtered using difficulty threshold; (d)
CRENet w/o GSF: difficult regions are directly sent to the fine detector with-
out Gaussian scaling function(GSF); (e) CRENet: The complete implementation
of our method. As can be seen from Table 2, the performance improvement of
searching regions using only the clustering algorithm is limited. Therefore, it
is necessary to use a Gaussian scaling function(GSF) to scale regions. Using
the difficulty threshold to filter the cluster regions, 767 regions were eliminated
without lowering the AP . It shows that the difficulty threshold can effectively
eliminate the region which can hardly bring the precision gain, thus speeding
up the detection speed. The above experiments show that the two components
of our proposed, clustering algorithm, and Gaussian scaling function(GSF), are
very important for the full improvement of detection performance. And the com-
ponent of difficulty threshold is crucial to achieve a high inference speed.

Table 2. Ablation study of detection result on validation set of VisDrone.

Method #img AP AP50 AP75 APsmall APmedium APlarge

Baseline 548 30.6 53.1 29.9 21.6 44.0 57.6

CRENet w/o difficult
threshold and GSF

2807 32.0 54.8 31.8 23.8 43.8 57.8

CRENet w/o difficult
threshold

2836 33.7 57.6 33.3 25.5 45.5 60.0

CRENet w/o GSF 2040 31.9 54.7 31.8 23.7 43.7 57.2

CRENet 2337 33.7 54.3 33.5 25.6 45.3 58.7

5 Conclusions

In this paper, we propose a new method CRENet for object detection in aerial
images. CRENet using the clustering algorithm can adaptively obtain cluster
regions. Then, the difficulty threshold can be used to eliminate the cluster region
that can not bring precision gain, and speed up detection. We also propose
that the Gaussian scaling function(GSF) can scale the difficult cluster region
to reduce the scale difference between objects. Experiments show that CRENet
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performs well for small and medium objects in dense scenarios. A large number
of experiments have demonstrated that CRENet achieves better performance
over the VisDrone [45] dataset.
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