
First Steps Towards a Scaling Analysis
of a Fully Resolved Electrical Neuron
Model

Myra Huymayer, Michael Lampe, Arne Nägel, and Gabriel Wittum

Abstract In computational neuroscience the transmission of electrical signals of
neurons is normally simulated by means of point process neurons, which mainly
reflect the scale in time, or the classical cable equation which additionally introduces
one space dimension. Here we present a fully resolved electrical model based on
Gauss’ law and the conservation of charges which considers all space dimensions
and is capable to simulate the extracellular and intracellular potential. For these
simulations three dimensional volume meshes are required and due to the inherent
complexity of the neuronal structure, these 3D-reconstructions yield large data-sets
and need efficient solving strategies. The UG4-simulation framework is a powerful
software for the solution of partial differential equations on unstructured grids in
one, two and three space dimensions and with its efficient, parallel solvers is well
suited for this task. Computations of the 3D-cable equation on a simple geometry
and on a three-dimensionally reconstructed neuron were performed on the Hazel
Hen supercomputer, testing for weak scalability.

1 Introduction

The human brain consists of≈ 8.6 · 1010 neuronal cells andmodeling neuronal signal
transmission in large networks of neurons has become extremely important recently.
The electrical signal is often described by means of point process simulations, which
describes neuronal activity by ordinary partial differential equations, i.e. only the
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change of the membrane potential in time is considered. The traditional cable equa-
tion describes the electrical signal by means of a partial differential equation, which
considers the changes in the membrane potential in time and in one space dimension.
The underlying assumption states that current of the core conductor flows parallel to
the cylinder axis along the x-axis, neglecting the other space dimensions.

An electrical model considering all three space dimensions was first introduced
by [1]. The three dimensional cable equation can be derived from Gauss’ law, which
states: ∇ · �E = ρ

ε0
and conservation of charge: ∇ · �J = − ∂ρ

∂t . Since we assume static
magnetic fields, the electric field can be expressed as the gradient of the potential:
�E = −∇Φ. The membrane potential is defined as the potential difference between
the intra- and extracellular space: Vm = Φin − Φout . Thus a three dimensional model
of the cable equation can be described by the following system of PDEs:

−∇ · (σin∇Φin) = 0 in Ωin

−σin∇Φin · �nin→out = cm
dVm

dt
+ jmem on Γ (1)

−∇ · (σout∇Φout ) = 0 in Ωout

−σout∇Φout · �nout→in = −cm
dVm

dt
− jmem on Γ (2)

σin and σout describe the conductivity in the intracellular and extracellular medium.
The membrane currents are composed of an input current and Hodgkin Huxley
currents [2]:

jmem = gK · n4 · (Vm − EK ) + gNa · m3 · h · (Vm − ENa) + gL · (V − EL)

where

di

dt
= i∞ − i(t)

τi

τi = 1

αi (Vm) + βi (Vm)

i∞ = αi (Vm)

αi (Vm) + βi (Vm)

where i = {n,m, h}. The result of di
dt = i∞−i(t)

τi
is computed in such a way that it is

used as right hand side in di
dt = f , which will make the solution of that ODE with

the explicit Euler method the analytical solution for one time step with constant Vm :
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di

dt
= i∞ − i(t)

τi

⇔ − di
dt

i∞(Vm) − i
= − 1

τi (Vm)

⇔
t+Δt∫

t

− di
dt

i∞(Vm) − i
= −

t+Δt∫

t

1

τi (Vm)

⇔ log

(
i∞(Vm) − ik+1

i∞(Vm) − ik

)
= −Δt

τi (Vm)

⇔ i∞(Vm) − ik+1

i∞(Vm) − ik
= exp

( −Δt

τi (Vm)

)

⇔ ik+1 = i∞(Vm) − (i∞(Vm) − ik) exp

( −Δt

τi (Vm)

)

Since neurons have a complex three dimensional geometry resulting in a huge
number of degrees of freedom (DoF) efficient solving strategies are necessary. Weak
scaling was tested for an AMG-GMG hybrid solver setup on a relatively simple
geometry.

2 Neuronal Reconstructions for Simulations
and Geometries

The database neuromorpho.org gives free access to a wide range of experimen-
tally reconstructed neurons in terms of swc files [3], which contain coordinate and
diameter information. Since neuronal reconstructions often display errors, such as
neurite-neurite intersections or sharp curves, with regard to 3D-reconstructions, cor-
rections were performed interactively in ProMesh [4]. To solve the partial differential
equations on a suitable domain a water-tight surface mesh was created from a layer
3 pyramidal cell from primary rat motor cortex (M1) [5] downloaded from Neu-
romorpho.org using AnaMorph [6] in a first step. This tool ensures that the aspect
ratio is close to 1 which is necessary in Finite Volume discretization. Subsequently,
a subset for the outer space was created in and tetrahedrization was realized with
ProMesh [4, 7] (see Fig. 1). As this results in quite complex geometries with a total
of 3.915.236 DOFs (increasing with an increase in refinements) for the described
problem, a minimal test geometry, replacing the neuronal geometry with a simple
cube (see Fig. 1 right), was built with ProMesh to investigate weak scaling for this
model.
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Fig. 1 3D reconstruction of a pyramidal cell from rat motor cortex in extracellular medium (left).
Close up of section of reconstructed and tetrahedralized cell (middle). Simplified geometry for test
computations (right). color map: lime green: dendrite, red: myelin, purple: conducting membrane,
and pink: injection site, lavender: extracellular medium, sky blue: intracellular medium

3 Simulation Setup

UG4 is a simulation environment designed to efficiently solve partial differential
equations on unstructured grids, with a strong focus on high performance comput-
ing. It provides a great variety of numerical solvers. For computation of the sys-
tem of equations (1–2), the domain of the cube was distributed to 6–3072 cores on
Hazel Hen. A well-balanced distribution of the neuronal surface components (Γ )
was ensured by the ParMetis library, which becomes especially important when cal-
culating on the complex structure of neurons. The change of the membrane potential
in time was investigated for 10 ms, with a 5–6 ms long stimulus of 900 C

mV ms μm2 .
The system of PDEs was solved with a geometric multigrid (GMG) with a Gauss

Seidel preconditioner. GMG convergence was strongly increased with an increasing
number of pre- and post-smoothing steps (optimal = 80). An algebraic multigrid
(AMG), with Gauss Seidel smoother, was chosen as base solver for the GMG. As
base solver for the AMG SuperLU [8] was selected.

4 Results

As shown in Fig. 2 an action potential can be observed on the cube membrane (Φin).
The extracellular signal (Φout ) displays the same behavior as in neuronmorphologies,
but ismuch smaller (minimal amplitude in neuron:≈-0.03mV;minimal amplitude in
cube: −4.8· 10−5 mV). Thus it can be assumed that the morphology has an influence
on the characteristics and size of the extracellular potential.

It has been shown in the past, that theGMGimplemented inUG4 showsgoodweak
scalability [4] and as we want to calculate large realistic networks in the future, we
tested the GMG-AMG hybrid for our coupled system of partial differential equations
on the cube grid. Table1 shows the time taken for certain solving steps in seconds.
As this is a time dependent problem, the mean time of time step preparation, right
hand side assembly and solving is given. Overall 500 time steps were performed.
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Fig. 2 Intracellular and extracellular potential changes in time (left). Cross section of intracellular
and extracellular potential after 1.14 ms (right)

Table 1 Study of weak scalability
DOFs on Domain 7145 50628 379714 2937982

#Processors 6 × 48 × 384 × 3072

Loading domain 0.02888 1.69 0.04880 1.06 0.05166 1.00 0.05168

domain distribution 0.06721 2.24 0.15070 1.11 0.16737 1.06 0.17738

domain refinement 0.03010 1.90 0.05721 5.73 0.32765 7.73 2.53434

Preparing time step 0.00005 3.12 0.00017 1.08 0.00018 1.02 0.00018

Assembling system 0.08562 1.99 0.17075 2.87 0.49044 5.50 2.69781

Assembling rhs 0.00752 1.97 0.01477 5.92 0.08746 7.63 0.66731

Applying solver 0.14099 2.57 0.36237 5.06 1.83253 5.74 10.52510

Total time 74.63698 2.54 189.33351 5.08 961.53549 5.83 5603.41139

Domain loading, distribution and refinement and system assembly is only performed
once.

It can be assumed from Table 1 that solving and assembly, which are of major
importance, are not yet scaling well.
For the given geometry the convergence rate of the AMG is≈ 0.15, the convergence
rate of the GMG is ≈ 0.003 − 0.008. AMG convergence becomes even worse for
the more complex geometries of neuronal reconstructions and thus improving AMG
convergence is necessary.

5 Discussion

This was the first investigation of weak scalability of the system of partial differential
equations describing the electric properties of neurons in three space dimensions.
Currently the solver setup is still optimized. The investigation of the given problem



588 M. Huymayer et al.

shows no weak scalability, which requires a closer investigation of the properties of
the assembled matrix. Furthermore, AMG convergence has to be improved in order
to compute digitally reconstructed neurons in three space dimensions.
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