
Ad-Hoc File Systems At Extreme Scales

Mehmet Soysal and Achim Streit

Abstract This work presents the results of the project with the acronym ADA-FS
(Advanced Data Placement via Ad-hoc File Systems at extreme scale). The project
which has been approved for the ForHLR II aims to improve I/O performance for
highly parallel applications by using distributed on-demand file systems. These tem-
porary file systems are created on the allocated compute nodes, using the node-local
disks for the on-demand file system. Through integration into the scheduling sys-
tem of the supercomputer, it can be requested like any other resource. The research
approach contains the design of the file system itself as well as the questions about
the right planning strategy for the necessary I/O transfers. In the granted project for
the ForHLR II we are investigating the methods on how to integrate the approach
into a HPC system. Also, we are evaluating the impact of the on-demand created file
systems to running HPC jobs and the applications.

1 Introduction

Today’s HPC systems utilize parallel file systems that comply with POSIX seman-
tics, such as Lustre [1], GPFS [2], or BeeGFS [3]. The storage subsystem within
HPC systems is increasingly becoming a bottleneck. Furthermore, the performance
is limited by the interface between the global file system and the compute nodes.
Moreover, parallel file systems (and their I/O subsystem) are often shared by many
users and their jobs.When users develop applications forHPC systems, they typically
tend to optimize for computing power, sometimes disregarding the I/O behavior of
the application. While the computing resources can often be allocated exclusively,
the global PFS is shared by all users of a HPC system. This environment makes
it difficult for the user to optimize the application concerning I/O. There are many

M. Soysal (B) · A. Streit
Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
e-mail: mehmet.soysal@kit.edu

A. Streit
e-mail: achim.streit@kit.edu

© Springer Nature Switzerland AG 2021
W. E. Nagel et al. (eds.), High Performance Computing in Science and Engineering ’19,
https://doi.org/10.1007/978-3-030-66792-4_36

537

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66792-4_36&domain=pdf
mailto:mehmet.soysal@kit.edu
mailto:achim.streit@kit.edu
https://doi.org/10.1007/978-3-030-66792-4_36


538 M. Soysal and A. Streit

possible factors a user would have to consider. Influences from the back-end storage
device, network interface, storage servers, data distribution, request size, and other
applications slowing down the PFS [4].

One of the reasons why PFSs struggle with certain I/O operations is that they
have to cover a wide range of applications. In addition, the PFS must be robust with
high availability as the HPC system is dependent on the global storage system. But
there are applications and scenarios that do not suit the general case. This includes
scenarios and cases in which large amounts of data or millions of small files are
generated, causing high load on the storage system. Consequently, bad behaving
applications can result in poor performance affecting all users. The ADA-FS project
aims to improve I/O performance for highly-parallel applications by a distributed ad-
hoc overlay file systems. The results have been published [5–7] and we are showing
in this paper a overview of our work. In order to achieve our goals, several challenges
need to be addressed.

The first step is to find a way to deploy these on-demand file systems on pro-
duction systems. It has to be minimal invasive and should not involve any changes
to the operating model. This initial step also includes performance measurements
with synthetic benchmarks. The results for this first step are represented in Chap.3.
Another point in our approach is the question, if the data can be pre-staged to the
allocated compute nodes. For this challenge it is important to know which nodes
are going to be allocated to a waiting job. To this end, we investigated how the run
times of jobs can be predicted and how good they must be to allow our approach.
Methods from the field of machine learning were used here, to predict run times.
Also we simulated different workloads of HPC systems and evaluated the impact of
improved wall time estimates. In Chap. 4 we present our evaluation regarding this
part of the project. The next Chapter includes applications and use cases of our users.
Here we present how much performance is achievable with our approach and what
impact we have on applications and the HPC system. For this we picked three dif-
ferent applications from our users. We examined the application behavior with the
on-demand file system and how our approach can help these use cases. We present
the results of the real usage scenarios in Chap.5. First we start with the related work
in the next Chap.2 and conclude at the end with a summary of the approved project.

2 Related Work

The project covers different scientific domains, e.g., machine learning, file systems,
scheduling and a wide range of applications. In this chapter we give a brief introduc-
tion in the important parts of the related work.

http://dx.doi.org/10.1007/978-3-030-66792-4_3
http://dx.doi.org/10.1007/978-3-030-66792-4_4
http://dx.doi.org/10.1007/978-3-030-66792-4_5
http://dx.doi.org/10.1007/978-3-030-66792-4_2


Ad-Hoc File Systems At Extreme Scales 539

2.1 I/O

In the recent past there have been many developments and innovations to improve
I/O throughput and performance. We cannot cover everything and try to give a brief
overview of existing solutions. Many solutions are implemented at multiple levels in
the I/O stack, but four basic categories can be formed: file system features, hardware
solutions, libraries and dynamic system re-configurations.

File system features

File Systems have received interesting new features to reduce I/O bottlenecks.
BeeGFS offers storage pools [8] to group storage targets in different classes, e.g.,
one pool with very fast solid state drives. GPFS has implemented a Highly Available
Write Cache (HAWC)[9]. Node-local solid-state drives (SSDs) are used as buffers
for the global file system. As a result, random I/O patterns are processed on local
storage. Lustre has the Progressive File Layouts (PFL) [10] feature, which adjusts
dynamically the stripe pattern and chunk size based on I/O traffic.

However, such solution are only available when using the vendor software solu-
tion.

Hardware solutions

Today’s wide spread use of SSDs in compute nodes of HPC systems has provided a
new way of accelerating storage. SSDs have been considered for file system meta-
data [11, 12], as its meta-data performance is a major bottleneck in HPC environ-
ments.

A different kind of hardware solutions are burst buffers, which aim to reduce the
load on the global file system [13].

Libraries

There is a large number of libraries available for improving I/O behavior of an appli-
cation. Middleware libaries, such as MPI-IO [14], help to improve usage of parallel
storage systems, e.g. collective I/O [15]. High-level libraries, such as HDF5 [16],
NETCDF [17] or ADIOS [18], are trying help users to express I/O as data structures
and not only as bytes and blocks. These libraries are not in contrast to our approach.
The advantages of using such libraries also apply to the on-demand file systems.

System reconfiguration

Like our approach, the configuration of the system can be modified to improve I/O.
There are several basic methods. A Dynamic Remote Scratch [19] implementation
was developed to create an on-demand block device and use it with local SSDs as a
LVM [20] device. Another software based solution is the RAMDISK Storage Accel-
erator [21]. It introduces a additional cache layer into HPC systems. Our approach
also fits into this category.



540 M. Soysal and A. Streit

2.2 Job Walltime Prediction

Batch schedulers are responsible for the resource planing and allocate the nodes to a
job [22]. One of the factors of this resource planning is based on wall time estimates,
given by the user. It is a well known problem that the user provided estimates are
far from optimal. With exact information about the run time of a job, the scheduler
can predict more accurately when sufficient resources are available to start queued
jobs [23]. However, the user requestedwall time is not close to the real usedwall time.
Gibbons [24, 25], and Downey [23] use historical workloads to predict the wall times
of parallel applications. They predict wall times based on templates. These templates
are created by analyzing previously collected metadata and grouped according to
similarities. However, both approaches are restricted to simple definitions.

In the recent years, the machine learning algorithms are used to predict resource
consumption in several studies [26–31].

However, all of the above mentioned studies do not try to evaluate the accuracy
of the node allocation predictions. Most of the publications focus on observing the
utilization of the HPC system and the reliability of the scheduler estimated job start
times. In our workwe focus on the node allocation prediction and how goodwall time
estimates have to be. This directly affects, whether a cross-node, ad-hoc, independent
parallel file system can be deployed and data can be pre-staged, or not.

2.3 Machine Learning

Machine learning (ML) is about knowledge retrieval from data. It can also be under-
stood as statistical learning and predictive analytics. In general, machine learning
is a method to learn from a set of samples with a target value and use the learned
data to predict target values from unknown samples. For our evaluation, we use a
supervised machine learning approach [32].

In our evaluation, the AUTOML library auto-sklearn [33] (based on scikit-learn
[34, 35]) is used to automate the complex work of machine learning optimization.
In a classical ML process, different models and systems are explored until the best
is chosen and auto-sklearn automatizes this process.

3 Deployment On-Demand File System

Usually HPC systems use a batch system, such as SLURM [36], MOAB [37], or
LSF [38]. The batch system manages the resources of the cluster and starts the user
jobs on allocated nodes. At the start of the job, a prologue script may be started on
one or all allocated nodes and, if necessary, an epilogue script at the end of a job (see
Fig. 1). These scripts are used to clean, prepare, or test the full functionality of the



Ad-Hoc File Systems At Extreme Scales 541

Fig. 1 Job flow for creating an on-demand file system

Table 1 BeeGFS startup and throughput

Nodes 8 16 32 64 128 256

Startup (s) 10.21 16.75 29.36 56.55 152.19 222.43

Shutdown (s) 11.90 12.13 9.40 15.96 36.13 81.06

Throughput
(GiB/s)

2.79 6.74 10.83 28.37 54.06 129.95

nodes. We modified these scripts to start the on-demand file system upon request.
During job submission a user can request an on-demand file system for the job. This
solution has minimal impact on the HPC system operation. Users without the need
for an on-demand file system are not affected.

3.1 Benchmarks

As initial benchmarks we tested the startup time of the on-demand file system and
used the “iozone” benchmark for a throughput test. The Startup and shutdown times
are shown in Table1. The delivered tools in the BeeOND package have a serial part
during initialization. After optimizing these regions we were able to start BeeGFS
within 60s on 512 nodes.

In Fig. 2a we show the IoZone [39] benchmark to measure the read and write
throughput of the on-demand file system (solid line). The Figure show that perfor-
mance increases linearly with the number of used compute nodes. The limiting factor
here is the aggregate throughout of the used SSDs. A small deviation can be observed
due to performance scattering of SSDs [40].

In a further test, we evaluated the storage pooling feature of BeeGFS [8]. We
created a storage pool for each leaf switch (see Fig. 3). In other words, when writing
to a storage pool, the data is distributed via the stripe count and chunk size, but
remains physical within a switch. Only the communication with the meta data server
is forwarded across the core switches. Figure2b shows the write throughput for the
scenarios. In the first experiment, with all six core switches, there is only a minimal
performance loss, which indicates a small overhead when using storage pools. In the



542 M. Soysal and A. Streit

(a) IoZone Throughput (b) Disabled root switch

Fig. 2 a IoZone Throughput b Disabled root switch

Fig. 3 Scheme of the fabric topology (small island), with a storage pool per leaf switch

second case we turned five switches off. With reduced number of core switches, the
throughput drops due to the reduced network capacity. If storage pools are created
accordingly to the leaf switches, it is possible to achieve the same performance.

3.2 Conclusion

Adding on-demand file system functionality to an HPC system is easy. There is no
need to change the operating model. An on-demand file system is only started if it
is actually requested. Startup times might be acceptable on smaller HPC systems
but, they are not feasible at large scales. But what is exactly acceptable depends on
several factors. For example, a few minutes start-up time may be acceptable if the
jobs run for a day. But waiting an hour for the file system to start when the job itself
isn’t running much longer, doesn’t make much sense.



Ad-Hoc File Systems At Extreme Scales 543

Various observations show that with this approach the network is no longer the
bottleneck. Since the fabric of an HPC system has a high bisection bandwidth, there
is enough bandwidth left for an on-demand fs. However, if the network is designed
somewhat weaker, enormous throughput can still be achieved with taking the topol-
ogy into consideration.

4 Walltime Prediction

An investigation whether data can be pre-staged also belongs to the tasks of this
project. One of the challenges is to know which nodes are going to be allocated
to a queued job. The HPC scheduler predicts these nodes based on the user given
wall times. Therefore, we have decided to evaluate whether there is an easy way to
automatically predict suchwall time. Our proposed approach for wall time prediction
is to train an individual model for every user withmethods from themachine learning
domain. As historical data, we used serveral workloads from two of theHPC-systems
at the Karlsruhe Institute for Technology/Steinbuch Centre for Computing [41], the
ForHLR I + II [42, 43] clusters.We used Automatic machine learning (AUTOML) to
pre-process the input data and selecting the correct model including the optimization
of hyperparameters. In this work, the auto ML library auto-sklearn [33] is used. It is
based on scikit-learn [34, 35].

Figure4 shows the R2 score for models of the users on ForHLR I+II with 30min
AUTOML. A concentration of the points in the upper right corner indicates a higher
number of good models for the training and test data. A more descriptive illustration
of the results are given in Fig. 5 for the ForHLR II. Here the median absolute error is
compared between the AUTOML, the default linear regression, and the user given
wall time prediction. On the ForHLR II cluster 50% of the prediction have a smaller
median absolute error of around 21min, 43min, 186min for the AUTOML model,
the linear regression model, and the user prediction, respectively.

4.1 Conclusion

We showed that we can achieve goodwalltime predictions with very simplemethods.
We only used general meta-data and trained an individual model for each user. The
results are very remarkable, considering that hardly any manual optimizations were
performed on the models.

But we have shown in a futher investigation that even with almost perfect job wall
time estimates the node allocation can’t be predicted in a sufficient manner [7].

It has therefore been decided that further work is needed here. In this case, a modi-
ficationmust bemade to the operational processes of the scheduler.We have achieved
this by developing a plug-in (On-demand burst buffer plugin) for the SLURM sched-
uler. If required, this plugin starts an on-demand plugin and transfers the data on the



544 M. Soysal and A. Streit

Fig. 4 X -Axis R2 score on training samples, Y -Axis R2 score on test samples for ForHLR I+II
with 30min AUTOML

Fig. 5 Y-Axis Cumulative distribution, X-Axis Median absolute error ForHLR II

temporary fs. The challenge with the unknown node list is solved with reservations
by this plugin.



Ad-Hoc File Systems At Extreme Scales 545

(a) Write troughput with file-per-
process method

(b) Write troughput with MPI-IO method

Fig. 6 Write benchmark with super_sph

5 Scientific Applications

We have evaluated several applications regarding to on-demand file systems. We
selected applications which either generate a very high load on our system or the I/O
part is identified as a bottleneck. In this paper we present only a very brief overview,
other results are already published [44].

5.1 Super_sph

We evaluated the application super_sph (“Simulation for Smoothed Particle Hydro-
dynamics”) [45] which is developed at “Institut für Strömungsmaschinen” @KIT.
The software scales up to 15000 Cores and 109 particles. The first implementation of
the software created a file per process and required data-gathering as post-processing.
A new implementation is now writing directly to time steps using MPI-IO which
makes the data-gathering process unnecessary. From our observation—file per pro-
cess method is causing heavy load on the PFS. Using MPI-IO is slower but has
less impact on global PFS. Figure6 show the results of super_sph when writing
directly to the global filesystem (Lustre) and to an on-demand created filesystem
(BeeOND/BeeGFS). For the benchmark we used 256 Nodes. While using the simple
file-per-process method we gain a small performance increase. When using MPI-IO
it is important to hoose the right parameters for the file-system. If the chunksize is
not well chosen the performance loss is tremendous.



546 M. Soysal and A. Streit

Fig. 7 Execution time per time-step. Different scenarios w/o data staging

5.2 Data Staging

We also considered the case of copying data back to the PFS while the application is
running. The results are already published [44] and here we show a short summary.
For this purpose, we used different NAStJA simulations on 23 nodes. The parallel
copy tool dcp [46] was used to stage data. Figure7 show the average execution time
per time-step of five runs. With 16 cores for the application, from available 20 cores,
the run times are similar whether the run was executed with or without data staging.
If there are enough free resources on the compute nodes, the data can be staged-out
without slowing down the application.

5.3 Conclusion

The results with real applications and use cases are already very good in the early
phase. The use of on-demand file system immediately reduces the load on the global
file system. This is of great importance for the shared HPC system and means a
much more stable operation with less interference between the jobs. The impact
of an on-demand file system to the application is minimal. However, we have only
tested few applications and use cases to see if an on-demand file system becomes a
disadvantage. Also the results for data-staging are promising, depending on whether
you have much or little time to move the data, there are ways to choose the right
method.



Ad-Hoc File Systems At Extreme Scales 547

6 Summary

On-demand file systems is easy adaptable into aHPCSystem. It immediately reduces
the load on the global file systems. Startup and shutdown times are acceptable only for
long running jobs. For very short running jobs it might be senseless, but experience
shows that large scale jobs usually request longer wall times. However, many more
factors have to be taken into account to enable a reasonable and fast use in a wide
range. There are also many factors to consider during deployment so that a user is
not overwhelmed, e.g., setting the right strip-count and chunk-size parameters.

It turned out that pre-staging data to the compute nodes is not possible with the
unreliable allocation prediction of the scheduler. Here a modification is needed to
cope with the issue of the unknown node list. A plugin has been developed which
solves this issue, by using reservations. The plugin extends the use of the built-in
burst buffer concept and creates an on-demand file system and moves the required
data to the temporary file system.

The trend in the HPC environment clearly shows that faster solid state disks keep
coming into the compute nodes.With these, the advantages of on-demandfile systems
on the compute nodes should be even more significant.

Acknowledgements The project ADA-FS is funded by the DFG Priority Program “Software for
exascale computing” (SPPEXA, SPP 1648), which is gratefully acknowledged. This work was
supported by the Helmholtz Association of German Research Centres (HGF) and the Karlsruhe
Institue of Technology. This work was performed on the computational resource ForHLR II with
the acronymADA-FS funded by theMinistry of Science, Research and theArts Baden-Württemberg
and DFG (“Deutsche Forschungsgemeinschaft”). We would like to thank the operation team of the
ForHLR II cluster, which allowed us to adapt operational areas of the system to our needs.

References

1. S. Microsystems, LUSTRE™ FILE SYSTEM High-Performance Storage Architecture and
ScalableCluster File System (2007), http://www.csee.ogi.edu/zak/cs506-pslc/lustrefilesystem.
pdf. Accessed 05 Sept 2016

2. F. Schmuck, R. Haskin, Gpfs: A shared-disk file system for large computing clusters, in Pro-
ceedings of the 1st USENIX Conference on File and Storage Technologies, ser. FAST ’02
(Berkeley, CA, USA, USENIX Association, 2002)

3. J. Heichler, An introduction to BeeGFS (2014), http://www.beegfs.com/docs/Introduction_to_
BeeGFS_by_ThinkParQ.pdf. Accessed 6 Sept 2016

4. O. Yildiz, M. Dorier, S. Ibrahim, R. Ross, G. Antoniu, On the root causes of cross-application
I, O interference in HPC storage systems, in IEEE International on Parallel and Distributed
Processing Symposium (IEEE 2016), pp. 750–759

5. M. Soysal, M. Berghoff, A. Streit, Analysis of job metadata for enhanced wall time prediction,
in Job Scheduling Strategies for Parallel Processing (2018)

6. M. Soysal, M. Berghoff, A. Streit, Analysis of job metadata for enhanced wall time prediction,
in Job Scheduling Strategies for Parallel Processing (Springer International Publishing, Cham,
2019), pp. 1–14

7. M. Soysal, M. Berghoff, D. Klusáček, A. Streit, On the quality of wall time estimates for
resource allocation prediction, in Proceedings of the 48th International Conference on Parallel

http://www.csee.ogi.edu/zak/cs506-pslc/lustrefilesystem.pdf
http://www.csee.ogi.edu/zak/cs506-pslc/lustrefilesystem.pdf
http://www.beegfs.com/docs/Introduction_to_BeeGFS_by_ThinkParQ.pdf
http://www.beegfs.com/docs/Introduction_to_BeeGFS_by_ThinkParQ.pdf


548 M. Soysal and A. Streit

Processing: Workshops, ser. ICPP 2019 (ACM, New York, NY, USA, 2019) vol 23, pp. 1–23,
8. https://doi.org/10.1145/3339186.3339204

8. BeeGFS, BeeGFS Storage Pool (2018), https://www.beegfs.io/wiki/StoragePools. Accessed
18 Aug 2018

9. IBM, GPFS—highly available write cache (hawc) (2018), https://www.ibm.com/support/
knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv_hawc.htm

10. R. Mohr, M.J. Brim, S. Oral, A. Dilger, Evaluating progressive file layouts for lustre
11. J. Xing, J. Xiong, N. Sun, J. Ma, Adaptive and scalable metadata management to support a

trillion files, in Proceedings of the Conference on High Performance Computing Networking,
Storage and Analysis, ser. SC ’09 (ACM, New York, NY, USA, 2009) pp. 26:1–26:11. https://
doi.org/10.1145/1654059.1654086

12. S. Lang, P. Carns, R. Latham, R. Ross, K. Harms, W. Allcock, I/O performance challenges at
leadership scale, in Proceedings of the Conference on High Performance Computing Network-
ing, Storage and Analysis(2009), pp. 1–12

13. N. Liu, J. Cope, P. Carns, C. Carothers, R. Ross, G. Grider, A. Crume, C. Maltzahn, On the role
of burst buffers in leadership-class storage systems, in IEEE 28th Symposium on Mass Storage
Systems and Technologies (MSST), (IEEE, 2012), pp. 1–11

14. R. Thakur, W. Gropp, E. Lusk, On implementing MPI-IO portably and with high performance,
in Proceedings of the Sixth Workshop on I/O in Parallel and Distributed Systems (ACM, 1999),
pp. 23–32

15. R. Thakur, W. Gropp, E. Lusk, Data sieving and collective I, O in ROMIO, in The Seventh
Symposium on the Frontiers of Massively Parallel Computation, Frontiers’ 99 (IEEE, 1999),
pp. 182–189

16. M. Folk, G. Heber, Q. Koziol, E. Pourmal, D. Robinson, An overview of the HDF5 technol-
ogy suite and its applications, in Proceedings of the EDBT/ICDT 2011 Workshop on Array
Databases (ACM, 2011), pp. 36–47

17. R. Rew, G. Davis, Netcdf: an interface for scientific data access. IEEE Comput. Graphics Appl.
10(4), 76–82 (1990)

18. J.F. Lofstead, S. Klasky, K. Schwan, N. Podhorszki, C. Jin, Flexible IO and integration for
scientific codes through the adaptable IO system (ADIOS), in Proceedings of the 6th Inter-
national Workshop on Challenges of Large Applications in Distributed Environments (ACM,
2008), pp. 15–24

19. M. Neuer, J. Salk, H. Berger, E. Focht, C. Mosch, K. Siegmund, V. Kushnarenko, S. Kom-
brink, S. Wesner, Motivation and implementation of a dynamic remote storage system for I/O
demanding HPC applications, in International Conference on High Performance Computing
(Springer, 2016), pp. 616–626

20. D. Teigland, H. Mauelshagen, Volume managers in linux, in USENIX Annual Technical Con-
ference. FREENIX Track 185–197 (2001)

21. T. Wickberg, C. Carothers, The RAMDISK storage accelerator: a method of accelerating I/O
performance on HPC systems using RAMDISKs, in Proceedings of the 2nd International
Workshop on Runtime and Operating Systems for Supercomputers, ser. ROSS ’12 (ACM, New
York, NY, USA, 2012), pp. 5:1–5:8. https://doi.org/10.1145/2318916.2318922

22. M. Hovestadt, O. Kao, A. Keller, A. Streit, Scheduling in hpc resource management systems:
queuing vs planning, in Job Scheduling Strategies for Parallel Processing, ed. by D. Feitelson,
L. Rudolph, U. Schwiegelshohn (Springer, Berlin, 2003), pp. 1–20

23. A.B. Downey, Predicting queue times on space-sharing parallel computers, in Proceedings of
the 11th International Parallel Processing Symposium (IEEE, 1997), pp. 209–218

24. R. Gibbons, A historical profiler for use by parallel schedulers. Master’s thesis, University of
Toronto, 1997

25. R. Gibbons, A historical application profiler for use by parallel schedulers, in Job Scheduling
Strategies for Parallel Processing (Springer, 1997), pp. 58–77

26. A.Matsunaga, J.A. Fortes, On the use ofmachine learning to predict the time and resources con-
sumed by applications, in Proceedings of the 2010 10th IEEE/ACM International Conference
on Cluster, Cloud and Grid Computing (IEEE Computer Society, 2010), pp. 495–504

https://doi.org/10.1145/3339186.3339204
https://www.beegfs.io/wiki/StoragePools
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv_hawc.htm
https://www.ibm.com/support/knowledgecenter/en/STXKQY_5.0.0/com.ibm.spectrum.scale.v5r00.doc/bl1adv_hawc.htm
https://doi.org/10.1145/1654059.1654086
https://doi.org/10.1145/1654059.1654086
https://doi.org/10.1145/2318916.2318922


Ad-Hoc File Systems At Extreme Scales 549

27. N.H. Kapadia, J.A. Fortes, On the design of a demand-based network-computing system:
the purdue university network-computing hubs, in Proceedings of the Seventh International
Symposium on High Performance Distributed Computing (IEEE, 1998), pp. 71–80

28. A.W. Mu’alem, D.G. Feitelson, Utilization, predictability, workloads, and user runtime esti-
mates in scheduling the IBM SP2 with backfilling. IEEE Trans. Parallel Distrib. Syst. 12(6),
529–543 (2001)

29. F. Nadeem, T. Fahringer, Using templates to predict execution time of scientific workflow
applications in the grid, in Proceedings of the 2009 9th IEEE/ACM International Symposium
on Cluster Computing and the Grid (IEEE Computer Society, 2009), pp. 316–323

30. W. Smith, Prediction services for distributed computing, in IEEE International on Parallel and
Distributed Processing Symposium, (IPDPS 2007) (IEEE, 2007), pp. 1–10

31. D. Tsafrir, Y. Etsion, D.G. Feitelson, Backfilling using system-generated predictions rather
than user runtime estimates. IEEE Trans. Parallel Distribut. Syst. 18(6), (2007)

32. M. Mohri, A. Rostamizadeh, A. Talwalkar, Foundations of Machine Learning, (MIT press,
2012)

33. M. Feurer, A. Klein, K. Eggensperger, J. Springenberg, M. Blum, F. Hutter, Efficient and
robust automated machine learning, in Advances in Neural Information Processing Systems,
ed. by C. Cortes, N.D. Lawrence, D.D. Lee, M. Sugiyama, R. Garnett (Curran Associates,
Inc., 2015), pp. 2962–2970. http://papers.nips.cc/paper/5872-efficient-and-robust-automated-
machine-learning.pdf

34. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P.
Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher,
M. Perrot, E. Duchesnay, Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12,
2825–2830 (2011)

35. L. Buitinck, G. Louppe, M. Blondel, F. Pedregosa, A. Mueller, O. Grisel, V. Niculae, P. Pret-
tenhofer, A. Gramfort, J. Grobler, R. Layton, J. VanderPlas, A. Joly, B. Holt, G. Varoquaux,
API design for machine learning software: experiences from the scikit-learn project, in ECML
PKDD Workshop: Languages for Data Mining and Machine Learning (2013), pp. 108–122

36. Slurm-schedmd, http://www.schedmd.com
37. Adaptive Computing, http://www.adaptivecomputing.com
38. IBM—platform computing, http://www.ibm.com/systems/platformcomputing/products/lsf/
39. D. Capps, W. Norcott, Iozone filesystem benchmark (2008), http://iozone.org/
40. E. Kim, SSDperformance-a primer: an introduction to solid state drive performance, evaluation

and test, Tech. rep. (Storage Networking Industry Association, 2013)
41. Steinbuch Center for Computing, Scc (2016), http://www.scc.kit.edu. Accessed 16 Aug 2016
42. Forschungshochleistungsrechner ForHLR 1 (2018), www.scc.kit.edu/dienste/forhlr1.php
43. Forschungshochleistungsrechner ForHLR 2 (2018), www.scc.kit.edu/dienste/forhlr2.php
44. M. Soysal, M. Berghoff, T. Zirwes, M.A. Vef, S. Oeste, A. Brinkman, W. E. Nagel, A. Streit,

Using On-demand File Systems in HPC Environments, Accepted @ The 2019 International
Conference on High Performance Computing and Simulation (HPBench@HPCS)

45. S. Braun, R. Koch, H.J. Bauer, Smoothed particle hydrodynamics for numerical predictions of
primary atomization 15(1), 56–60 (2017)

46. D. Sikich, G. Di Natale, M. LeGendre, A. Moody, mpifileutils: a parallel and distributed
toolset for managing large datasets, Lawrence Livermore National Lab (LLNL) (Livermore,
CA, United States, Tech. Rep., 2017)

http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://papers.nips.cc/paper/5872-efficient-and-robust-automated-machine-learning.pdf
http://www.schedmd.com
http://www.adaptivecomputing.com
http://www.ibm.com/systems/platformcomputing/products/lsf/
http://iozone.org/
http://www.scc.kit.edu
www.scc.kit.edu/dienste/forhlr1.php
www.scc.kit.edu/dienste/forhlr2.php

	 Ad-Hoc File Systems At Extreme Scales
	1 Introduction
	2 Related Work
	2.1 I/O
	2.2 Job Walltime Prediction
	2.3 Machine Learning

	3 Deployment On-Demand File System
	3.1 Benchmarks
	3.2 Conclusion

	4 Walltime Prediction
	4.1 Conclusion

	5 Scientific Applications
	5.1 Super_sph
	5.2 Data Staging
	5.3 Conclusion

	6 Summary
	References




