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Abstract ls1 mardyn is a molecular dynamics (MD) simulation framework that
enables investigations of multicomponent and multiphase processes relevant to engi-
neering applications, such as droplet coalescence or bubble formation. These sce-
narios require the simulation of ensembles containing a large number of molecules.
We present recent advances in ls1 mardyn both from the software design and high-
performance computing perspective. From the former we describe the recently intro-
duced plugin framework, from the latter we will look at some recent load balancing
improvements to ls1 mardyn. We further present preliminary results of the integra-
tion of AutoPas, a C++ node-level library employing auto-tuning to achieve optimal
node-level performance for particle simulations, into ls1 mardyn.
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1 Introduction

Molecular dynamics (MD) simulations have become a valuable tool for engineering
applications. They rest on molecular models that describe the molecular interactions
and encode the macroscopic behavior of matter. Equilibrium MD simulations thus
enable sampling of thermodynamic properties in a consistent manner. Such data
can be used to develop either fully predictive equations of state (EOS) or hybrid
EOS, where simulation data are combined with experimental data [11]. An impor-
tant advantage is that simulations can straightforwardly be carried out under extreme
conditions, i.e. high temperatures and pressures, that are hardly accessible with
experiments. Beside classical equilibrium scenarios, MD simulations can also be
employed to investigate systems that are not in global equilibrium so that imposed
gradients drive processes like droplet coalescence [17], bubble formation [12] or
interfacial flows [13]. For many phenomena concerning multi-phase systems, the
interface between the phases plays a key role. The spatial extent of the interface
region is often only a few molecular diameters and can therefore only be resolved on
the atomistic level. Employing molecular simulation, there are no additional mod-
eling approaches, the physical processes evolve naturally and hence can be inves-
tigated unbiasedly. For many fluids that are relevant for engineering applications,
comparatively simple molecular force field models have been developed, consisting
of a few interaction sites, e.g.. Lennard Jones (LJ) sites considering the dispersive
interaction and point charges, dipoles or quadrupoles to model the electrostatic inter-
action. A typical example is the mixture of acetone (four LJ sites, one dipole and one
quadrupole) and nitrogen (two LJ sites and one quadrupole) which is frequently used
to model fuel injection-like scenarios in thermodynamic laboratories. However, the
present simulations were conducted with a simpler molecular model, consisting of
a single LJ site. This model can be parametrized such that it mimics the thermody-
namic behavior of noble gases like argon, krypton or xenon as well as methane [22].
This model is well suited for investigations focusing on the basic understanding of
processes like the droplet coalescence so that it was considered in the present work.

In a long-term interdisciplinary effort of computer scientists andmechanical engi-
neers, the MD framework ls1 mardyn has evolved over the last decade to investigate
such large systems of small molecules [14]. ls1 mardyn has been used in various
studies [21] and has been continuously extended to optimally exploit current HPC
architectures [6, 18, 20]. In the following, we detail recent developments within the
framework to achieve optimal performance at node andmulti-node level. After intro-
ducing the actual problem setting of short-range molecular dynamics, related work
and the original implementation of ls1 mardyn in Sect. 2, we introduce the newly
developed plugin framework of ls1 mardyn in Sect. 3. Improvements to the MPI load
balancing are shown in Sect. 4. We report preliminary results on the integration of
AutoPas in ls1 mardyn in Sect. 5, which have been published in [8]. We close with a
summary and an outlook to future work in Sect. 6.
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2 Short-Range Molecular Dynamics

2.1 Theory

In short-range MD, Newton’s equations of motion are solved numerically [16]. In
the following, considerations are restricted to small molecules. Due to their negligi-
ble conformational changes, molecules undergo translational or rotational motion;
both are included in the equations of motion and are solved simultaneously in ls1
mardyn using a leapfrog time integrator, without the need for iterative procedures
(such as the SHAKE algorithm) to handle geometric constraints [16].

Molecules interact via force fields. In short-range MD, arising forces are only
explicitly accounted for if the distance between two considered molecules is below a
specified cut-off radius rc. There are basically two variants to efficiently implement
the cut-off condition: linked cells and Verlet lists [16]. Both methods turn the actual
molecule-molecule interaction complexity from O(N 2) to O(N ). In the Verlet list
approach, a list of all molecules within a surrounding rc + h is stored per molecule
and updated regularly. Computing interactions thus reduces to traversing the list.
The choice of h dictates the frequency of necessary list rebuilds on the one hand and
the overall size of interaction search volume on the other hand. ls1 mardyn makes
use of the linked cell approach: a Cartesian grid with cell sizes ≥ rc is introduced
and covers the computational domain. The molecules are sorted into these cells.
Molecular interactions only need to be considered for molecules that reside within
the same cell or in neighboring cells.

All simulations reported in this contribution rest on the truncated and shifted form
of the LJ potential [22]

ULJ (ri j ) = 4ε

((
σ

ri j

)12

−
(

σ

ri j

)6
)

, (1)

ULJ,trunc(ri j ) =
{
ULJ (ri j ) −ULJ (rc) for ri j ≤ rc
0 for ri j > rc

(2)

with species-dependent parameters for size σ and energy ε and the distance ri j
between molecules i and j , as well as the cutoff radius rc. Due to the truncation
of the potential, no long range corrections have to be considered. This simplifies
the treatment of multi-phase systems, where the properties of the interface can be
strongly dependent on the cut-off radius [24]. The force calculation is typically by
far the most expensive part of MD simulations that often contributes ≥ 90% to the
overall compute time and hence is the preferential target for code optimizations.
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2.2 Related Work

HPC and Related MD Implementations

Various packages efficiently and flexibly implement (short-range) molecular dynam-
ics algorithms, with the most popular ones given by Gromacs,1 LAMMPS2 and
NAMD.3 Gromacs leverages particularlyGPUs but also supports OpenMP and large-
scale MPI parallelism, and it also exploits SIMD instructions via a new particle
cluster-based Verlet list method [1, 15]. A LAMMPS-based short-range MD imple-
mentation for host-accelerator systems is reported in [2] with speedups for LJ scenar-
ios of 3–4. A pre-search process to improve neighbor list performance at SIMD level
and an OpenMP slicing scheme are presented in [10, 23]. The arising domain slices,
however, need to be thick enough, to actually boost performance at shared-memory
level. This restricts the applicability of the method to rather large (sub-)domains per
process.

ls1 mardyn

An approach to efficient vectorization built on top of the linked cell data structure
within ls1 mardyn is presented for single [5] and multi-site4 molecules [4]. This
method, combined with a memory-efficient storage, compression and data manage-
ment scheme [7], allowed for a four-trillion atom simulation in 2013 on the super-
computer SuperMUC, phase 1 [6]. A multi-dimensional, OpenMP-based coloring
approach that operates on the linked cells is provided in [20]. The method has been
evaluated on both Intel Xeon and Intel Xeon Phi architectures and exhibits good scal-
ability up to the hyperthreading regime. ls1mardyn further supports load balancing. It
uses k-d trees for this purpose. Recently, this approach has been employed to balance
computational load on heterogeneous architectures [18]. A detailed overview of the
original release of ls1 mardyn is provided in [14]. Various applications from process
and energy engineering, including several case studies that exploit ls1 mardyn, are
discussed in [21]. Recently, ls1 mardyn was used to simulate twenty trillion atoms
at up to 1.33 PFLOPS performance [19].

3 Plugin Framework

ls1 mardyn has many users with different backgrounds (process engineering, com-
puter science)which have very differing levels of C++ knowledge. To implement new
features, developers had to first understand considerable parts of the program before
being able to contribute to the further development of ls1 mardyn. Additionally, most

1www.gromacs.org.
2www.lammps.org.
3http://www.ks.uiuc.edu/Research/namd/.
4Molecules that consist of several interaction sites, e.g.. two LJ sites.

www.gromacs.org
www.lammps.org
http://www.ks.uiuc.edu/Research/namd/
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Fig. 1 Extension points of ls1 mardyn through plugins. The extension points are marked by dashed
arrows, normal steps of the simulation are shown with solid lines

changeswere done on a local copy or a private branchwithin themain simulation loop
of the program or within some deeply coupled classes. Consequently, integrating the
new code into the main source tree became a major difficulty and therefore often
was rejected. If such changes were integrated anyways, they cluttered the source
code and made it harder to understand. Moreover, new features often were not easily
configurable and could only be disabled or enabled at compile-time.

To prevent the mentioned drawbacks, we have performed major code refactoring
steps within ls1 mardyn to allow for both easier maintainability and extendability by
introducing a plugin framework. Most user code can now be expressed as plugins
that can be easily implemented, maintained, extended, integrated into ls1 mardyn and
enabled upon startup of the simulation. Additionally, the user code is now mostly
removed from the main simulation loop and main classes from ls1 mardyn, making
maintainability more affordable and the code more readable.

ls1 mardyn provides a total of five different extension points that each prove their
own purpose (c.f. Fig. 1):
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beforeEventNewTimeStep This extension point (EP) is used as legacy support for
some older code parts. Mostly endStep can be used instead.

beforeForces At this point the positions have been updated. Using this EP you can
change positions of particles, for example to realign a droplet at the center of the
domain.

siteWiseForces This EP can be used to apply forces on specific sites of the
molecules. One existing plugin uses it to implement a site-wise potential that
prevents Lennard-Jones sites from moving through a wall.

afterForces At this point additional forces to entire molecules can be added.
endStep This step is mostly used for output. Most plugins only use this extension

point.

Even though less than a year has passed since these changes were implemented (as
of March 2019), we have already seen a lot of user code to actually find its way into
the main source tree. Additionally, the user-base has provided very positive feedback
on these changes, as their life got easier as well.

4 Load Balancing

In the previous report we presented preliminary results on the coalescence of two
droplets with a diameter of d = 50 nm containing a number of N = 106 particles,
cf. Fig. 2. These simulations were, however, only run on a fairly small amount of
processes. When we tried scaling the simulation to more processes we discovered
that the k-d tree-based load balancing implementation (kdd, see [3, 14, 18], Fig. 3)
in ls1 mardyn at that point did not provide the performance we expected, as the
load-unaware Cartesian domain decomposition (sdd, Fig. 4) outperformed the load-
balancing kdd starting at around 32 nodes (see old, sdd in Fig. 5).

The kdd distributes the domain by splitting the overall domain into a grid of cells.
A load ccell is assigned to each cell. The grid is then split into N disjunct subdomains,
such that each subdomain j contains roughly the same load

Csubdomain =
∑

cells in subdomain

ccell = Ctotal/N , (3)

where Ctotal is the total combined cost for the entire domain

Ctotal =
∑

all cells

ccell.

To get the loads per cell a load estimation model was used, that takes the number of
particles in the current cell ncell and its neighbors nneighbor cell into account and uses
a quadratic model:
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Fig. 2 Snapshot of two argon droplets with a diameter of d = 50 nm containing a number of
N = 106 particles in equilibrium with their vapor at a temperature of T = 110K, rendered by the
cross-platform visualization framework MegaMol [9]. It shows the time instance where a liquid
bridge starts to grow, spanning over the initial gap of 1 nm between the droplets’ interfaces. The
colors red and greenwere selected to be able to distinguish between particles that initially constituted
either the left or right droplet. To provide a clear view through the vapor, particles were rendered
with a diameter of σ/3

Fig. 3 Space-partitioning
using kdd. The different
colors represent the different
levels of the splitting
hyperplanes

ccell = n2cell +
1

2

∑
neighboring cells

ncell · nneighbor cell (4)

The investigation of the observed performance drops showed that the distribution
of the loadsCsubdomain was appropriate, but the actual time spent on the calculations of
a specific subdomain did not properly match the loads, indicating a poor estimation
of the loads ccell. We henceforth introduced three additional load estimators:
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Fig. 4 Space-partitioning
using a 2-d Cartesian grid
(sdd). Shown is a splitting
into 12 subdomains

vecTuner This load estimator evaluates the time needed for each cell by doing
a reference simulation at the beginning of the simulation. Therefore, for each
particle count ncell the time needed to calculate the interactions within a cell and
the interactions across cells is measured.

measureLoadV1 This load estimator uses dynamic runtime measurements within
the actual simulation. Therefore, the time needed to calculate all interactions
within each process is measured. This time is the sum of the times needed for
each cell, similar to Eq. (3):

Tsubdomain =
∑

cells in subdomain

tcell (5)

The time for each cell tcell cannot be easily measured, because these times are very
small and exhibit a high level of noise and inaccuracy. Instead of determining the
values tcell we decided to introduce cell types to get better statistical properties.
One typical cell type would be characterized by the number of particles per cell,
but other characterizations are possible. Using the cell types, Eq. (5) becomes

Tsubdomain =
∑

cell types

ncell type · tcell type. (6)

Assuming that the processes need the same amount of time for each cell of the
same type, we can derive the matrix equation

∀i : Ti =
∑
j

ni, j · t j , (7)

where Ti is the time needed by process i , ni, j is the amount of cells of type j
within rank i and t j is the time needed to calculate the interactions of cell type
j . Hereby only t j is an unknown and can thus be estimated by solving the matrix
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Fig. 5 The different load
estimation techniques for a
droplet coalescence scenario
with 8 million particles using
8 OpenMP threads per rank
and the full shell method
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equation of the typically overdetermined system through a least squares fit. We
are always using the characterization of cell type by particle number, i.e. cell type
j resembles all cells with j particles.

measureLoadV2 This load estimator is based onmeasureLoadV1, but additionally
assumes a quadratic dependency of t j on the particle count j .

t j = a0 + a1 · j + a2 · j2 (8)

The resulting matrix equation

∀i : Ti =
∑
j

ni, j ·
2∑

k=0

j k · ak (9)

∀i : Ti =
2∑

k=0

(
∑
j

ni, j · j k) · ak (10)

is then solved using a non-negative least squares algorithm to obtain ak .

A comparison of the results using the different load estimation techniques is
shown in Fig. 5 for a droplet coalescence scenario with 3 million particles, showing
a clear improvement of all new load estimators compared to the old one. While for
64 nodes a speedup of roughly 4x over the old load estimation techniques and an
improvement of 2x over the standard domain decomposition (sdd) is visible, the
sdd still performs best for large process counts. This is due to better communication
schemes and sub-optimal load balancing even when using the new estimators with
the kdd.
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Fig. 6 Comparison of the different scenarios for the vecTuner load estimator. The eight-shell
method has been used for the kdd, marked by es in the legend

Scaling results using vecTuner for scenarios with 25 million and 200 million
particles are shown in Fig. 6. For these scenarios the kdd always outperforms the
standard domain decomposition if the new load estimators are used.

Simulations over a longer time-scale have been calculated for all three scenarios.
For the scenario with 25 million particles, the evolution of the droplets is show
in Fig. 7. In contrast to the previous simulations, the larger simulation was able to
visualize the wiggling within the droplet formation nicely.

5 Preliminary Results: AutoPas Integration

Our work further concentrated on the integration of the C++ library AutoPas [8]
into ls1 mardyn. The library employs auto-tuning to provide close to optimal node-
level performance for particle simulations, which is expected to complement the
distributed-memory load balancing approach. Early studies have shown successful
automatic adaptions of the employed algorithms to both varying inputs as well as
dynamically changing scenarios.

Figure8 shows howAutoPas can already be used to calculate a spinodal decompo-
sition scenario using ls1 mardyn. The simulation starts with a supercritical temper-
ature and a density close to the critical one. Then, the temperature is controlled
immediately to a temperature far below the critical one by the velocity scaling
thermostat, so that the state of the fluid suddenly becomes physically unstable,
resulting in the decomposition of the fluid into stable vapor and liquid phases
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Fig. 7 Time evolution of the droplet contour of the scenario with 25 million particles

(see Fig. 8, top). During the simulation the system thus changes from a homoge-
neous state to a very heterogeneous one. Looking at shared-memory parallelization
strategies, in the beginning, while the system is still homogeneous, a load-unaware
strategy can be used that simply splits the subdomain into even parts to be cal-
culated by each thread of a cpu. Later on, when the system becomes increasingly
heterogeneous a load-balancing strategy is needed. In the shown figure AutoPas is
allowed to choose between two shared-memory parallelization strategies, here called
traversals [19, 20]:

c08 This traversal uses coloring to split the domain into multiple groups of cells
(colors), where calculation on all cells in one group can be done in parallel without
any data races. The cells of each color are then distributed to the threads using
OpenMP’s dynamic scheduling. After one color is finished, the next color is
started.
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Fig. 8 Spinodal decomposition scenario with 4 million particles calculated with ls1 mardyn and
AutoPas. The images on the top show the end configuration of the system from the side (top left) and
a slice of it (top right). The bottom figure shows the time needed for each iteration for two different
shared-memory parallelization strategies. AutoPas is able to automatically choose between these
two strategies

sli The sliced traversal (sli) slices the domain into multiple equally sized subdo-
mains. Each subdomain is then calculated by one thread. Locks are employed to
prevent data races.

Henceforth, the c08 traversal is better suited for heterogeneous scenarios, as it
provides dynamic scheduling, while the sli traversal is better suited for homoge-
neous scenarios, as it uses less overhead. As expected, AutoPas switches the shared-
memory parallelization strategy for the mentioned scenario at time step∼9000 from
sli to c08.

6 Summary and Outlook

We have outlined recent progress in usability (plugin concept), load balancing
(kdd-based decomposition and load estimation approaches) and auto-tuning (library
AutoPas) to improve the molecular dynamics software ls1 mardyn. Load balancing
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improvements enabled unprecedented large-scale droplet coalescence simulations
leveraging the supercomputer Hazel Hen. Yet, more work and effort is required to
improve scalability of the scheme beyond O(200) nodes. The auto-tuning approach
we follow by the integration of AutoPas appears promising in terms of both scenario
as well as hardware-aware HPC algorithm adoption. More work in this regard is
in progress, focusing amongst others on the incorporation of Verlet list options and
different OpenMP parallelization schemes.
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