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Abstract The Discontinuous Galerkin method is a high-order method in space
reducing the amount of cells needed for calculations compared to standard com-
putational fluid dynamics (CFD) solvers. At the Institue for Aerodynamics and Gas
Dynamics the CFD code SUNWinT has been developed using a DGmethod with the
aim to apply it to rotor flows. The present study concerns the progress in simulating
the flow phenomena of an isolated rotor in hover. The results of the calculations
are compared to experimental data and show good agreement. Furthermore, the first
phenomenological results of the flow around an isolated rotor in forward flight are
presented, which reveal promising results and should serve as a starting point for
future investigations.

1 Introduction

Nowadays, computational fluid dynamics (CFD) has become a fundamental tool for
the analysis of various kinds of flowproblems in nature and for technical applications.
The demand for precise results and short simulation times is growing as the avail-
able computer power has become an easily accessible and still steadily increasing
resource. Therefore, High-Performance Computing (HPC) has become a standard
tool in CFD. The simulations are performed on several computer processors (CPUs),
which on the one hand shortens the time for the calculation. On the other hand,
the parallelization of the simulation requires a communication between the CPUs
which may become a bottleneck in terms of computation duration. Classical CFD
methods like the finite volume (FV) method need to work on smooth and highly
resolved meshes in order to produce reliable results. The creation of these compu-
tational meshes is usually a time-consuming process. Furthermore, the spatial order
of accuracy of the FV method stagnates at second order due to an inefficiently high
parallel communication effort in highly parallel calculations.
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The Discontinuous Galerkin (DG) method, first used by Reed and Hill [14], has
the potential to replace or at least augment the classical CFDmethods. The advantage
of DG is that the mesh resolution is less restrictive than for FV solvers because the
spatial accuracy order may be chosen arbitrarily. Additionally, the parallelization
of the DG method requires less communication effort. In fluid mechanics the DG
method combines the ideas of the finite element (FE) and the FV methods. The
approach of the method is based on the FE Galerkin discretization scheme in which
the solution within a cell is given by a polynomial approximation of arbitrary order.
In contrast to a classical FE discretization, the DG approach allows the solution to be
discontinuous between the cells. Hence, a solver for that kind of Riemann problem
is required, which is well known from FV methods.

The DG solver SUNWinT (Stuttgart University Numerical Wind Tunnel) has
been developed at the Institute for Aerodynamics and Gas Dynamics (IAG) in the
past 15years. Landmann [9] introduced the first basic functionalities (up to the dis-
cretization of the RANS equations) in 1D and 2D space. In [10] Lübon implemented
3D functionality and a method for Detached Eddy Simulations (DES). Afterwards,
Wurst [18] improved the solver and extended it for moving bodies in 2D space.
This work will consistently pursue the global objective of the project: the turbulent
simulation of a helicopter rotor considering of fluid-structure interaction.

Yang and Yang [20] presented results of the Euler flow around an isolated rotor
using a DG solver with an overset grid method and third order. In this work first 3D
simulations of a moving, isolated rotor in hover with the IAG DG solver SUNWinT
have been performed. The results of fourth order are compared with the experimental
data provided by Caradonna and Tung [4]. Furthermore, a first approach of the DG
simulation of the flow around an isolated rotor in forward flight is presented.

2 Governing Equations

To determine the physics of a fluid in motion, conservation of mass, momentum
and energy are required. If viscous, compressible flows the so-called Navier–Stokes
equations are considered

∂U
∂t

+ ∇ (Finv(U) − Fvis(U,∇U)) = S(U,∇U) (1)

describe their physical behavior. In Eq. (1) the state vector of conservative variables
U, the inviscid flux tensorFinv = (Fx

inv F
y
inv F

z
inv)

T and the viscous flux tensorFvis =
(Fx

vis F
y
vis F

z
vis)

T read as
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(2)

ρ represents the density, ui the components of the velocity vector, p the pressure
and E the specific total energy. To achieve a well-defined solution of the conservative
variables, another equation is necessary describing the state of the fluid. The present
work deals with air as the working fluid, which is assumed to be a perfect gas with
a constant specific heat ratio κ = 1.4. Thus, the equation of state for ideal gases is
used and can be written as a connection between the pressure p and the specific total
energy E

p = (κ − 1)

(
ρE − 1

2
ρ

NDIM∑
i=1

u2i

)
. (3)

Since air is considered a Newtonian fluid, the Stokes hypothesis is valid and
the viscous stress tensor τ in (2) becomes symmetrical τi j = τ j i . The entries are
described as a function of the velocity gradients and the dynamic viscosity μ

τi j = μ

(
∂ui
∂x j

+ ∂u j

∂xi
− 2

3

∂uk
∂xk

δi j

)
. (4)

The energy flux vector q can be determined by Fourier’s law

q j = −λ
∂T

∂x j
(5)

where the thermal conductivity coefficient λ is assumed to be isotropic. λ can be
expressed as a function of temperature, dynamic viscosity and the non-dimensional
Prandtl number Pr

λ = μcp
Pr

with Pr = 0.72 (for air with 200K ≤ T ≤ 700K ). (6)

In Eq. (1), the source term S exists only for some specific applications, as it will
be introduced in Sect. 4.

In [19], Wurst has already shown that the governing equations can easily be
extended to the RANS equations with appropriate closure models for turbulence
modeling beyond the scope of this work, which only considers inviscid and laminar
flows.
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3 Numerical Formulation

3.1 Spatial Discretization

The DG method is used to discretize the governing Eq. (1) in space. Since the DG
method is a combination of the FV and the FEmethod, the starting point is a classical
FE approach. The unknown conservative variables U are approximated on the basis
of piecewise polynomial ansatz functions

U(x, t) ≈ ˜U(x, t) =
Nb∑
i=1

ui (t)φi (x) (7)

with Nb basis functions φi (x) of a polynomial order p only depending on space [7].
In contrast, the unknown degrees of freedom ui (t) are time-dependent.

Next, Eq. (7) is substituted into the Navier–Stokes equation (1) and multiplied by
an arbitrary test function

v(x) = vh(x) =
Nb∑
j=1

a jφ j (x). (8)

In the case of the FE Galerkin approach, the basis functions for the approximate
solution ˜U and the test function are selected equally (φi = φ j ). The values a j in
equation are arbitrary. An integration over the whole domain Ω follows, which
is approximated with a finite number of elements E . Finally, the integration by
parts yields the so-called semi-discrete weak form of the governing equations on the
element level

∫

E

vh
∂ ˜Uh

∂t
dΩ

+
∮

∂E

vh
(
Finv(˜Uh) − Fvis(˜Uh, ∇˜Uh)

)
· n dσ

−
∫

E

∇vh ·
(
Finv(˜Uh) − Fvis(˜Uh, ∇˜Uh)

)
dΩ

=
∫

E

vh S(˜Uh, ∇˜Uh) dΩ.

(9)

In the equation the index h marks the discrete functions on the element level. Up
to this point there is no difference to a regular FE Galerkin scheme. However, the
DGmethod has no requirements for any kind of continuity properties of the solution
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at the element boundaries. Due to the possibility of discontinuities in the solution,
the surface integral of the inviscid fluxes is determined with a Harten, Lax and van
Leer (HLL) Riemann solver according to [17]. The viscid flux terms have to be
treated differently since they are not only dependent on the conservative variables
but also on their gradients. For the determination of the gradients the so-called BR2
method, which was developed by Bassi et al. [2], is applied. The integrals in Eq. (9)
are approximated numerically by Gaussian integration.

3.2 Temporal Discretization

The spatially discretized Eq. (9) can be written in compact form describe the global
equation system

M
∂Û
∂t

= R(˜Uh). (10)

Û denotes the unknown global solution vector andM the global mass matrix. On
the right hand side the residualR(˜Uh) is composed of the inviscid and viscous fluxes
and source terms from Eq. (9).

The temporal integration of Eq. (10) is done using an implicit scheme. The advan-
tage of these schemes is that their stability in relation to the Courant-Friedrichs-Lewy
(CFL) condition is theoretically not restricted.Hence, the number of iterations needed
until the calculation converges (e.g. to a steady state) is expected to be less than for
explicit schemes. However, the computational effort is higher and the implementa-
tion is more complex. By applying a classical backward Euler method to Eq. (10), it
can be rewritten as

M
Û(tn+1) − Û(tn)

Δt
= R

(
˜U(tn+1)

)
. (11)

For the solution of the given nonlinear system, the Newton-Raphson method is
used, and leading to

(
M
Δt

− ∂R
(
Ũ(tk−1)

)

∂Ũ

)
ΔÛ = R

(
Ũ(tk−1)

) − M
Û(tk−1) − Û(tn)

Δt
. (12)

In order to solve this equation, several Newton iterations for each time step are
required. Starting with the solution from the prior time step Û (tn) = Û (tk=0), the
equation is solved for ΔÛ until a required accuracy ε is achieved. Then the new
solution for the next time step can be determined by

Ũ(tn+1) = Ũ(tn) + ΔŨ. (13)
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Accordingly, for everyNewton iteration k a linear systemhas to be constructed and
solved. While the composition of the left and right hand side is done analytically, the
linear system is solved by a GMRES solver, preconditioned with an ILU(0) method.

The implicit scheme can be applied in the way it is described above to solve
unsteady problems. To achieve a faster convergence for t → ∞, it is modified for
steady simulations. Since there is no requirement for time precision, only a single
Newton iteration per time step is performed in this case. Furthermore, a local or a
global adaption of the time step can be chosen.

4 Arbitrary Lagrangian Eulerian Formulation

The kinematic description of motion for continuum mechanical problems is catego-
rized into the Lagrangian and the Eulerian approach. In the Lagrangian specification
of the field each individual node follows the material particle associated while mov-
ing. In contrast, in the Eulerian framework, which is mainly used in fluid mechanics,
the material moves with respect to a fixed grid.

A combination of both descriptions results in the Arbitrary Lagrangian Eulerian
(ALE) formulation, where the nodes of a mesh can either move or be fixed. Thus,
a more universal description is attained. Additionally, it can handle any arbitrary
velocity of the nodes of the computational grid in order to deal with problems e.g.,
like fluid-structure interaction. The basic principle of the ALE description can be
described with a fixed computational domain Ωref, in which the governing equations
are solved. A mapping J(xref, t) transforms the solution into the actual domain Ω ,
moving and deforming arbitrarily (see Fig. 1).

Hence, the governing equations have to be reformulated in the ALE space. For a
detailed derivation the reader is referred to Persson et al. [13], leading to

∂( jU)

∂t
+ ∇ · (

jUJ−1F − jUJ−1ug
) = jS. (14)

Equation (14) serves as the basis for the DG discretization. As the ALE reference
space the local reference space of each element is defined,which is also quite common
in the literature [11, 12]. J respectively its determinant j = |J| are the mapping
quantities from the local reference space to the moving, deformed physical space.
The difference compared to the classical Eulerian formulation of the DG method is
that the mapping quantities J and j now have to be calculated in every time step.
Furthermore, additional fluxes arising from the grid velocity ug have to be considered
(see Eq. (14)).

Furthermore, the rotation of themesh and the rotor investigated is considered rigid.
Moreover, if the coordinate system is rotated with the same velocity as the mesh,
the mapping quantities J and j stay constant and have to be calculated only once.
Since there is no deformation of the mesh, there is no need to account for geomet-
ric conservation aspects. However, an additional source term has to be considered,
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describing the pseudo forces due to the rotation of the coordinate system

S =
⎛
⎝

0
−ω × ρui

0

⎞
⎠ (15)

where ω is the angular velocity of the rotating system. Furthermore, the Riemann
solver must be adapted as well as the grid velocity needs to be taken into account
(for further details, see [18]).

5 Curved Elements

In classical CFD methods such as the FV method, the discretized domain usually is
constructed with straight elements. Consequently, the resolution of curved surfaces
on flow bodies is not accurate. This downside is countered by using a high number
of cells near the body surface in FV calculations.

However, theDGmethod requires a lower number of cells, asmentioned in Sect. 1.
At the same time the approximationof the solution in each cell becomesmore accurate
due to the high-order approach. Thus, using curved elements for the representation
of curved flow bodies becomes a crucial part when high-order methods are applied.
Generally, the high-order solution of curved surfaces with straight elements may not
converge at all or could even become unphysical [1].

Fig. 1 Mapping between the ALE reference space and the arbitrary moving, physical space [13]
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Since standard mesh generators are not able to create curved elements, a plethora
of different approaches exists (see [1, 6, 9]) to handle the situation. In this work an
agglomeration approach is chosen [6]. Each element of themesh has a certain number
of interpolation points Px

i jk = (x Int
i jk , yInti jk , z Inti jk ) that contain information about the

curvature of the flow body. To transfer this information to the high-order method, a
mapping function with a third order Lagrangian polynomial is used. Considering 3D
hexahedral elements this leads to 64 interpolation points, which are given as

Pxref
i jk =

(
1

3
i,
1

3
j,
1

3
k

)
i, j, k ∈ {0, 1, 2, 3} (16)

in the reference element. These points are mapped to the interpolations points of the
high-order element by

x(xref, yref, zref) =
3∑

i=0

3∑
j=0

3∑
k=0

Px
i jkli (xref)l j (yref)lk(zref) (17)

with
li (xref) =

∏
0≤m≤3
m �=n

xref − xre f,i
xre f,i − xre f,m

. (18)

l j (yref) and lk(zref) are analogous. These mapping quantities are also considered in
the Jacobian J and its determinant j as introduced in Eq. (14).

6 Numerical Setup and Results

Since the validation of the above properties of our code was already provided
in [15, 18], progress was made to perform calculations of a more advanced problem.
In order to keep the complexity of the flow problem simple for the beginning, the
simulation of a rigid rotor blade in hover was performed. By analyzing the results
from these calculations, experience is gained with the difficulties of the case and
later on the complexity of the problem can be gradually increased.

The numerical setup used for the simulations in this work is based on the exper-
imental study of Caradonna and Tung [4]. The two bladed rotor uses a NACA0012
profile and is untapered and untwisted. In Fig. 2a the geometrical setup of one single
blade is shown, where the aspect ratio of the outer blade radius R to the chord length c
is R

c = 6. In the model the inner blade radius ri was chosen to be ri = c. In order
to simplify the mesh generation of the two bladed rotor, a solid connection between
both blades was constructed as it is illustrated in Fig. 2b with a view from the top
onto the discretized domain. Obviously, the rotor hub was neglected. The collective
pitch angle for each blade was set to α = 5◦.
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Fig. 2 Geometric (a) and numerical setup (b) of the rotor of Caradonna and Tung [4]

The numerical setup has about 560,000 hexahedral, curved elements (see Sect. 5).
The distance of the outer boundary is twelve times the rotor radius and is chosen
to be a farfield condition. For now, a slip wall boundary condition is chosen for the
blade surfaces. Additionally, the Reynolds number is set to Re = 10,000 to expect
a laminar flow since no appropriate turbulence model has been implemented yet.
Although these conditions are not completely consistent with the experiment from
Caradonna and Tung, their results were consulted as a reference.

6.1 Isolated Rotor in Hover

The simulation of the rigid rotor setup in hover was performed with a steady, implicit
time integration scheme using the technique presented in Sect. 4 with a rotating
coordinate system, which is a valid method as Krämer showed in [8]. The tip Mach
number was set to Matip = 0.226. With these settings simulations in ascending
order up to four (p3) were performed.

The Q criterion was employed to visualize vortex structures, which are illustrated
for isosurfaces of Q in Fig. 3a. The typical tip vortices convecting with the induced
flow of the rotor are visible. Furthermore, the contraction of the rotor wake can
clearly be seen. Figure3b, c show the results for the pressure coefficient cp over the
chord length for different blade sections at r

R = 0.68 and r
R = 0.96 with the fourth

order of accuracy (p3). Even though the blade surface is considered a slip wall, the
comparison to the experimental data of [4] shows good agreement especially for the
outer blade sections.

6.2 Isolated Rotor in Forward Flight

With respect to the work of Stangl [16], the numerical setup introduced above
was used in a further study to perform the simulation of a rotor in forward flight.
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Fig. 3 Isosurfaces for the Q criterion (a) and pressure coefficient cp at a blade section of r
R = 0.68

(b) and r
R = 0.96 (c) for the rotor in hover

Fig. 4 Isosurfaces for the Q criterion (a) and lift coefficient cl (b) for the rotor in forward flight

However, the collective pitch angle ofα = 5◦ was not varied during the rotation of the
rotor blade. Accordingly, an untrimmed rotor behavior with high roll moments was
expected and observed. The simulations were executed with the unsteady, implicit
time integration scheme for spacial orders up to four (p3). The advance ratio was
chosen on μ = 0.2, while the tip Mach number had a value of Matip = 0.25.

In Fig. 4a, the isosurfaces for the Q criterion again depicts the vortices in the
rotor wake. The blade-vortex interaction is visible, which is typical for a rotor in
forward flight. This interaction is also observed in Fig. 4b, where the lift coefficient is
plotted over the rotor revolution. Obviously, the interaction of the blade vortex with
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the following blade occurs twice each complete rotor revolution. With increasing
accuracy order, the impact of the interaction on the lift coefficient is better resolved.

The purpose of these simulations was to verify the functionality of the solver with
this kind of flow problem, which succeeded. Furthermore, the typical phenomeno-
logical effects of a rotor in forward flight were demonstrated.

7 Computational Performance

The promising parallel performance of the solver was reported previously for various
cases with explicit calculations in [3] and even with implicit calculations in [19].
Hence, the simulation of rotating rigid bodies should essentially behave similarly as
there is no additional effort in communication compared to a classical simulation
without the ALE formulation and the curved element approach. As a test case a
cycling sphere with radius r = 0.5m was chosen, using 14,400 curved hexahedral
elements.

Figure5a shows the strong scaling of the case with ω = 0.011/s, which causes a
flow velocity of Ma = 0.2 at the sphere for simulations with an accuracy of second
to forth order. Since the number of degrees of freedoms (DOFs) increases with the

Fig. 5 Strong scaling (a), node speedup (b) and parallel node efficiency (c) for different orders of
accuracy
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accuracy order, it is obvious that the time per iteration increases. However, SUNWinT
scales almost linearly for all orders. The calculation at 1536 cores indicates the limit
of an efficient parallel execution. At this point the communication effort exceeds the
local workload and thus the computational time increases.

Due to the memory required for the composition of the global system matrix,
in this case a single core calculation was only possible with second order. Hence, a
pseudo-speedup with computational nodes (1 node consists of 24 cores) was applied.
In Fig. 5b the node speedup shows almost ideal behaviour for all accuracy orders that
were investigated. The drop of the speedup for 64 nodes once again indicates the
limit of the parallel work distribution. The parallel node efficiency in Fig. 5c reveals
a slightly better performance for the second order calculations, whereas the behavior
for third and fourth order is almost identical. Generally, the parallel efficiency stays
above a value of 80% for a wide node range.

Finally, the focus is on the dependence of these performance results of the linear
system solver. As introduced in Sect. 3.2, a GMRES solver with an ILU(0) precondi-
tioner is employed, which is provided by the trilinos package [5] preinstalled at the
CRAYXC40 system at HLRS. Thus, the performance of this iterative solver strongly
influences the performance of the code and is identified as a crucial component.

8 Conclusion

The Navier–Stokes equations have been discretized with a DGmethod and extended
with an ALE formulation to allowmoving and deforming domains. Furthermore, the
importance of an accurate representation of the flow body surface on a high-order
method was discussed. The experiment of Caradonna and Tung [4] served as a test
case for the first series of simulations of an isolated rotor in hover. Even though a few
assumptions were made, it was shown that SUNWinT works in principle for these
types of flow problems. The results were in good agreement with the experimental
data and the typical flowphenomena at a rotor in hover have been detected.Moreover,
the simulation of an isolated rotor with a constant pitch angle in forward flight
confirms the phenomenologically expected results.

However, the aim of current and future work is to extend the code to fully tur-
bulent simulations of multi-bladed rotors. Furthermore, the Chimera method will be
employed, as it was introduced in [19] for 2D problems.
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