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Abstract Compressible multi-phase simulations in the homogeneous equilibrium
limit are generally based on real equations of state (EOS). The direct evaluation of
suchEOS is typically too expensive. Look-up tables, based onmodern data-structures
significantly, reduce the computation timewhile simultaneously increasing themem-
ory requirements during the simulation. In the context of binary mixtures and large
scale simulations this trade off is even more important due to the limited mem-
ory resources available on high performance computers. Therefore, in this work we
propose an extension of our tabulation approach to shared memory trees based on
MPI 3.0. A detailed analysis of benefits and drawbacks concerning the shared mem-
ory and the non-shared memory data-structure is described. Another research topic
investigates the diffuse interface model of the isothermal Navier–Stokes–Korteweg
equations. A parabolic relaxation model is implemented in the open-source code
FLEXI and 3D simulations of binary head on collisions at various model parameters
are shown.

1 Introduction

Typical technical applications, in which multiphase processes can be found, are fuel
injection systems such as rocket combustion chambers. The problems inherently
contain multiple scales. First, the liquid fuel is injected as a jet with a liquid core.
Over time, the jet breaks up and ligaments and droplets form. At the surface of the
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liquid interface, phase change occurs and the gaseous environment is mixed with
evaporated fuel. This mixture is then ignited.

In this project,we aim tounderstand themixingprocesses leadingup to the burning
of the fuel/oxidizermixture. Due to themultiscale character, we split the investigation
into large scale jet simulations andmore detailed simulations of single droplets. These
processes face extreme ambient conditions that often exceed the critical state of the
fuel. In these regimes, the liquid phase cannot be described incompressible any more
and we have to consider the full coupling of hydrodynamics and thermodynamics,
requiring the fully compressible flow equations.

The macroscopic modelling for jet simulations is based on the Homogeneous
Equilibrium Model (HEM) [22], which considers a mixture of saturated liquid and
saturated vapor under full thermodynamic equilibrium. An extension of the intrinsic
assumption of vapor-liquid equilibrium in the HEM approach, towards binary mix-
tures, is the nested procedure of tangent plane distance (TPD) function [15] analysis
and classical TPn-flash calculation [16]. These methods are restricted to modifica-
tions of the underlying equations of state (EOS), only. Especially with more than
one species, the evaluation of the EOS becomes very costly. Therefore, we use look-
up tables which shifts the evaluation costs into a pre-processing step while during
runtime, only the look-up in an octree data structure is required [9]. For binary mix-
tures, the look-up tables become huge in storage size which causes problems if the
size exceeds the memory of the CPU. Therefore, in this paper we propose a shared
memory parallelization of look-up tables based on the MPI 3.0 standard. We provide
performance results on benchmark test cases and show its practical use with the
simulation of a binary mixing layer.

This project also investigates modelling strategies of phase interfaces, e.g. for
droplets, such as sharp and diffuse interface models. As an example of the latter, we
use a parabolic relaxation model of the isothermal Navier–Stokes–Korteweg (NSK)
equations to simulate the collision of two droplets at varying model parameters.
Numerical experiments were conducted using an extension of the open source code
FLEXI.1 It is based on a high order nodal discontinuous Galerkin spectral element
method (DGSEM) [12].

The outline of the paper is as follows. In the next section, the governing equations
are presented. This is followed by the description of the numerical methods, thermo-
dynamic modelling and the look-up table approach. We then present the results on
the performance of the look-up tables. Numerical experiments are shown of a two
component mixing layer at super-critical conditions using a Peng-Robinson EOS as
well as two colliding droplets using NSK diffuse interface model.

1http://www.flexi-project.org.

http://www.flexi-project.org
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2 Governing Equations

2.1 The Compressible Navier–Stokes System for
Multi-components

The compressible Navier–Stokes equations with multiple components are given by

∂ρ

∂t
+ ∇ · (ρu) = 0 , (1)

∂ρYk
∂t

+ ∇ · (ρYku) = ∇ · (−J k) , (2)

∂ρu
∂t

+ ∇ · (
ρu ⊗ u + p I

) = ∇ · (τ)
, (3)

∂E

∂t
+ ∇ · [(E + p) u] = ∇ · (τ · u − q

)
, (4)

with

τ = 2μS − 2/3I · ∇u
︸ ︷︷ ︸

Stokes law

, S = 1/2
(∇u + (∇u)T

)
, (5)

where ρ is the density, u = (u, v, w)T is the velocity vector, p is the static pres-
sure, E is the total energy per unit volume, I is the unit tensor. By consider-
ing Nk species, the system is extended by Nk − 1 concentration equations where
Y = (Y1,Y2, . . . ,YNk−1)

T with Yk = ρk

ρ
is defined as the mass fraction of each

species. For multi-component simulations, the heat flux is usually comprised of
q = qf + qd + qc, where

qf = −λ∇T (6)

is the specific heat flux according to Fourier law with thermal conductivity λ and
temperature T . The second term is the inter-species energy flux due to diffusion

qd =
∑

k

hk J k . (7)

Here, qc are cross-effects, like the Dufour effect, which are not considered in this
paper. The viscous stress tensor τ with the strain rate tensor S is defined for a
Newtonian fluid. The concentration diffusion flux is usually comprised of J k =
J f
k + J c

k + Jb
k , where

J f
k = −ρDk∇Yk , k = 1, . . . , Nk − 1, (8)
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is the concentration diffusion flux according to Fickian law and Dk is the species
diffusion coefficient. Here J c

k are cross-effects, like the Soret effect, which are also
neglected in this paper. The third term,

Jb
k = −ρYk

Nk∑

j=1

(
Dj∇Y j

)
, k = 1, . . . , Nk − 1, (9)

is a correction for themass balance and recovers
∑Nk

k=1 J k = 0 to guarantee conserva-
tion in cases where the species diffusion fluxes are significantly large [6]. Properties
for the last species can be calculated via following relations

Nk∑

k=1

Yk = 1 ,

Nk∑

k=1

ρk = ρ . (10)

Since there are 5 + (Nk − 1) unknown variables, a closure relation is required
between the variables pressure, density, specific internal energy per mass, ε, and
the species composition,

E = ρε + 1

2
ρu · u , ε = ε(ρ, p,Y) , p = p(ρ, ε,Y ) . (11)

Such a functional relation is called an equation of state,more precise caloric EOS, and
defines the thermodynamic relations between the state variables. For the temperature
a thermal EOS (12)

T = T (ρ, p,Y ). (12)

has also to be considered.

2.2 The Navier–Stokes–Korteweg Equations

The Navier–Stokes–Korteweg (NSK) equations are an extension of the Navier–
Stokes equations where an interfacial stress is added that approximates capillary
effects in phase interfaces of finite thickness. The NSK equations are given in the
isothermal case for T ≡ Tref by

ρt + ∇ · (ρu) = 0, (13)

(ρu)t + ∇ · (
ρu ⊗ u + p I

) = ∇ · τ + ∇ · τK. (14)

The NSK equations are non-dimensionalized such that the Stokes stress tensor, τ ∈
R

d×d , and the Korteweg stress tensor, τK ∈ R
d×d , are given by
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τ = 1

Re

(
∇u + (∇u)T − 2

3
∇ · uI

)
, (15)

τK = 1

We

(
ρ �ρ + 1

2
|∇ρ|2

)
I − 1

We
∇ρ ⊗ ∇ρ. (16)

The Reynolds number, Re, and Weber number, We, are expressed in terms of the
numbers εK > 0 and γK > 0,

1

Re
= εK,

1

We
= ε2KγK. (17)

Due to the capillary stress, Eq. (16), themomentumequation is a third order diffusion-
dispersion equation. The system is closed by the pressure function of the Van-der-
Waals law [24],

p = ρRTref
1 − bρ

− aρ2, (18)

where a, b, R are material parameters. In reduced, non-dimensional, form, they are
a = 3, b = 1/3, R = 8/3. For subcritical temperatures, Eq. (18) is non-convex and
the eigenvalues of the hyperbolic flux Jacobian of the NSK equations may be imagi-
nary numbers. TheNSK system is therefore of hyperbolic-elliptic type and numerical
methods that rely on the strict hyperbolicity of the conservation system cannot be
used straight forward any more. To overcome these challenges, Corli et al. [7] pro-
posed a parabolic relaxation scheme for diffusion-dispersion equations, which is
extended to the isothermal NSK equations as

ρα
t + ∇ · (ραuα) = 0, (19)

(ραuα)t + ∇ · (
ραuα ⊗ uα + pα I

) = ∇ · τ α + αρα∇ (
cα
K − ρα

)
, (20)

β
(
cα
K

)
t − ε2KγK �cα

K = α
(
ρα − cα

K

)
. (21)

An additional unknown, the relaxation variable cK, satisfies a linear parabolic evo-
lution equation with constant relaxation parameters α, β > 0. The system is of sec-
ond order and of mixed parabolic-hyperbolic type. For α → ∞, the solution of the
parabolic relaxation model approaches the solution of the classical NSK equations,
i.e. (ρα,uα) → (ρ,u). The total energy of the relaxation system is given by

Eα[ρ] =
∫

	

(
1

2
ρ |u|2 + W (ρ) + α

2
(ρ − cK)2 + 1

2
ε2KγK |∇cK|2

)
d x. (22)

Admissible solutions to Eqs. (19)–(21) are minimizers of Eq. (22).
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3 Numerical Methods

The multiphase solver is comprised of several building blocks. The bulk solver is
based on a high order discontinuous Galerkin spectral element method (DGSEM).
We use an efficient look up table to incorporate real gas equations of state. For
the modelling of the phase interface we apply diffuse interface methods. In the
Homogeneous Equilibrium Model (HEM), we rely on the EOS to describe phase
transition. In the NSK model, capillarity effects are resolved in a phase interface of
finite thickness.

3.1 Discontinuous Galerkin Method

The compressible Navier–Stokes equations and the parabolic relaxation model for
the NSK equations are discretized by a discontinuous Galerkin spectral element
method as described by [11, 12, 14]. The approach is suitable for general systems of
conservation equations. In this paper we restrict ourself to the conservation equations
of the form

Ut + ∇x · F(U,∇xU) = Q , (23)

where U is the vector of the solution unknowns, F is the corresponding flux con-
taining the convective and the diffusive fluxes, and Q is the source term of the
NSK relaxation model. The divergence operator in the physical space is defined as

∇x =
(

∂
∂x ,

∂
∂y ,

∂
∂z

)T
.

In a three-dimensional domain we subdivide the computational space into non-
overlapping hexahedral elements. Each element is mapped onto the reference cube
element E := [−1, 1]3 by a mapping x(ξ), where ξ = (ξ, η, ζ )T is the coordinate
vector of the reference element. The mapping onto the reference element E trans-
forms Eq. (23) to the system

JUt + ∇ξ · F (
U,∇ξU

) = J Q , (24)

with the Jacobian J and the divergence operator in the reference space ∇ξ =
(

∂
∂ξ

, ∂
∂η

, ∂
∂ζ

)T
. In each element, the solution and the fluxes are then approximated as

polynomials

Uh =
N∑

i, j,k=0

Û i jkψi jk(ξ) and Fm
h =

N∑

i, j,k=0

F̂m

i jkψi jk(ξ) , (25)

where the superscript m = {1, 2, 3} denotes the flux in the direction of the Cartesian
coordinates. The basis function ψi jk(ξ) = li (ξ)l j (η)lk(ζ ) is built by the tensor prod-
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uct of one-dimensional Lagrange polynomials l of degree N . As interpolation nodes
we choose Gauss-Legendre points. Due to the nodal character of the Lagrange basis,
the degrees of freedom Û i jk and F̂

m

i jk are values of the approximations of the solution
and the flux vectors at the interpolation nodes. To obtain the discontinuous Galerkin
formulation, the approximations (25) are inserted into (24) which is then multiplied
by a test function φ, identical to the basis function ψ , and then integrated in space.
Integration by parts of the volume integral of the flux yields the weak formulation

∂

∂t

∫

	

(JUhφ) dξ
︸ ︷︷ ︸

a

−
∫

	

(F h · ∇ξφ
)
dξ

︸ ︷︷ ︸
b

+
∫

∂	

([F h · n]
φ
)
dS

︸ ︷︷ ︸
c

=
∫

	

(
J Qhφ

)
dξ .

(26)
We identify three contributing parts: the volume integral of the time derivative of

the solution (a), a volume integral (b) and a surface integral of the fluxes (c). The
integrals are evaluated by Gauss-Legendre quadratures. To obtain an approximation
of the fluxF h · n at the element surface, a numerical flux functionG = G(UL ,UR) is
introduced. It depends on the states left and right of the interface,UL andUR , respec-
tively. In case of the viscous and heat conduction fluxes, the gradients are needed
in addition. For the numerical flux, we use standard approximative Riemann solvers
of the HLL-type and Lax Friedrichs families [23]. The discrete formulation (26) is
discretized in time using explicit third- or fourth-order Runge–Kutta schemes (RK)
[13]. For the viscous fluxes, the approach of Bassi and Rebay [3, 4] is used.

The DG method with high order accuracy is favourable in smooth parts of the
flow. At discontinuities or strong gradients we apply the shock capturing of Sonntag
and Munz [20, 21]. We switch locally to a second order accurate finite volume (FV)
scheme, where the interpolation nodes of the DG polynomials are reorganized as an
equidistant sub-grid on which the solution is stored as integral mean values. Amodal
Persson indicator [19] is used to switch between DG and FV cells.

3.2 Equation of State and Thermodynamic Equilibrium

As thermodynamic coupling relation for theNavier–Stokes equations the cubic Peng-
Robinson (PR) EOS [18] is used

p = RmT
M
ρ

− b
− a

(
M
ρ

+ δ1b
) (

M
ρ

+ δ2b
) , (27)

with the universal gas constant Rm and the molar weight of the mixture M . The
parameter a takes intermolecular attraction forces into account, b is the co-volume
and the PR EOS specific parameters (δ1, δ2) = (1 + √

2, 1 − √
2). The transforma-

tion of the pressure explicit thermal EOS to a caloric one is provided by a residual
function ansatz [17]. In case of two-phase phenomena a thermodynamic modelling
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by use of the HEM approach is performed. The underlying assumption of thermo-
dynamic equilibrium is defined by

Tv = Tl, (28)

pv = pl, (29)

μk
v = μk

l , (30)

where the symbols v and l represent the vapor and liquid side respectively, μ is the
chemical potential and equation (30) has to hold for all Nk species. In case of single
species systems the vapor-liquid calculation is performed by use of the algorithm
presented by [1], for mixtures a combined approach of TPD analysis and multi-
species VLE calculation is used. The TPD function is defined in mole fraction space
z and given by

T PD(ztr ial) =
Nk∑

i=k

ztrialk

[
μk(ztr ial , T, p) − μk(ztest , T, p)

]
. (31)

The superscript (·)test indicates for the feed composition, which is provided from
the flow solver and (·)tr ial for all other possible molar compositions, which fulfill
the mass balance condition

∑Nk
k ztrialk = 1. The TPD analysis is based on the idea

of direct evaluation of the Gibbs free energy surface [2] and checks for a global
minimum in Gibbs free energy at the present feed composition. Hereby TPD values
greater zero correspond to a stable state, smaller ones to an unstable one. For the
analysis of the TPD function the local minimization method with multiple initial
guesses presented by [15] is used. The thermodynamic consistent modeling of the
states in the two-phase region is provided by the HEM approach with

εEQ = xvεv + (1 − xv)ε, (32)

where the specific inner energy per mass works as a dummy value for any caloric
state variable and xv is the vapor mass fraction defined by

xv = 1/ρ − 1/ρl

1/ρv − 1/ρl
. (33)

Due to the loss of hyperbolicity inside the spinodale region with real gas EOS, the
sound speed in the two-phase region in the HEM approach is modeled with the
relation presented by [25]

1

ρa2
= αv

ρa2v
+ 1 − αv

ρα2
l

, (34)

where a is the sound speed and α the volumetric vapor fraction given by
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αv = xvρ

ρv

. (35)

3.3 Look up Tables and Extension to Shared Memory Trees

The current Cray machine Hazel Hen has about 185,088 cores in the current expan-
sion stage. These are provided with 24 cores each at 7712 nodes. Each node is
comprised of 128GB memory. The next expansion stage, Hawk, which is planned
for spring 2020, will be approximately 640,000 cores at 5000 nodes. The ratio of
nodes to cores will accordingly increase more than quintupled from the present time
of Ncores/Nnodes = 24 to Ncores/Nnodes = 128. It is important to consider that the
available capacity ofmemory on a node is not increased andwill therefore be 1GBper
core. Scalable and highly efficient CFD codes for high-performance (HPC) comput-
ers, which are perfectly adapted to old architectures, should keep pace with such new
developments. To maintain efficiency, the algorithms have to be modified. Examples
are memory-consuming algorithms, which can be found in multi-phase and multi-
component simulations in combination with so-called look up tables approaches [9,
10]. Today, these tables are composed of modern data structures such as quadtree or
octree data structures, see Figs. 1 and 2. Quadtrees and octrees make use of properties
from so called space filling curves for fast data localization. Here the Morton curve
is popular due to the inherent possibility to access the data via bit operations

data position = f (bit number), (36)

Fig. 1 Quadtree table: left first stage, right second stage, bit numbers (bn) are used for fast local-
ization of quadtree elements in the definiton area given by Pi
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Fig. 2 Octree table—left: one stage, right: two stages

Fig. 3 Left: tree data structure, right: refined quad tree

see Fig. 1. Despite of the usage of such modern data structures, today’s CFD simu-
lations may reach the memory limits fast, if large scale high fidelity simulations are
performed. In this context we want to discuss in this paper the implementation and
application of tree structures on high-performance computers associated with MPI
3.0 and shared memory (Fig. 3).

In the last period, we have extended our tabulation framework, in order to use
the look up tables as efficiently as possible on future high performance computers.
Initially we will give some information about the parallelization strategy of the
CFD solver FLEXI [8]. FLEXI is based on the so-called domain decomposition,
which divides the computational grid into heterogeneously distributedMPI processes
depending on the number of cores used, see Fig. 4. For the domain decomposition,
again a space filling curve, more precisely the so-called Hilbert curve, is used. The
curve has the special property to optimally distribute the different MPI regions with
respect to the volume/surface ratio, even on unstructured grids. Figure4 shows such
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Fig. 4 FLEXI [8] parallelization strategy with domain decomposition via space filling curve: left
computational quad mesh, middle decomposition with 4 MPI processes, right decomposition with
16 MPI processes

a division. To ensure that each MPI process can access the data in the table, each
MPI process has to initialize and allocate its own table when using standard MPI
features. By consideringMPI 3.0 features, like shared memory windows, the number
of tables for each node can be reduced to one table for each node.

However, modern data structures generally consist of chained pointer lists, which
are not directly applicable with theMPI 3.0 sharedmemory feature. This is due to the
fact, that each MPI process is linked with its own virtual memory space, see Fig. 5.
This has consequences for the way in which the tree structure has to be read in and
accessed during the simulation on HPC systems. In Fig. 6, the standard approach to
store and access the tree data is depicted. Here, each branch of the tree stores a small
portion of the whole data. Furthermore, each MPI process reads and allocates the
data during IO. In Fig. 7 the alternative approach to store and access the tree data
with MPI 3.0 shared memory window is depicted. Here, unlike before, each branch
of the tree only stores two integer IDs depicting a range in the global shared memory
array. An important aspect is the fact, that during IO only one MPI process on the
node is allowed to read and allocate the data. Nevertheless, each MPI process has to
read and store the empty tree. This is necessary because each MPI process has still
to know the relative path to the unique IDs in the last branch. With this approach it is
possible to maintain the efficient tree data structure while simultaneously be capable
to store and access several magnitudes of data.
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Fig. 5 Mapping from virtual address space for each MPI process to physical address space, here 4
MPI processes (the colors are chosen consistent to the domain decomposition in Fig. 4)

Fig. 6 Tree data structure without MPI 3.0 shared memory: each branch contains the data

Fig. 7 Tree data structure with MPI 3.0 shared memory: each branch only contains an integer id
for the global data array, the global data array is allocated in a shared memory window
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4 Results

4.1 Performance Comparison of Tree Data Structures with
and Without MPI 3.0 Shared Memory

In this section we investigate the different data structures in terms of performance
and memory usage.

For the comparison we use the performance index

PID = wall-clock-time · #processors
#DOF · #time steps · #RK-stages . (37)

The results are obtained with the open source code FLEXI in combination with
octree tables. Note that FLEXI is based on the HDF5 standard. To ensure a fair
comparison, we have chosen a simple test case, the standard lid driven cavity in
two dimensions, see [5]. We choose a binary mixture with two different ideal gases,
instead of performing a one-component simulation as it is typically done in the
literature. First, we look at the performance of both data structures that we defined
in Sect. 3.3. We perform each simulation six times and average the measurement
to cancel out hardware influences. The comparison was done on 8 nodes with 192
processes. The tree data was refined up to 7 levels resulting in about ≈ 2.8GB
memory size. Each octant represents the data in a three dimensional polynomial
basis of degree 4. In the first two lines of Table2, we have listed the results for the
performance test. We notice a slightly higher PID for the MPI 3.0 implementation,
which is most likely due to additional index mapping used to get the position in
the global shared memory array. In the third line we compare the time which was
used to read and allocate the data before the simulation starts. We note that the IO
of the MPI 3.0 implementation is different in the way that we do not read in the
whole tree from the HDF5 at once. By using the shared memory option, we read,
allocate and deallocate each octant successively from the HDF5 file, to save as much
memory as possible. Here, we notice a non negligible longer IO time for the MPI 3.0
implementation. The factor between the standard and the shared memory approach
is about 6 (Table1).

The next two Tables3 and 4 contain memory comparisons.

Table 1 Numerical setup of the Lid driven cavity test problem

Species Yk κ N # elements Re

Helium 0.5 1.60 5 1024 100

Air 0.5 1.40
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Table 2 Performance comparison for the different data structures

Standard (non-shared
memory)

MPI 3.0 (shared memory)

PID (s) 2.70 × 10−5 3.05 × 10−5

Simulation time (s) 370.45 410.03

IO time (s) 116.05 742.34

Table 3 Memory usage depending on tree level, here we tabulated a binary mixture of Helium/Air

Tabulation type Tree level Memory usage in (GB)

Octree with N=4 in each
direction

7 2.8

8 10.0

9 32.2

Table 4 Theoretical memory usage by using non-shared memory and shared memory data struc-
tures on different architectures

Tabulation of octrees Standard (non-shared
memory)

MPI 3.0 (shared memory)

Max memory on Hazel
Hen (GB)
24 cores on each node

5.33 128.00

Max memory on Hawk (GB)
128 cores on each node

1.00 128.00

Here, we notice the huge improvement with the MPI 3.0 shared memory imple-
mentation. For the planned architecture Hawk we will (theoretically) be able to store
and access about 128 times more memory than with the old algorithm.

4.2 Navier–Stokes Multi-component Simulations

The multi-component Navier–Stokes model was used for comparison simulations
conducted with direct use of the EOS and tables with different refinement levels. As
test case a two-dimensional shear layer of nitrogen and n-dodecane of the dimension
[0, 0.2] × [−0.15, 0.15] m2 was investigated. The initial states of the pure species
are summarized in Table5. As initial condition a base flow in x-direction superposed
by a y-velocity disturbance was used, which are given by
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Table 5 Specified initial conditions of the base flow for the pure species of the mixing layer test
case

Species Sum formula u0 (m/s) p (MPa) T (K) ρ (kg/m3)

Mitrogen N2 205.46 6 1000 19.88

n-heptane C7H16 −85.59 6 600 255.63

uN2 = 2Mc,0aN2

[

1 +
(

aN2

aC7H16

) √
ρN2 ZN2

ρC7H16 ZC7H16

]−1

, (38)

uC7H16 = −
√

ρN2 ZN2

ρC7H16

uN2 , (39)

u(x, t = 0) = u0

∣∣∣∣er f
(√

π y

δω,0

) ∣∣∣∣, (40)

YC7H14(x, t = 0) = 1 − yN2 , (41)

YN2(x, t = 0) = 0.5 + 0.5 er f

(√
π y

δω,0

)
, (42)

v(x, y, t = 0) = 0.1 max (u0) sin

(
8πx

δω,0

)
exp

{

−
(

y

δω,0

)2
}

(43)

and

ρ = ρ(T, p,Y). (44)

Here Z is the compressibility factor, Mc,0 is the Mach number which was chosen
to 0.4 and δω,0 is the initial blending thickness between the two species with δω,0 =
6.859 · 10−3 m.

The achieved results are visualized in Figs. 8 and 9. In both snapshots we can
observe some differences in between the three computations. This is due to the fact,
that the chosen Kelvin Helmholtz test problem is a highly sensitive initial value prob-
lem. The different thermodynamic approximations quickly lead to different results.
In summarywe can show that the tabulation approach is suitable formulti-component
simulations in the super-critical regime, nevertheless future investigations are nec-
essary.
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YN2 = [−]
0.00.51.0

Fig. 8 Temporal snapshot of nitrogenmass fraction at t = 4ms for simulations conducted by direct
use of the EOS (left), coarse tables (middle) and refined tables (right)

YN2 = [−]
0.00.51.0

Fig. 9 Temporal snapshot of nitrogenmass fraction at t = 6ms for simulations conducted by direct
use of the EOS (left), coarse tables (middle) and refined tables (right)

4.3 Navier–Stokes–Korteweg

The parabolic relaxation model for the NSK equations was used to investigate head
on collisions of two droplets.
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4.3.1 Simulation Setup

The initial conditions were

ρ(x, t = 0) = ρvap + ρvap − ρliq

2

2∑

i=1

⎛

⎝tanh

⎛

⎝ di − ri

2
√

γKε2K

⎞

⎠

⎞

⎠ (45)

u(x, t = 0) =

⎧
⎪⎪⎨

⎪⎪⎩

vini
2 +

(
1 − tanh

(
d1−rd

2
√

γKε2K

))
if x < 0.5,

−vini
2 +

(
1 − tanh

(
d2−rd

2
√

γKε2K

))
if x ≥ 0.5,

(46)

v(x, t = 0) = 0, (47)

w(x, t = 0) = 0, (48)

where ρvap = 0.3197, ρliq = 1.8071 are theMaxwellian densities at Tref = 0.85. The
droplet radii were r1 = r2 = 0.5 and the distance was given by

di =‖ x − x0,i ‖, (49)

where x0,1 = (0.3, 0.5, 0.5)� and x0,2 = (0.7, 0.5, 0.5)� are the initial positions of
the droplets. Four cases were investigated where the droplet number, position, and
size remained the same and themodel parameters and initial velocities were changed.
The parameters are summarized in Table6. The computation domainwas	 = [0, 1]3
and it was discretized by 64 elements in each direction. The polynomial degree was
N = 3 which yielded 2563 degrees of freedom (DOF). Time integration was done
implicit with CFL = 100 using a fourth order ESDIRK scheme with six stages. The
simulations were performed on the Hazel Hen supercomputer at HLRS using 200
nodes.

Table 6 Parameters for head on droplet collision simulations

Parameter εK [−] γK [−] α [−] β [−] vini [−]
Case A 1 × 10−3 100 100 1 × 10−2 3.0

Case B 1 × 10−2 1.00 100 1 × 10−2 3.0

Case C 1 × 10−2 0.05 100 1 × 10−2 3.0

Case D 1 × 10−2 0.05 100 1 × 10−2 4.0
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4.3.2 Simulation Results

The isocontour of the mean density, ρmean = 1.0634, of the solution of case A is
shown in Fig. 10 for different time instances. Two droplets were pushed towards
each other and coalesce. A flat disc formed for t > 0.12 which broke up into a ring
and a small droplet in the center at t ≈ 0.24. Both the ring and the centered droplet
evaporated and for t → ∞ only vapour remained, since the average density was in
the stable vapour phase.

In Case B εK was increased and γK was decreased such that different phenomena
were observed. The isocontour of the mean density is shown in Fig. 11. Again, the
two droplets merged and a disc formed. The disc flattened and break up occurred at
its centre, however no droplet was formed and only a ring remained. Eventually, the
ring evaporated and the domain was filled by a stable vapour phase.

Case C reduced γK further, which led to a thinner phase interface. The isocontour
is shown in Fig. 12. After coalescence, the disc formed again but no break up occurred
and the disc remained at that form until it evaporated completely.

Case D used the same parameters as Case C but increased the initial velocity of
the droplets. The isocontour is shown in Fig. 13. The momentum of the droplets was
increased and the impact was stronger such that the disc quickly broke up and a ring
and centered droplet remained.

The total energy, Eq. (22), was calculated in each time step. As seen in Fig. 14,
the total energy decreased monotonously until a minimum was reached. Hence, the
solutions produced by the relaxation model were admissible.

t = 0.00 t = 0.06 t = 0.12

t = 0.18 t = 0.24 t = 0.30

t = 0.36 t = 0.42 t = 0.48

Fig. 10 Results for Case A with parameters εK = 1 exp−3, γK = 100, vini = 3.0
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Fig. 11 Results for Case B with parameters εK = 1 exp−2, γK = 1.00, vini = 3.0

Fig. 12 Results for Case C with parameters εK = 1 exp−2, γK = 0.05, vini = 3.0
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Fig. 13 Results for Case D with parameters εK = 1 exp−2, γK = 0.05, vini = 4.0

Fig. 14 Decay of total
energy for the head on
droplet collisions
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5 Summary and Conclusions

In this work we carried out investigations on the use of modern data structures on
high performance computers. In this context, a new implementation strategy for
shared memory look up tables for binary mixtures was introduced. We were able to
show that a change in hardware architecture on high performance computers, e.g.
from Hazel Hen to Hawk, has a great impact on the old algorithms. With the new
implementation we are able to store and access about 128 times more memory than
with the old algorithm. The simulation and comparison of a multi-component real
gas shear layer with exact EOS and tabulation approach led to reasonable results,
however further investigations are necessary.

In addition, 3D simulations of colliding dropletswere carried out using a parabolic
relaxation model of the Navier–Stokes–Korteweg diffuse interface model. A varia-
tion of model parameters produced a variation in the coalescence behaviour. Future
research aims at validation with experimental results.
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