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Abstract Astandard strategy to predict themodulation of turbulence by the presence
of particles is the two-way coupling approach, where the solid phase is approximated
by point particles, which introduce sources in the momentum conservation equation.
Avalidation of this approach is presented for isotropic decaying turbulence ladenwith
prolate and oblate particles of Kolmogorov-length-scale size by generating highly
accurate reference results via direct particle-fluid simulations, where all turbulent
scales and the complete flow field in the vicinity of the particles are resolved. About
30,000 oblate and prolate particles with aspect ratios raging from 0.25 to 4 are
released into the flow field. The simulation using the two-way coupled spherical and
ellipsoidal Lagrangian model is compared against the reference results. The analysis
of turbulent kinetic energy budgets reveals that the particles release kinetic energy
into the flow field and simultaneously enhance the dissipation rate. This behavior is
correctly predicted by both point-particle models. The kinetic energy of the particles,
however, is significantly overestimated by the point-particle models. Moreover, the
ellipsoidal Lagrangian model fails to predict the angular velocity of the particles due
to the missing correlation terms for finite fluid inertia.

1 Introduction

Particle-laden turbulent flow is of importance in medical, natural, and technical envi-
ronments such as blood flow, pollutant transport in the atmosphere and pulverized
fuel combustion. A vast parameter space is introduced by the presence of the par-
ticles, which further enhances the complexity of turbulent flows. Two-way coupled
Lagrangian point-particle models, where the feedback of the particles is included in
the conservation equations of the flow field, have been frequently applied in direct
numerical simulations (DNS) for spherical particles smaller than the Kolmogorov
length ηk in the last decades. For particle diameters dp > ηk , however, the validity of
the spherical two-way coupled Lagrangian point-particle models (SLM) is still con-
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troversially discussed [1]. Only few studies are available on the validity of ellipsoidal
Lagrangian models (ELM) for LES. While one-way coupled ELMs are frequently
applied in DNS with particles smaller than ηk [19], the accuracy of two-way coupled
ELMs has not been assessed. This can be partially explained by a shortage of refer-
ence results, which can be possibly provided by fully resolved simulations. However,
the resolution of thousands of Kolmogorov-length-scale size non-spherical particles
requires extensive computational resources and advanced numerical algorithms.

Recently, a framework has been developed, which enables the efficient computa-
tion of sharply resolved freelymoving boundaries interactingwith the fluid,where the
computational effort is considerably reduced by adaptive mesh refinement [13]. Sub-
sequently, direct particle-fluid simulations (DPFS) have been generated for 45,000
spherical and ellipsoidal particles of Kolmogorov-length-scale size suspended in
isotropic decaying turbulence [14], in which all particle and fluid scales are fully
resolved. The identical setup has been considered in [6] with LES and DNS using
SLMs, which showed a convincing accuracy for spherical particles.

In the current contribution, selected results of [5] are presented and details on com-
putational aspects are provided. The study of [6] is extended towards non-spherical
particles. Therefore, the DPFS performed in [14] will be supplemented by additional
benchmark cases for oblate and prolate spheroids with varying aspect ratios. Like
in [6], the quality of the point-particle models will be analyzed using DNS and LES.

2 Mathematical Models

2.1 Fluid Phase Equations

The conservation of mass, momentum, and energy in a control volume V may be
expressed in non-dimensional integral form by

∫
V

∂ Q
∂t

dV +
∫

∂V
H̄ · n d A = 0, (1)

where Q = [ ρ f , ρ f uT , ρ f E ]T is the vector of conservative Eulerian variables and
H̄ is the flux hypertensor through the surface ∂V of V in outward normal direction n.
The conservative variables are defined by the fluid density ρ f , the vector of velocities
u, and the total specific energy E = e + |u|2/2 containing the specific internal energy
e. The fluxes H̄ can be divided into an inviscid part H̄ inv and a viscous diffusion
part H̄visc, where

H̄ = H̄ inv + H̄visc =
⎛
⎝ ρ f u

ρ f uu + p
u

(
ρ f E + p

)
⎞
⎠ − 1

Re0

⎛
⎝ 0

τ̄

τ̄u − q

⎞
⎠ , (2)
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with the pressure p, the stress tensor τ̄ , the vector of heat conduction q, and the
Reynolds number Re0. The latter is determined by Re0 = ρ ′

f,0a
′
0L

′
0/μ

′
0, given the

reference quantities of the density ρ ′
f,0, the speed of sound a

′
0, the dynamic viscosity

μ′
0, and the length L ′

0. Using Stokes’ hypothesis for a Newtonian fluid yields an
equation for the stress tensor

τ̄ = 2μS̄ − 2

3
μ (∇ · u) Ī, (3)

in which Ī is the unit tensor and S̄ holds the rate-of-strain tensor defined as S̄ =(∇u + (∇u)T
)
/2. Fourier’s law gives the heat conduction

q = − kT
Pr (γ − 1)

∇T, (4)

using the temperature T , the constant capacity ratio γ = c′
p,0/c′

v,0, and the specific heat
capacities c′

v,0 and c
′
p,0 at constant volume and at constant pressure. The Prandtl num-

ber Pr is given by Pr = μ′
0c

′
p,0/k

′
0 containing the reference thermal conductivity k ′

0.
The dynamic viscosityμ and the thermal conductivity kT are temperature dependent
and can be approximated via Sutherland’s law [20]. The system of equations can be
closed by the caloric state equation e = cvT , and the state equation of an ideal gas
p = ρ f RT , with R being the specific gas constant.

2.2 Rigid Particle Dynamics

The motion of a rigid particle can be described in the Lagrangian formulation by
equations for the kinematics and dynamics, which have to be solved in point-particle
models as well as in fully resolved simulations. The linear part of the kinematics in
an inertial frame of reference is given by

dx p

dt
= vp, (5)

where x p denotes the center of mass of the particle and the particle velocity vp. If
the force F p acting on the particle with mass mp is known, the dynamic relation

mp
dvp
dt

= F p (6)

closes the linear motion.
The rotational dynamics are defined in a rotating frame of reference aligned with

the particle fixed coordinate system (x̃, ỹ, z̃). The torque T̃ p acting on the particle
causes an angular acceleration with
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˜̄I dω̃p

dt
+ ω̃p ×

(˜̄Iω̃p

)
= T̃ p, (7)

where ˜̄I denotes the principal moments of inertia and ω̃p the angular velocity. The
rotational kinematics can be described using quaternions, as described in e.g. [16].

In this contribution, volume forces such as gravity are omitted. Therefore, the
coupling between the solid and the fluid frame is solely responsible for the force
and the torque exerted to the particles. The coupling is established via the no-slip
condition at the particle surface �p

u = vp + ωp × (
x p − r p

)
, (8)

with r p the local distance between the surface the center of the particle. The momen-
tum balance given by Eq.1 at the material interface yields the net force F p due to
fluid pressure and fluid shear forces

F p =
∮

�p

(−pn + τ̄ · n) d A. (9)

Likewise, the torque T p acting on the particle is given by

T p =
∮

�p

(
x − x p

) × (−pn + τ̄ · n) d A. (10)

The transfer of momentum at the material interface causes a direct transfer of kinetic
energy into the fluid. Multiplying the momentum conservation in Eq.1 and using
Eqs. 8–10 yields the direct transfer of kinetic energy at the particle surface [14]

ψp =
∮

�p

(pn − τ̄ · n) · ud A = − (
F p · vp + T p · ωp

)
. (11)

The determination of F p and T p as well as the coupling between the particles and
the fluid in DPFS, SLMs and ELMs will be presented in the next Section.

3 Numerical Methods

In the following, the numerical methods for the solution of the system of equations
given above will be presented. The solution scheme for Eq.1 is based on a cell-
centered finite-volume discretization on hierarchical Cartesian grids which has been
described and validated in [13]. The conservative variables Q in Eq.1 are integrated
in time using an explicit five-step predictor-corrector Runge–Kutta method [13]. The
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inviscid fluxes are computed by a variant of theAUSMof second-order accuracy [11].
The primitive variables at the cell surfaces are extrapolated according to theMUSCL
scheme [18] using cell-centered gradients of the primitive variables obtained by a
second-order least-squares approach [13]. The viscous fluxes are computed using a
low-dissipation variation of the central scheme proposed in [2].

The assessment of the point-particlemodels in LES requires a sufficiently accurate
subgrid-scale model of the turbulent flow. Based on the monotone implicit LES
approach (MILES) a residual stress model has been established in [6], where mixed
central and upwind stencils provide the dissipative subgrid scale contribution.

In this Section, the discretization of the equations describing the particle dynamics
is introduced. First, a brief description for DPFS is provided. Subsequently, the
Lagrangian two-way coupled point-particle models are described.

3.1 Direct Particle-Fluid Simulations (DPFS)

Figure1 illustrates the DPFS approach for an ellipsoidal particle of Kolmogorov-
length-scale size. The Cartesianmesh is locally refined in the vicinity of the particles.
More precisely, four refinement levels are introduced additionally to the DNS resolu-
tion. The geometry of the particles is analytically tracked via a level-setmethod devel-
oped in [8]. The interfaces of the particles are sharply resolved by reshaped Cartesian
cut cells [9]. The no-slip condition is imposed on the particle surface segments and
a conservative flux-redistribution technique stabilizes small cut cells [13]. The effi-
ciency on high-performance computers is substantially improved using dynamic load
balancing [12]. Isothermal conditions are considered and all cells within the solid
frame can be discarded in the simulation. Due to the sharply resolved particle surface,
mass, momentum, and energy are fully conserved in DPFS. The force F p and the
torque T p can directly be obtained by summation over all discrete particle surface
segments Ai , i ∈ �p

F p =
∑
i∈�p

[−pn + τ̄ · n]i Ai , (12)

T p =
∑
i∈�p

[
(x − x p) × (−pn + τ̄ · n)]i Ai . (13)

Equations5–7 are solved by the predictor-corrector scheme of second-order accu-
racy [13] and coupled with Eq.1. The collision model proposed in [7] is employed to
avoid overlapping bodies. The DPFS approach has been validated in [13] for several
laminar and turbulent flow problems.
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Fig. 1 Comparison of the DPFS approach and the point-particle model: a A snapshot of a single
ellipsoidal particle of Kolmogorov-length-scale size using DPFS. All fluid scales of the background
turbulence are fully resolved with the background DNS-mesh. Four additional refinement levels are
introduced to fully resolve the particle scale, i.e., particle surface, wake, and boundary layer. The
particle is freely moving such that the mesh has to be adaptively refined. To establish the no-slip
condition, the Cartesian cut cells are reshaped at the material interface. b The illustration shows
a DNS mesh with the grid cell length �DNS and the spherical Lagrangian model with the same
equivalent particle diameter dp,eq

3.2 Point-Particle Models

The particle scale is not resolved in the point-particle model. To establish a feedback
of the particles to the flow field, the forces and torques exerted on the particle are
included in the momentum conservation in Eq.1. A popular method is the two-way
coupled point-particle model, where the force acting on the particle is projected onto
the underlying grid in an actio-reactio sense similar as in, e.g., [17]. Following [6],
self-induced disturbances are mostly avoided via a smooth distance-weighted feed-
back force. As shown in [5], the rotational contribution for turbulence modulation in
isotropic turbulence is significantly smaller than the linear contribution. Therefore,
the feedback of the rotational contribution of the point-particles is neglected. In this
study, two different point-particle models are assessed, which will be described next.

3.2.1 Spherical Lagrange Model (SLM)

The SLM is not aware of the anisotropic particle shape. Hence, F p is modeled for
a sphere with the volume-equivalent particle diameter dp,eq neglecting the aspect
ratio of the particles. That is, a simplification of the semi-empirical Maxey–Riley
equation [10] for spherical particles can be used

F p = 3πμdp(up − vp)φ(Rep), (14)
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which represents the quasi-steady Stokes drag augmented by the Schiller-Naumann
drag correlation φ(Rep) = 24/Rep(1 + 0.15Re0.687p ) with the undisturbed fluid
velocity at the particle position up. The latter has to be interpolated using the fluid
velocity at the centers of the neighboring cells. To mitigate filtering errors due to
interpolations, up is approximated by the fluid velocity at the center of the nearest
cell. Although the validity of Eq.14 is restricted to particles which are smaller than
the smallest scale of the flow field ηk , it has been shown that the SLM is capable to
predict the results of the DPFS for spherical particles of Kolmogorov-length scale
size [6].

3.2.2 Ellipsoidal Lagrange Model (ELM)

The ELM considers the hydrodynamic forces and torques acting on ellipsoidal par-
ticles in creeping flow conditions. That is, the ELM is not aware of fluid inertia and
therefore restricted to vanishing particle Reynolds numbers. In the ELM, the force
F p is obtained by

F p = μR̄
T ˜̄K R̄

(
up − vp

)
, (15)

where R̄ represents a rotational matrix. The hydrodynamic torque acting on the
particle is given by

T p = μ
(˜̄K s S̃ + ˜̄K ζ (̃ζ − ω̃p)

)
, (16)

with the fluid strain rate S̃ and ζ̃ half times the fluid vorticity in the particle fixed
coordinate system. The shape dependence of the hydrodynamic force and torque is
established via the diagonal resistancematrices ˜̄K , ˜̄K s, and

˜̄K ζ . A detailed definition
of the resistance matrices is provided, e.g., in [16].

4 Results

The flow field of a fully periodic cube with an edge length of L is initialized
randomly and divergence free. The initial microscale Reynolds number is set to
Reλ0 = u0ρfλ0/μ = 79, with the initial rms velocity u0, the initial Taylor microscale
λ0, and μ the viscosity. The same initial flow field is used as in [14] for the DNS
whereas in the case of LES, the initial energy spectrum is spectrally cut off at the
highest resolvable wave number. Simulations with four resolutions are performed to
assess the point-particle models. A mesh with 2563 cells corresponds to a DNS and
meshes with 1283, 963, and 643 cells represent the LES cases. For all LES resolu-
tions, the turbulent kinetic energy of the single phase DNS is accurately predicted,
i.e., the subgrid turbulent kinetic energy is negligible. As in [6], the resolution has



316 K. Fröhlich et al.

Table 1 Parameters of the particle-laden simulations at injection time t∗i = 0.28: Number of parti-
cles Np , aspect ratio β, density ratio particle-to-fluid ρp/ρ, ratio of the minimum particle diameter
dp,min to the Kolmogorov length scale η, ratio of the volume-equivalent particle diameter dp,eq to
the grid cell length of the DNS �DNS , the volume fraction φv , and the mass fraction φm of the
particles. Case P2 has been analyzed in [15]

Case Np β ρp/ρ dp,min/η dp,eq/�DNS dp,eq/� φv φm

P2 45,000 2 1400 1.05 0.63 0.032 3.5 ·
10−4

0.49

P4 25,000 4 1000 1.26 0.95 0.048 6.7 ·
10−4

0.67

O4 20,000 0.25 1000 1.05 1.26 0.064 12.5 ·
10−4

1.25

Table 2 Non-dimensional parameters of the DPFS and the single phase simulation (sP) at the
time levels t∗ = 1.0 and 2.0: Taylor-scale Reynolds number Reλ; ratio of the volume-equivalent
particle diameter dp,eq to the Kolmogorov length η and the Taylor length scale λ; ratio of the particle
relaxation time and the Kolmogorov time scale τp/τη; mean particle Reynolds number 〈Rep〉
Case t∗ = 1.0 t∗ = 2.0

Reλ dp,eq/η dp,eq/λ τp/τη 〈Rep〉 Reλ dp,eq/η dp,eq/λ τp/τη 〈Rep〉
sP 36.6 – – – – 31.8 – – – –

P2 26.3 1.12 0.11 97.9 6.6 17.8 0.84 0.10 56.9 4.5

P4 24.7 1.73 0.18 167.6 10.1 15.6 1.32 0.17 98.0 7.25

O4 24.9 2.49 0.25 346.9 14.0 14.7 2.04 0.27 232.4 11.2

only minor impact on the statistics. Therefore, only the results of the LES cases with
643 cells are presented.

Three particle-laden cases are considered. The particles are introduced at the inser-
tion time t∗i = 0.28,where t∗ = tε0/u20 is normalized by the initial eddy turnover time
using the initial viscous dissipation rate ε0. As in [14], the particles are initializedwith
the local fluid velocity and zero angular velocity. Table1 lists the non-dimensional
parameters related to the particles and Table2 specifies non-dimensional parameters
for t∗ = 1.0 and 2.0. The prolate case P2 considered in [15] is supplemented by case
P4 for prolate spheroids with an aspect ratio of β = 4 and by case O4 for oblate
spheroids with an aspect ratio of β = 0.25. All particle-laden flows are dilute and
assigned to the two-way coupling regime [3]. The single phase DNS will be denoted
case sP .

4.1 Direct Particle-Fluid Simulation (DPFS)

Next, budgets of the turbulent kinetic energy defined by Ek = 〈ρu′2/2〉, where the
brackets 〈 〉 denote the spatial ensemble average and u′ the rms-velocity vector, are
considered. For DPFS, the budget reads [14]
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∂Ek

∂t
(t) = �(t) − E(t) (17)

where the total kinetic energy transfer�(t) on the particle surfaces can be computed
by Eq.11, i.e.,

�(t) =
Np∑
p=1

ψp = −
Np∑
p=1

(
F p · vp + T p · ωp

)
. (18)

The integral viscous dissipation rate E(t) of incompressible flows can be determined
by integrating the local dissipation rate ε over the fluid domain V f , i.e.,

E(t) =
∫
V f

εdV =
∫
V f

2μS̄ : S̄dV, (19)

where S̄ : S̄ denotes the inner product of the strain-rate tensor. It has been shown
in [14], that the viscous dissipation rate can be decomposed in a background dissi-
pation rate E and a particle-induced dissipation rate Ep in the vicinity of the particles
with

E(t) = E(t) + Ep(t) = E(t) +
Np∑
p=1

F p · (
U p − vp

) + T p · (
�p − ωp

) + I f ,

(20)
whereU p − vp represents the relative velocity vector and�p − ωp the relative angu-
lar velocity vector of a particle and the surrounding fluid. The term I f represents the
contribution of the fluid inertia in the vicinity of the particles. The particle-induced
dissipation Ep is an analytical expression, which has been derived using the momen-
tum conservation equation in Eq.1. The termU p represents the ambient fluid velocity
seen by the particles and is approximated as in [14].

Likewise, the global kinetic energy of the particles K (t) = ∑
(mv2p + ω̃ · (̃Iω̃))/2

is described by
dK

dt
= −�(t). (21)

In the following, the different contributions of the turbulent kinetic energy budget
generated via DPFS are presented. The contributions in Eq.17 are normalized by the
reference dissipation εre f = ρu30/L and the turbulent kinetic energy is normalized
by its initial value Ek,0. Figure2a shows the temporal development of the turbulent
kinetic energy Ek . Moderate attenuation is observed in comparison to the single-
phase DNS. Despite the substantially different setups of the particles for all cases, the
modulation of the turbulent kinetic energy is very similar. Figure2b shows the mean
rate of total kinetic energy transfer 〈ψp〉(t) = �(t)/V f . All cases indicate a source
of turbulent kinetic energy after an initial build-up. The case O4 is substantially
larger than the cases P2 and P4. Figure2c shows the mean viscous dissipation rate
〈ε〉(t) = E(t)/V f . At insertion time, the viscous dissipation rate shows a sharp peak
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Fig. 2 Direct particle-fluid simulation of isotropic decaying turbulence laden with prolate ellip-
soids with an aspect ratio of β = 2 (P2) and β = 4 (P4), and oblate particles (O4). The single
phase results are shown as a reference (sP-DNS). Nondimensional temporal development of: a tur-
bulent kinetic energy Ek(t) normalized by its initial value Ek,0; bmean rate of total kinetic energy
transfer 〈ψ〉(t) = �(t)/V f normalized by the reference dissipation εre f = ρu30/L; cmean viscous
dissipation rate 〈ε〉(t) = E(t)/V f normalized by the reference dissipation εre f ; and d total kinetic
energy of the particles K (t) normalized by K0 = φmEk,0

due to the instantaneous build-up of the boundary layers. Similarly to the transfer
of kinetic energy, the case O4 shows a larger dissipation rate. This explains the
almost identical development of the turbulent kinetic energy for the three cases.
The additional transfer of kinetic energy correlates with a higher viscous dissipation
rate. The total kinetic energy of the particles K (t) normalized by K0 = φmEk,0 is
presented in Fig. 2d. In all cases, the turbulent kinetic energy decays substantially
faster than the kinetic energy of the particles. At insertion time, the particles have
the same velocity as the surrounding fluid such that the total kinetic energy transfer
vanishes. Immediately after insertion, the particles leave their initial position. The
larger particles in case P4 and O4 maintain their kinetic energy for a longer time,
which leads to a higher velocity difference vector and therefore a higher viscous
dissipation rate and transfer of kinetic energy.
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Fig. 3 Comparison of the LES using the spherical Langrangian model SLM64 and the ellipsoidal
Langrangian model ELM64 against the reference results of DPFS for oblate particles (O4). The
single phase results are shown as a reference (sP). Nondimensional temporal development of: a
turbulent kinetic energy Ek(t) normalized by its initial value Ek,0; b mean rate of total kinetic
energy transfer 〈ψ〉(t) = �(t)/V f normalized by the reference dissipation εre f = ρu30/L; c total
kinetic energy of the particles K (t) normalized by K0 = φmEk,0; d shows the probability density
function (pdf) of the particle-induced contributions by the linear dynamics in the turbulent kinetic
energy budgets normalized by the reference dissipation εre f . The probability density function (pdf)
is generated using SLM64 for case O4 at t∗ = 1.0 and the pdf values are normalized by u3d2p . The
dashed line represents the particle-induced dissipation rate, the dotted line is the direct transfer of
kinetic energy, and the full line the total contribution of the particles in the budget

4.2 Assessment of LES Using Point-Particle Models

In this Section, the LES using an SLM (SLM64) and an ELM (ELM64) are vali-
dated against the reference results of the DPFS. Four different resolutions have been
simulated for this study, where the mesh size ranges from 643 cells to 2563 cells cor-
responding to a DNS. The statistics, which are presented hereafter, show only minor
differences between the resolutions. Therefore, only the results of an LES with 643

cells are shown. For instance, case O4 will be presented in detail whereas the other
cases are only outlined, if the results are significantly different.

Figure3a shows the temporal development of the turbulent kinetic energy pre-
dicted by SLM64 and ELM64 compared to the DPFS. Consistently with the DPFS,
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the point-particle models predict a moderate attenuation. The ELM64 slightly over-
estimates the turbulent kinetic energy, while the SLM64 is close to the DPFS. For
point-particle models, the budget Eq.17 reads [4]

∂Ek

∂t
(t) = −E(t) − F p · U p. (22)

Thepoint-particlemodel implicitly combines theparticle-induceddissipationEp with
the direct transfer of kinetic energy �(t) [6, 14] neglecting the fluid inertia term I f .
For the subsequent comparison, the mean rate of the turbulent kinetic energy transfer
〈ψp〉(t) is redefined for point-particle models with 〈ψp〉(t) = − 1

V f

∑Np

p=1 F p · U p

to be consistent with other studies using two-way coupled point-particle models
(e.g. [4]).

Figure3b depicts the kinetic energy transfer of the point-particlemodels compared
to the DPFS. Both models predict a sink of turbulent kinetic energy, which corre-
sponds to the attenuated energy shown in Fig. 3a. Due to the different definitions of
the kinetic energy transfer, the differences between the reference results of the DPFS
and the point-particle models are substantial. The total kinetic energy of the particles
K (t) is shown in Fig. 3c. The point-particle models significantly overestimate the
kinetic energy of the particles. Based on the reference results of the DPFS, the kinetic
energy is 12.6% higher in the SLM64 and 24.8% higher in ELM64 at t∗ = 1.5. The
SLM64 is not aware of the anisotropy of the particles and uses empirical drag corre-
lations for finite fluid inertia, which is valid for spherical particles. This leads to an
underestimation of the forces acting on the particles and the initial kinetic energy of
the particles remains longer during the decay of the turbulence. The ELM64 fails to
predict the DPFS results. At this particle Reynolds number, the fluid inertia has to be
taken into account to predict the linear dynamics of the particles. Figure3d depicts
the pdf of the linear contribution of the particles in the turbulent kinetic energy bud-
get generated using SLM64. The model predicts that the direct transfer of kinetic
energy F p · vp is a source in the budget, which is largely eliminated by the particle-
induced dissipation F p · (

U p − vp
)
. Note that both contributions are not resolved

in the simulations using point-particle models but only recovered indirectly for the
statistics. That is, the force is modeled via Eq.14 and U p is the velocity of the cell
containing the point particle. The total contribution F p · U p is, however, different
from the reference of DPFS. It can be expected that the differences are significantly
larger for setups, in which the direct transfer of kinetic energy is not balanced by the
particle-induced dissipation.

Figure4a shows a comparison of the value of the particle angular velocity |ωp|.
The data of the ELM64 are compared against the DPFS. Since these statistics depend
on the resolution of the background flow, the data of a DNS using the ELM (ELM256)
are included in the figure. A broad distribution of the angular velocity can be observed
for the case O4. The ELM fails to predict this distribution and shows a sharp peak at
low angular velocities for both resolutions. The case P4 is presented in Fig. 4b. The
DPFS shows a narrower distribution than for case O4, whereas the ELM predicts
a wider distribution. The prediction of the ELM is better than for the case O4,
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Fig. 4 Comparison of the results using the ellipsoidal Langrangian model ELM against the refer-
ence results of DPFS. A DNS using the ELM corresponds to ELM256 and the LES corresponds to
ELM64. The figures show the absolute value of the angular velocities of the particles |ωp| normalized
by u0/L for ellipsoidal particles with aspect ratio of a β = 0.25 and b β = 4

but still shows significant deviations. Again a dependence on the resolution of the
turbulence can be observed. As for the linear dynamics, the rotational dynamics are
not accurately predicted, which can be explained bymissing correlations for the fluid
inertia in the formulation of the ELM.

5 Conclusion

The accuracy of LES using two-way coupled ellipsoidal and spherical Lagrangian
models in isotropic decaying turbulence is analyzed. Reference results are generated
via direct particle-fluid simulation, where an adaptively refined Cartesian cut-cell
mesh is employed to completely resolve all fluid and particle scales. A dilute sus-
pension laden with particles of Kolmogorov-length-scale size is considered, where
turbulence modulation may appear but collisions are not statistically important, i.e.,
a two-way coupled suspension. The particle aspect ratio ranges from β = 0.25 to 4.
Turbulent kinetic energy budgets are presented. The particles transfer kinetic energy
into the flow field, which is mainly dissipated in the boundary layers and wakes
of the particles. Moderate turbulence attenuation is observed in comparison to the
single phase flow. This behavior is accurately predicted by the LES using point-
particle models. The particle dynamics, however, are not accurately predicted by
the Lagrangian models. The ellipsoidal model significantly overestimates the kinetic
energy of the particles during the decay process, because it assumes a vanishing
particle Reynolds number, i.e., it neglects the fluid inertia. The spherical Lagrangian
model takes the fluid inertia into account but neglects the anisotropic particle shape.
Although the results are closer to the reference, the spherical Lagrangian model
still overestimates the kinetic energy of the particles. These observations hold for all
resolutions of the LES, where the turbulent kinetic energy is not filtered significantly.
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If an orientation dependent correlation for finite fluid inertia is used, the rotational
dynamics define the orientation and thus, the linear dynamics of the particles. The
rotation is, however, not correctly predicted by the ellipsoidal model. A full set of
correlation terms for linear and rotational dynamics might be required, although the
linear velocity difference between particles and surrounding fluid almost completely
defines the turbulence modulation.

6 Computational Resources

The DPFS performed in this contribution contains up to 45,000 fully resolved parti-
cles to provide a sufficiently large number of samples for converged particle statistics.
The parameter setup is chosen to study the effects of the particle shape on turbulence
modulation and particle dynamics. A minimum resolution of 10 cells per particle
diameter is required in the vicinity of each particle to provide sufficient accuracy
of the near-particle hydrodynamics. In total, approx. 2 billion cells are required to
resolve the near-particle flow field. Each of the simulation is performed on 2000
nodes using about 40 TB of RAM distributed over 48,000 CPU cores. Dynamic load
balancing is applied using an automatic redistribution of the cells on a weighted
Hilbert curve [12]. The post-processing of the results require the whole instanta-
neous flow field for a statistically sufficient amount of time steps. Therefore, the
large amount of data has to be partially analyzed in-Situ, since the computation lasts
O(105) − O(106) time steps, where each time stepwould require 270GB disk space.
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