
Enhancing OpenFOAM’s Performance
on HPC Systems

Thorsten Zirwes, Feichi Zhang, Jordan A. Denev, Peter Habisreuther,
Henning Bockhorn, and Dimosthenis Trimis

Abstract OpenFOAM is one of the most popular open source tools for CFD simu-
lations of engineering applications. It is therefore also often used on supercomputers
to perform large eddy simulations or even direct numerical simulations of complex
cases. In this work, general guidelines for improving OpenFOAM’s performance
on HPC clusters are given. A comparison of the serial performance for different
compilers shows that the Intel compiler generally generates the fastest executables
for different standard applications. More aggressive compiler optimization options
beyond O3 yield performance increases of about 5% for simple cases and can lead
to improvements of up to 25% for reactive flow cases. Link-time optimization does
not lead to a performance gain. The parallel scaling behavior of reactive flow solvers
shows an optimum at 5000 cells per MPI rank in the tested cases, where caching
effects counterbalance communication overhead, leading to super linear scaling. In
addition, two self-developed means of improving performance are presented: the
first one targets OpenFOAM’s most accurate discretization scheme “cubic”. In this
scheme, some polynomials are unnecessarily reevaluated during the simulation. A
simple change in the code can reuse the results and achieve performance gains of
about 5%. Secondly, the performance of reactive flow solvers is investigated with
Score-P/Vampir and load imbalances due to the computation of the chemical reaction
rates are identified. A dynamic-adaptive load balancing approach has been imple-
mented for OpenFOAM’s reacting flow solvers which can decrease computation
times by 40% and increases the utilization of the HPC hardware. This load bal-
ancing approach utilizes the special feature of the reaction rate computation, that
no information of neighboring cells are required, allowing to implement the load
balancing efficiently.

T. Zirwes (B) · J. A. Denev
Steinbuch Centre for Computing, Karlsruhe Institute of Technology,
Hermann-von-Helmholtz-Platz 1, Karlsruhe, Germany
e-mail: thorsten.zirwes@kit.edu

F. Zhang · P. Habisreuther · H. Bockhorn · D. Trimis
Engler-Bunte-Institute, Karlsruhe Institute of Technology, Engler-Bunte-Ring 7, Karlsruhe,
Germany
e-mail: feichi.zhang@kit.edu

© Springer Nature Switzerland AG 2021
W. E. Nagel et al. (eds.), High Performance Computing in Science and Engineering ’19,
https://doi.org/10.1007/978-3-030-66792-4_16

225

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66792-4_16&domain=pdf
mailto:thorsten.zirwes@kit.edu
mailto:feichi.zhang@kit.edu
https://doi.org/10.1007/978-3-030-66792-4_16


226 T. Zirwes et al.

Keywords OpenFOAM · Load balancing · Reactive flows · Performance
optimization · Combustion

1 Introduction

Computational Fluid Dynamics (CFD) has proven to be an effective tool in engi-
neering to aid the development of new devices or for gaining a deeper understand-
ing of physical phenomena and their mutual interactions. One of the most popular
open-source CFD tools is OpenFOAM [1]. It provides many tools for simulating
different phenomena: from simple, incompressible flows to multi-physics cases of
multi-phase reactive flows. In the case of combustion simulations, the interaction
of chemical reactions and turbulent flow takes place on a large range of time and
length scales [2, 3]. Therefore, supercomputers have to be employed to resolve all
the multi-scale interactions and to gain deeper insight into the combustion dynamics
by performing highly-resolved simulations.

In order to utilize the hardware provided by High Performance Computing (HPC)
clusters efficiently, it is not sufficient to installOpenFOAMwith its default settings. In
this work, a general guideline on running OpenFOAM efficiently on supercomputers
is given. Section2 reviews the performance of OpenFOAM depending on the choice
of compiler and the optimization settings aswell as link-time optimization. Sections2
and 5 give examples of the parallel scaling behavior. In the case of reactive flows, an
optimal number of cells per MPI rank is discussed.

In addition to these guidelines, two self-developed methods for speeding up gen-
eral OpenFOAM applications are discussed. Since the OpenFOAM applications on
supercomputers are typically highly-resolved direct numerical simulations, it is likely
that users will choose OpenFOAM’s “cubic” discretization for spatial derivatives
since it is the most accurate scheme OpenFOAM offers. In the implementation of
this scheme, some polynomials are computed repeatedly which can be avoided.
The necessary code changes and performance benefits are shown in Sect. 3 and the
accuracy of the scheme is demonstrated with the well-known Taylor-Green vortex
case [4].

The second self-developed method for improving OpenFOAM’s performance
improves the load balancing of reactive flow solvers. Since chemical reaction rates
depend exponentially on temperature and are closely coupled with each other, they
tend to be numerically stiff. This requires special treatment for the computation of the
chemical reaction rates which can lead to large load imbalances. Section4 presents
the load balancing method which is done dynamically during the simulation. An
application of this is given in Sect. 5, where a flame evolving in the Taylor-Green
vortex case from Sect. 3 is studied.



Enhancing OpenFOAM’s Performance on HPC Systems 227

Fig. 1 Time required to compute the tutorial case channel395 depending on the compiler and
optimization settings. Simulation without turbulence model (left) and with turbulence model (right)

2 Compilers and Optimization Settings

If OpenFOAM is compiled without changing any settings, it will be compiled with
the gcc compiler. The only optimization flags given to the compiler is O3. This
raises the question if OpenFOAM can benefit from using different compilers and
more aggressive optimization options since O3 does not generate code specifically
optimized for the CPU type of the cluster. In this section, two different cases are
considered:

• incompressible flow: the standard tutorial case channel395 computed with
OpenFOAM’s pimpleFoam solver

• compressible reactive flow: the standard tutorial case counterflowFlame
2D_GRI computed with OpenFOAM’s reactingFoam solver

These two cases differ in their physical complexity. For the incompressible flow case,
only two conservation equations have to be solved (mass and momentum). Also, all
fluid properties are assumed to be constant. The reactive flow case on the other hand
simulates the chemical reactions of 52 different species. Therefore, conservation
equations have to be solved for mass, momentum, energy and 51 chemical species.
In addition to this, all fluid properties like density or heat capacity are computed as a
function of gas mixture composition, temperature and pressure. Lastly, a large part
of the simulation time stems from computing the chemical reaction rates based on
the GRI3.0 [5] reaction mechanism.

Figure1 shows the simulation time required to compute 100s of OpenFOAM’s
tutorial case channel395 with OpenFOAM’s pimpleFoam solver. The figure
on the left shows the case without turbulence model and the case with turbu-
lence model, which means that additional transport equations for the turbulence
model are solved. Three different compilers are investigated: gcc 8, Intel2018 and
Clang 7. Additionally, OpenFOAMwas compiled using the default optimization set-
ting O3 and more aggressive optimizations (full opt.). For gcc and Clang, the full
optimization settings are -Ofast -ffast-math -fno-rounding-math-
-march=native -mtune=native and for the Intel compiler -O3 fp-



228 T. Zirwes et al.

Fig. 2 Time required to
compute the
first 0.003s of the tutorial case
counterflowFlame2D_GRI
depending on the compiler
and optimization settings

model fast=2 -fast-transcendentals -xHost.All timings havebeen
recorded on the ForHLR II cluster at KIT [6] with OpenFOAM 5.x in serial.

The difference between the three compilers is approximately 3%. The fastest
code using only O3 as optimization option is generated by Clang, while the fastest
code using the full optimization options is generated by the Intel compiler. Changing
from the standard O3 to the full optimization options yields a performance increase
of about 5% on average. Including the turbulence model does not change the timings
significantly because most of the time is spent in the pressure correction step.

For the reactive flowcase however (shown in Fig. 2), the difference between theO3
and the fully optimized build becomes significant. For the gcc compiler, switching
from O3 to the full optimizations increases the performance by about 25%. The
Intel compiler generates efficient code even with O3, so that the full optimizations
increase the performance by about 10% for the Intel compiler. Although there are
large differences between the compilers with O3, they perform approximately the
same using the full optimizations.

Using the full optimization settings as described before has not shown any draw-
backs in accuracy of the simulation results. Final temperature profiles for the reac-
tive flow case for example agreed within 0.1% between the O3 build and the fully
optimized build. It should be noted however, that other unsafe optimizations like
strict aliasing has caused OpenFOAM to randomly crash. Therefore, using addi-
tional options to the ones shown above should be used with caution. It has also been
found that link-time optimization (LTO) has no effect on performance at all. This is
probably due to OpenFOAM being compiled into many different shared objects so
that LTO cannot be very effective.

3 Optimizing the Cubic Discretization

OpenFOAM offers a large number of spatial discretization schemes to discretize
spatial gradients for the finite volume method. Since CFD simulations on super-



Enhancing OpenFOAM’s Performance on HPC Systems 229

Fig. 3 Original code for computing the cubic discretization scheme from cubic.H from Open-
FOAM (left) and optimized code version (right)

computers are usually highly-resolved, discretization schemes with high accuracy
should be employed. The most accurate scheme OpenFOAM offers is the cubic
scheme. It interpolates a quantity φ from the cell centers of the current cell C and
the neighboring cell N to the cell face f using a third order polynomial:

φ f = λφC + (1 − λ)φN + A(φN − φC) + B∇φC + C∇φN (1)

Here, λ is a function of the distance between the cell centers. The coefficients A, B, C
are themselves polynomials of λ:

A = 2λ3 − 2λ2 + λ (2)

B = −λ3 + λ2 (3)

C = −λ3 + 2λ2 − λ (4)

Since these polynomials only depend on the distances between the cell centers,
they only have to be computed once for each simulation if the computational mesh
does not change. In OpenFOAM’s implementation however, these polynomials are
computed at every time step and for every transport equation. So for example if the
conservation of momentum and energy use the cubic scheme, these polynomials
are computed twice per time step. In order to avoid this, OpenFOAM’s code of the
cubic discretization can easily be modified so that these polynomials are computed
only once at the beginning of the simulation.

Figure3 on the left shows the code from OpenFOAM which computes the three
polynomials. The code on the right is the modification. It starts by checking if the
polynomials have already been computed. If not, they are computed only once. They
are also re-computed if themesh is changing during the simulation. If the polynomials
have already been computed, references to the precomputed values are used on the
subsequent computations.

The performance gain of this new implementation is tested with the well-known
Taylor-Green vortex [4] usingOpenFOAM’spimpleFoam solver. The case consists
of a cube with side length 2π L where all boundary conditions are periodic. The



230 T. Zirwes et al.

Fig. 4 Vorticity iso-surface of 0.1 s−1 at the start of the simulation (left) and after 20 s (right)

velocity profile at the start of the simulation is set to:

ux = u0 sin

(
2πx

L

)
cos

(
2πy

L

)
cos

(
2π z

L

)
(5)

uy = −u0 cos

(
2πx

L

)
sin

(
2πy

L

)
cos

(
2π z

L

)
(6)

uz = 0 (7)

This places counter-rotating vortices at each corner. The flow field then starts to
become turbulent and decays over time. This is shown in Fig. 4.

By using the new implementation for the cubic scheme, which requires only
minimal code changes, the total simulation time was decreased by 5%.

The accuracy of the cubic scheme is shown in Fig. 5 on the left. The normalized,
volume averaged dissipation rate over time computed with OpenFOAM is compared
with a spectral DNS code [4].

ε = 1

V

∫
V

S : S dV (8)

where S is the strain rate tensor. Both simulations use a grid with 5123 cells; the
OpenFOAMsimulationwas performedonHazelHen at theHLRS [7]. Themaximum
deviation is below 1%, demonstrating that OpenFOAM’s cubic scheme is able to
accurately simulate the decaying turbulent flow.

On the right of Fig. 5 strong scaling results for this case using 3843 cells are shown.
The numbers above the markers show the parallel scaling efficiency. The tests have
been performed with OpenFOAM 1812 using the standard pimpleFoam solver.



Enhancing OpenFOAM’s Performance on HPC Systems 231

Fig. 5 Integral dissipation rate over time compared with a spectral DNS code (right) and strong
scaling results (right)

4 Dynamic Load Balancing for Reactive Flows

OpenFOAM’s parallelization strategy is based on domain decomposition together
with MPI. By default, OpenFOAM uses third-party libraries like scotch or metis to
decompose the computational domain into a number of sub-domains with approx-
imately the same number of cells. This is the ideal strategy for most solvers and
applications. For reactive flow simulations however, the chemical reaction rates have
to be computed. Since the chemical reaction rates generally depend exponentially
on temperature and are coupled to the rate of change of all chemical species, they
are numerically very stiff and require very small time steps. In order to avoid using
very small time steps in the simulation, an operator splitting approach is usually
used. In this approach, the chemical reaction rates are computed by solving a system
of ordinary differential equations (ODE) in each cell with special ODE solvers for
stiff systems. These solvers take adaptive sub-time steps for integrating the chemical
reaction rates over the CFD time step (see [8, 9] for a more detailed description of
the operator splitting approach).

The size of the sub-time steps depends on the current local conditions. The lower
the chemical time scales are, i.e. the faster the chemical reactions are, the more
sub-time steps have to be taken. Consider for example the simulation of a turbulent
flame in Fig. 6 using Sundials [10] as the ODE integrator. The light blue lines show
the sub-domains into which the computational domain has been divided for the
parallel simulation. It can easily be seen that the sub domains in the top and bottom
row do not contain any cells where chemical reactions take place. Therefore, the
computational effort for sub-domains in the middle where the flame is located is
much higher. This leads to load imbalances during the simulation. In general, the
position of the flame might change over time so that it is not possible to decompose
the mesh once in an optimal way. Therefore, this section presents an approach to
overcome load imbalances caused by chemical reaction computations that is done
dynamically during runtime.



232 T. Zirwes et al.

Fig. 6 Temperature field from the simulation of a turbulent flame. Blue lines show the sub-domains
for the parallel simulation

Fig. 7 Performance measurements with Score-P [11], visualized with Vampir [12]

Figure7 shows performance measurements of a combustion simulation [9] with
OpenFOAMon 120MPI ranks recorded with Score-P [11] and visualized with Vam-
pir [12]. The solver is a self-developed DNS extension for OpenFOAM [13]. The
load imbalances can be seen on the left: depicted is one time step during the simula-
tion. Each horizontal line represents one MPI rank. The x-axis represents time. The
green areas are useful work performed by OpenFOAM, like solving the conservation
equations. The gray regions show the computation of chemical reaction rates. The
red areas show communication overhead. In this case, a small number of processes
requires about twice as much time to compute the chemical reaction rates than most
other processes. Therefore, most of the processes spend half of the simulation time
waiting on the few slow processes. This of course wastes large amounts of compu-
tational resources. The more complex the chemical reaction mechanisms are (i.e.
the more reactions and chemical species are considered), the more severe these load
imbalances become.



Enhancing OpenFOAM’s Performance on HPC Systems 233

Fig. 8 Schematic drawing of the load balancing approach: Step 1: Measure time for computing
chemical reaction rates. Step 2: Sort all processes by computing time. Step 3: Formpairs of processes
that share their workload during the following time steps

In order to overcome this, a load balancing algorithmhas been implementedwhich
can be used with any reactive flow solver in OpenFOAM and achieves dynamic load
balancing during runtime. It also exploits the fact, that the computation of chemical
reaction rates does not require information from neighboring cells. This means, that
the work load can be freely distributed among the processes without taking any
connectivity information of the computational mesh into account, which makes the
algorithm flexible and efficient.

The load balancing approach is based on the idea of forming pairs of processes
that share their workload. Figure8 shows an example of this idea: At the beginning of
the simulation after the very first time step, each MPI rank measures the time it takes
to compute the chemical reaction rates on its own sub-domain. The timing results
are then sorted and communicated to all MPI ranks. In the example from Fig. 8, MPI
rank 2 has the lowest computing time of 2 s and is therefore the first entry in the list.
MPI rank 0 is the slowest with 24s and therefore is the last entry in the list. The
last step is to form pairs of processes: The fastest MPI rank forms a pair with the
slowest. The second fastest forms a pair with the second slowest, and so on. The
two processes in each pair will share their workload in the subsequent time steps of
the simulation. Of course, communicating the timing results from all MPI ranks to
all other MPI ranks is an expensive operation. If the position of the flame is rapidly
changing, it might be a good idea to repeat this communication step every few time
steps to make sure that each pair of processes consists of a slow and a fast process.
Usually it is sufficient to check the global imbalances every few thousand time steps.

After the pairs have been formed, the slow process in the pair sends some of its
cells to the fast process. After the fast process has computed the chemical reaction



234 T. Zirwes et al.

Fig. 9 Time for computing the chemical reaction rates on each MPI rank. The slowest rank deter-
mines the overall time for the simulation, shown as dashed line

rates on its own sub-domain, it also computes the reaction rates in the cells of the
partner process and sends back the reaction rates in these cells along with the time it
took to compute the rates. Based on this time, the number of cells that is sent between
the processes is adjusted in the next time step.Due to this, the load balancing approach
can adapt to changing conditions during the simulation. Because the calculation of
chemical reaction rates does not depend on information in neighboring cells, the cells
can be freely shared among the processes. For more information of this approach,
see [9].

Figure9 shows measurements for the time spent on computing chemical reaction
rates for a case similar to the one in Fig. 7, using the self-developed DNS solver [13]
and the GRI3.0 reactionmechanism, computed with 100MPI ranks. It can be seen on
the left, that some processes take much longer to compute the chemical reaction rates
than most other processes. Since all processes have to wait until the last one finishes,
most processes spend half the time waiting. Since the slowest process determines the
overall time for computing the chemical reaction rates, 20 s per time step are needed
for computing the chemical reaction rates in this simulation. Running the same
simulation with the load balancing approach from above (Fig. 9 on the right) shows
that the difference between the fastest and slowest processes has been drastically
decreased. The ratio of the slowest to the fastest process in terms of computing time
is about 4 without load balancing and about 1.3 with load balancing. The time per
time step that is spent on chemical reaction rates reduces to about 13 s with load
balancing, as shown by the dashed line. Often, the computation of chemical reaction
rates is the most time consuming part of the simulation, so that the simulation time
is reduced from 20 to 13s per time step, saving about 40% of the total simulation
time.



Enhancing OpenFOAM’s Performance on HPC Systems 235

Fig. 10 Left: Initial profiles of temperature, hydrogen mass fraction and oxygen mass fraction
along the centerline. Right: Iso-surface of the magnitude of vorticity of 4000s−1 and iso-surface of
temperature at 1800K colored in red

5 Reactive Taylor-Green Vortex

In this section, an application for reactive flow solvers is shown which uses both
presented optimization methods: the improved cubic discretization scheme from
Sect. 3 and the new load balancing approach from Sect. 4. In total, these led to a
reduction of total computing time of about 20%. This application uses the Taylor-
Greenvortex fromSect. 3 but embeds aflame into theflowfield [14].This setup allows
to study the interaction of different types of flames with a well-defined turbulent flow
field.

The initial conditions for the flow are the same as for the standard Taylor-Green
vortex case (see Eqs. 5 and 6). Additionally, there are now profiles for the temperature
and mass fractions of hydrogen and oxygen present. The gas properties and chem-
ical reactions are taken from a reaction mechanism for hydrogen combustion [15].
Figure10 on the left shows these profiles along the centerline. On the right, a 3D
view of the initial conditions in terms of flow vorticity and temperature can be seen.
As soon as the simulation starts, the flow field begins to decay into a turbulent flow
while the flame burns the hydrogen and oxygen in the domain, leading to a complex
interaction between the flow field and the flame. Figure11 shows the 1800K iso-
surface colored by OH mass fraction and iso-surfaces of vorticity of the flow field
during three points in time during the simulation.

The case as shown in Fig. 11 was computed on an equidistant grid with 2563 cells.
This case was used to perform a strong scaling test (Fig. 12) both with activated and
deactivated computation of chemical reaction rates. The scaling tests are performed
with up to 12288 CPU cores. When using up to about 1000 CPU cores or 15000
cells per core, the scaling is slightly super linear. At 1536 cores, parallel efficiency is



236 T. Zirwes et al.

Fig. 11 Iso-surface of
temperature at T = 1800K
colored by the mass fraction
of the OH radical and
iso-surfaces of the vorticity
magnitude of 4000s−1

(shown in white) at different
times: t = 0.5ms (top),
t = 1.0ms (middle),
t = 2.0ms (bottom)



Enhancing OpenFOAM’s Performance on HPC Systems 237

Fig. 12 Strong scaling for the reactive Taylor-Green vortex setup. Left: without chemical reactions.
Right: With chemical reactions. Numbers above the markers show the parallel scaling efficiency

reduced to about 0.8 for both the reactive and non-reactive simulation. The optimum
lies at 3072 CPU cores or about 5000 cells per core, where the parallel efficiency
reaches 1.3 to 1.4. For larger fuels or larger reactionmechanisms, the optimal number
of cells might be even lower. Due to the low number of cells, all sub-domains fit into
the L3 cache of the CPU. Running the simulation with twice as many cores yields
another good scaling result.But beyond this point (more than12000CPUcores or less
than 1500 cells per core) the scaling efficiency degrades rapidly. In conclusion, there
is an optimum in terms of efficiency at about 5000 cells per core for this simulation
using a relatively small reactionmechanism for hydrogen combustion [15]. Reducing
the number of cells to about 2500 per core is still possible, but further reduction does
not benefit the simulation time.

6 Summary

In order to utilize HPC hardware efficiently with OpenFOAM, the following recom-
mendations are given:

• In order to maximize performance, OpenFOAM should be compiled with more
aggressiveoptimizationoptions like -Ofast -ffast-math -march=native -mtune=native
for gcc and Clang and -O3 -fp-model fast=2 -fast-transcendentals -xHost for the
Intel compiler. The effect of this on the accuracy of the simulation resultswas found
to be negligible. The performance gain of using the full optimization options can
be as large as 25% for complex simulations and about 5% for simple simulations
with incompressible flows.

• In general, the Intel compiler generates the most efficient code, but the difference
between the compilers are negligible if the full optimization options are used.
Using only O3 as optimization option shows that the Intel compiler generally
outperforms gcc and Clang.



238 T. Zirwes et al.

• using even more aggressive optimization options like strict aliasing should be
avoided since they have led to random crashes of OpenFOAM.

• link-time optimization (LTO) was found to have no effect on performance.

For reactive flow simulations, an optimal value in terms of cells per process was
found to be about 5000. This case was runwith a relatively small reactionmechanism
so that this number may be lower for more complex reaction mechanisms including
more chemical species and reactions.

OpenFOAM’s most accurate spatial discretization scheme is its cubic scheme.
It is based on a third order polynomial interpolation from cell centers to cell faces. A
comparison with a spectral DNS code has shown that this scheme is able to predict
the correct dissipation rate during turbulent decay of the Taylor-Green vortex. The
performance of this discretization scheme can be increased by reusing the results of
the interpolation polynomials as shown in the code modification in Sect. 3. This can
reduce simulation times by an additional 5%.

For simulations using reactive flow solvers, load imbalances due to the computa-
tion of chemical reaction rates can lead to large amounts of wasted HPC resources.
This is demonstrated by doing a performance measurement with Score-P/Vampir. A
self-developed load balancing approach, which is specifically made for the imbal-
ances caused by the computation of chemical reaction rates, is shown to reduce
overall simulation times by up to 40%. This approach can be used with any reactive
flow solver. The workload is adaptively shared between pairs of processes between
a slow and a fast process. This can be combined with the automatic code generation
for the chemical reaction rates as described in a previous work [8] to achieve even
larger performance gains.

Acknowledgements This work was supported by the Helmholtz Association of German Research
Centres (HGF) through the Research Unit EMR, Topic 4 Gasification (34.14.02). This work was
performed on the national supercomputer Cray XC40 Hazel Hen at the High Performance Com-
puting Center Stuttgart (HLRS) and on the computational resource ForHLR II with the acronym
DNSbomb funded by the Ministry of Science, Research and the Arts Baden-Württemberg and DFG
(“Deutsche Forschungsgemeinschaft”).

References

1. OpenCFD, OpenFOAM: The Open Source CFD Toolbox. User Guide Version 1.4, OpenCFD
Limited. Reading UK (2007)

2. T. Poinsot, D. Veynante, Theoretical and Numerical Combustion (R.T, Edwards, 2001)
3. R. Kee, M. Coltrin, P. Glarborg, Chemically reacting flow: theory and practice (John Wiley &

Sons, 2005)
4. G.I. Taylor, A.E. Green, Mechanism of the production of small eddies from large ones, Pro-

ceedings of the Royal Society of London Series A-Mathematical and Physical Sciences, vol.
158, no. 895, pp. 499–521 (1937)

5. G. Smith, D. Golden, M. Frenklach, N. Moriarty, B. Eiteneer, M. Goldenberg et al., Gri 3.0
reaction mechanism

6. Karlsruhe institute of technology (2018), www.scc.kit.edu/dienste/forhlr2.php

www.scc.kit.edu/dienste/forhlr2.php


Enhancing OpenFOAM’s Performance on HPC Systems 239

7. High performance computing center stuttgart (2018) www.hlrs.de/systems/cray-xc40-hazel-
hen

8. T. Zirwes, F. Zhang, J. Denev, P. Habisreuther, H. Bockhorn, Automated code generation for
maximizing performance of detailed chemistry calculations in OpenFOAM, in High Perfor-
mance Computing in Science and Engineering ’17, ed. by W. Nagel, D. Kröner, M. Resch
(Springer, 2017) pp. 189–204

9. T. Zirwes, F. Zhang, P. Habisreuther, J. Denev, H. Bockhorn, D. Trimis, Optimizing load
balancing of reacting flow solvers in openfoam for high performance computing. ESI (2018)

10. Suite of nonlinear and differential/algebraic equation solvers http://computation.llnl.gov/casc/
sundials

11. Score-p tracing tool, http://www.vi-hps.org/tools/score-p.html
12. Vampir visualization tool, http://www.paratools.com/vampir/
13. T. Zirwes, F. Zhang, P.Habisreuther,M.Hansinger, H. Bockhorn,M. Pfitzner, D. Trimis,Quasi-

DNS dataset of a piloted flame with inhomogeneous inlet conditions (Turb. and Combust, Flow,
2019)

14. H. Zhou, J. You, S. Xiong, Y. Yang, D. Thévenin, S. Chen, Interactions between the premixed
flame front and the three-dimensional taylor-green vortex. Proc. Combust. Instit. 37(2), 2461–
2468 (2019)

15. P. Boivin, Reduced-kinetic mechanisms for hydrogen and syngas combustion including
autoignition (Universidad Carlos III, Madrid, Spain, Disseration, 2011)

www.hlrs.de/systems/cray-xc40-hazel-hen
www.hlrs.de/systems/cray-xc40-hazel-hen
http://computation.llnl.gov/casc/sundials
http://computation.llnl.gov/casc/sundials
http://www.vi-hps.org/tools/score-p.html
http://www.paratools.com/vampir/

	 Enhancing OpenFOAM's Performance on HPC Systems
	1 Introduction
	2 Compilers and Optimization Settings
	3 Optimizing the Cubic Discretization
	4 Dynamic Load Balancing for Reactive Flows
	5 Reactive Taylor-Green Vortex
	6 Summary
	References




