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Abstract. This paper presents the design and implementation of a new
vehicle tracking technology. It can assist GPS to achieve high precision
under special situations. For example, the situations when the road con-
ditions are complex or the GPS signal strength is weak. In our method,
the barometer data and acceleration data are used to assist the GPS
data, and the Hidden Markov Model is used to assist the location track-
ing. We make two key technical contributions. The first is to propose
a Hidden Markov Model to combine the barometer and accelerometer
reading hints for estimating the location of the vehicle. The second is to
design some novel techniques for parameter estimation. The experiment
shows that the accuracy of our method is improved by 19.2% compared
with GPS under these special situations.
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1 Introduction

Location tracking techniques are now widely used in many location based ser-
vices, such as car navigation [9] and logistics management [13]. The GPS (Global
Positioning System) has high precision outdoors, making it the most used tech-
nology for location tracking. However, the GPS positioning accuracy will be
greatly affected in some scenarios. For example, there will have large error when
the GPS signal is bad, and the tracking accuracy will be affected in complex road
conditions. Also, when there are roads interlaced, the GPS tracking accuracy can
be influenced. More detail: 1) when the car is driving in a tunnel or under dense
tall buildings, the GPS signal will be very weak, and the tracking cannot be
precise. 2) when the car is passing the overpass, there may be several roads at
different altitudes but under the same GPS longitude and latitude. The alti-
tude provided by GPS can have an error of tens of meters, which is not accurate
enough to know which road the car is driving on. A typical example is at car nav-
igation, if the car goes to the wrong route when passing the overpass, the existing
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GPS based system cannot re-locate the car and recalculate the navigation route.
Based on the above observations, an approach to improve the accuracy of GPS
based vehicle tracking in such particular situations is desperately needed.

In order to improve the accuracy of GPS based vehicle tracking, the most com-
mon method is to utilize the accelerometer and compass for inertial navigation
[4,5]. However, the sensors are noisy and the error of accelerometer and compass
will accumulate [8] over time. Moreover, when it comes to complicated road condi-
tions such as interlaced roads, even with the assistance of accelerometer, the GPS
still can not realize precise tracking. Other techniques such as Wi-Fi [12] or cellu-
lar network [20] based positioning and tracking are not suitable here because they
need infrastructure support and are not accurate enough [21].

In this paper, we believe that except for GPS, accelerometer and compass
readings, there are also other information which can help us achieve more precise
location tracking [6,7]. Take the barometer sensor on smart phone as an example,
it can senses the precise altitude change of the car, which can help improve
the tracking accuracy on the elevated roads and overpasses where the altitude
changes along the road. Real-time traffic congestion and road conditions data
can also help location tracking.

In this paper, we put forward a new solution to satisfy the need for accurately
tracking a car in many situations. Our solution is to utilize the data collected
from barometer and accelerometer to assist GPS. All of these sensors can be
found in smart phones nowadays. We will feed the sensor data to a Hidden
Markov Model (HMM) to derive the location list that the car is driving through.
Generally, to solve this problem, we will face the following challenges: a) The
sensor data are noisy, they need to be preprocessed before use. For
example, the barometer reading will be affected by the weather, which should be
handled carefully. b) We will have to design some methods for initializing
the parameters for HMM.

In general, in this paper, we made the following contributions:

– We proposed an HMM based method to effectively combine different sensor
readings to solve the problem.

– We designed some novel techniques for parameter estimation of the model.
– We improved GPS accuracy when tracking a moving car in particular situa-

tions by 19.2% compared to traditional GPS based method.

In the rest of this paper, we first discuss the problem definition and modeling
in Sect. 2. Later we solve the model in Sect. 3. Section 4 shows the evaluation
results of the proposed method. Section 5 shows the related work and finally
Sect. 6 concludes this paper.

2 Problem Definition and Modeling

Figure 1 describes the overall structure of our method. First of all, the left part
shows the application scenario of the method. Our method is designed to assist
GPS in tracking the car under complex road conditions. The figure shows the
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Fig. 1. Overview of our method.

scene of the car driving on the complex overpass. The locations in the figure are
the real locations of the car passing by, but due to GPS error, we can not get
the exact locations. The middle part of the figure shows the data obtained by
mobile phone, they are road map, GPS data, barometer data and acceleration
data. After preprocessing these data, we can convert them into the parameters
needed by HMM. The part on the right shows the model we used. We use HMM
to predict the most likely driving path of the car. We get the emission probability
through GPS data and barometer data, and the transition probability through
GPS data and acceleration data.

The following content of this section contains two parts. The first part gives
some basic definitions and describes the problem that needs to be solved. The
second part introduces how to solve this problem through HMM.

2.1 Problem Definition

First some notations will be defined in Table 1 to make our problem definition
clearer.

In this paper, we will use barometer data and acceleration data to assist
GPS to improve the tracking accuracy of GPS under special circumstances.
Specifically, we solve the problem by using a probabilistic model called HMM.
This model can help us get a sequence of unobserved states which is also called
hidden states. In our solution, the hidden states are the passing-by locations of
the car which we can not observe directly due to GPS error. Also, the observed
readings of GPS, barometer and accelerometer depends on the hidden states.
Based on the above observations, we define the problem as follows.
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Problem Definition. For a moving car, given the road map M , number of time
stamp T , and all the observation readings—GPS readings {gt}t=1:T , barometer
readings {bt}t=1:T and accelerometer readings {at−1,t}t=1:T . The purpose is to
accurately infer the hidden location list Trace = {lt}t=1:T of the car.

Table 1. Notations and meanings for problem definition

Notation Meaning

t Time stamp

gt GPS reading at time t

bt Barometer reading at time t

at−1,t Acceleration reading from time t − 1 to time t

loc A location point on the road

r A road on the map, it can be represented as

r = {loc1, loc2, ...}
M Road map which contains a set of roads,

represented as M = {r1, r2, ...}
lt Location of the car at time t

T Number of time stamp

Trace The trace of the car during T time

stamps, represented as Trace = {l1, l2, ..., lT }

2.2 Hidden Markov Model

Before introducing the model, some notations with their meanings are defined
in Table 2.

Table 2. Notations and meanings for modeling

Notation Meaning

N Number of states in the state space

si The ith state of state space, i = 1 : N

X The state space, it can be represented as

X = {s1, s2, ..., sN}
M Number of states in the observation space

oi The ith observation of observation space, i = 1 : M

Y The observation space, it can be represented as

Y = {o1, o2, ..., oM}
A State transition probability matrix

B Emission probability matrix

Π Initial state probability matrix

πi The initial probability of being in

state si, i = 1 : N
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In order to solve the problem, HMM is used in this paper. It is a prob-
abilistic model and one of its applications is to get the hidden states based
on the observed values. In this problem, the observed values are the GPS
data, barometer data and acceleration data recorded by the mobile phone
sensors in time series. The hidden states are the car’s passing-by locations.
There are two variables and three parameters of HMM, two variables are
the state variable (x1, x2, ..., xt, ..., xT ), xt ∈ X and the observation variable
(y1, y2, ..., yt, ..., yT ), yt ∈ Y . State variable is also called hidden variable. Given
a road map M , the state space X is all the location points on the map, and the
state variable is the driving trace of the car. yt in observation variable repre-
sents the observation value at time stamp t under hidden state xt. Then three
parameters of hidden Markov model are as follows.

Initial state probability matrix Π. The initial state probability matrix is
actually the probability that the car may start from each state in the state
space. The initial state probability matrix is represented as Π = (π1, π2, ..., πN ).
Each element πi = P (x1 = si), 1 � i � N in Π denotes the probability that the
car begins form location state si.

State transition probability matrix A. The state transition probability
refers to the probability that every state in the state space is transferred to every
other state. The size of the state transition probability matrix is N ∗ N . Each
value in the state transition matrix is denoted as aij = P (xt+1 = sj |xt = si),
1 � i, j � N . It represents the probability of transitioning from the location
state at time t to the state at time t + 1.

Emission probability matrix B. The emission probability refers to the prob-
ability of observation value taking oj at time stamp t, given the hidden state si.
It can be represented as bij = P (yt = oj |xt = si), 1 � i � N, 1 � j � M . Thus
the size of emission probability matrix is N ∗ M .

Now that we have got the three required parameters, we get the HMM λ =
(A,B,Π). Next we will get the most likely state sequence that produces the
observations by using Viterbi algorithm. It is given by the following recurrence
relations,

V1,k = P (y1|k) · πk

Vt,k = P (yt|k) · maxx∈X(ex,k · Vt−1,x)
(1)

Here Vt,k is the probability of the most probable state sequence responsible
for the first t observations that have k as its final state. ex,k represents the
probability of transitioning from state x to state k. The Viterbi path can be
retrieved by saving back pointers that remember which state x was used in the
second equation.

3 Solve the Model

This part will introduce how to solve the model proposed in the previous part,
mainly introduce how to obtain the three parameters of HMM, and then use a
modified Viterbi algorithm to solve our model to get the trace of the car.
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Firstly, GPS data, barometer data and acceleration data can be acquired
continuously in time series from sensors in mobile phone. After collecting these
data, we pre-process these data using pre-processing method like [19]. Since the
barometric pressure and altitude can be converted into each other, we convert
the barometric pressure to altitude, and the conversion formula is as follows,

h = 44300 ∗ (1 − (
p

p0
)

1
5.256 ) (2)

In (2), h represents altitude, p represents barometric pressure and p0 is the
sea level standard atmospheric pressure. Next part of this section will introduce
how to get the three parameters of HMM.

Get initial state probability matrix Π. The initial state probability is the
probability that the car may start from each state of the state space. The state
space X in our case refers to all the location points on the map, therefore N is
very large, and it will cause too much calculation. However, as the initial state’s
GPS value is known, the probability of location points far from the GPS value is
close to zero, and the number of these points is very large, so in order to reduce
the complexity of calculation, we only consider the location points on the road
within the error range of initial GPS value, and then calculate their probability
according to the distance between them and the initial GPS location. We assume
that the distance follows the normal distribution N(0, σ2

gps), where σgps is the
error range of GPS, we give it a value of 10 m on normal road and 100 m when
in tunnel. Figure 2 shows an example of getting the initial state probability, we
map the longitude and latitude to a two-dimensional road map and divide each
road into multiple location points. We get the probability density of each point
through the normal distribution probability density function shown as follows.

f(ginitial) =
1√

2πσgps

exp(−g2initial
2σ2

gps

) (3)

σgps

Initial GPS 
value

Location
point

Road
P

m-σgps σgps

N=(0,σgps
2)

Fig. 2. Probability density function of initial location state.
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In (3), ginitial represents the distance between the first GPS point and its
surrounding points within the error range σgps. Once we have got the probability
density of each location state, next we can get the initial state probability matrix
Π.

Get state transition probability matrix A. The state transition probability
in our case refers to the probability that the car move from the previous location
point at time t to the next location point at time t+1. The size of A is N ∗N and
N is very large, so it needs to be reduced properly to reduce the computational
complexity. In our case, we only need to calculate the probability of points within
the error range of the previous GPS point transfer to that of the next GPS point.
The size of the state transition probability matrix can be reduced to n ∗ m. n
and m respectively refer to the number of location points within the error range
of the two GPS points. Based on the above analysis, the size of state transition
probability matrix changes dynamically between each two location states.

To estimate the transition probability for each location state, we utilize the
accelerometer reading {at−1,t}t=1:T and the GPS reading {gt}t=1:T . Next part
will introduce how to calculate the transition probability between each two loca-
tion states.

First, the distances between all the location points within the error range of
the previous GPS point and the next GPS point are calculated respectively and
the results are represented as Sg. The size of Sg is n∗1. Then we get the average
speed of the car by dividing the duration time vg = Sg/tdur.

Then according to the acceleration reading, the car speed at the previous
GPS sampling point and the sampling interval time, the displacement between
the two GPS sampling points can be calculated by the displacement formula,
the formula is as follows.

Sa = v0tdur +
1
2

tdur∑

i=1

ai−1,i (4)

In (4), v0 represents the car speed at the previous GPS sampling point, ai−1,i

represents the acceleration reading of every second in a sampling time interval.
tdur is the interval time between each two sampling. Then we get the average
speed of the car by va = Sa/tdur.

Now that we have got the average speed of the car in two ways, respectively
represented as vg and va, Then we get the final average speed of the car by giving
both of them a weight. It can be represented as

vavg = avg + bva (a + b = 1) (5)

We define a = 0.4 and b = 0.6 because the distance calculated from GPS
data has relatively higher error than that of acceleration data.
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Next we will calculate the distance matrix between all location points on the
road map M within the error range of the former GPS point and that of the
next GPS point, it is represented as Sl and the size of it is n ∗ m. Then we get
the average speed matrix by formula vl = Sl/tdur.

For each row of vl, we assume that their values follow the normal distribution
N = (vavg, σ2

v), where vavg is the expected value and the standard deviation σv

is 10% of vavg. The probability density function for average speed vavg is as
follows.

f(vl) =
1√

2πσv

exp(− (vl − vavg)2

2σ2
v

) (6)

In this way, we can get the state transition probability matrix A, the size of
it is n ∗ m.

Get emission probability matrix B . Finally we will estimate the emis-
sion probability for each observation. We use the combination of GPS reading
{gt}t=1:T and barometer reading {bt}t=1:T as the observation. In the problem to
be solved, emission probability refers to the probability of taking the GPS read-
ing and the barometer reading under every hidden state. Similarly, the size of
emission probability matrix is also reduced to reduce computational complexity.

We divide the computation of emission probability into two parts, one is the
GPS emission probability, the other is the barometer emission probability, and
then combine them to get the final emission probability. The specific steps are
as follows.

Get GPS reading emission probability. According to the GPS value sampled
at time t, the location points on the road map M within its error range are
got. Assuming that the distance gl between the GPS sampling point and these
location points follow the normal distribution, the probability of these points is
calculated. The following formula is the normal distribution probability density
function for GPS reading.

f(gl) =
1√

2πσg

exp(− g2l
2σ2

g

) (7)

In (7), σg is the error expectation of GPS. And f(gl) is the probability density
of gl. Then we can get the emission probability Pg of GPS reading.

Get air pressure emission probability. According to the air pressure value sam-
pled at time t, for the location points within the error range of GPS reading
at time t, it is assumed that the air pressure values at these points also follow
the normal distribution with respect to the sampled barometer reading. The
following is the normal distribution probability density function for barometer
reading.

f(bl) =
1√

2πσb

exp(− (bl − bt)2

2σ2
b

) (8)

In (8), bl represents the barometer reading of the surrounding location points,
however actually we can not get the barometer value of location points from the
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map, we can only get the altitude information of every location point. Based
on the above observation, we transfer the barometer reading bt to altitude. We
represent the altitude of hidden state at time t as ht and transfer formula (6) as
follows.

f(hl) =
1√

2πσh

exp(− (hl − ht)2

2σ2
h

) (9)

In (9), hl represents the altitude of one of the surrounding locations. σh is
the error expectation of altitude. Here we set the value of σh to be 1 m. Finally,
f(hl) is the probability density of parameter hl. Then we can get the emission
probability Ph of air pressure.

Now that we have got the probability of GPS reading and barometer reading,
then we will combine them together to get the emission probability.

B = Pg ∗ Ph (10)

Finally, with the above three parameters of HMM, we maximize the proba-
bility with Viterbi algorithm and get the most probable trace of the car, thus
we can determine which road on earth the car is driving on and then navigate
it accurately.

10

15

20

25

al
tit

ud
e(

m
)

Fig. 3. Roads map for experiment.

4 Evaluation

In this part, we will analyse the results of experiment and evaluate the effect
of our method. First, we will introduce our experimental environment. We
choose Xinzhuang overpass and Xuanwu Lake Tunnel in Nanjing for experi-
ment. Figure 3 shows the map of roads for our experiment. The color change on
roads represents altitude change of road. The color bar on the right shows the
color of altitude. We divide these roads into five parts as shown in Fig. 4, and
carry out experiments on them respectively. The arrows on each map indicate
the direction of the road. Road 1 has a diversion point, and one branch road
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turn around and pass under the main road. Road 2 has two diversion points
and road 3 has a three-branch diversion point, they both contain changes in
altitude. Road 4 has no fork but changes in altitude. Last the tunnel has almost
no changes in altitude and no fork but GPS signal is very weak in it.

(a) map of road 1 (b) map of road 2 (c) map of road 3

(d) map of road 4 (e) map of tunnel

Fig. 4. Map of each road

The purpose of the experiment is to test the locating accuracy of our method
under complex road conditions and compare it with GPS. We record a car’s driv-
ing information from the smart phone, including GPS information, barometer
information and acceleration information. The sampling frequency of the infor-
mation is once every 2 s, and our method is executed every 10 s to track the
car. The map information in the experiment was obtained from Baidu map, we
divided each road into many location points, and the distance between each two
points was 1 m. We only map the longitude and latitude of GPS reading to the
map and don’t use its altitude. We get altitude from barometer reading. Next,
we will evaluate the experimental effect from several aspects.

4.1 Compare Our Method with GPS

The method proposed in this paper aims to assist GPS tracking in complex road
conditions, so we need to compare it with GPS. Figure 5 shows the comprehensive
locating accuracy of the two methods on all roads (excluding tunnel). As can be
seen from the figure, the overall effect of our method is better than GPS. The
locating accuracy of our method is 79.2% within 8 m, while that of GPS is 60%.

Next, we will separately compare the effects of the two methods on four
roads. Figure 6 shows the comparison of the two methods on different roads. As
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Fig. 5. The locating accuracy comparison between our method and GPS.

can be seen from Fig. 6, the effect of our method on each road is better than
that of GPS. However, there are some places where the two curves intersect, and
the difference is not big. This is because in some cases, for example, there are
no interlaced roads, that is, there is no altitude difference, the method in this
paper can not really play its advantages.
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Fig. 6. Locating accuracy comparison of our method and GPS on each road.

4.2 Verify the Effect of Barometer Data on Accuracy

In order to verify the influence of air pressure data on locating accuracy, we will
compare the method in this paper with that only using GPS and acceleration
data. Figure 7 shows the comprehensive locating accuracy comparison of the two
methods on all roads (excluding tunnel). It can be clearly seen from the figure
that the effect of the method proposed in this paper is better. Therefore, we
verify that the barometer data is helpful to improve the locating accuracy.
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Fig. 7. Locating accuracy of our method and no barometer data method.

Next, we will analyze the four roads respectively to verify the impact of
barometer data on locating accuracy, and the effect is shown in Fig. 8. In Fig. 8
(b)(c), the curve overlaps because the barometer data can not play its role fully
without altitude difference, while some parts of road 2 and road 3 don’t have
obvious altitude change, so the effect of the two methods is almost the same
under this situation.
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Fig. 8. Locating accuracy contrast on four roads.

4.3 Verify the Effect of Acceleration Data on Accuracy

In the method proposed in this paper, we use acceleration to calculate the trans-
fer probability matrix in HMM. If we don’t use acceleration data, we can’t use
HMM. Next, we will compare the method in this paper with the method using
only GPS and barometric data.

Figure 9 shows a comparison of the locating accuracy of the two methods on
all roads (except tunnel). It can be seen from the figure that the two curves have
intersecting parts, and the difference between the two curves is relatively small
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Fig. 9. Locating accuracy of our method and no acceleration data method.

when the abscissa is the same. It is because they all use the barometer data
and this is very useful when there are altitude changes during driving the car.
Although the effect of these two methods on overpasses is similar, their effect
in tunnels is quite different. We will discuss the situation of tunnels separately
later.

4.4 Comparison of the Effect of Four Methods on Overpass

The above three comparisons are actually the comparison between the three
different methods and the method proposed in this paper. Next, we will compare
the four methods together.

Figure 10 shows a comparison of the locating accuracy of the four methods
together. Figure 11 uses a bar chart to compare the effects of the four methods.
The abscissa represents the error range, and the ordinate represents the pro-
portion of the error range. It can be seen from the figure that the method in
this paper accounts for the highest proportion when the error is in the range
of 0–5 m, while in the range of 10–15 m, the method in this paper accounts for
a relatively low proportion, indicating that the method error is mainly concen-
trated in the low error area. We can clearly figure out that the method in this
paper and the method using only GPS and barometer data are better than the
other two methods without air pressure data on overpass.
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Fig. 10. Locating accuracy comparison of four methods on overpass.
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Fig. 11. Locating accuracy comparison of four methods on overpass.

0 20 40 60 80 100
Locating accuracy(m)

0

0.2

0.4

0.6

0.8

1

C
D

F GPS+bar+acc
GPS
GPS+acc
GPS+bar

Fig. 12. Locating accuracy comparison of four methods in tunnel.
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Fig. 13. Locating accuracy comparison of four methods in tunnel.

4.5 Compare the Effect of Four Methods in Tunnel

The above only evaluates the effect of these four methods on overpass, and next
we will separately evaluate their effect in the tunnel. A comparison of their
locating accuracy is shown in Fig. 12. It can be seen from the figure that in the
tunnel, the effect of our method is obviously better than other methods and GPS
works worst in tunnel.

Figure 13 analyses the proportion of several error ranges in detail. It can be
seen from the figure that 60% of the error of our method is within 20 m, and the
proportion of error over 60 m is zero. We can figure out that the effect of our
method is better than other methods in tunnel.



Assist GPS to Improve Accuracy Under Complex Road Conditions 301

5 Related Work

In recent years, there have been some methods proposed for vehicle tracking. The
conventional way is to use GPS/INS integration system [4,5]. However, the error
will accumulate over time. To solve the problem, authors in [8] introduced the
development of a two-filter smoother (TFS) algorithm to improve the accuracy.
Authors in [1] used a reduced inertial sensor system (RISS) instead of the full
INS to improve the accuracy of the overall system. Authors in [11] proposed
that extended Kalman filter (EKF) and Unscented Kalman Filter (UKF) be
used to improve the accuracy. Authors in [18] design an adaptive dual-rate EKF
estimator for fusing data from GPS and an INS in order to estimate the position.

Also, other sensors are used to assist GPS. Authors in [14] utilizes magne-
tometer and barometer to assist GPS/INS system. Authors in [10] proposed a
method using odometer and barometer to integrate with GNSS/INS system.
However, compared with our method, they need extra devices while our method
only uses sensors on the smart phone, which is very portable.

In addition to GPS/INS integrated methods, some other methods have been
proposed for location tracking. Authors in [2,22] employed a dead-reckoning algo-
rithm for localization. Authors in [6] demonstrated how mobile devices can be
used to accurately track driving patterns based solely on pressure data collected
from the device’s barometer. It only uses the barometer while our method is a
combination of GPS, barometer and accelerator, which will have higher accu-
racy. Authors in [7] showed us how to use the barometer on the smart phone to
improve vertical positioning accuracy. While our method can derive a track of
the car instead of a single positioning point. Other techniques such as Wheel-
Loc [15] only made use of low power sensors and cell tower information, but the
accuracy was not good enough compared to our method. Authors in [3] extended
the sensor management strategies of the EnTracked T system that intelligently
determines when to sample different on-device sensors (e.g., accelerometer, com-
pass and GPS) for trajectory tracking. Authors in [16,17] designed a mobile
system that effectively captures significant journeys based solely on the embed-
ded barometer sensor of a smart phone. However, it based on the analysis of
a large amount of history data while our method is a real-time locating and
tracking method.

As for the usage of HMM in tracking, authors in [19] proposed a HMM based
method called BTrack. It can assist users to track their location on mountain
roads. While our method in this paper focuses on track vehicle on the roads
especially in situations such as tunnel and overpass where GPS error is large or
GPS signal is weak.

6 Conclusion and Discussion

In this paper, we propose a novel method to assist GPS tracking. We use barom-
eter data and acceleration data, combined with GPS data from the sensors on
the smart phone, and use HMM to calculate the most likely driving path of
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the car. We only use the sensors on smart phones, do not need extra devices.
We have carried out experiments on a complex overpass and in a tunnel. The
experimental results show that the accuracy of our method is 19.2% higher than
that of GPS. Also, the experiment results show that the comprehensive locat-
ing accuracy of our method is better than that of other methods. However, our
method still has some defects, that is, it works better when there is obvious
altitude change. In addition, our method uses HMM to calculate and the energy
consumption is not considered. In our future work, we will consider improving
the method to reduce the energy consumption and achieve higher accuracy.
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