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Abstract. This work is aimed at studying material with a heterogeneous
microstructure. The probabilistic characteristics of the yield surface are inves-
tigated. Statistically equivalent internal material structures are generated using
computer simulations. The design takes into account the different amounts of
spheroidal graphite inclusions concentration in the ferrite material. The stress
state is calculated by the finite element method based on plane models. A series
of experiments is calculated for each variant of the concentration of inclusions.
The yield surfaces are determined. Based on the collected data, a study of the
probabilistic characteristics of a random function is carried out. The radius
function acts as a random variable. The number of intersections of the line with
the yield surfaces is analyzed. The radii are constructed from the origin for each
rotation angle along the closed circle. The proposed scheme takes into account
the different behavior of composite materials under tensile and compressive
loads. The probabilistic characteristics of the investigated quantity give a vision
of the material operation modes at various loads. Going beyond the plasticity
surface indicates the possibility of a product transition into a plastic state.

Keywords: Microstructure � Finite element method � Material properties �
Probability � Yield surface

1 Introduction

An analysis of the collected data is one of the modern approaches to increasing the
competitiveness of production. Nowadays, a data-driven approach helps to reduce the
cost of production, allows predicting and avoiding equipment failures, contributes to
improving the quality of products and processes. Big data analysis allows to track
defects, identify the causes of inconsistencies, and eliminate them. A data-driven
approach found application in artificial intelligence, engineering [1, 2, 5–7, 13, 14],
strategy, marketing [3], policy, medicine [4], etc. It helps scientifically make decisions.
In this article, such an approach applies to the prediction of yield surface probability
characteristics.

Investigation of the probabilistic characteristics of the anisotropic materials yield
surface [8–12], makes it possible to describe the behavior of a structure under a
complex stress state. Identified weak points in the structure helps to avoid breakdowns.
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Carrying out numerous experiments is an expensive and laborious process. Computer
modeling for predicting material behavior is an alternative to such an approach.

2 Objectives

As the initial data in this work, the results of previous studies are taken [15–17]. It is
assumed that the microstructure is simulated synthetically based on real images of the
material. The elastic properties and stress state of the sample are modeled by the finite
element method.

The main objective of this study is to predict of spheroidal graphite cast iron yield
surface probability characteristics. This objective requires the completion of such tasks:

– to create an experimental set of yield surfaces to ensure the absence of plastic
deformations;

– to evaluate the influence of the inclusions concentration on the yield stress state
during the tension and compression loading;

– to calculate the probability of plastic strain occurrence.

3 Generation of the Statistically Equivalent Artificial
Microstructure

Image processing and artificial microstructure generation of statistically equivalent
material have been implemented in previous works [15–17]. According to the results
obtained in the articles, the creation of an equivalent structure is possible by estab-
lishing the dependence between the size and concentration of inclusions. The infor-
mation about the quantity and size of inclusions located on a plane is collecting by
using computer vision technology. The mathematical expectation data M[R] and the
variance D[R] of the radii inclusions dependence on the concentration have been
obtained by (1):

M R½ � ¼ 18:308 � w� 0:048ð Þ0:123 ;
ffiffiffiffiffiffiffiffiffiffi
D R½ �

p
¼ 9:683 � w� 0:045ð Þ0:314: ð1Þ

The location is followed to a uniform distribution and the size of inclusions is followed
to a normal distribution function of concentration. Concentration (w) is defined as the
ratio of the area of the inclusion to the area of the sample, which varies in the range of
[0.055…0.3].

The finite element model construction is based on the artificial generated geometric
model of the spheroidal graphite cast iron microstructure. To create the mesh grid, a
two-dimensional 8-node finite element with two degrees of freedom in each node is
used [21]. For calculation, is assumed that the main matrix of the investigate sample is
isotropic ferrite and the inclusions are an orthotropic graphite material. The corre-
sponding materials properties and elastic constants are given in Table 1 and Table 2.
Various material properties and their resistance to tension and compression are taken
into account.
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To construct the yield surface, the model is considered under different loadings.
Some of the typical load cases are presented in Fig. 1. The corresponding stress state of
the model is shown in Fig. 2.

The model is represented by a square plate with a side – l. The deformation is set
equal to ɛq = Dl/l = 10−5, then the displacement is calculated by (2):

Ux ¼ eq � l � cosH;

Uy ¼ eq � l � sinH;
ð2Þ

where Ux, Uy is the displacement along the corresponding axis, Ɵ = (0…360)° the
angle changes in a range, with a step in 3.6°.

Computer simulation methods are used to calculate the yield surface in a multi-
dimensional stress state. This approach uses the hypothesis of yield strength under
difficult loading conditions [8–12, 18]. Finding the yield surface is based on the
hypothesis of the maximum distortion energy theory (the Huber - Mises - Hencky
hypothesis) [19–21]. According to it, plastic strains of a sample in a complex stress
state occurs when the specific formation energy becomes equal to or exceeds the
specific formation energy of the material under the action of a uniaxial stress state.

For the microstructure which is consists of two types of materials (ferrite and
graphite), the maximum stresses for each phase are found. For graphite, the tensile and
compressive strengths differ significantly, therefore, separately for each type of stress
state, the ratios maximum stresses to the corresponding allowable tensile strength are
found. The yield surface is determined by the ratio of the principal stresses to the safety
factor. The graphite material has a different tensile and compressive strength, therefore
the dependence of the yield strength is calculated according to (3). Using the Heaviside
step function of the first invariant of the stress tensor r0 with a coefficient equal to
k = 1 lPa−1 (4) and substituting it into (3), the final expression type for finding the
yield stress of graphite is obtained by (5).

rgraphiteyield ðr0Þ ffi Hðr0Þ � rtensyield � rcompyield

� �
þ rcompyield ; ð3Þ

Table 1. Properties of ferrite material (matrix).

E, GPa m Yield strength, MPa

180 0.35 196

Table 2. Properties of graphite material (inclusions).

c11, c22 c12 c13, c23 c33 c44, c55 c66 Yield strength

Compress Tensile

GPa MPa

1060 290 109 46.6 2.3 435 31.9 3.9
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Hðr0Þ ¼ 1
2
� 1þ th k � r0ð Þð Þ; ð4Þ

rgraphiteyield ðr0Þ ffi 1
2
� 1þ th k � r0ð Þð Þ � rtensyield � rcompyield

� �
þ rcompyield ; ð5Þ

The dependence of the yield strength from the principal stresses for ferrite and graphite
materials are shown in Fig. 3.

The calculation results of 250 random typical implementations of the yield surface
are presented graphically in Fig. 4. This figure also contains results for w = (0.055,
0.100, 0.300).

Fig. 1. Model displacement under different types of loads (w = 0.055).
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Fig. 2. Von Mises equivalent stresses under different types of loads (w = 0.055).

Fig. 3. The dependence of the yield strength from the principal stresses.

A Data-Driven Approach to the Prediction of Spheroidal Graphite 569



4 Probability Estimation

The collected statistical data on the maximum allowable stresses for all components of
the material under different types of loading leads to an assessment of the yield surface
probabilistic characteristics.

A sequential diagram of the random variable estimation shown in Fig. 5. The
accumulated statistical information on possible yield surface variants helps to deter-
mine the area of stress impact. In this work is using the construction of a line passing
through the origin of the coordinates. Knowing the safe area of the stress, the mea-
surement interval is set [1…40] MPa. The line intersects the graph of the yield surface
is plotted point by point. The start point lies in the safe area, the endpoint is deliberately

Fig. 4. Typical implementations of the yield surface arrangement.

Fig. 5. Probability estimation schema.
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chosen to lie outside the safe area. Along the line are selected 10000 control points.
Some cases of the stress state in which the maximum allowable principal stresses for
ferrite and graphite materials are located along the corresponding straight lines pre-
sented in Fig. 6.

Information about the number of the yield surfaces that have fallen into the control
points along the line are obtained. This method allowing to define the inverse cumu-
lative distribution function (1 − F(r)), which in turn determining the parameters of
descriptive statistics according to (6) and (7).

M½r� ¼
Z1

0

1� FðrÞð Þdr; ð6Þ

var½r� ¼
Z1

0

2rð1� FðrÞÞdr �M½r�2; ð7Þ

where M[r] is the mathematical expectation (mean), and var[r] is the variance of the
random radius function.

The corresponding distributions have been approximated by the normal law with
the defined parameters. The dependence graph of the mean, standard deviation, and
variation coefficient of the random radius function for the following concentrations of
inclusions w = (0.055, 0.100, 0.300), presented in Fig. 7. It can be seen that an increase

Fig. 6. Principal stresses location.
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in the concentration of graphite inclusions leads to a decrease in the standard deviation,
which, in turn, leads to an increase in the tensile strength of the material.

The coefficient of variation shows the extent of variability concerning the mean of
the dataset. It’s calculated as the ratio of the variance to the mathematical expectation.
The obtained form of the coefficient of variation function corresponds to the different
sample components material properties. The variance has the same tendency as the
mean and depends proportionally.

The reverse cumulative distribution functions of the yield surface intersection with
a random function of the radii are shown in Fig. 8, and the probability distribution
function is shown in Fig. 9. The analysis is carried out for several theta angles that
correspond to the loading trajectory. The angles are calculated according to (8), and
selected equal to Ɵ = (0, 45, 135, 300)°.

tgH ¼ r2
r1

; ð8Þ

where r1 and r2 are the principal stresses.
Lines of different colors correspond to different angles, and the solid and dashed

line styles correspond to calculated and fitted distribution function by scipy.stats.
norm.cdf (Fig. 8). Results similar in values with insignificant deviation are obtained by
graphic comparison of both methods.

Fig. 7. Mean, standard deviation, and variation coefficient of the random radius function.
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Fig. 8. Cumulative distribution function (cdf).

Fig. 9. Probability distribution function (pdf).
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The dependence of the tensile and compression stress on the concentration of
inclusions is shown in Fig. 10. The corresponding probabilistic characteristics at var-
ious concentrations of inclusions are given in Table 3.

Analysis of the yield surface probabilistic characteristics shows the influence of the
concentration of inclusions on the material strength characteristics. An increase in the
concentration of graphite inclusions leads to the standard deviation decreases, which in
turn of an increase in the material tensile strength. According to the results, the
maximum spread of random typical implementations of the yield surface corresponds
to the angle between stresses equal to Ɵ = 300°, minimum – equal to Ɵ = 0°. The
spread in possible realizations of the yield surface is close to the minimum at equal
values of the principal stresses (Ɵ = 45°). The obtained standard deviation functions
are not smooth (Fig. 7), which indicates a lack of statistical data and the need to expand
the experimental base.

Fig. 10. Dependence of structural stress on the concentration of inclusions.

Table 3. Probabilistic characteristics of stresses at different concentration of inclusions.

Concentration, w 0.055 0.100 0.300

Tensile

M, MPa 3.0879 3.0390 2.7103ffiffiffiffiffiffiffiffi
Var

p
, MPa 0.1301 0.1320 0.1137

CV 0.0421 0.0434 0.0442
Compression
M, MPa 25.224 24.840 22.403ffiffiffiffiffiffiffiffi
Var

p
, MPa 1.0451 1.0598 0.9286

CV 0.0414 0.0427 0.0415
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5 Conclusions

The article discusses an algorithm for studying of the yield surface probabilistic
characteristics. The internal structure model is generated synthetically based on real
material images. An experimental set of yield surfaces has been created. A method for
determining the location of stresses and the yield surface is proposed. The probabilistic
characteristics are calculated and the graphs of the distribution density are constructed.
Going beyond the surface indicates the appearance of plastic strains in the model. The
influence of the spheroidal graphite inclusions concentration in the ferrite composition
is determined. With an increase in the concentration of inclusions in the model, a
decrease in stresses and a decrease in their spread were noted both under compression
and under tension.

According to 3-sigma rule, a spread for stress under tension ryield = 3.0879 ±

0.3904 MPa for the smallest considered concentration (w = 0.055), which is decreases
to ryield = 2.7103 ± 0.3411 MPa for the greatest one (w = 0.300), the spread of the
random variable is decreased too. For the stress under compression, a spread for stress
take a form ryield = 25.224 ± 3.1352 MPa for the smallest considered concentration
(w = 0.055), which decreases to ryield = 22.403 ± 2.7858 MPa for the greatest one
(w = 0.300). The spread of the random variable is also decreased. It is also noted that
the difference between the stress spread for the case of tension and compression differ
by two orders of magnitude. Despite such a difference, the coefficient of variation for
different concentrations and different types of loading is approximately the same (is
equal to 0.0426 ± 0.0030).
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