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Abstract. This paper proposes a deep learning (DL) plant disease identification
approach at leaf surface level using image data of pathologically segmented dis-
ease region or region of interest (ROI). The DL model is an exceptional technique
used in automatic plant disease identification that employs a series of convolutions
for feature representation of the visible disease region, mainly characterized as the
combination of the chlorotic, necrotic, and blurred (fuzzy) lesions. Themajority of
current DL model approaches apply whole leaf image data for which studies have
shown its consequential tendencies of leading to irrelevant feature representations
of the ROI. The effects of which are redundant feature learning and low classi-
fication performance. Consequently, some state-of-the-art deep learning methods
practice using the segmented ROI image data, which does not necessarily follow
the pathological disease inference. This study proposes an extended ROI (EROI)
algorithm using pathological inference of the disease symptom to generate the
segmented image data for improved feature representation in DL models. The
segmentation algorithm is developed using soft computing techniques of color
thresholding that follows an individual symptom color feature that resulted in the
incorporation of all lesions. The results from three different pre-trainedDLmodels
AlexNet, ResNet, and VGG were used to ascertain the efficacy of the approach.
The advantage of the proposed method is using EROI image data based on patho-
logical disease analogy to implement state-of-the-art DL models to identify plant
diseases. This work finds application in decision support systems for the automa-
tion of plant disease identification and other resource management practices in the
field of precision agriculture.

Keywords: Deep learning · Plant disease identification · Disease region
segmentation · Pathological inference

1 Introduction

Disease outbreaks are increasingly becoming rampant globally, especially since some
are extremely difficult to control and can lead to famine [1, 2]. Notably, viral plant
diseases attributed to diseases caused by pathogens, such as early and late blight, are
known to reduce the overall yield of vegetable crops and are a great menace affect-
ing both home gardeners and large productions [1]. With their large productions and
adaptability comes high risk and high susceptibility to viral plant diseases. Plant disease
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identification is a crucial component in precision agriculture that primarily deals with
observing the stages of diseases in plants [3].With 60% to 70%of all visible observations
first appearing on the leaves compared to the stem and fruits, plant diseases are most
commonly observed on the leaves. Thus, early symptom detection is vital to the effect
of disease diagnosis, control, and damage assessment. The traditional manual methods
of plant disease identification, both direct and indirect, have been providing definitive
solutions for centuries. However, despite using modern equipment, such methods are
labor-intensive, exhaustive, and time-consuming in providing answers promptly. Also,
most of these techniques require specialized tools and consumable chemical reagents,
thus becoming inefficient and unsustainable [4]. As part of machine vision technology,
machine learning (ML) systems can mimic the direct identification method through
pattern recognition by providing accurate and timely identification.

TheML systems are generally classified into a conventional classifier (CC) and deep
learning (DL) (or deep convolution neural network (D-CNN))methods [5, 6]. The feature
representation in a CC method involves explicitly extracting features as patterns with
properties that sufficiently portray the quantifiable details of the disease symptom, the
region of interest (ROI). Then, the complete automatic identification is achieved using
a machine learning classifier built using the features. On the other hand, the DL method
involves automated implicit feature representation. In this process, pixels in the entire
image, a neighborhood, or a group, are considered characteristics for the feature learning.
Hence, the typical feature representation becomes more of an implicit process than a
stage and an embedded part of the model architecture. There are twomethods of training
a DL: training from scratch and transfer learning. The process of training a DL from
“scratch” involves designing and building the network layer by layer. This process is
often a complicated and time-consuming process due to the deep architecture design [6].
Transfer learning, as introduced by Bengio [7], involves applying an already established
architecture that has been successful in other computer vision domain problems and can
adapt to the problem under consideration, significantly reducing the complexity.

Throughout the literature, many works use the whole leaf image as training data
with various degrees of precision. Sharada et al. [8] presented the first DL model to
identify multiple plant diseases on a relatively comprehensive Plant Village (PV) image
dataset. It constitutes over 54,000 images of 14 different crop species and 26 disease
pairs (healthy and unhealthy), including early and late blight. The transfer learning pre-
trained networks used were AlexNet and GoogLeNet, which were fine-tuned, trained on
the training data, and validated on the testing data. Zhang et al. [9] also implemented
AlexNet, GoogleNet, and ResNet pre-trained models on the same dataset to identify
tomato diseases. Xu et al. proposed using a VGG-16model trainedwith transfer learning
[10]. Fuentes et al. also applied the DL architecture for real-time implementation on
tomato crops [11]. Also, lightweight CNNs are proving useful in reducing some of the
limitations associated with the approach. Geetharamani et al. and Durmus et al. focused
on architecture simplification by reducing the number of deep layers [12, 13]. Durmus
et al. proposed using squeezeNet, a compressed and lightweight version of the D-CNN
with fewer layers, to identify the tomato diseases [13]. The tomato images used are
part of the PV dataset. Dasgupta et al. also proposed a lightweight CNN to detect plant
diseases designed for mobile applications [14]. Chen et al. proposed using a modified
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lightweight MobileNet-V2 model and a “step” transfer learning to optimize feature
learning for multiple plant disease classification [15]. During training, the weights and
parameters of the deeper layers are frozen, while those of the upper layers are updated.
Such models have less computation and are cost-effective. However, the accuracy of
using lightweight models is relatively lower than that achieved using regular models.
Other recentD-CNNmethods also employmanual data augmentation and use segmented
ROI images as input data. Sharma et al. manually cropped the images to only include
ROIs in the input data before training the D-CNN, instead of using the whole leaf image
[16]. Barbedo also implemented ROI localization on the image data based on similar
criteria of size and color of symptoms [17]. Sun et al. proposed using NN generated
lesion images to augment existing image data [18]. However, despite the use of ROI
image data, a significant number of DLmethods still record low classification accuracies
often attributed to the unavailability of sufficient data and the combination of diseases
with similar symptoms without the basis of an inference rule [17].

A recent study by Lee et al. concluded that the DL feature representations learned
from whole images do not necessarily focus on the ROIs [19]. The features are instead
learned from areas with the most common distinctive characteristics, such as leaf vena-
tion. Toda and Akura also supported this claim, noting that a DL model to learn visual
shape characteristics such as that of the profoundly grooved leaf edges of tomato crop
instead of the visible symptom characteristics [20]. Regarding ROI image data, different
levels of subjectivity arise during the segmentation, mainly due to loosely characterizing
the segmentation without the necessary pathological inference. This problem influences
the separation boundary limit during the segmentation resulting in the removal of the
blurred region from the ROI. Whereas, earlier research studies indicated its prominence
in improving the quality of learned features [21]. In regards to this, this paper pro-
poses a DL plant disease identification method using an extended region of interest
(EROI) segmented images as the training data. Instead of the typical ROI image data,
the proposed method has the advantage of using segmented EROI data that is inclu-
sive of the blurred region to enhance feature representation during training and improve
classification accuracy.

2 Materials and Method

This study implements a DL with transfer learning to identify plant diseases using
proposed segmented EROI image data. The ROI segmentation is typically practiced in
conventional classifiermethods, which involves isolating the visible disease lesions from
the rest of the leaf. In this paper, the term identification refers to detection and classifi-
cation. ROIs for the disease were identified and segmented using a proposed patholog-
ical segmentation algorithm. Three popular pre-trained networks, including AlexNet,
ResNet-50, and VGG-16, have been used. The paper also considered the vegetable early
blight and late blight diseases [22, 23], both of which cut across tomato, pepper, potato,
and eggplant with similar symptoms [24]. These crops have planting areas ranging from
small backyard plots to much larger field acreages and greenhouses, which makes them
exceptional candidates for research in precision agriculture. Thus, even though only two
diseases are considered in this study, the research impact is significant.
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2.1 Image Dataset

The primary image data of 1,400 images of the potato plant leaf images used in this
study was obtained from the comprehensive PV dataset [8]. In total, 500 images showed
the symptoms caused by the EB, 500 showed the symptoms caused by the LB, and 400
are healthy leaves. Figure 1 shows samples of each disease symptom [8]. All images are
in RGB format and of equal size 256 × 256 pixels.

Fig. 1. Example of potato leaf image samples from the PV dataset. From right: healthy, early
blight, and late blight.

2.2 Pathological Extended Region of Interest (EROI) Segmentation

As the infection in EB manifest, it forms concentric rings with a bulls-eye pattern ema-
nating from a dark-brown focus and surrounded by a yellowish chlorosis zone [22]. In
the case of LB, the infection has a small center of a dark lesion, after which it also mani-
fests to dark-brown or black bordered by a water-soaked lesion with a pale whitish-green
border that fades into the healthy tissue [23]. The dark foci (brown) areas are the necrotic
regions, while the chlorosis boundary zones are the symptomatic regions.

Following the characteristics of two blight diseases, the symptoms typically show
a significant color difference from the other surrounding tissue areas, which involves
changing variation from light green to yellow, brown, or black. The proposed patho-
logical segmentation method uses the proportion of each (RGB) color channel inten-
sity for tissue pixels of a healthy leaf image. Typically, the pixels within a leaf image
exhibiting higher intensity deviations towards the green hue than blue and red belong
to healthy tissue [25, 26]. Mathematically, G > R � B. Hence, in order to estab-
lish the degree of certainty threshold, the proposed ROI segmentation starts with com-
puting the percentage of the pixels’ green color intensity in the original RGB image.
Thus, an input leaf image I(x, y) of size M × N is made up of several pixels pi,j(x, y)
(for i, j = 0, 1, 2, . . . ,M − 1,N − 1). Each pixel has a color value which is the
combination of the three RGB colors, and each channel color intensity ranges from
0 (no color) − 255 (maximum intensity). The average percentage of each color value
to the combined color values is computed using Eq. (1) – (4).

rg =
√

Gi,j

Ri,j + Gi,j + Bi,j
× 100% (1)
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rr =
√

Ri,j

Ri,j + Gi,j + Bi,j
× 100% (2)

rb =
√

Bi,j

Ri,j + Gi,j + Bi,j
× 100% (3)

rgr =
√

Ri,j

Ri,j + Gi,j
× 100% (4)

From the results of Eqs. (1) – (4), pixel intensity values of healthy tissue (green
color) with the highest degree of certainty are 42.4% for rg , 34.5% for rr , and 23.3%
for rb. Through further experimentations, it is found that lower percentages mean less
green color (tone) pixels and vice versa. Hence, adjusting the values would change
the segmentation boundary between the healthy and disease region tissues. Following
this, four threshold values are proposed to generate four binary masks from I(x, y) to
incorporate the blurred region and allow invariancy against small intensity variations
using Eqs. (5)–(8).

g1 =
{
0 38% < rg ≤ 47%
1 otherwise

(5)

g2 =
{
0 32% ≤ rr < 37%
1 otherwise

(6)

g3 =
{
0 18% ≤ rb < 29%
1 otherwise

(7)

g4 =
{
0 65% < rgr < 85%
1 otherwise

(8)

The four masks are then combined to generate two binary segmentation masks;
m1 = g1||g2||g3 and m2 = g1||g4. The first mask, m1, succeeds in the segmentation
of healthy tissue pixels incorporating the lighter green pixels. The second mask, m2,
segments the darker green pixels. Finally, the binary segmentation mask is given by
Eq. (9).

Smask = m1||m2 (9)

Some morphological post-processing operations are applied to clean-up the binary
mask and remove isolated border pixels. A closing operation using a disk structural
element of radius three (3) is applied, followed by a dilation operation using the same
structuring element. Applying the completed Smask to the original input image masks the
healthy green tissue pixels, turning them to black (or zero). Themathematical expression
is given in Eq. (10).

IEROI (x, y) = {(x, y) ∈ I(x, y)|Smask} (10)
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Algorithm 1 shows the pseudocode for the proposed EROI segmentation, and Fig. 2
shows a sample result.

Algorithm 1: Whole ROI Segmentation Algorithm

Input: (whole leaf color image) of size 
Output: (EROI segmented image) of size 
for to M    do

for to N   do
Compute:
← (Percentage of green color intensity) using equation (1) on channels
← (Percentage of red color intensity) using equation (2) on channels 

(Percentage of blue color intensity) using equation (3) on channels
(Percentage of red – green color intensity) using equation (4) on 

end for
end for
Initialize (for ) to zeros of size M × N:
for to M    do

for to N   do
if conditions in equation (5) – (8) are satisfied, then

← 0.
else

← 1.
end if

end for
end for

Compute:
← (binary mask to segment green, light pixels)
← (binary mask to segment green, dark pixels)

(binary mask to segment healthy green pixels)

Perform the following morphological operations on :
Closing
Dilation
← new 

(EROI image using equation (10))
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(a) (b)

Fig. 2. EROI segmentation sample result showing input image (a) EROI segmented image (b).

2.3 Disease Identification with DL Classifiers

In this study, three transfer learning pre-trained CNN models, AlexNet [27], VGG-16
[28], and ResNet-50 [29], have been implemented using the segmented EROI images as
input data.

The AlexNet model has a depth of eight (8) layers. To re-train the model, the last
three fully-connected layers of the AlexNet are trimmed and replaced with new layers
that will classify the three classes of EB, LB, and HL. This way, the features from the rest
of the layers are kept, i.e., the transferred layer weights. However, the weights and biases
in the new layers are increased by a factor of 10 to enable faster learning than in the
transferred layers. Before training, the images were resized to 227×227 pixels, which is
acceptable by the network and augmented to optimize training given minimal data. The
augmentation includes flipping vertically and horizontally, scaling, and translating. The
modified network is then re-trained with stochastic gradient descent (sgd) optimization
with 1 × 10−4 as an initial learning rate, a mini-batch size of 10 for a maximum of 12
epochs.

The ResNet-50 model is 50 layers deep and requires input images of 224 × 224
pixels. Thus, for implementation, the images were resized to the network acceptable
size. The layer with the learnable weights is the last fully-connected layer; similar to the
process applied in AlexNet transfer learning, this layer, along with the output layer, is
replaced by new ones with the number of outputs equal to the number of disease classes.
However, in this case, while the weights of earlier layers are re-initialized, the weights
of the first ten layers of the network are frozen by setting their learning rates to zero.
This process speeds up the network training since the gradient in those layers will not
update. Furthermore, it limits the risk of overfitting since the data is relatively small.
The modified network is then trained with sgd optimization with 3 × 10−4 as an initial
learning rate, a mini-batch size of 10 for a maximum of 12 epochs

The VGG-16 model features extremely homogeneous architecture that performs a
3 × 3 convolution with 1-stride 1-padding and 2 × 2 pooling with 2-strides from the
starting to finishing layers. It is 16 layers deep, and, like in ResNet-50, the images must
be resized to 224×224 pixels. For implementation, the images are resized to 224×224,
and the same re-training and optimization hyper-parameters used in the ResNet model
were applied.
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2.4 Performance Measures

The standard performance used to compare the classifier performances are precision,
recall, F1 score, and overall accuracy. These are computed from the confusion matrixes
using Eqs. 11–14.

Precision = TP

TP + FP
(11)

Recall(TPR) = TP

TP + FN
(12)

F1Score = 2TP

2TP + FP + FN
(13)

Accuracy = TP + TN

TP + FP + FN + TN
(14)

3 Experimental Results and Discussion

TheEROI imagedatasetwas split into 80% training and20% testing sets. For benchmark-
ing, a separate data generated using the typical ROI segmentation approach described
in [25] was used to train and test the models under the same setup. Table 1 summarizes
the performance measures on the ROI image testing data for the three implemented DL
models.

Table 1. Performance measures on ROI test data

Performance
measures

F–M
(%)

R
(%)

P
(%)

ACC
(%)

Approach Class

AlexNet EB 93.40 100 87.61 93.86

HL 100 100 100

LB 92.39 100 100

ResNet-50 EB 94.69 98.99 90.74 95.18

HL 100 100 100

LB 94.18 89.90 98.89

VGG-16 EB 93.40 100 87.61 93.86

HL 100 100 100

LB 92.39 85.86 100

From Tables 1 and 2, the ResNet-50 model achieved the highest performance mea-
sure results on both the ROI and EROI data, while VGG-16 recorded the lowest. With
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deeper layers, the ResNet-50 model harbors denser learned features but at the expense of
simplicity in implementation as it uses a lot ofmemory and parameters. The classification
results on the segmented image data generated using the proposed pathological segmen-
tation method achieved higher performance measures across all three implemented DL
models. Using the typical ROI data, AlexNet, ResNet-50, and VGG-16 have 93.86%,
95.18%, and 93.86% average accuracies, respectively. On the other hand, the accuracies
improved by 1.75%, 2.19%, and 0.44% with EROI data, respectively.

Table 2. Performance measures on EROI test data

Performance
measures

F–M
(%)

R
(%)

P
(%)

ACC
(%)

Approach Class

AlexNet EB 95.19 100 90.83 95.61

HL 100 100 100

LB 94.68 89.90 100

ResNet-50 EB 97.03 98.99 95.15 97.37

HL 100 100 100

LB 96.91 94.95 98.95

VGG-16 EB 93.05 87.88 98.86 94.30

HL 100 100 100

LB 93.78 98.99 89.09

Furthermore, there is a significant improvement in the metric measures of EB and
LB classes, which shows a better characterization of the two disease symptoms. From
the results (Table 1 and 2), the change in the performance measure statistics is attributed
to misclassifications relative to LB symptoms recognized as that of EB. Regardless,
the improved results indicated improved feature representation for classification due to
incorporating the extended blurred region. Hence, improved data quality leads to better
feature learning, and there is better efficiency in performance since the classification
accuracy has been improved given fewer data

4 Conclusion

In this work, a DL plant disease identification is actualized using segmented image data
from a proposed pathological disease region segmentation algorithm. Instead of applying
the typical disease region (ROI) image data, the proposed approach uses the advantage
of pathological inference to incorporate extended region of interest (EROI), the fuzzy
blurred region. Comparative results using state-of-the-art pre-trained DL models show
the efficaciousness of the proposed approach in improving feature representation and
classification performance.
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