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Abstract. Autonomous robots, such as unmanned aerial or ground
robots, are vulnerable to cyber attacks since they use sensor data heavily
for their path planning and control. Furthermore, consensus is critical for
resilient coordination and communication of robots in multi-robot net-
works against a specific adversarial attack called the spoofing attack,
where robots can be compromised by an adversary. Therefore, we lever-
age Blockchain in a network of robots to coordinate their path planning
and present a consensus method utilizing their transferred Blockchain
data to detect compromised robots. Our simulation results corroborate
the fact that the proposed method enhances the resilience of a robot
network by detecting its spoofed client robots or compromised server at
a significant rate during the spoofing attack.

Keywords: Robot networks · Spoofing attack · Blockchain ·
Communication

1 Introduction

Robot networks have made a notable impact in several applications such as drone
delivery, infrastructure inspections, disaster information gathering, agriculture
precision, border and area surveillance, and search and rescue operations. An
example application of robot networks is Wing’s drones [1] certified by the Fed-
eral Aviation Administration (FAA) in the U.S. for the first time that deliver
small packages, including food, medicine, and household items, directly to homes
in minutes following flight paths. In practice, these robots in a network utilize
wireless communication sensors for their path planning, coordination, control,
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and collision avoidance. However, malicious agents can jam or intercept these
wireless sensors to gain access to the network that makes the robots vulnerable
to cyber attacks and malicious traffic. In particular, a robot network can be
disrupted by a spoofing attack which is also known as a Sybil attack [4]. An
adversary can forge multiple spurious identities or impersonate several existing
client robots in the network during the spoofing attack [13] after having complete
control over GPS [16] or optical flow sensors [3].

Our work is motivated by the problem of defending a robot network against
the spoofing attack, e.g.., a set of client robots is drawn away by an adversary
from their service robot as illustrated in Fig. 1. Specifically, we consider a robot
network in which a group of aerial delivery vehicles delivers packages launching
from a central fulfillment or distribution station to designated customer (goal)
locations and a server robot controls the operations of delivery vehicles. However,
an adversary attempts to gain control of multiple delivery vehicles by spoofing
their customer locations or compromising the server robot. This spoofing attack
is easy to carry out but difficult to prevent in multi-robot settings. Consequently,
our problem of safeguarding the network by detecting this attack is challenging.

Fig. 1. Spoofing attack. A server robot controls pre-computed flight paths to client
robots for their intended customer locations when no attack is present. In a spoof-
ing attack, an adversary spoofs many client robots by drawing them away from their
original paths and directing them toward pseudo-customer locations.

Our work is closely related to spoof-resilient solutions to multi-robot net-
works using information extracted from Wi-Fi communication signals for detect-
ing spoofed client robots [7] and providing a consensus algorithm with bounded
performance guarantees [6]. Consensus methods in mobile and distributed net-
works are also considered using transmitted values [14,15] to remove adversarial
agents from the consensus and using exchanged keys [8] or tokens [9] to secure
networks with different initial topologies [20]. However, these consensus meth-
ods are prone to failures when robots in a network fail or communicate incorrect
messages. Additionally, a malicious agent can generate a number of false identi-
ties in a robot network that utilizes wireless signals for security instead of using
a trusted system within the network. Unlike prior work, this method utilizes
trusted Blockchain technology for the resilient coordination and communication
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of other robots in the network in the presence of malfunctioning and malicious
robots (Byzantine robots).

The potential benefits of using Blockchain technology for addressing secu-
rity issues in swarm robotic systems are discussed in [5]. The Nakamoto’s
white paper [10] first introduced Blockchain technology as a trusted database
of encrypted and linked data transactions with timestamps stored by partici-
pating agents of a peer-to-peer network. There are very few approaches that
exploit Blockchain technology for robotic security systems. A Blockchain-based
collective decision making approach [17,19] for managing Byzantine robots in
homogeneous robot swarms is presented. Blockchain has been utilized in het-
erogeneous robot swarms as well for collaboration in [12]. Existing consensus
algorithms are compared with the Blockchain consensus algorithm in [18]. The
pivotal advantages of using Blockchain are the immutability of transactions,
decentralized consensus, fault tolerance, and so on. As such, this work leverages
a permissioned or private Blockchain, where a centralized entity has control
over its participants, to detect spoofed client robots or the compromised server
through the validation by a devised committee of robots in the network.

Contributions: This paper makes the following contributions.

– A consensus method with a subset of robots in the committee making use of
transferred data transactions on Blockchain for detecting compromised robots
in the network.

– A simulation study that validates the performance of our method for different
types of compromised robots in dealing with the spoofing attack.

The remainder of this paper is laid out as follows. First, we define several
notations required for our robot network setting and formulate our problem of
interest in Sect. 2. Then, we describe our method to detect the spoofing attack
in the network in Sect. 3. The results from the implementation of our method
appear next in Sect. 4. Finally, we summarize our paper along with future direc-
tions in Sect. 5.

2 Preliminaries

We examine a robot network setting in which m client delivery robots (drones)
D = {D1, . . . , Dm} obtain computed flight paths T = {τ1, . . . , τm} for their
product delivery from a server robot S located at a central distribution center
or service station. These client delivery robots are identified by a set of iden-
tification keys which are denoted as I = {i1, . . . , im}. They communicate their
path information (location, velocity, time, distance, etc.) with the server robot
through the identification keys I. Let P = {p1, . . . , pm} denote the client deliv-
ery robots’ locations in R

3. Let V = {v1, . . . , vm} denote the client delivery
robots’ velocities in R. Let G = {g1, . . . , gm} denote the client delivery robots’
goal or customer locations in R

2. Let ps be the location of S in R
2. Let a flight

path of a client delivery robot Dk, where k ∈ {1, . . . , m}, be τk : [0, t] → R
3 such
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that τk(0) = ps and τk(t) = gk for a finite time interval [0, t]. We consider in
this setting that either a subset of client delivery robots denoted by A, where
A ⊂ D, can be spoofed, or the server S is compromised by adversaries. It is
assumed that an adversary sends various messages over the network with identi-
fication keys to make client delivery robots spoofed by taking control over their
GPS sensors and that the knowledge of which client delivery robots are spoofed
is unknown [6]. Furthermore, all the client delivery robots are considered to be
spoofed when the server robot is compromised. In this context, we formulate the
following problem of interest.

Problem 1 (Detecting spoofed robots): Given m client delivery robots, the server
robot S in a network, and their pre-computed paths T , detect A spoofed client
delivery robots or the compromised server S in the case of a spoofing attack.

3 Methods

This section details our Blockchain leveraged consensus method for detecting
the spoofing attack in a robot network.

In our method, we first construct a server robot, and then it establishes a net-
work with m client delivery robots. The server robot provides the identification
keys I to client delivery robots for communication and sends their pre-computed
paths T toward their goal locations G.

In our next step, we employ a private Blockchain on the server robot in
order to keep track of transferred data over the network. Client delivery robots
communicate data related to their locations, velocities, distances, and time peri-
odically with the server robot, and the server robot incorporates them into the
transferred Blockchain data. The transferred Blockchain data is defined as B.
We assume that client delivery robots act honestly in communicating their data.

Afterward, we develop a consensus Algorithm 1 in the robot network for
detecting the spoofing attack. To achieve this, we devise a verification committee
with the server robot and a subset of random client delivery robots. The server
robot alone can also detect spoofed client delivery robots but cannot detect
itself being compromised. Let C ⊂ D \ A be the subset of client delivery robots
in the verification committee. It is considered that n client committee members,
where |C| = n and n < m, can access the transferred Blockchain data B. We
also consider that both the server and the client committee members are not
compromised at the same time.

The verification committee members can vote in a weighted manner for
detecting spoofed client delivery robots or a compromised server. Let wc be
the weight for each committee member, including the server robot. Let ws be
the weight for the server robot’s vote and wcc be the weight for each client com-
mittee robot’s vote. The client committee robot’s weight for voting is calculated
as wcc = (1−ws)/n. The weights for all committee members can be represented
as a (n + 1)-dimensional vector as follows.

w = (w1, . . . , wn+1) = (ws, w1, . . . , wn).
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The elements of w should satisfy two conditions: 1) wc > 0 for all c ∈
{1, . . . , n + 1} and 2)

n+1∑

c=1

wc = ws +
∑

cc∈C
wcc = 1.

Let Q be the consensus trigger by the first committee member to start the
consensus process. Let L = {l1, . . . , lm} be the set of each committee member’s
votes for client delivery robots. Let π be the threshold value for the path devia-
tion of a client delivery robot. In Algorithm 1, we calculate the set of votes for
client delivery robots to determine one or more spoofed client delivery robots.
We apply the consensus Algorithm 1 for each verification committee member,
including the server robot. For each client delivery robot with an identification
key ik, we check its path deviation from the provided path τk by the server robot.
Since we consider that a client delivery robot’s GPS is spoofed, we make use of its
locations data that are stored in Blockchain to find the path deviation. Thus, the
PathDeviation function takes the input of Blockchain data B, identification
key ik, and path τk with the location of a client delivery robot’s original desti-
nation. The function iterates through B to compare the client delivery robot’s
current location to its goal location to determine if the client delivery robot is
getting closer to its intended destination. Once determined, the function returns
a value t between 0 and 1. If it is less than the threshold value π , the algorithm
determines that the client delivery robot is deviating from its intended path.
Then, we add −wc to the set of votes for that client delivery robot. Otherwise,
we add wc to the set for the same client delivery robot.

Algorithm 1: Consensus (Q, T , I, B,wc)
Input: Q, T , I, B, wc – Consensus trigger, Client delivery robots’ paths, Set of

identification keys for client delivery robots, Blockchain data, Weight
of each committee member

Output: L – Set of votes for client delivery robots
1 for k =1 to |I| do
2 t ← PathDeviation(B, ik, τk)
3 if t < π then
4 L ← L ∪ {−wc}
5 else
6 L ← L ∪ {wc}

7 return L

In our final step, we investigate two spoofing attack scenarios: 1) client deliv-
ery robots are spoofed and 2) the server is compromised. The verification com-
mittee validates these attack scenarios utilizing the transferred Blockchain data
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B by detecting the compromised server or spoofed client delivery robots. In
both scenarios, one of the client committee members begins the consensus by
voting for each client delivery robot and alerting the other committee members,
including the server, to initiate their voting. Therefore, the rest of the committee
members also provide their votes for each client delivery robot. Once a consensus
is reached by all the committee members, the total votes are combined to a tally
for each client delivery robot. If the vote tally for a client delivery robot less
than zero, the associated client delivery robot is detected as spoofed.

For the first scenario, a set of client delivery robots D is launched with n
client committee members (robots) by the server. A subset of client delivery
robots A is spoofed and changes directions mid-way to their intended destina-
tions. The committee members detect a spoofed client delivery robot through
their consensus algorithm after it moves away from its intended destination. It is
important to mention for this scenario that the server robot itself can also detect
a spoofed client delivery robot without the verification of other client commit-
tee members as both the server and client committee members can utilize the
transferred Blockchain data B for verification.

For the second scenario, the server is no longer considered as a commit-
tee member. The n client committee members are relied upon to complete the
consensus using their accessible communicated Blockchain data B. Once the con-
sensus is initiated and completed, the votes are tallied and checked. All the client
delivery robots will be detected as spoofed because the compromised server auto-
matically spoofs non-committee client members. Once all non-committee client
members are detected as spoofed, the server will be detected as compromised.

4 Experimental Results

In this section, we present the results from the implementation of our method.
Initially, we implemented a robot network through server-client socket pro-

gramming in Python 3 with the simulation of port numbers and identification
keys for robots. The server robot provided flight paths to client delivery robots
(drones). Then, we simulated our own private Blockchain in this network set-
ting using Python. Client delivery drones followed the provided flight paths
which were simulated taking advantage of a Python Robotics tool [2]. While
client delivery drones following the simulated paths, they communicated their
locations, velocities, covered distances, and time with the server robot. These
communicated data were transferred over the network through our implemented
Blockchain.

We also implemented our consensus Algorithm 1 in simulation. In our imple-
mentation, we accounted for n = 2 random client delivery drones and the
server robot for devising the verification committee. These committee mem-
bers employed transferred Blockchain data for validation of non-committee client
delivery drones’ path deviation using their locations along their flight paths. For
the voting process of the verification committee members, the weights we utilized
for the server robot and the client delivery drone are ws = 0.4 and wcc = 0.3
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Fig. 2. Client delivery drone spoofing scenario. Flight paths of two client committee
drones (depicted in cyan) toward their desired goal locations (green circles) and one
non-committee drones (depicted in green) toward its desired goal location and another
(depicted in red) toward its unintended goal location (red circle) starting from the
server robot’s location. Between two non-committee drones, the red non-committee
drone is spoofed and detected. (Color figure online)

Fig. 3. Comparison of velocities and time for a non-spoofed client delivery drone and
its spoofed counterpart after detection.

respectively. The threshold value π = 0.9 was used for finding the path deviation
of a client delivery drone. Finally, the verification committee members recorded
their votes for detecting spoofed client delivery drones.

Figure 2(a) delineates a drone delivery network setting, where m = 4 client
delivery drones were launched from the server robot’s location toward their
green goal locations with n = 2 client committee drones marked in cyan and
the remaining client delivery drones marked in green. Figure 2(b) presents the
first spoofing attack scenario, where one of the non-committee client drones was
attacked during its flight path execution and moved away from its intended goal
location. In our implementation, the verification committee members detected
the client delivery drone as spoofed based on their votes and turned it red,
including its path and spoofed goal location. Figure 3 illustrates the variations
of distinct velocities (roll, yaw, pitch) with respect to time for a non-spoofed
client delivery drone and its detected spoofed counterpart. These results indi-
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Fig. 4. Server robot compromising scenario. (a) Flight paths of five client delivery
drones (depicted in green) starting from the server robot’s location toward their spoofed
goal locations (red circles) when the server robot is compromised and undetected. (b)
Flight paths of two client committee drones (depicted in cyan) toward their desired
goal locations (green circles) and three non-committee drones (depicted in red) toward
their spoofed goal locations (red circles) starting from the server robot’s location when
it is detected that the server robot is compromised. (Color figure online)

(a) (b)

Fig. 5. Spoofing detection rate of our method for different numbers of robots in a
network for the first scenario (a) and the second scenario (b).

cate the inconsistencies in velocities between an actual flight path and a deviated
flight path of a client delivery drone when it is attacked.

Figure 4(a) shows a spoofing attack scenario where m = 5 drones were
launched; however, the server was compromised and could not run its own con-
sensus nor could any of the five drones launch their own consensus. Since the
server was compromised, it redirected all non-committee drones to spoofed goal
locations. Since no committee drones were present, this resulted in no drones
being detected as spoofed. Figure 4(b) demonstrates the results of the second
spoofing attack scenario, where five client delivery drones were launched but
later the server was compromised. In this case, we converted n = 2 client deliv-
ery drones into committee members. As a result, the committee members were
able to detect the remaining client delivery drones as spoofed. Since all non-
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committee drones were spoofed, it detected that the server was compromised
which was depicted by coloring its name to red.

We computed the spoofing detection rate of our method for different numbers
of robots, including the server robot, in a network for both scenarios which is
illustrated in Fig. 5. The spoofing detection rate was computed from the average
of 10 runs of our implementation for each number of robots for both scenarios.
This result shows that our detection rate is significant but decreases slightly with
the increase in the number of robots. The reason for this small detection rate
decline is that the client committee members sometimes complete their flights
or do not even start their flights while some non-committee client members are
spoofed. This problem can be overcome by dynamically assigning client commit-
tee members that are on their flights to the verification committee.

5 Conclusion and Future Directions

In this paper, we presented a consensus method with a committee of robots in
a network for detecting its spoofed client robots or compromised server utiliz-
ing transferred Blockchain data. Our simulation results demonstrate that our
method makes a robot network resilient against the spoofing attack. We believe
that we have just scratched the surface in leveraging Blockchain for detecting
a cyber attack within a robot network. This effort paves the way for several
interesting future research directions as detailed below.

In the future efforts of this stream of research, we will evaluate the vulnerabil-
ities of our method by learning the characteristics of compromised robots by dif-
ferent attacks on a secure network using machine learning methods, and present
solutions to these vulnerabilities to make our method more attack resilient. We
also plan to test our method with a set of programmable drones as client robots
and a ground vehicle as the server robot.

One potential problem of our method lies in storing transferred Blockchain
data from a group of robots in a network due to the increase of its storage
while the network keeps running with a large number of robots. To alleviate
this problem, we will investigate an approach to reduce Blockchain data by
transferring them on-demand or storing only hash values for these data [11].
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