®

Check for
updates

On Configurable SCA Countermeasures
Against Single Trace Attacks for the NTT

A Performance Evaluation Study over Kyber
and Dilithium on the ARM Cortex-M4

Prasanna Ravi’2(®) Romain Poussier!', Shivam Bhasin®,

and Anupam Chattopadhyay!-2

! Temasek Laboratories, Nanyang Technological University, Singapore, Singapore
{rpoussier,sbhasin}@ntu.edu.sg
2 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore
{prasanna.ravi,anupam}@ntu.edu.sg

Abstract. The Number Theoretic Transform (NTT) is a critical sub-
block used in several structured lattice-based schemes, including Kyber
and Dilithium, which are finalist candidates in the NIST’s standardiza-
tion process for post-quantum cryptography. The NTT was shown to be
susceptible to single trace side-channel attacks by Primas et al. in CHES
2017 and Pessl et al. in Latincrypt 2019 who demonstrated full key recov-
ery from single traces on the ARM Cortex-M4 microcontroller. However,
the cost of deploying suitable countermeasures to protect the NTT from
these attacks on the same target platform has not yet been studied. In
this work, we propose novel shuffling and masking countermeasures to
protect the NTT from such single trace attacks. Firstly, we exploit arith-
metic properties of twiddle constants used within the NTT computation
to propose efficient and generic masking strategies for the NTT with
configurable SCA resistance. Secondly, we also propose new variants of
the shuffling countermeasure with varying granularity for the NTT. We
perform a detailed comparative evaluation of the runtime performances
for our proposed countermeasures within open source implementations
of Kyber and Dilithium from the pgm4 library on the ARM Cortex-M4
microcontroller. Our proposed countermeasures yield a reasonable run-
time overhead in the range of 7%—78% across all procedures of Kyber,
while the runtime overheads are much more pronounced for Dilithium,
ranging from 12%-197% for the key generation procedure and 32%-—
490% for the signing procedure.

1 Introduction

The NIST standardization process for post-quantum cryptography is currently
in its third and final round with seven finalist candidates and eight alternate can-
didates [2] for Public Key Encryption (PKE), Key Establishment Mechanisms
(KEM) and Digital Signature (DS) schemes. While criteria such as theoretical

© Springer Nature Switzerland AG 2020
L. Batina et al. (Eds.): SPACE 2020, LNCS 12586, pp. 123-146, 2020.
https://doi.org/10.1007/978-3-030-66626-2_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66626-2_7&domain=pdf
https://doi.org/10.1007/978-3-030-66626-2_7

124 P. Ravi

post-quantum (PQ) security guarantees, implementation cost and performance
were key selection criterion for the first two rounds, resistance against implemen-
tation attacks such as side-channel attacks is also being increasingly considered
as an important criteria for the final round. In fact, NIST also explicitly states
that it “hopes to collect more information about the costs of implementing these
algorithms in a way that provides resistance to such attacks” [2].

Five out of the seven finalist candidates derive their hardness from hard
problems over structured lattices. Side-channel Analysis (SCA) and Fault Injec-
tion Analysis (FIA) of structured lattice-based schemes has received considerable
attention with several works on practical attacks [25,27,28] as well as protected
implementations [23,31,33]. While most reported works on protected implemen-
tations focus on Differential Power Analysis (DPA) style attacks [23,31] that
operate over multiple traces, they offer very little or no protection against the
more powerful single trace attacks [25,27]. Of particular interest is the attack
of Primas et al. [27] in CHES 2017, which is the first single trace attack on
lattice-based schemes targeting the Number Theoretic Transform (NTT), a crit-
ical sub-block used for polyomial multiplication in several lattice-based schemes
including finalist candidates such as Kyber KEM [3] and Dilithium DS [8]. This
attack required about 1 million templates, but Pessl et al. [25] reduced the
requirement to just 213 templates for full key recovery using a single trace on
the ARM Cortex-M4 microcontroller. They propose shuffling the order of oper-
ations as the only concrete countermeasure against this attack. However, the
runtime overhead due to the shuffling countermeasure on the ARM Cortex-M4
is not known while the possibility of employing randomization-based counter-
measures has not yet been studied.

We in this work, propose novel shuffling and masking countermeasures to
protect the NTT against the aforementioned single trace attacks and evaluate
their runtime performance on the ARM Cortex-M4 microcontroller. As a first
contribution, we utilize the efficient arithmetic properties of the special twiddle
constants used within the NTT to mask the atomic operations of the NTT and
subsequently build upon the same to construct a generic masked NTT with
configurable SCA resistance. As a second contribution, we also propose several
novel variants of the shuffling countermeasure with varying granularity for the
NTT. As a third contribution, we practically evaluate the runtime performance of
our shuffling and masking countermeasures when integrated within open source
implementations of Kyber and Dilithium scheme available in the public pgm4
library on the ARM Cortex-M4 microcontroller [15]. While our countermeasures
yield a reasonable overhead in the range of 7%-78% across all procedures of
Kyber, the performance impact is much more pronounced for Dilithium with
overheads in the range of 12%-197% over its key generation procedure and
32%-490% over the signing procedure.

Availability of Software. All softwares utilized for this work is placed into
public domain. They are available at https://github.com/PRASANNA-RAVI/
Configurable_.SCA _Countermeasures_for NTT.

https://github.com/PRASANNA-RAVI/Configurable_SCA_Countermeasures_for_NTT
https://github.com/PRASANNA-RAVI/Configurable_SCA_Countermeasures_for_NTT

On Configurable SCA Countermeasures 125

2 Preliminaries

Notation: For a prime number ¢, we denote by Z, the field of integers mod-
ulo ¢. The polynomial ring Z4[z]/¢(x) is denoted as R, where ¢(z) = 2" + 1
is a cyclotomic polynomial with n being a power of 2. Multiplication of two
polynomials a,b € R, is denoted as a-b € R,. Matrices and vectors of poly-
nomials in R, are referred to as modules and are denoted using bold letters viz.
ac RZ *Ub e Rfl. Point-wise multiplication of two polynomials a and b € Ry is
denoted as ¢ = a o b while scalar multiplication of two integers a and b € Z, is
denoted as ¢ =a - b.

Lattice-Based Cryptography: Most of the efficient lattice-based crypto-
graphic schemes derive their hardness from two average-case hard problems,
known as the Ring Learning With Errors problem (RLWE) and the Ring Short
Integer Solutions problem (RSIS) [20]. Both the problems reduce to provably
worst-case hard problems over structured ideal lattices. Given a public key
(a,t) € (Ry, Ry), an RLWE attacker is asked to find two small polynomials
S1,82 € Rq with s1,s9 € 5, such that t = a-s; +s2. Given m uniformly random
elements a; € Ry, an RSIS attacker is asked to find out a non-zero vector z with a

m
small norm z € S such that > a;-z; =0 € R,;. The more generalized versions

3

of these problems known as Module-LWE (MLWE) and Module-SIS (MSIS)
respectively deal with computations over the space RF* = ZEX[X]/(X™ + 1)
for k,1 > 1 (as opposed to R, for their ring variants) and also provide bet-
ter security guarantees compared to their corresponding ring variants [17]. Any
change in the security of a scheme (based on either MLWE or MSIS) can be
obtained by simply changing the module dimensions (k,¢) without any change
to the underlying implementation, thus warranting very minimal changes from
a implementer’s perspective.

2.1 Number Theoretic Transform:

The polynomial multiplication operation in the ring R, is considered to be one
of the most computationally expensive operations in structured lattice-based
schemes. Hence, there have been several reported works devoted to increasing
the efficiency and performance of polynomial multiplication in structured lattice-
based schemes [5,26]. Among the many known techniques for polynomial multi-
plication such as the schoolbook multiplier, Toom-Cook [6] and Karatsuba [16],
the Number Theoretic Transform (NTT) based polynomial multiplication is one
of the most widely adopted techniques in several lattice-based schemes [7], owing
to its quasilinear run-time complexity (O(nlog(n)) time) in the degree of the
polynomial and a compact design. The NTT is nothing but a bijective map-
ping from one polynomial to another in the same operating ring. Considering an
(n — 1) degree polynomial p in R,, the polynomial p in the normal domain is
mapped to its alternate representation p in the NTT domain through the NTT
as follows:

126 P. Ravi

n—1
5. — . iJ
P; = § P - w
=0

where j € [0,n — 1] and w is the n** root of unity in the operating ring ZLg.
There is also a corresponding inverse operation named Inverse NTT (denoted
as INTT) that maps p in the NTT domain back to p in the normal domain.
The use of NTT requires to choose an NTT-friendly polynomial ring R, such
that the integer ring Z, consists of either the 2n or n'? root of unity which we
denote as w and 1) respectively with 2 = w. Schemes such as Kyber, Dilithium
and NewHope operate in the NTT friendly anti-cyclic polynomial ring R, =
Zg[z]/ (2™ 4+ 1). Powers of ¢ and w (i.e) t = ¢ for i € [0,2n — 1] or t = w' for
i € [0,n — 1] denoted as twiddle constants are used in the NTT computation.
The multiplication of z = x x y € R, can be efficiently done using the NTT as:

z = INTT(NTT(x) o NTT(y)).

The NTT of an n—1 degree polynomial with n coefficients can be recursively
broken down into p smaller NTTs, which can be further broken down into atomic
operations called butterfly operations which themselves are NTTs of size r with
r = 2 being the most common choice.

c=a+b-w c=a+b
d=a—-b-w, (1) d=(a—-0) w, (2)
Each butterfly operation takes two inputs (a, b) € Zg and a known twiddle con-
stant w (either a power of ¢ or w) and produces two outputs (¢, d) € Zﬁ. There
are two types of butterfly operations: (1) Cooley-Tukey (CT) butterfly [7] (Eq.
1) and (2) Gentleman-Sande (GS) butterfly [10] (Eq.2). Both the butterfly struc-
tures can be interchangeably used to perform both the NTT and INTT operation.
The NTT/INTT of size n is typically computed in stages log(n) stages with each
stage consisting of n/2 butterfly operations. Refer Fig.1(a)—(b) for the data-flow
graphs of two widely used NTT configurations for an input sequence with length
n = 8. The (n/2) butterflies in each stage can be divided into non overlapping
butterfly groups and every butterfly in a given group uses the same twiddle con-
stant w. For example, the data flow graph of the NTT in Fig.1(b) consists of a
single butterfly group in stage 1 with the number of groups increasing in power
of two with every stage. Based on the progression of the number of groups with
every stage - we classify the NTT configurations into two types: (1) Shrinking NTT
(Fig.1(a)) and (2) Expanding NTT (Fig.1(b)) named based on the appearances
of the respective data flow graphs. We refer the reader to [26] for more details on
optimized embedded software implementations of the NTT.

2.2 CRYSTALS Package

The “Cryptographic Suite for Algebraic Lattices” (CRYSTALS) consists of two
schemes - Kyber [3] and Dilithium [19] both of which are finalist candidates in
the NIST’s standardization process.

On Configurable SCA Countermeasures 127
Stage 1 Stage 2 Stage 3 Stage 1 Stage 2 Stage 3
z0 D ; /v Zo —\ £ o :
XX g o W AW XXE
v’ . '’ W g ¥
. %i% & v X0

T INGE NS XX

7 AN AN SANET -

O—e-

{® Addition © Multiplication
{© _Subtraction

(a)

Fig. 1. Data flow graphs of two most commonly used configurations of the NTT (a)
Expanding NTT (b) Shrinking NTT

Kyber: Kyber is a chosen-ciphertext secure (CCA-secure) KEM based on the
MLWE problem and is considered to be a promising candidate for standard-
ization owing to its strong theoretical security guarantees and implementation
performance [2]. Computations are performed over modules in dimension (k x k)
(i.e) RE** and Kyber provides three security levels with Kyber-512 (NIST Secu-
rity Level 1), Kyber-768 (Level 3) and Kyber-1024 (Level 5) with k£ = 2,3 and
4 respectively. Kyber operates over the anti-cyclic ring R, with an NTT-friendly
prime modulus ¢ = 3329 and degree n = 256 such that the base ring Z, contains
w but not ¥. The CCA-secure Kyber contains in its core, a CPA-secure Kyber
encryption scheme called Kyber.CPA which is converted to a CCA-secure KEM
using the Fujisaki-Okamoto transformation [9]. Please refer to Algorithm1 in
appendix for the description of its key-generation, encryption and decryption
procedures.

Dilithium: Dilithium is also one of the leading candidates among digital sig-
nature schemes for standardization owing to its balanced security and efficiency
guarantees. Dilithium is built upon the well known Fiat-Shamir with Aborts
framework [18] and its security is based on the combination of the MLWE
and MSIS problems. Dilithium involves computations over modules R’;XZ with
k,¢ > 1 and provides three different security levels with Dilithium2 (Level 1)
: (k,0) = (4,3), Dilithium3 (Level 3) : (k,¢) = (5,4) and Dilithium4 (Level
5) : (k,¢) = (6,5). Dilithium also operates in a similarly structured base poly-
nomial ring as Kyber with the same n = 256 albeit with a different modulus
g = 223 —213 _1, such that the base ring Z4 contains both 1 and w. Please refer
to Algorithm 2 in appendix for the key-generation and signing procedures of the
Dilithium signature scheme.

2.3 Related Works

Side-channel attacks can be broadly classified into two categories: (1) Multi
trace attacks and (2) Single trace attacks. Most reported works on protected
implementations of lattice-based schemes have focussed on protection against

128 P. Ravi

Laq Te

xp w T4

(a)

Fig. 2. Factor Graphs of the CT butterfly shown in (a) used by the attacks of (b)
Primas et al. [27] and (b) Pessl et al. [25]

Differential Power Analysis (DPA) style attacks that work over multiple traces.
There exists a large body of work on masking countermeasures for lattice-based
schemes [23,29] (i.e) a secret polynomial s € R, is split into two shares r and
s —r and each share is computed upon in an independent manner. This type of
additive sharing is convenient as most operations within lattice-based schemes
are linear. There have also been proposals for alternate countermeasures against
multi trace attacks such as blinding and shifting [31]. Blinding involves multiply-
ing a secret polynomial s € R, with a scalar a € Z, (i.e) a-s € R, while shifting
involves multiplying the secret polynomial s with z% for i € [0,n — 1] which
rotates the coefficient vector of s by i positions to the left. All the aforemen-
tioned countermeasures ensure randomization of computations across multiple
executions. On the other hand, single trace attacks such as horizontal DPA [4]
and algebraic attacks [27] work by collating information from SCA leakage of
different operations within a single execution. Thus, defeating such single trace
attacks requires to randomize computations within a single execution. In that
respect, shuffling or randomizing the order of operations is a concrete counter-
measure against single trace attacks, including the attack on the NTT [25,27]
which remains the focus of our work. While Ziljstra et al. [33] investigated the
cost of the shuffling countermeasure for the NTT on the Artix-7 FPGA, there
exists no prior work on investigation or evaluation of countermeasures to protect
the NTT on an embedded software platform, given that prior attacks were con-
ducted on software implementations on the ARM Cortex-M4 microcontroller.
In this work, we propose several novel shuffling and masking countermeasures
for the NTT and conduct a detailed performance assessment of the proposed
countermeasures when implemented within Kyber and Dilithium on the ARM
Cortex-M4 microcontroller.

2.4 Side-Channel Attacks on NTT

Primas et al. [27] proposed the first SCA of NTT through a single trace tem-
plate style attack using Soft-Analytical Side-Channel Attack (SASCA) based
techniques [32]. They targeted the INTT instance used within the decryption
procedure to recover the long term secret key (line 4 in CPA.Decrypt procedure
of Algorithm 1). Their attack works in two steps. Firstly, a side-channel template
attack is performed on certain targeted intermediates within the NTT compu-

On Configurable SCA Countermeasures 129

tation to yield the corresponding probabilities conditioned upon the observed
side-channel leakage. Secondly, the obtained probabilities are incorporated into
a bipartite factor graph modelled based on the NTT/INTT and the Belief Prop-
agation (BP) algorithm [24] is executed over the factor graph. The BP algorithm
effectively combines the information from the various conditional probabilities
to retrieve the marginal probabilities for the targeted inputs and intermediates
within the NTT/INTT.

A factor graph consists of two types of nodes - variable nodes and factor
nodes. The variable nodes x; for i = {0,..., N — 1} represent the targeted inter-
mediates, which are the inputs and outputs of every stage of the NTT/INTT.
The factor nodes f; for i = {0,..., M — 1} model the relationship between the
different variable nodes. Refer Fig. 2(b) for a simple factor graph of a single CT
butterfly operation (Fig.2(a)) utilized by the attack of Primas et al. [27]. It has
four variable nodes for inputs (z,, xp) and outputs (z., x4) depicted using circles
and three factor nodes fapp, fsup and fy depicted using squares. Factor nodes
can be of two types - (1) probabalistic or (2) deterministic based on the relation
between the connected variable node/s. Here, fy is a probabilistic factor node
which models the leakage from multiplication b-w (i.e) f¢(i) = Pr(b =1i/l), while
fapp and fsyp are deterministic nodes with fapp given as follows (similarly
for fsum):

{1 if 4 + xp - w =z, mod ¢
fapp(Ta, T, Te) = .

0 otherwise

Any relation between the variable nodes can be modelled and integrated as addi-
tional factor nodes into the factor graph thus making this approach very flexible.
Primas et al. [27] also utilized the timing information from variable time modular
reduction used in their targeted implementation. Templating the multiplication
required roughly 1 million (¢-n/2) templates using 100 million traces (100 traces
for each template) and they subsequently demonstrated full key recovery using a
single trace on the ARM Cortex-M4 microcontroller [27]. Subsequently, Pessl et
al. [25] used a number of optimization techniques to mainly improve trace com-
plexity of the profiling phase. Firstly, they switched to using hamming weight
templates and targeted the loads and stores of the inputs and outputs of the
butterfly instead of templating the multiplication operation resulting in a factor
graph shown in Fig. 2(c). The factor nodes f4 and fp model the leakage from
loading of the inputs, while fgg is the deterministic node modelled as follows:

1 ifzg+ap-w=2,modqand z, — zp - w =24 mod ¢
fBF(xaaxbvmed) = .

0 otherwise
Furthermore, they targeted the NTT over the ephemeral secret in the encryption
procedure (Line 5 in CPA.Encrypt procedure in Alg.1) to exploit the very narrow
support of its inputs (i.e) ([—2,2]), to successfully recover the key in just a single
trace for Kyber on the ARM Cortex-M4 only using 213 templates. This to date,
is the most efficient single trace attack on the NTT, also potentially applicable to

130 P. Ravi

NTT instances used in Dilithium for key recovery. This attack was also shown to
be applicable to masking countermeasures, albeit in the presence of a high SNR.
Thus, the aforementioned single trace attacks against NTT heavily motivate
the need for evaluation of concrete countermeasures to protect the NTT/INTT
operation against SCA on the ARM Cortex-M4 microcontroller.

3 Masking Countermeasures for the NTT

Several previous works on practical SASCA over block ciphers such as AES [11,
12] have shown significant degradation of the attack success rate in an unknown
plaintext scenario compared to a known plaintext scenario (Figure 2 of [11]
and Figure 9-10 of [12]). That is, the leakage from SBOX (p @ k) provides
significantly more information with known p compared to unknown p. In case of
the NTT, the twiddle constants (powers of w or 1)) are the only known values used
within the NTT computation with both the inputs and outputs unknown. This
knowledge about the twiddle constants is incorporated into construction of the
factor graph thus potentially aiding the attack. This motivates us to investigate
randomizing the twiddle constants as a potential mitigation technique against
SASCA style attacks on the NTT.

Though the SASCA on AES involves different computations than the one
in NTT/INTT, we expect a similar decrease in terms of extracted information.
An attacker can indeed construct an alternative factor graph with twiddle con-
stants as variable nodes, however we believe that the degradation in information
will significantly affect the performance of the BP algorithm. In this section,
we propose an efficient multiplicative masking strategy using twiddle constants
as masks to randomize the twiddle constants used in the NTT. We adopt a
bottom-up approach to propose generic masking strategies for the atomic but-
terfly operation and subsequently use the same to construct a generic masked
NTT. For generality, we use n to denote the length of the input to the NTT and
N for the number of stages within the NTT.

3.1 Generic Masked Butterfly Construction:

Let us consider the CT butterfly as in Eq.1 computed with inputs (a,b) and
the twiddle constant w, = ¥ for x € [0,n — 1] to output (¢,d). We introduce
a random twiddle constant mask w, = ¥ and compute a modified butterfly as
shown in Eq. 3. The resulting butterfly utilizes randomized twiddle constants w,
and w(, 1) with its outputs multiplicatively masked with the twiddle constant
wy. This masked butterfly only requires one additional multiplication (a - w,)
compared to an unmasked butterfly.

d=c wy
=(a+b-wy) - wy

=a-wy+b-wy-wy

On Configurable SCA Countermeasures 131

=@ Wyt b Wty (2 Wy =97 -9¥ =)

d=d-w,
=(a—b-wy) wy
=0 Wy — b- W(z+y) (W(g+y) = wr ' 1/)'” = ¢(m+y)) (3)

An unmasked butterfly with a known twiddle constant w,, is a bijection from
(a,b) to (¢,d) in Zg. Thus, the inputs and outputs share a strong link potentially
aiding the performance of the BP algorithm. However, the modified butterfly as
in Eq. 3 is a many-to-one function with inputs (a, b, w,) € Zg mapping to out-
puts (¢, d') € Zg where the input space size is (¢? - 2n) and the output space
size is (¢?). Thus, breaking the inherent bijection in the butterfly weakens the
link between the inputs and outputs similar to breaking the bijection between
the input and output of the SBOX [12], which hinders the performance of the
loopy BP algorithm. We only provide intuition for SCA resistance of our mask-
ing approach, while the main focus of our work is on its runtime performance.
We thus leave concrete security analysis of our masking approach (e.g.) using
LRPM [12] for future work. Our choice of using twiddle constants as masks
instead of random integers in Z, comes several advantages. Firstly, sampling
a twiddle constant only requires to sample the position y of the twiddle con-
stant w, within the twiddle constant array (8-9 bits for typical parameters), as
opposed to using costly approaches such as rejection sampling to sample in Z,.
Secondly, multiplication of two twiddle constants can be done by simply sum-
ming their indices since the product of two twiddle constants is another twiddle
constant (i.e) wy - Wy = W(z4y), saving one multiplication operation per butter-
fly. We extend this approach to two cases where the inputs are masked with (1)
same mask w; (i.e) (a’,V) = (a- w;,b-w;) and (2) different masks (w;, w;) (i.e)
(a',b") = (a-w;,b-w;). For inputs with same masks, the masked butterfly is
computed as (computation of d’ follows similarly as ¢’):

d=(d+b w) w,

W - Wy + b w; - Wy - Wy

W(ity)

a .
=@ Wity) T 0 Witary)
c .
@ Wity) = b Witaty) (4)

d =

The random twiddle constants used are w(;,) and w(;4,4,) and the outputs
are masked with w(;;,). We denote this butterfly as MSISO_BF where SISO
denotes same masks for input (SI) and same masks for output (SO). We see that
the masked outputs are computed without explicitly un-masking the inputs.
However, when the inputs have different masks, the same approach cannot be
used. Here, we exploit another property of the twiddle constants (i.e) ¥?" = 1,
to efficiently bypass the unmasking process and integrate the same into the
butterfly operation. For example, an integer a’ = a - w; can be re-masked with a
different twiddle constant wy using a single multiplication as follows:

132 P. Ravi
a'=d - W(2n—i+k)
= Q- Wi - W(2n—it+k)
=a-wg (5)
We thus utilize the same strategy to compute the masked butterfly as shown
in Eq.6. We denote this masked butterfly as MDISO_BF where DISO denotes
different masks for input (DI) and same masks for output (SO).

d = (a’ T W(2n—1i) + b - W2n—j) wl’) "t Wy

=a- W(2n—ity) +b - W 2n—j+y+x)
=0 Wi W(an—ity) 0 Wi Wen—jiyta)
=cC-wy
d=ad- Wn—ity) — b W(e2n—jty+z) (6)
While both MSISO_BF and MDISO_BF butterflies mask the outputs with
the same twiddle constant, we can use similar techniques to generate different
output masks. We consider the most generic case where both inputs and outputs
masked with different masks (i.e) inputs (a’,b') = (a - w;,b - w;) and outputs
(d,d") = (¢ -wg,d-wy) and such a masked butterfly can be computed as follows:

/ / /
¢ =a - Wean—itk) TV W Wean_jir)

=a - Wi Wen—itk) T b0 W Wen_jiita)
:a~wk+b'w(k+x)

C - Wk
d=ad- W(2n—it+e) — b - wg - W(2n—j+2)
=a-we—b-wiyy)
=d-wy (7)

We denote this masked butterfly as MDIDO_BF since both inputs and out-
puts are masked with different twiddle constants. The MSIDO_BF (same input
masks, different output masks) can also be computed in a very similar man-
ner. Both MDIDO_BF and MSIDO_BF are inherently costlier than MSISO_BF and
MDISO_BF as they require 4 multiplication operations, as opposed to only 2 mul-
tiplication operations in the case of the MSISO_BF and MDISO_BF butterflies. All
the aforementioned masking strategies can also be applied similarly to the GS but-
terfly as well as using powers of w if ¢ is not present in the ring (using w™ = 1).
The presence of ¢ € Z, ensures 2n possibilities, while its absence only ensures
n possibilities for the twiddle constant masks. While Dilithium contains ¢ in its
operating ring, Kyber only contains w in its operating ring. In the following dis-
cussion, we propose a generic and configurable masked NTT/INTT implemented
using a combination of the aforementioned masked butterfly operations.

3.2 Configurable Masked NTT Construction

Usage of the aforementioned masked butterflies ensures that all intermediates
within the NTT remain masked with random twiddle constants. The number of

On Configurable SCA Countermeasures 133

random masks and their allotment within each stage decides the type of masked
butterflies used within the NTT.

3.2.1 Coarse-Masked NTT

We consider the simplest case of using a single mask for every stage and the
resulting NTT can be computed only using MSISO_BF butterflies in the following
manner. Let W = {w,, } for ¢ € {0, N — 1} be a twiddle mask set with random
masks for every stage of the NTT. Upon employing the MSISO_BF butterfly,

the intermediate output at the end of stage ¢ is multiplicatively masked with
i=f—1

the twiddle factor][wg,. Thus, final masked NTT output would typically
i=0

require a post-scaling step. However, we bypass the post-scaling by exploiting

the property that wy.o, = ¥*?" =1 for k > 0. If the sum of randomly chosen
N—1
indices of the twiddle constants is a multiple of 2n (i.e) > (x;) = k - 2n, then

the output is automatically unmasked. The mask space %or the Coarse-Masked
NTT is (2n)¥ =Y (when using 1) and (n)N~1 (when using w). For Kyber,
this amounts to about 2(8%6) = 248 (256 masks in each stage and independent
masks in 6 out of the 7 stages) and 2%3 for Dilithium. An adversary with a huge
computational power could potentially brute-force SASCA over the complete
mask space to perform key recovery. Secondly, reuse of same twiddle masks
across different butterflies in a stage also creates additional links which could
potentially be used as additional factor nodes in the factor graph.

3.2.2 Fine-Masked NTT

To alleviate the issues of Coarse-Masked NT'T, one can employ more masks in
every stage. We consider the other extreme case of using n twiddle masks for
every stage (one mask each for every point), which we denote as the Fine-Masked
NTT. This masked NTT can be constructed only using MDIDO_BF butterflies
by choosing a set of n masks W; = {w;} for i € {0,n — 1} for every stage
t such that the outputs of stage ¢ are masked with W;. The mask space for
the Fine-Masked NTT is 2n("*N) (when using v) and n(™*N) (when using w).
For Kyber, this amounts to 2204® just for a single stage (2419 for Dilithium).
Morover, every butterfly utilizes independent masks and thus additional links
cannot be created between the masks used in different butterflies, thus intuitively
providing improved SCA resistance compared to the Coarse-Masked NTT.

3.2.3 Generic-Masked NTT

One can also straddle between the two extremes of Coarse-Masked and Fine-
Masked NTT, by choosing a random “u” number of masks per stage with
1 < u < n. We illustrate the idea with v = 2 (2 masks per stage) using an
8-point NTT. We consider two cases here: (1) Shrinking NTT (Fig. 3(a)) and
(2) Expanding NTT (Fig. 3(b)). In case of the Shrinking NTT, MSISO_BF but-
terflies are used in all but the last stage and MDISO_BF butterflies are used in

the last stage since the inputs have different masks (w(13),w(14)). In the case of

134 P. Ravi

MDISO_BF -

| AW
e IO INIR\Y/A /AR

: N 5 Moz
el -
e B e ===
AT VAN =

@)

Fig. 3. Illustration of the masked NTT with © = 2 twiddle constant masks in each
stage (a) Shrinking NTT (b) Expanding NTT

the Expanding NTT, the first stage utilizes the MSIDO_BF butterfly since the
outputs need to be masked with different twiddle constants (w1), w(12)) while
all the other stages can utilize the MSISO_BF butterfly. The number of masks
per stage (u) can actually be randomly chosen at run-time for each masked NTT
instance. In this work, we design a generic masked NTT denoted as Generic-u-
Masked NTT (u: number of masks per stage) which uses a randomly generated
u at run-time for each NTT instance. We limit our choices for u to powers of
2 (i.e) u = 2% for i € [0,log(n)] since n being a power of 2 ensures even distri-
bution of masks to all the coefficients in each stage which simplifies the control
logic. This results in log(n) possible configurations for the masked NTT (8 for
typical parameters of Kyber and Dilithium). However, we note that it is possible
to design for any value of u between 1 and n at the cost of a more convoluted
control logic. While the Generic-u-Masked NTT maintains same number of masks
u for every stage of a given NTT instance (Fig. 3(a)—(b)), one can also increase
the granularity by choosing a different u for each NTT stage. A generic control
logic can be designed that tracks the input and output masks for each butterfly
and uses the appropriate masked butterfly for computation. If « is limited to
powers of 2, this in itself brings about about log(n)" possible configurations
for the NTT. For parameters of Kyber and Dilithium, it amounts to 2°¢ and
264 possibilities respectively. The resulting NTT runs in variable time (secret
independent) and has sufficient entropy to randomize the sequence of compu-
tations within the NTT. It has been shown that single trace template style
attacks require precise knowledge of the underlying computations within the
NTT [25,27]. Thus, randomizing the computations makes it significantly harder
from a practical side-channel perspective, though not impossible to identify the
underlying targeted operations within the NTT and utilize the leakage from the
same for attack.

4 Shuffling Countermeasures for the NTT

Shuffling the order of operations is a well known countermeasure against
SASCA [32] and is also the only known concrete countermeasure against similar
attacks on the NTT [25,27]. Shuffling ensures that leakages cannot be trivially

On Configurable SCA Countermeasures 135

assigned to the corresponding nodes in the factor graph, provided there is suf-
ficient entropy which is beyond realistic brute-force. Ziljstra et al. [33] utilized
LFSR based on irreducible polynomials and a novel permutation network to
implement the shuffling countermeasure for the NTT on Artix-7 FPGAs, but
there exists no prior work of the same for an embedded software implementa-
tion, which was the target of reported attacks [25,27]. We propose three novel
variants of the shuffling countermeasure with varying granularity for the NTT.
They are (1) Coarse-Full-Shuffle, (2) Coarse-In-Group-Shuffle and (3) Fine-Shuffle.

4.1 Coarse-Full-Shuffled NTT

It is known that all butterflies within any stage of the NTT can be computed
independent of one another. This allows us to randomly shuffle the order of
execution of the (n/2) butterfly operations within any stage of the NTT. While
there are several algorithms to generate a random permutation, we in this work
utilize the well known Knuth-Yates shuffling algorithm [30], which has also been
used by several previous works for SCA protection of cryptographic schemes [13,
30]. Generating a full shuffling order for n/2 butterflies using the Knuth-Yates
shuffle requires about (n/2 — 1) -log(n) random bits and provides an entropy of
(n/2)!, which is beyond realistic brute-force for typical parameter sets. One can
also use LFSRs based on irreducible polynomials for generating permutations
as done by Ziljstra et al. [33], but they offer a much limited permutation space
(i.e) For n = 256, it amounts to about 25° which can be considered to within the
realm of brute-force for large organizations with very high computational power.

4.2 Coarse-In-Group-Shuffled NTT

Instead of performing a full n/2 length shuffle for every stage, one can limit
to generating a unique shuffle within each butterfly group. In that stage of the
NTT where every butterfly forms a unique group, we propose to do a full n/2
length shuffle. This shuffle provides an entropy of ((n/2m)!)™ for any stage with
m butterfly groups and n/2m butterflies in every group for m < n/2. This is
much less than the (n/2)! offered by the full length n/2 shuffle, but still beyond
reach by realistic brute-force for any combination of (n,m) used in Kyber and
Dilithium. While both Coarse-In-Group-Shuffle and Coarse-Full-Shuffle incur the
same cost to generate the shuffle. However, all butterflies within a single group
utilize the same twiddle factor and hence a single twiddle factor load per group
will suffice, whereas a full n/2 length shuffle requires to twiddle factor load
from memory for every butterfly. However, as shown in Sect. 5, the performance
advantage compared to the Coarse-Full-Shuffle countermeasure is only minimal.

4.3 Fine-Shuffled NTT

The attack of Pessl et al. [25] targeted SCA leakage from the loading of inputs of
every butterfly. So, a direct way to counter their attack is to simply randomize

136 P. Ravi

1 m = —1lxrand () ; // rand () = 0 or 1 and m = 0x0000 or OxFFFF

opl = p[j+ rxlen];
I op2 = pli+ (1—r)xlen];

6 temp = (opl ~ op2);
7 temp = temp & m;

8 opl = opl ~ temp;

9 op2 = op2 " temp;

Fig. 4. C code snippet for randomized loading using arithmetic cswap operation

the order of the input loads and output stores of each butterfly. Since we only
shuffle the loads and stores, the modular multiplication can still be targeted
similar to the first attack of Primas et al. [27]. But, constructing (¢ - n/2) tem-
plates for the multiplication operation and assuming 100 traces per template
(similar to [27]) would amount to 42 million traces for Kyber and 214 billion
for Dilithium which makes it highly difficult if not impossible to measure. Thus,
this can be considered as a weaker mitigation technique compared to the Coarse-
Shuffle countermeasures, nevertheless could be used to significantly increase the
attacker’s effort or could be used in conjunction with other countermeasures for
the NTT.

We utilize an arithmetic conditional swap technique (arithmetic cswap) pre-
viously used in embedded implementations of elliptic curve cryptography [14] to
shuffle the order of loads and stores. This technique neither uses lookups from
secret addresses nor secret branch conditions and its code snippet randomizing
the loading of p[j] and p[j+len] is shown in Fig. 4. Firstly, a random bit r is
generated to create a mask m = -r (m = 0x0000 or OxFFFF assuming operands
are 16-bits long as in Kyber). The random bit decides the order of loading of
p[j] and p[j+len] into opl and op2. Subsequently, a conditional swap is executed
using bitwise operations in lines 7-10 of Fig. 4. If m = 0x0000, opl and op2 are
swapped, while if m = 0xFFFF, opl and op2 retain their values.

The arithmetic cswap operation has been the target of side-channel attacks
in embedded ECC implementations [21,22] which work by building templates
for the AND operation with the mask (line 8) and the leakage is mainly due
to the difference in hamming weight of m = 0x0000 (0) and m = 0xFFFF (16).
While the reported attacks used leakage from 16 such AND operations per mask,
we only have a single AND operation and thus the leakage is significantly sup-
pressed. Nevertheless, we propose a technique to further reduce the SNR by
replacing the single 16-bit AND operation with 16 single bit iterative AND oper-
ations. Distinguishing between 0 and 1 is significantly harder than distinguishing
between (0x0000 and 0xFFFF). Though we do not claim full protection against
their attack, we significantly reduce the leakage. We refer to the original tech-
nique as Full-Fine-Shuffle and our modified approach as the Bitwise-Fine-Shuffle
technique. In terms of the randomness requirement, every butterfly needs two
bits (one each for load and store) thus amounting to about n - N bits for the
complete NTT. Since there are n/2 butterflies in each stage, the total entropy is
about 4("/2) = 2" possibilities for a single stage which is well beyond practical
brute-force for typical parameters (22°¢ for Kyber and Dilithium).

On Configurable SCA Countermeasures 137

5 Experimental Results

We perform a practical performance evaluation of all the proposed countermea-
sures when integrated into open source implementations of Kyber and Dilithium
available in the public pgm/ library [15], a benchmarking framework for PQC
schemes on the ARM Cortex-M4 microcontroller.

5.1 Target Platform and Implementation Details

All implementations were compiled with the arm-none-eabi-gcc-9.2.1 com-
piler using compiler flags -O3 -mthumb -mcpu=cortex-m4 -mfloat-abi=hard -
mfpu=fpv4-sp-d16. Our target platform is the STM32F4DISCOVERY board
(DUT) housing the STM32F407, ARM Cortex-M4 microcontroller and the clock
frequency is 24 MHz. The unprotected NTT within Kyber and Dilithium is
implemented in pure assembly, however we report results for countermeasures
implemented over the C-based NTT/INTT implementations for Kyber and
Dilithium. For randomness generation, we utilize the hardware TRNG running
at 48 MHz that consumes about 215 cycles (including overheads) to generate 32
bits. We utilize true randomness from the TRNG for all our proposed counter-
measures, however one could also use NIST approved PRNGs such as eXtendable
Output Functions based on SHA3 or AES in counter mode, seeded with true ran-
domness from the TRNG. This could speed up the sampling process especially
on devices such as the STM32L4 MCUs with support for hardware accelerators
for AES [1].

Both Kyber and Dilithium utilize the same configuration for their respective
NTTs and INTTs [3,8]. The NTT is implemented using the CT butterfly with
inputs in standard order and outputs in bit-reversed order. The INTT is imple-
mented using the GS butterfly with inputs in bit-reversed order and outputs in
standard order. Kyber operates in a ring with the modulus ¢ = 3329 (12 bit) and
only contains w while Dilithium operates with a modulus ¢ = 223 — 27 — 1 (23
bit) which contains both ¢ and w. The NTT/INTT used in Kyber is consider-
ably faster than that in Dilithium, since Dilithium operates over larger integers
(32-bit unsigned integers) compared to Kyber (16-bit signed integers). (Refer
Table 1-2). Due to the presence of the ¢ in Dilithium, Dilithium can use up
to 512 twiddle constant masks as compared to 256 in the case of Kyber. Both
schemes perform the NTT and INTT computations in the Montgomery domain.

5.2 Performance Evaluation of Protected NTT/INTTs

Please refer Table 1 and 2 for the performance impact of our proposed masking
and shuffling countermeasures respectively, on the NTT/INTTs of Kyber and
Dilithium. For the shuffled NTTs, the overheads come from the shuffling oper-
ation as well as sampling randomness required to generate the shuffling order.
For the masked NTTs, the overheads come from the additional multiplications
as well sampling randomness for mask generation. We also report cycle counts
separately for shuffling (denoted as Shuffle) and randomness generation (Rand.)

138 P. Ravi

Table 1. Performance evaluation of masking countermeasures for NTT and INTT in
Kyber KEM and Dilithium DS on the ARM Cortex-M4 MCU. The cycle counts are
reported in units of thousand (10?) clock cycles.

KCycles (x10%)

Countermeasures NTT INTT
Count Overhead Rand. Count Overhead Rand.
(%) (%)
Kyber
Unprotected 31.0 - 50.6 -

Coarse-Masked 44.6 43.7 (0 4%) 63.9 26.3 (0 3%)
Generic-2-Masked 66.5 114.5 5 (0.7%) 83.7 65.3 5 (0.6%)
Generic-4-Masked 72.1 132.7 0 (1.4%) 87.2 72.3 0 (1.3%)

Fine-Masked 171.1 451.7 60 7 (38.4%) 177.6 250.9 65 7 (36.9%)
Dilithium
Unprotected 55.2 - 66.2 - -

Coarse-Masked 91.3 65.4 (0 4%) 103.2 55.8 0.2 (0.2%)
Generic-2-Masked 125.5 127.3 5 (0.4%) 142.6 115.3 0.5 (0.4%)
Generic-4-Masked 139.0 151.7 9 (0.6%) 154.9 133.7 1.1 (0.7%)

Fine-Masked 297.3 438.2 70 2 (23.6%) 303.7 358.4 70.3 (23.1%)

as well their contribution to the NTT/INTT runtime in % (Table 1-2). For the
masked NTTs, we report numbers for the Coarse-Masked (1 mask per stage),
Fine-Masked (256 masks), Generic-2-Masked (2 masks) and Generic-4-Masked (4
masks) NTTs.

When comparing the masking countermeasures (Table 1), we observe that
the overhead increases with the number of masks used in each stage since
more MSIDO and MDIDO butterflies are used within the NTT. We thus see a
clear trade-off between security and performance for the masked NTTs. We also
observe that the overheads due to randomness generation significantly increases
with increasing number of masks. While less than 1% of the runtime is occu-
pied by randomness generation in Coarse-Masked NTT/INTTs, it increases to
about 36-38% for Kyber and to about 23% for Dilithium for the Fine-Masked
NTT/INTTs.

Among the shuffling countermeasures (Table 2), the Basic-Fine-Shuffle coun-
termeasure incurs the least performance overhead followed by the Coarse-In-
Group-Shuffle, Coarse-Full-Shuffle and the Bitwise-Fine-Shuffle NTT. The Coarse-
In-Group-Shuffled NTT only performs marginally better than the Coarse-Full-
Shuffled NTT thus showing that the advantage due to reduced loading of twid-
dle factors is minimal. Notably, we also see that the Bitwise-Fine-Shuffled NTT
has the largest runtime and the overhead mainly arises from multiple single bit
AND operations. This is evident from the results which show that 70% and 88%
of the NTTs’ runtime in Kyber and Dilithium respectively is occupied by the
arithmetic swap operation. We also observe that the Bitwise-Fine-Shuffled NTT
in Dilithium incurs a much higher overhead than in Kyber due to the higher
number of iterations (32) of the bitwise AND operations as compared to Kyber
(16). When comparing the overheads separately due to shuffling operation and

On Configurable SCA Countermeasures 139

Table 2. Performance evaluation of the shuffling countermeasures for the NTT and
INTT of Kyber and Dilithium on the ARM Cortex-M4 MCU. The cycle counts are
reported in units of thousand (10?) clock cycles.

KCycles (x10%)

Countermeasures Shuffle Algo. Count Overhead Shuffle Rand.
(%)
Kyber NTT
Unprotected NA 31.0 - - -
Coarse-Full-Shuffled Knuth-Yates 87.2 181.1 16.6 (19%) 38.4 (44.1%)
Coarse-In-Group-Shuffle 84.4 172.2 17.1 (20.3%) 32.4 (38.4%)
Basic-Fine-Shuffled Arith. cswap 76.7 147.4 35.1 (45.7%) 9.5 (12.4%)
Bitwise-Fine-Shuffle 142.6 356 100.1 (70.2%) 9.5 (6.7%)
Kyber INTT
Unprotected NA 50.6 - - -
Coarse-Full-Shuffled 113.3 123.8 16.6 (14.6%) 38.4 (33.9%)
Knuth-Yates
Coarse-In-Group-Shuffled 101.2 99.9 16 (15.8%) 33 (32.6%)
Basic-Fine-Shuffled Arith, cswap 101.8 101.1 40.9 (40.1%) 9.5 (9.4%)
Bitwise-Fine-Shuffled 172.4 240.8 102.2 (59.3%) 9.6 (5.5%)

Dilithium NTT

Unprotected

NA 55.2

Coarse-Full-Shuffled " 1202 117.5 18.9 (15.7%) 43.9 (36.6%)
Coarse-In-Group-Shuffled 114.6 107.5 19 (16.6%) 37.8 (33%)
Basic-Fine Shuffled " 71007 98.7 12.2 (38.5%) 10.9 (10%)
Bitwise-Fine-Shuffled 630.9 1042.1 554.7 (87.9%) 10.9 (1.7%)

Dilithium INTT

Unprotected NA 66.2 - - -
Coarse-Full-Shuffled Knuth-Yates 130.4 96.9 18.9 (14.5%) 43.9 (33.7%)
Coarse-In-Group-Shuffled 125.3 89.1 18.4 (14.7%) 37.8 (30.1%)
Basic-Fine-Shuffled Arith. cswap 117.6 7T 41.2 (35%) 10.9 (9.3%)
Bitwise-Fine-Shuffled 6409 867.5 560.5 (87.4%) 10.9 (1.7%)

sampling randomness, sampling randomness consumes a significant portion of
run-time in the Coarse-Masking countermeasures (32-44% in Kyber and 30-36%
in Dilithium) while the arithmetic swap operations form the main bottleneck in
the Fine-Shuffled NTTs.

5.3 Performance Evaluation of Protected Kyber and Dilithium

We now discuss the runtime overheads due to our countermeasures on procedures
in Kyber and Dilithium. We report numbers for key generation, encapsulation
and decapsulation procedures for kyber, while we limit to the key generation
and signing procedures for Dilithium as verification only operates upon pub-
lic information. Moreover, we only incorporate countermeasures for those NTT
instances that operate over sensitive intermediate variables.Please refer Algo-
rithm 1-2 where the SCA protected NTT and INTT instances are highlighted
in blue.

140 P. Ravi

Table 3. Performance evaluation of all our proposed countermeasures across various
procedures of Kyber768 on the ARM Cortex-M4 MCU. The results are reported in
units of million (10°) clock cycles.

MCycles (x10°)

Countermeasures KeyGen Overhead Encaps Overhead Decaps Overhead
(%) (%) (%)
No Protection
Unprotected 1.178 - 1.301 - 1.358 -
Masking
Coarse-Masked 1.259 6.9 1.395 7.2 1.466 7.9
Generic-2-Masked 1.383 17.5 1.54 18.3 1.63 20
Generic-4-Masked 1.411 19.8 1.571 20.7 1.665 22.5
Generic-Random-Masked 1.507 27.9 1.676 28.8 1.764 29.8
Fine-Masked 1.979 68 2.229 71.3 2.413 77.6
Shuffling
Coarse-Full-Shuffled 1.534 30.2 1.72 32.2 1.841 35.4
Coarse-In-Group-Shuffled 1.49 26.5 1.664 27.9 1.772 30.4
Basic-Fine-Shuffled 1.468 24.7 1.643 26.3 1.752 28.9
Bitwise-Fine-Shuffled 1.878 59.4 2.123 63.2 2.303 69.5

Firstly, we observe that all our proposed countermeasures have no impact on
the dynamic memory consumption in both Kyber and Dilithium (refer Table 5).
Refer Table 3—4 for the performance impact of our countermeasures on individ-
ual procedures of Kyber and Dilithium. For brevity, we only report results for
the recommended parameters (NIST security level 3) of Kyber (Kyber768) and
Dilithium (Dilithium3) while similar trends are observed over all security levels.
We report averaged cycle counts over 100 executions for Kyber, and 1000 execu-
tions for Dilithium since its signing procedure inherently runs in secret indepen-
dent variable time. We observe much reduced overheads due to our countermea-
sures since the NTT/INTT only make up part of the computation within each
of these procedures. We also notice that Dilithium’s signing procedure incurs
the highest overheads since a significant portion of its runtime is dominated
by the NTT/INTTSs, while the overheads for Kyber are much lesser since the
majority of runtime (about 54-69%) is dominated by the PRNG using Keccak
permutations [5].

Among the masking countermeasures, we observe that the performance over-
head increases with increasing number of masks used per stage, starting from
the Coarse-Masked NTTs with the best performance and the Fine-Masked NTT's
incurring the largest overheads. The Generic-Random-Masked NTTs where u is
chosen randomly at runtime with u = 2¢ for i € [1,log(n)] incurs a reasonable
overhead of about 27-29% in Kyber and 36% for Dilithium’s key generation
and 77% for Dilithium’s signing procedure. Overall, the masking countermea-
sures incur a performance overhead in the range of 6-77% for Kyber, while the
key generation and signing procedure have much more pronounced overheads

On Configurable SCA Countermeasures 141

Table 4. Performance evaluation of all our proposed countermeasures across various
procedures of Dilithium3 on the ARM Cortex-M4 MCU. The results are reported in
units of million (10°) clock cycles.

MCycles (x10°%)

Countermeasures KeyGen Overhead Sign Overhead
(%) (%)
No Protection
Unprotected 2.626 - 15.144 -
Masking
Coarse-Masked 2.955 12.5 17.253 32.9
Generic-2-Masked 3.289 25.2 21.585 66.3
Generic-4-Masked 3.404 29.6 22.765 75.3
Generic-Random-Masked 3.594 36.8 23.082 77.8
Fine-Masked 4.781 82.1 39.752 206.2
Shuffling
Coarse-Full-Shuffled 3.206 22.1 20.581 58.5
Coarse-In-Group-Shuffled 3.159 20.3 20.257 56
Basic-Fine-Shuffled 3.101 18.1 20.865 60.7
Bitwise-Fine-Shuffled 7.802 197.1 76.614 490.2

in the range of 12-82% and 32-206% respectively. The impact of all the shuf-
fling countermeasures on Kyber is also reasonable with a 24-69% overhead over
all procedures. Excepting the Bitwise-Fine-Shuffled NTTs, the other shuffling
countermeasures incur an overhead in the range of 18-22% for Dilithium’s Key-
Gen and 58-60% for Dilithium’s Sign procedure. However, the overheads due
to the Bitwise-Fine-Shuffle countermeasure is more pronounced with 197% for
Dilithium’s KeyGen and 490.2% for Dilithium’s Sign procedure respectively.

6 Conclusion

We thus propose novel shuffling and masking countermeasures for the NTT
against single trace attacks. Our masking strategy centers around the utiliza-
tion of twiddle constants as masks to construct a generic masked NTT. We also
propose three variants of the shuffling countermeasure with varying granular-
ity. Finally, we analyze the performance impact of our countermeasures within
pgm4 implementations of Kyber and Dilithium on the ARM Cortex-M4 micro-
controller. While our countermeasures yield a reasonable overhead in the range
of 7-78% across all procedures of Kyber, the overhead on Dilithium’s key gen-
eration and signing procedure are on the higher side in the range of 12-197%
and 32-490% respectively. We leave the practical side-channel security analysis
of our proposed countermeasures for future work.

Acknowledgment. The authors acknowledge the support from the Singapore
National Research Foundation (“SOCure” grant NRF2018NCR-NCR002-0001 -
www.green-ic.org/socure).

http://www.green-ic.org/socure

142 P. Ravi

A Stack Memory Consumption of Protected and
Unprotected Implementations of Kyber and Dilithium

Table 5. Stack memory Consumption of our protected and unprotected implementa-
tions of Kyber and Dilithium across all parameter sets.

Stack Usage (Bytes)

Kyber KeyGen | Encaps | Decaps
Kyberb512 | 2432 2496 2520
Kyber768 | 3296 2992 3024
Kyber1024 | 3808 3504 | 3536
Dilithium | KeyGen | Sign Verify
Dilithium?2 | 32328 54184 | 31464
Dilithium3 | 45640 | 72616 | 43760
Dilithium4 | 61008 | 93096 | 58096

B Algorithmic Description of Kyber Encryption scheme
and Dilithium Signature Scheme

Algorithm 1: CPA-Kyber Encryption scheme Kyber.CPA (v2). The sensi-
tive NTTs and INTTs within the individual procedures which are protected
with countermeasures are highlighted in blue.

Procedure CPA.KeyGen()

p,o — {0,1}2°% x {0,1}2°6

a € RE** — SampleUniform(p)

s,e € Rs «— SampleCBD(0o)

§ — NTT(s)

t «— INTT(a) - §)+e

t = NTT(t) return pk = (p,t)),sk =8

ac R’;Xk «— SampleUniform(p)
r,e; € Rf;' <« SampleCBD(p)
ey € Ry < SampleCBD(p)
#— NTT(r)

u — INTT(aT o #)+e;

m € R, = Encode(m)

v — INTT(t7 o #)4+e24+m

1
2
3
4
5
6
7
8
1 Procedure CPA.Encrypt(pk = (p,t),m € {0,1}2°%, 1 € {0,1}2°%)
2
3
a
5
6
7
8
9 return u’ = Compress(u), v/ = Compress(v)

Procedure CPA.Decrypt(sk,u’,v’)
u = Decompress(u’)

v = Decompress(v’)

m’ — v—INTT(87 o NTT(u))
m € {0,1}?°% = Decode(m”)
return m

o ok W oN -

On Configurable SCA Countermeasures 143

Algorithm 2: Dilithium Signature scheme. The sensitive NTTs and INTTs
within the individual procedures which are protected with countermeasures
are highlighted in blue.

1 Procedure KeyGen ()
2 P,Pl — {0’1}256

3 K « {0,1}256

a N=0

5 for i from 0 to £ — 1 do
6 s1[i] = Sample(PRF(p’, N))
7 N:=N+1

8

9

end

for i from 0 to k — 1 do

s2(i] = Sample(PRF(p’, N))
N:=N+1

10
11

12 end

13 s1 =NTT(s1)

14 a ~ REX* = ExpandA(p)

15 t=INTT(aos;1)+ s

16 t1 = Power2Round(t, d)

17 tr € {0,1}384 = CRH(p||t1)

18 return pk = (p,t1), sk = (p, K, tr,s1,s2,to)
19

1 Procedure Sign(sk = (p, K, tr,s1,s2,t0), M € {0,1}x%)

2 a € RF*% .= ExpandA(p)
3 = CRH(tr|| M)
a k=0,(z,h)=1
5 o' €{0,1}384 .= CRH(K||u)(or p’ « {0,1}38* for randomized signing)
6 §1 = NTT(s1), s = NTT(s2), to = NTT(to)
7 while (z,h) = 1 do
8 y € Sf“71 := ExpandMask(p’||x)
o ¥ = NTT(y)
10 w=INTT(aoy)
11 (w1, wq) = Dqg(W, 27v2)
12 c € Bgo :H(;Lle)
13 ¢=NTT(c)
14 z=y+INTT(¢os})
15 r=INTT(¢os?)
16 (r1,rg) := Dg(w —r,272)
17 if ||Z||loc > 71 — B or ||rolloc > v2 — B or r1 # wi then
18 ‘ (z,h) =L
19 else
20 g =INTT(&otg)
21 h =MHy(—g,w—r+g,272)
22 if ||r||cc > 72 or wt(h) > w then
23 ‘ (z,h) =1
24 end
25 K=kKk+1
26 end

27 return o = (z,h, c)

144

P. Ravi

References

10.

11.

12.

13.

14.

15.

16.

17.

. Reference Manual for STM32L47xxx, STM32L48xxx, STM32L49xxx and

STM32L4Axxx advanced Arm-based 32-bit MCUs (2020)

. Alagic, G., et al.: Status report on the second round of the NIST PQC standard-

ization process. NIST, Technical report, July (2020)

Avanzi, R., et al.: CRYSTALS-Kyber (version 2.0) - Algorithm Specifications And
Supporting Documentation (April 1, 2019). Submission to the NIST post-quantum
project (2019)

. Aysu, A., Tobah, Y., Tiwari, M., Gerstlauer, A., Orshansky, M.: Horizontal side-

channel vulnerabilities of post-quantum key exchange protocols. In: 2018 TEEE
International Symposium on Hardware Oriented Security and Trust (HOST), pp.
81-88. IEEE (2018)

Botros, L., Kannwischer, M.J., Schwabe, P.: Memory-efficient high-speed imple-
mentation of kyber on cortex-M4. In: Buchmann, J., Nitaj, A., Rachidi, T. (eds.)
AFRICACRYPT 2019. LNCS, vol. 11627, pp. 209-228. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-23696-0_11

. Cook, S.: On the minimum computation time for multiplication. Doctoral disser-

tation, Harvard U., Cambridge, Mass 1 (1966)

Cooley, J.W., Lewis, P.A., Welch, P.D.: Historical notes on the fast Fourier trans-
form. Proc. IEEE 55(10), 1675-1677 (1967)

Ducas, L., et al.: CRYSTALS-Dilithium: Algorithm Specifications and Supporting
Documentation. Submission to the NIST post-quantum project (2020)

Fujisaki, E., Okamoto, T.: Secure integration of asymmetric and symmetric encryp-
tion schemes. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 537-554.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_34
Gentleman, W.M., Sande, G.: Fast Fourier transforms: for fun and profit. In: Pro-
ceedings of the November 7-10, 1966, Fall Joint Computer Conference, pp. 563-578.
ACM (1966)

Grosso, V., Standaert, F.-X.: ASCA, SASCA and DPA with enumeration: which
one beats the other and when? In: Iwata, T., Cheon, J.H. (eds.) ASTACRYPT
2015. LNCS, vol. 9453, pp. 291-312. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-48800-3-12

Guo, Q., Grosso, V., Standaert, F.X., Bronchain, O.: Modeling soft analytical
side-channel attacks from a coding theory viewpoint. IACR Trans. Cryptographic
Hardw. Embedded Syst. (2020)

Howe, J., Khalid, A., Rafferty, C., Regazzoni, F., O’Neill, M.: On practical discrete
Gaussian samplers for lattice-based cryptography. IEEE Trans. Comput. (2016)
Hutter, M., Schwabe, P.: NaCl on 8-Bit AVR microcontrollers. In: Youssef, A.,
Nitaj, A., Hassanien, A.E. (eds.) AFRICACRYPT 2013. LNCS, vol. 7918, pp.
156-172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38553-
79

Kannwischer, M.J., Rijneveld, J., Schwabe, P., Stoffelen, K.: PQM4: Post-quantum
crypto library for the ARM Cortex-M4. https://github.com/mupq/pqm4
Karatsuba, A.: Multiplication of multidigit numbers on automata. Soviet physics
doklady 7, 595-596 (1963)

Langlois, A., Stehlé, D.: Worst-case to average-case reductions for module lattices.
Des. Codes Cryptogr. 75(3), 565-599 (2014). https://doi.org/10.1007/s10623-014-
9938-4

https://doi.org/10.1007/978-3-030-23696-0_11
https://doi.org/10.1007/3-540-48405-1_34
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-662-48800-3_12
https://doi.org/10.1007/978-3-642-38553-7_9
https://doi.org/10.1007/978-3-642-38553-7_9
https://github.com/mupq/pqm4
https://doi.org/10.1007/s10623-014-9938-4
https://doi.org/10.1007/s10623-014-9938-4

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

On Configurable SCA Countermeasures 145

Lyubashevsky, V.: Fiat-Shamir with aborts: applications to lattice and factoring-
based signatures. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp.
598-616. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-
735

Lyubashevsky, V., et al.: CRYSTALS-dilithium. Technical report, National Insti-
tute of Standards and Technology (2017). https://csrc.nist.gov/projects/post-
quantum-cryptography /round- 1-submissions

Lyubashevsky, V., Peikert, C., Regev, O.: On ideal lattices and learning with errors
over rings. J. ACM 60(6), 43 (2013)

Nascimento, E., Chmielewski, L.: Applying horizontal clustering side-channel
attacks on embedded ECC implementations. In: Eisenbarth, T., Teglia, Y. (eds.)
CARDIS 2017. LNCS, vol. 10728, pp. 213-231. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-75208-2_13

Nascimento, E., Chmielewski, L., Oswald, D., Schwabe, P.: Attacking embedded
ECC implementations through cmov side channels. In: Avanzi, R., Heys, H. (eds.)
SAC 2016. LNCS, vol. 10532, pp. 99-119. Springer, Cham (2017). https://doi.org/
10.1007/978-3-319-69453-5_6

Oder, T., Schneider, T., Péppelmann, T., Giineysu, T.: Practical CCA2-secure and
masked ring-LWE implementation. TACR Trans. Cryptographic Hardware Embed-
ded Syst. 2018(1), 142-174 (2018)

Pearl, J.: Fusion, propagation, and structuring in belief networks. Artif. Intell.
29(3), 241288 (1986)

Pessl, P., Primas, R.: More practical single-trace attacks on the number theoretic
transform. In: Schwabe, P., Thériault, N. (eds.) LATINCRYPT 2019. LNCS, vol.
11774, pp. 130-149. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30530-7_7

Poéppelmann, T., Oder, T., Giineysu, T.: High-performance ideal lattice-based
cryptography on 8-bit ATxmega microcontrollers. In: Lauter, K., Rodriguez-
Henriquez, F. (eds.) LATINCRYPT 2015. LNCS, vol. 9230, pp. 346-365. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-22174-8_19

Primas, R., Pessl, P., Mangard, S.: Single-trace side-channel attacks on masked
lattice-based encryption. In: Fischer, W., Homma, N. (eds.) CHES 2017. LNCS,
vol. 10529, pp. 513-533. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-66787-4_25

Ravi, P., Roy, S.S., Chattopadhyay, A., Bhasin, S.: Generic side-channel attacks on
CCA-secure lattice-based PKE and KEMs. IACR Trans. Cryptographic Hardware
Embedded Syst. 307-335 (2020)

Reparaz, O., Sinha Roy, S., Vercauteren, F., Verbauwhede, I.: A masked ring-
LWE implementation. In: Giineysu, T., Handschuh, H. (eds.) CHES 2015. LNCS,
vol. 9293, pp. 683-702. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48324-4_34

Roy, S.S., Reparaz, O., Vercauteren, F., Verbauwhede, I.: Compact and Side Chan-
nel Secure Discrete Gaussian Sampling. IACR ePrint Archive, p. 591 (2014)
Saarinen, M.J.O.: Arithmetic Coding and Blinding Countermeasures for Ring-
LWE. IACR Cryptology ePrint Archive 2016, 276 (2016)

https://doi.org/10.1007/978-3-642-10366-7_35
https://doi.org/10.1007/978-3-642-10366-7_35
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://csrc.nist.gov/projects/post-quantum-cryptography/round-1-submissions
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-75208-2_13
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-319-69453-5_6
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-030-30530-7_7
https://doi.org/10.1007/978-3-319-22174-8_19
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-319-66787-4_25
https://doi.org/10.1007/978-3-662-48324-4_34
https://doi.org/10.1007/978-3-662-48324-4_34

146

32.

33.

P. Ravi

Veyrat-Charvillon, N., Gérard, B., Standaert, F.-X.: Soft analytical side-channel
attacks. In: Sarkar, P., Iwata, T. (eds.) ASTACRYPT 2014. LNCS, vol. 8873, pp.
282-296. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-
815

Zijlstra, T., Bigou, K., Tisserand, A.: FPGA implementation and comparison
of protections against SCAs for RLWE. In: Hao, F., Ruj, S., Sen Gupta, S.
(eds.) INDOCRYPT 2019. LNCS, vol. 11898, pp. 535-555. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-35423-7_27

https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-662-45611-8_15
https://doi.org/10.1007/978-3-030-35423-7_27

	On Configurable SCA Countermeasures Against Single Trace Attacks for the NTT *1pt
	1 Introduction
	2 Preliminaries
	2.1 Number Theoretic Transform:
	2.2 CRYSTALS Package
	2.3 Related Works
	2.4 Side-Channel Attacks on NTT

	3 Masking Countermeasures for the NTT
	3.1 Generic Masked Butterfly Construction:
	3.2 Configurable Masked NTT Construction

	4 Shuffling Countermeasures for the NTT
	4.1 Coarse-Full-Shuffled NTT
	4.2 Coarse-In-Group-Shuffled NTT
	4.3 Fine-Shuffled NTT

	5 Experimental Results
	5.1 Target Platform and Implementation Details
	5.2 Performance Evaluation of Protected NTT/INTTs
	5.3 Performance Evaluation of Protected Kyber and Dilithium

	6 Conclusion
	A Stack Memory Consumption of Protected and Unprotected Implementations of Kyber and Dilithium
	B Algorithmic Description of Kyber Encryption scheme and Dilithium Signature Scheme
	References

