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Abstract. Intrusion Detection System (IDS) is a vital security solution
for cloud network in providing defense against cyber attacks. However,
existing IDSs suffer from various limitations that include the inability to
adapt to changing attack patterns, identify novel attacks, requirements
of significant computational resources, and absence of balance between
accuracy and false-positive rates (FPR). These shortcomings in current
IDSs reduce their effectiveness for deploying in cloud-based application
systems. Moreover, most of the cloud IDS researches use conventional
network benchmark datasets like NSL-KDD for evaluation, which do not
provide the actual picture of their performance in real-world cloud sys-
tems. To address these challenges, we propose a Double Deep Q-Network
(DDQN) and prioritized experience replay based adaptive IDS model
built for accurate detection of new and complex attacks in cloud plat-
forms. We evaluated our proposed model using a practical cloud-specific
intrusion dataset, namely, ISOT-CID and a conventional network-based
benchmark dataset (NSL-KDD). The experimental results show better
performance than state-of-the-art IDSs along with novel attack detection
capabilities. Further, We have used flow-based analysis in our model to
ensure low computing resource requirements. Besides, we evaluated the
robustness of our model against a black-box adversarial attack resem-
bling a real-life scenario and observed a marginal decrease in the perfor-
mance. Finally, we demonstrated our model’s usability in a practical use
case with frequent changes in the attack pattern.

Keywords: Intrusion Detection System · Double Deep Q-Network ·
Cyber attacks · ISOT-CID · NSL-KDD · False positive rate ·
Black-box adversarial attack

1 Introduction

Cloud Computing is an effective application design and implementation platform
that allows on-demand access to a shared pool of configurable resources (e.g.,
servers, applications, storage, networks, computation) through networks. These
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resources are easily scalable and swiftly provisioned with the least management
effort or interaction with the service provider. However, the open, distributed,
and multi-tenant architecture of cloud makes it vulnerable to various network
attacks (such as IP spoofing, Distributed Denial of Service (DDoS), etc) as well
as some cloud platform-specific attacks (such as insider attack, cloud malware
injection, etc) [6]. In the last decade, network industries have developed various
tools like firewalls, access control mechanisms to control unauthorized access to
data and resources. However, these techniques are not resilient to insider attacks.
Subsequently, researchers have proposed cloud intrusion detection systems as the
second line of defense to protect the organizational assets from intruders. IDS
monitors network traffic and system-level activities to detect intrusions. IDS can
be classified into two categories based on the target environment it is operating,
i.e. (1) host-based (installed and deployed in a host to monitor the behavior of a
single system [5]) and (2) network-based (captures traffic of the entire network
and systematically analyses to detect any attack on the hosts of that network
for possible intrusions). There are two methods based on the data source to be
analyzed in network-based IDSs (NIDSs): packet-based NIDSs and flow-based
NIDSs. Packet-based NIDSs have to scan all the individual packets that pass
through the network connection and inspect their content beyond the protocol
header, which requires much computation. On the other hand, the flow-based
NIDSs looks at aggregated information of related packets of network traffic in
the form of flow and consume fewer resources.

Researchers also classified IDS based on the detection technique as (1)
signature-based systems, and (2) anomaly-based systems [5]. Signature-based
systems use a repository of signatures of already identified malicious patterns
to detect an attack. They are efficient in detecting known attacks but fail in
case of unforeseen attacks. In contrast, anomaly-based IDS detects intrusions
when the activity of any user deviates from its normal functionality. Although
these systems detect zero-day attacks, they tend to generate a lot of false alerts
leading to a high false-positive rate (FPR).

In the last decade, many researchers proposed traditional machine learn-
ing and deep learning-based cloud IDS system that show excellent performance
[1,22]. However, they also have several limitations that include: 1) lack of proper
adaptivity towards novel and changing attack patterns in the cloud environ-
ment and inability to identify them with high accuracy and low False Positive
Rate (FPR), 2) require frequent human intervention for training which intro-
duces more vulnerabilities and, thereby, affects the model’s performance, 3) use
datasets (such as NSLKDD, UNSW, and AWID) that are obtained by simulat-
ing a conventional network environment and thus, do not reflect a real cloud
environment.

Machine learning classifiers are vulnerable to adversarial scenarios where the
attacker introduces small perturbations in the input and attempts to bypass
the security system. Adversarial machine learning is the study of such tech-
niques where attackers exploit vulnerabilities of ML models and attempts to
dupe them with perturbed inputs. In paper [27], the author shows that slight
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perturbations to the raw input can easily fool DNNs into misclassification. There-
fore, it is essential to understand the performance against adversarial scenarios
and ensure a robust security system design. Several properties of cloud com-
puting including multi-tenancy, open access, and involvement of large business
firms capture the attention of adversarial attackers. This is mainly because of its
potential to cause serious economic and reputational damage. These attacks have
become more sophisticated in recent times due to better computation resources
and algorithms. There is very little research done towards understanding the
performance degradation of an IDS that occurs in adversarial scenarios.

Therefore, we aim at designing a robust and adaptive IDS suitable for
cloud platforms using advanced deep reinforcement learning techniques. Here,
we present significant contributions and novelty of our proposed IDS.

(1) Implementation of a Double Deep-Q Learning-based Cloud IDS:
We use DDQN, which is an advanced deep reinforcement learning algorithm
for building an adaptive cloud IDS. Our proposed IDS can detect and adapt to
novel cloud-specific attack patterns with minimal human interaction.
(2) Integration of prioritized learning: Online reinforcement learning
agents use experience replay to retain and reuse experiences from the past.
Instead of random or uniform selection, we used a concept of prioritizing expe-
riences to call on significant transitions (with higher learning values) more often
that ensures more effective and efficient learning.
(3) Experimentation on a realistic cloud-specific intrusion dataset
(ISOT-CID): We have evaluated our model on the first publicly available
cloud-specific dataset (ISOT-CID) whose features were obtained by applica-
tions running on Openstack based cloud environment. We have also obtained
the model’s performance on a very well-known conventional network-based NSL-
KDD dataset for comparison with state-of-the-art-works.
(4) Durability against adversarial attacks: Adversarial attackers exploit
the vulnerabilities of the machine and deep learning models and trick them for
misclassification. We employed the concept of DDQN that eliminates the overes-
timation problems faced by other Q-learning techniques and shows high robust-
ness with only marginal performance degradation when exposed to adversarial
samples produced by a practical black box attack.

The rest of the paper is organized as follows. Background on DDQN, and
prioritized experience replay is presented in Sect. 2. In Sect. 3, we discuss the
related work. Section 4 presents a brief overview of datasets and their prepro-
cessing steps. Our proposed IDS model is presented in Sect. 5. The robustness of
our IDS model is presented in Sect. 6. The experimental results and conclusions
are discussed in Sect. 7 and Sect. 8 respectively.

2 Background

In this section, we discuss a brief introduction of two key concepts used in this
paper, including DDQN and prioritized experience replay.
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2.1 Double Deep Q Learning (DDQN)

Double Deep Q Learning algorithm is based on the Double Q Learning and
Deep Q Learning algorithms. These algorithms are themselves derived from Q
Learning algorithm. Q Learning algorithm is a popular model-free reinforcement
learning algorithm used in FMDP (Finite Markov Decision Process), where an
agent explores the environment and figures out the strategy to maximize the
cumulative reward. Agent takes actions that make it, move from the current
state to a new state generating a reward alongside. For the specific FMDP, it
identifies an optimal action selection policy to maximize the expected value of
the total reward that can be obtained in the successive steps (provided that it
is given infinite exploration time and a partly-random policy) [12].

A significant limitation of Q-learning is that it works only in environments
with discrete and finite state-action spaces. To extend Q-learning to richer envi-
ronments (where storing the full state-action table is often infeasible), we use
Deep Neural Networks as function approximators that can learn the value func-
tion by taking just the state as input. Deep-Q Learning is one such solution. Deep
Q Learning was tested against classic Atari 2600 games [31], where it outper-
formed other Machine Learning methods in most of the games and performed
at a level comparable with or superior to a professional human games tester.
However, in the paper [7], Hado et al. explain the frequent overestimation prob-
lem found in Deep Q Learning due to the inherent estimated errors of learning.
Such overestimation related errors are also seen in the Q Learning algorithm
and were first investigated by Thrun and Schwartz [12]. They proposed Double
Q-learning as a solution, in which there is a decoupling of action selection and
action evaluation procedures that help lessen the overestimation problem signif-
icantly. Later, Hado et al. [7] proposed a Double Deep Q Learning architecture
that uses the existing architecture and DQN algorithm to find better policies,
thereby improving the performance [7]. They tested their model on six Atari
games by running DQN and Double DQN with six different random seeds. The
results showed that the over-optimistic estimation in Deep Q Learning was more
frequent and severe than previously acknowledged. The results also showed that
Double Deep Q Learning gave the state of the art results on the Atari 2600
domain.

2.2 Prioritized Experience Replay

Many Reinforcement Learning algorithms involve storing past samples and
retraining the model with such samples to help the agents memorize and reuse
past experiences. In the simple experience replay algorithm, the samples are
chosen randomly. However, Schaul et al. [12] pointed out that selecting the sam-
ples based on their capacity to improve the learning of RL agent would lead
to much better learning from past experiences. This gave rise to the concept of
prioritized experience replay wherein the samples are assigned priorities based
on metrics similar to Temporal Difference, which represent the scope of improve-
ment that lies for the agent to be able to correctly predict the outcomes for the
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sample under consideration. In particular, the priority for ith sample is given by
P (i) = pα

i∑
k pα

k
, where pi = |δi|+ ε ,α is the prioritization factor which determines

the importance that is to be given to priorities while sampling past experiences.
Here, δi is the Temporal Difference error function on which the Huber Loss
Function [30] is applied. The frequency of selection of samples is made to be
directly proportional to such priority values. Retraining RL models with sam-
ples selected based on the principles of prioritized experience replay gives much
faster learning speeds and significant improvements in performance when tested
on the Atari Dataset [12]. We have briefly described the implementation details
in Sect. 5.

3 Related Work

In this section, we presents some network-based IDS works for cloud environment
that use machine learning techniques.

In [10], Lopez-Martin et al. proposed a advanced IDS based on several deep
reinforcement learning (DRL) algorithms using NSL-KDD and AWID datasets.
They replaced the requirement of conventional DRL technique for real-time inter-
action with environment by the concept of pseudo-environment, which uses a
sampling function over the dataset records. They analyse the performance of
their technique on four different DRL models that includes Deep-Q-Network
(DQN), Double Deep-Q-Network (DDQN), Policy Gradient (PG), and Actor-
Critic (AC). It has been observed that the DDQN algorithm gives the best
results. However, this IDS work limited to enterprise environment rather than
the cloud architecture.

Sethi et al. [2] presented a cloud NIDS using reinforcement learning. Their
IDS can detect new attacks in the cloud and also adaptive to attack pattern
changes in the cloud. They validated the efficacy of their model using a con-
ventional network dataset (UNSW) instead of cloud network datasets. However,
this work uses UNSW dataset which is not derived from any cloud environment.

Kholidy et al. [4] created a new dataset called cloud intrusion detection
dataset (CIDD) for cloud IDS evaluation. The dataset includes both knowledge
and behavior-based audit data. To build the dataset, the authors implemented
a log analyzer and correlator system (LACS) that extracts and correlates user
audits from a set of log files from the DARPA dataset. The main issue with this
dataset is that its main focus is on detecting a masquerade attack. Also, it does
not consider network flows involving hypervisor. Moreover, the dataset is not
publicly available.

However, none of the above-mentioned works considers the effectiveness of
the IDS system against smart adversarial attackers, which is more frequent in the
cloud platform. Szegedy et al. [29] first observed the exposure of the DL-based
approach to adversarial attacks. Wang [28] proposed a DL-based IDS system in
2018, considering the adversary’s effect.

In summary, state-of-the-art works don’t apply DRL for Cloud intrusion
detection systems though a few recent attempts are present on conventional net-
work applications. Also, the existing works do not use cloud-specific datasets
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and, thereby, are not capable of representing a real cloud environment. Aldribi
et al. [3] introduced the first publicly available cloud dataset called ISOT-CID,
which is derived from a real cloud computing environment. The dataset con-
sists of a wide variety of traditional network attacks as well as cloud-specific
attacks. The author discusses a hypervisor-based cloud IDS involving novel fea-
ture extraction, which obtains an accuracy (best performance) of 95.95% with an
FPR of 5.77% for phase 2 and hypervisor-B portion of the dataset. Our proposed
IDS employs an advanced DRL technique, involving the concepts of DDQN and
prioritized experience replay, for accurate detection of intrusions in the cloud.
We have used the ISOT-CID dataset for testing the effectiveness of our model on
real-world cloud platforms along with the benchmark NSL-KDD dataset. The
experimentation shows that the proposed model is adaptive to changes in attack
patterns as well as robust to the adversarial scenarios.

4 Dataset Description and Prepossessing

Our proposed intrusion detection system is evaluated on benchmark NSL-KDD
and cloud-specific ISOT-CID dataset. In this section, we will present a brief
overview of both datasets as well as their preprocessing to obtain relevant fea-
tures.

4.1 NSL-KDD Dataset

Here, we discuss about the overview and preprocessing steps on the benchmark
NSL-KDD dataset.

1. Overview of the dataset: We evaluated our proposed IDS model on NSL-
KDD dataset [13,14]. NSL-KDD is one of the most widely used dataset for
evaluating any network intrusion detection system. The dataset consists of
a total of 1,48,517 records. The total records are divided into a training
dataset and a testing dataset. The training dataset consists of 1,25,973 records
whereas the testing dataset consists of 22,544 records. Each record in train-
ing and testing dataset consists of 41 attributes. The training dataset consists
of 23 attack types. Similarly testing dataset consists of 37 attack types out
of which 16 are novel attacks that not present in the training dataset. The
attack types are grouped into four types. namely DoS (Denial-of-Service),
Probe, U2L, and R2L. The distribution of labeled data in the training and
testing dataset is Table 1.

Table 1. NSL-KDD dataset classes
distribution

Dataset Total Normal Attack

Training 125973 67343 58630

Testing 22544 9711 12883

Table 2. ISOT-CID dataset classes
distribution

Dataset Total Normal Attack

Training 17296 10377 6919

Testing 7411 4447 2964
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2. Preprocessing of the dataset: As the NSL-KDD dataset contained cat-
egorical features, we used one-hot encoding as part of the preprocessing of
the dataset to encode all such categorical features. This process increased the
count of features from 41 to 122. The next operating step is feature normal-
ization. Many classifiers use distance as a normalization tool. The train and
test datasets of NSL-KDD were normalized to values between 0 and 1 by
L2 normalization [15]. Further, we modified the category column into binary
types for binary classification. The sample’s label value is 1 in the presence
of some form of attack while it is 0 if the label value is normal.

4.2 ISOT-CID Dataset

Here, we discuss about the overview and preprocessing steps on the ISOT-CID
dataset.

1. Overview of the dataset: To evaluate our model we have used the ISOT
Cloud Intrusion Dataset (ISOT-CID) [8], which is the first publicly available
cloud-specific dataset. The data was collected in the cloud for several days
with time slots of 1–2 h per day with the help of special collectors at differ-
ent layers of the OpenStack based production environment (hypervisor layer,
guest hosts layer and the network layer), that forwarded the collected data
(network traffic, system logs, CPU performance measures, memory dumps,
etc) to the ISOT lab log server for storage and analysis. Malicious activities
includes both outsider and insider attacks. For our purpose, we have used
only the network traffic data portion of the ISOT-CID. The entire ISOT-CID
dataset of size 8 TB consists of 55.2 GB of network traffic data. The collected
network traffic data was stored in a packet capture (pcap) format. In phase 1,
a total of 22,372,418 packets were captured out of which 15,649 (0.07%) were
malicious, whereas in phase 2, a total of 11,509,254 packets were captured
out of which 2,006,382 (17.43%) were malicious.

2. Preprocessing with Tranalyzer: Since packet payload processing involves
huge amount of data that have to be processed at very fast rate, flow-based
analysis for intrusion detection is considered better for high-speed networks
due to lower processing loads [11]. To obtain flow-based data from packet-
based data, we have used this open-source tool called Tranalyzer which is a
lightweight flow generator and packet analyzer designed for practitioners and
researchers [9]. With the help of Tranalyzer, we were able to get about 1.8GB
of flow based data in JSON format from about 32.2 GB of packet-based data
in pcap format.

3. Analysis of Tranalyzer output: All the 37 JSON object files which were
output by Tranalyzer, were converted into a single CSV file. This CSV file
was further processed to deal with lists of numbers (replaced by mean value)
and lists of strings (replaced with first string). Finally, all the strings and
hexadecimal values (representing particular characteristics of flow) were one-
hot encoded for further improvement of the training data. Further, the values
that are not integers or floating-point numbers, were converted to ‘Nan’ values
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and later removed in such a way that can make the dataset compatible for
the machine learning analysis. We then labeled the dataset based on the
list of malicious IP addresses that were provided along with the ISOT-CID
documentation [3].

Finally, we apply feature selection process that helps in removing irreverent
features avoiding over-fitting and achieving better accuracy of the model at low
computational ability. In our model, we have used chi-square feature selection
algorithm [26]. The number of selected features becomes 36 and 164 after apply-
ing feature selection on the NSL-KDD dataset and ISOT-CID respectively. For
both dataset, feature vector refers to any record consisting the same features as
obtained from the feature selection process. Feature set refers to the collection
of all such feature vectors for a particular dataset. Further in case of ISOT-
CID post preprocessing, we found out that the dataset was highly skewed, i.e,
the number of non attack samples was much higher than that of the number
of attack samples. Hence, to prevent biased learning, we selected a portion of
the dataset which had a more balanced distribution having 9883 attack samples
and 14,824 normal samples. Table 2 shows the distribution of the dataset in the
training and testing phase.

5 Proposed Intrusion Detection System

Here, we present our proposed cloud IDS that uses concepts of DDQN and prior-
itized learning. Figure 1 show the deployment architecture of our proposed IDS.
It mainly consists of three sub-components: (i) host network, (ii) agent network,
and (iii) cloud administrator network. The host network has the running virtual
machines (VMs), hypervisors, and host machines. The agent network consists
of three modules namely Log Processor, Feature Extractor, and Agent. Agent
network is connected to host network through VPN (Virtual Private Network).
The use of VPN is to prevent the agent network from being compromised by
external attackers and to ensure fast sharing of attack related information or
abnormal activities in the network. To identify the potential intrusions, it is
essential to obtain the audit logs of the target machine. Hence, our model uses
system call traces to communicate audit log information that may include VM
instance specification, CPU utilization, and memory usage in the host machine.

The agent network obtains audit logs from the host network and performs
preprocessing and feature selection on these data to extract the feature vectors.
Finally, it identifies the state of the host network and shares the same with the
Cloud Administrator. In general the state of a host can be “attacked”and “not
attacked”. Depending upon the capacity of the host network, the agent network
logic can be deployed on a single VM (for a small number of host VMs) or as a
Virtual Cluster (VCs) (for a large number of host VMs) in a separate physical
machine in the cloud infrastructure. Next, we discuss the three major functional
components in the agent network.
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Fig. 1. Cloud IDS deployment architecture

(1) Log Processor module: This module receives logs (in an unstructured
format) as input from the hypervisor via VPN channel. It processes logs
and converts it into a structured format. The communication between the
hypervisor and this module is generally realized with high bandwidth links
so that necessary logs are shared before there is any intervention from the
attacker.

(2) Feature Extractor module: This module first applies preprocessing on
data collected from log processor module. This step is mainly used for input
data validation such as removal of NULL values, data-types conversion,
string data removal, one-hot encoding, etc. Subsequently, it performs feature
extraction and feature selection to obtain essential feature values. Further,
these feature values are combined to obtain a feature vector, which is fed
as input to the current DQN in agent module.

(3) Agent module: This module executes an algorithm (i.e., Algorithm 1) that
includes a combination of trained advanced machine learning classifiers and
a Double-Deep-Q-Network (DDQN). It takes feature vector as input and
obtains classifier predictions. The concatenation of feature vector and the
corresponding classifier prediction results forms a state vector. This state
vector is fed to the Current DQN which produces agent result. Then, the
agent result (i.e., agent result) is shared with the cloud administrator, and
the final decision (i.e., actual result) is obtained based on a voting mecha-
nism by cloud administrator. Subsequently, the agent calculates the reward
using the actual result and continuously improves its learning over the time.



Robust Adaptive Cloud IDS Using Advanced DRL 75

Fig. 2. Agent result calculation workflow using DDQN and prioritised learning. CP1,
CP2,...CPk denotes the prediction in form of 1 (for attack) and 0 (for normal) for
classifier C1, C2,...Ck respectively

Next, we derive important reinforcement learning (RL) parameters including
the state vector, action, and rewards.

State: State in RL describes the input by the environment to an agent for
taking actions. In cloud environment, system logs parameters (feature vector)
are used for state parameters as it reflects its current running status. Also, we
run the combination of trained classifiers with feature vector as input to extract
prediction values as classification vector. These two vectors are concatenated
to obtain state vector. Experimentally, the integration of advanced classifiers
with DDQN logic has shown good performance in obtaining higher accuracy
along with low FPR values. The dotted part in blue color of Fig. 2 presents a
workflow on the calculation of state vector estimation process.

Action: An action refers to the agent’s decision after monitoring the state of
the cloud system during a given time window. The Agent network produces an
action vector for a given input feature vector, which is the basis for the final judg-
ment about the attack. It uses three essential steps: a) Obtaining the state vector
using the feature vector and the classifier prediction on these feature vectors, b)
Feeding the state vector to the Current DQN, c) Thresholding the output of the
Current DQN (i.e., the Q-values) against predetermined threshold values, also
known as Q-threshold value, for classifying the decision as an attack or normal,
d) Combining the classifications to form a vector called the decision vector. e)
Obtaining action vector as logical XOR between the decision vector and the
classification vector. We perform the steps c) to e) to ensure that the action
vector should include output same as the classifier prediction if the corresponding
Q-value exceeds the Q-threshold value. Otherwise, it should include output that
is against the classifier prediction. Also, in our algorithm, the term action vector
and agent result refers to same. Figure 2 shows the entire workflow on the cal-
culation of agent result.
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Reward: A reward indicates the feedback from the environment about the
action by an agent. A reward vector r is dependent on the confidence vector
of individual agent and thus it varies from agent to agent. A positive reward is
obtained by a classifier when the classification result1 matches the actual result
else it obtains a negative reward. The magnitude of reward is directly propor-
tional to the probability of prediction by the classifier. Our model ultimately
discovers rules to give appropriate Q-values based on the classifier’s performance
for a particular state vector.

DDQN Architecture. In DDQN, the major advantage is handling the overesti-
mation of action values that takes place in DQN. One of the important principles
of DDQN is the decoupling of action selection and action valuation components.
This is achieved in our case by using two different neural networks. One neu-
ral network is used for computing current Q values while other neural network
is used to compute target Q values. Here, back-propagation takes place in the
current DQN and its weights are copied to the target DQN with delayed syn-
chronization which helps stabilize the target Q values. This copying is done after
regular intervals of a fixed number of epochs. In experimentation, we have used
the epoch interval as 32 as it was found to give optimal results in most of the
cases. The actions (raising appropriate alarms) are taken as per the current Q
function, but the current Qnew values are estimated using the target Q function.
This is done to avoid the moving target effect when doing gradient descent. A
similar approach has been used by Manuel Lopez-Martin et al. in paper [10].
This method of delayed synchronization between two neural networks ensures
the required decoupling and thereby handling the moving target effect of DQN.

Here, we present our algorithms for intrusion detection. Algorithm 1 shows
the learning process executed by an agent. In Algorithm 1, transition comprises
of state vector and updated Q-values. We use memory M to store these tran-
sitions for prioritized experience replay concept of DQN using the sum tree
implementation proposed by Schaul et al. [12]. The value of epoch interval, i.e.,
m is set to 32 in Algorithm 1.

Administrator network executes Algorithm 2 based on output of Algorithm
1 (refer step 13). In step 25 of Algorithm 1, the parameters s, r, w, and γ indi-
cate state vector, reward vector, weights and learning rate respectively. The
parameter γ is taken as 0.01 (found by performing grid search on a logarithmic
scale for values between 1 and 10−6). The function of the administrator network
is shown in Algorithm 2. It uses a voting system to identify the presence or
absence of an attack.

Functional Task of Cloud Administrator: The cloud administrator runs
Algorithm 2 where it monitors the activities of the cloud system constantly
and detect its state. On receiving agent results, it checks for the intrusion and
accordingly shares the actual result to the agent. It also identifies the location
of the intrusion, including entry doors and target VMs.

1 Each value of the classification vector denotes the classification result of a particular
classifier.
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6 Robustness of the Model

In this section, we discuss the procedure for generating adversarial samples for
evaluating the performance of the model against adversarial attacks. This exper-
iment highlights our proposed model’s robustness against the vulnerabilities of
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intentional and small perturbations in the input data that can lead to misclas-
sification. Subsect. 7.4 describes the experimental results that show the high
durability of the model against a practical adversarial attack.

6.1 Adversarial Attack Synthesis

During intrusions, the attacker often wants to create adversarial inputs thought-
fully with minimum perturbations in order to escape any threat detection tool
like IDS. Thus in our experimentation, we use an efficient and practical black-box
adversarial attack as described in the paper [18]. It involves a two-step procedure
for obtaining adversarial samples [19]:

1. Creation of a Substitute Model: The attacker aims to create a model F ,
which clones the target model’s decision abilities. For this, they use results
for synthetic inputs obtained by a Jacobian based heuristic method. It pri-
marily includes five sub-steps including a) Collection of training dataset, b)
Selection of substitute DDQN architecture, c) Labeling of substitute dataset,
d) Training of substitute model, and e) Augmentation of the dataset using
Jacobian-based method.

2. Generation of Adversarial Samples: The attacker uses the substitute
model F obtained from step 1 to generate adversarial samples. Due to the
transferability principle, the target model gets duped by the perturbed input
sample and thus misclassify it. There are two prominent methods for this
step, including (1) Fast Gradient Sign Method (FGSM) and (2) Jacobian-
based Saliency Map Attack (JSMA) [16]. Although the FGSM method is
capable of generating many adversarial samples in less computation time,
their perturbations are high, making them susceptible to detection. In con-
trast, the JSMA method produces smaller perturbations, and it is also more
suitable for misclassification attacks. Thus, in this paper, we use the JSMA
method for generating the adversarial samples.

Jacobian-Based Saliency Map Attack (JSMA) [17]: It is a simple iterative method
to introduce perturbation in the samples, resulting in the target model classifying
incorrectly. It identifies the most critical feature in every iteration and adds noise
to them. In our paper, we use a DDQN model to implement the stated adversarial
method.

To implement step 1, we used a ten layered DDQN model and trained this
model using the training samples of ISOT-CID dataset (refer Table 1) to obtain
the substitute model. Later, we augment data as per the procedure described in
the paper [18] to perform the sub-step e) i.e, augmentation of data. In addition,
for step 2, we implement a five layered deep sequential neural network with same
size input-output labels as the number of features in the dataset. The generate np
function of the Saliency Map Method class in the cleverhans.attacks package of
cleverhans [20] library in Python language implements the above adversarial
method. We iteratively fed unperturbed feature vectors and jsma parameter as
input to this function as it returns an adversarial sample as output. Algorithm
3 briefly discusses the related steps to obtain adversarial dataset from the clean
dataset.
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7 Experimental Results and Discussion

We implemented the model on the Google Colaboratory2 and used Keras and
Tensorflow library for building the DDQN model. We analyzed the performance
of the model using two datasets, including the ISOT-CID and NSL-KDD. The
ISOT-CID dataset is the first publicly available cloud intrusion dataset consisting
of raw data collected at various components of a real-world cloud infrastructure
hosted on the OpenStack platform. On the other hand, NSL-KDD is a renowned
benchmark dataset for IDS, derived from a conventional network environment.
The experimental results include three standard machine learning performance
metrics, i.e., FPR (False Positive Rate), ACC (Accuracy), and AUC (Area under
ROC Curve).

7.1 Classifiers in Model

We obtain the performance on the ISOT-CID and NSL-KDD dataset of five best
and most advanced classifiers for IDS, namely, AdaBoost (ADB), Gaussian Naive
Bayes (GNB), K-Nearest Neighbours (KNN), Quadratic Discriminant Analysis
(QDA), and Random Forest (RF). Table 1 and Table 2 show the distribution of
labeled data of the training and the testing phase that is used for evaluation
in NSL-KDD and ISOT-CID dataset respectively. Later, we group these classi-
fiers into Low-FPR classifiers and High-Accuracy classifiers. We then integrate
some sets of suitable combinations of these classifiers in our model and conduct
evaluation. Finally, we select the most suitable combination that ensures the
best balance between high accuracy and low FPR. The next section presents the
evaluation results of the individual classifiers.

7.2 Evaluation of Individual Classifiers on NSL-KDD and ISOT
Dataset

Table 3 presents the performance of individual classifiers on the NSL-KDD and
ISOT-CID dataset. For the ISOT-CID dataset, Table 3 shows that RF, ADB,
and KNN obtain better accuracy than other classifiers, and we group them as
2 An online cloud-based platform specially designed for ML and deep learning appli-

cations based on the Jupyter Notebook framework.
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High-Accuracy classifiers. On the other hand, the classifiers like QDA and GNB
give relatively lower FPR values, and we group them as a Low-FPR classifier.
Further from Table 3, we obtain the same group of High-Accuracy and Low-FPR
classifiers for the NSL-KDD dataset. Next, we create suitable combinations by
choosing appropriate classifiers from each group. We employ such combinations
in our model and obtain the corresponding evaluation matrices.

Table 3. Individual classifier performance on NSL-KDD and ISOT-CID Dataset

Classifier NSL-KDD ISOT-CID

Accuracy FPR Auc Accuracy FPR AUC

RF 77.95 2.66 0.8054 94.95 5.66 0.792

ADB 78.65 7.009 0.7763 93.65 6.009 0.705

GNB 66 1.688 0.705 85.51 1.78 0.672

KNN 75.67 2.801 0.8087 91.67 4.801 0.7

QDA 69.71 1.59 0.7299 87.71 1.6 0.709

7.3 Evaluation of Proposed IDS Having Combination of Classifiers

The output layer of the current DQN (refer Fig. 2) contains Q-values for a
given feature vector. We observed that the accuracy of Low-Accuracy classi-
fiers (including GNB and QDA) can be improved by varying the threshold on
Q-values. To get the optimal accuracy, we have tried several threshold values on
Q-values corresponding to these classifier in the final output layer. On the other
hand, we fix the threshold on Q-values for the other High-Accuracy classifiers
to a constant value of 0.5 as it is found to produce the optimal results during
experimentation.

Table 4. Performance of our system with classifiers, on NSL-KDD, C1: RF, ADB,
GNB C2: RF, ADB, QDA C3: RF, KNN, ADB, QDA C4: RF, KNN, ADB, GNB

Threshold C1 C2 C3 C4

Accuracy FPR Accuracy FPR Accuracy FPR Accuracy FPR

0.5 78.87% 1.44% 77.1% 1.96% 79.16% 1.6% 79.16% 1.1%

0.2 78.89% 1.47% 83.08% 1.6% 83.24% 1.89% 80.04% 1.17%

0.7 82.88% 1.81% 83.16% 1.6% 83.25% 1.96% 83.40% 1.44%

0.8 83.11% 1.80% 83.24% 1.64% 83.32% 2.00% 83.40 % 1.48%

Table 5. Performance of our system with classifiers on ISOT-CID, C1: RF, ADB,
GNB C2: RF, ADB, QDA C3: RF, KNN, ADB, QDA C4: RF, KNN, ADB, GNB

Threshold C1 C2 C3 C4

Accuracy FPR Accuracy FPR Accuracy FPR Accuracy FPR

0.5 89.17% 4.43% 90.6% 4.06% 92.2% 3.86% 91.5% 3.96

0.6 91.23% 3.42% 92.7% 2.71% 93.23% 2.42 93.06% 2.53

0.7 93.5% 2.61% 95.87% 2.05% 96.87% 1.57% 96.12% 1.81%

0.8 93.2% 2.59% 95.17% 2.5% 95.6% 1.59% 95.3% 1.7%
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We choose a combination of three classifiers that includes two classifiers from
High-Accuracy class and one from Low-FPR classifiers. This selection strategy is
found to give optimal performance in the direction of reducing FPR and increas-
ing accuracy. Two combinations can be formed including C1 (GNB, ADB, RF)
and C2 (QDA, ADB, RF). To further improve the accuracy, we included an
additional High-Accuracy classifier (KNN) with each combination of C1 and C2
to create combination C3 and C4. Next, we evaluated the model against combi-
nations with four classifiers. Table 4 and Table 5 present the evaluation results
on varying the Q-threshold values of the model using these four combinations of
classifiers on NSL-KDD and ISOT-CID dataset respectively. The outcomes show
that the combination C3 (KNN, QDA, ADB, RF) obtains the optimal balance
(i.e., the accuracy of 96.87% and FPR of 1.57%) at the Q-threshold value of 0.7
for ISOT-CID dataset. The combination C4 (KNN, GNB, ADB, RF) gives the
best performance (i.e., the accuracy of 83.40% and FPR of 1.48%) for the NSL-
KDD dataset at the Q-threshold value of 0.8. The evaluation results show that
our models’ performance improves marginally after addition of KNN classifier.
Thus, we use combination C3 and C4 for further experimentation on ISOT-CID
and NSL-KDD dataset respectively as they give the highest accuracy and least
FPR.

The experimentation shows that our proposed model obtains significantly
better evaluation results than individual classifiers. Further, we evaluated the
DQN model described in the paper [25] on both the datasets to compare with
the DDQN model that we have proposed in this paper.

7.4 Experimental Analysis of Proposed IDS on Black-Box
Adversarial Attack

We emulated an adversarial attack on the proposed DDQN based model. Adver-
sarial attacks on the machine and deep learning models is a widespread problem.
The design of such adversarial models to test the robustness of designed models
is a thriving research topic. However, very little work has been done to conduct
adversarial analysis in the context of cloud IDS. We evaluated the robustness
of our model based on the practical black-box adversarial attack proposed in
[27]. We observed a substantial change in the feature vector after applying the
adversarial model, i.e., nearly one-third of the feature values were found to be
perturbed after applying the adversarial method on the datasets. Then we eval-
uated the performance of our model using the black box implementation. The
Tables 6 show the test set evaluation of our model on the ISOT-CID and NSL-
KDD dataset respectively. As can be seen from the Tables, the average accuracy
fell down by about 3.5% and the FPR value increased by 1.5 times in case of
NSL-KDD dataset. On the other hand, in the case of ISOT-CID dataset, there
was a marginal decrease in the performance with nearly 4% fall in accuracy and
2% rise in FPR.
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Table 6. Measuring robustness of our system against adversarial attacks based on
NSL-KDD and ISOT-CID Data set

Action NSL-KDD ISOT-CID

Accuracy FPR Auc Accuracy FPR AUC

Model before adversarial attack 83.40 1.48 0.8432 96.87 1.5 0.861

Model after adversarial attack 79.77 3.7 0.7980 92.17 3.3 0.8112

7.5 Performance of Model on Continuously Changing Attack Types

In this section, we evaluate our model performance when targeted by a contin-
uously changing attack types. The key highlight of this experiment is to under-
stand the adaptive and dynamic behaviour of the model towards novel attacks.
Here, the model faces a zero-day attack scenario, and it is expected to adapt
and detect the newer attack type with improving performance as the number of
such attack samples increases. We have emulated this by deriving a new dataset
using the different attack types of ISOT-CID dataset. ISOT-CID dataset collects
the logs in a span of eighteen days where each day has new attack types. How-
ever, the majority of the volume belongs to first six days and each of these days
has new attack type. We leveraged this property of the data set to find out the
efficacy of model regarding adaptiveness towards novel attacks. We conducted
experiments which involved making our model face new attacks constantly and
noting down its accuracy, FPR and AUC (refer Table 7). The performance of
any ith day is obtained by training the model to dataset belonging from day 1
to day i− 1 and evaluating it on the ith day dataset. This is similar to situation
in the real-world where model would face novel threats on almost every new day
and its prediction would depend on the learning from past. As it can be seen
from Table 7, our model performs fairly well even if it is trained for a few days
and tested on unknown attack types. The consistent improvements in metrics
like Accuracy, FPR and AUC, in subsequent days, suggest high adaptability and
robustness in long term use.

Table 7. Performance of model on daily changing attack type

Day Attack type Number of samples ACC FPR AUC

1 DTA and UCM 24622 – – –

2 NS 66124 82.23% 2.81% 0.8211

3 SQLI, CSS, PT, S-DOS 36517 87.16% 0.88% 0.8801

4 BFLA (failed) 43489 89.11% 0.16% 0.9030

5 UCM, DNSADOS, HTTPFDOS 48716 92.80% 0.10% 0.9381

ACC: Accuracy, DTM: Dictionary Traversal Attack, UCM: Unauthorized Crypto-

mining, NS: Network scanning, SQLI: SQL Injection, CSS: Cross-site Scripting(XSS),

PT: Path Traversal, S-DOS: Slowloris DOS, BFLA: Brute Force login attack, UCM:

Unauthorized Crypto-mining, DNSADOS: DNS amplification DOS, HTTPFDOS:

HTTP flood DOS
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7.6 Comparison of Proposed IDS with State-of-the-Art Works

We compared our proposed model to existing intrusion detection models using
NSL-KDD, and ISOT-CID datasets. We evaluated the performance with param-
eters such as Design, Adaptiveness, Dataset, Robustness, suitability for Cloud
platform, Accuracy, FPR. The comparative study is presented in Table 8.

Most state-of-the-art IDS models [3,21–25] use deep learning or reinforcement
learning. In contrast, our proposed IDS implements a DDQN logic, which is an
advanced deep reinforcement learning algorithm. Although the model described
in paper [10] uses DDQN based IDS, the architecture of the model is suited for
conventional networks and not for the cloud environment. Also, in contrast to
[10], we evaluate our proposed IDS using ISOT-CID (which is a practical cloud-
specific intrusion dataset) along with NSL-KDD. The paper [3] presented a cloud
IDS and did an evaluation using the ISOT-CID dataset. However, the model
in paper [3] lacks adaptiveness towards novel attacks and provides no study
about the impact of the adversarial attack. Both of these two parameters are
an essential security requirement for the current cloud environment. In contrast
to [3], our work is adaptive, robust against adversarial attacks, and maintains a
good balance between accuracy and FPR.

Table 8. Comparison of performance: our model vs. state-of-the-art works

Reference Model Adaptive Robustness Cloud suitability Dataset Accuracy (%) FPR (%)

[21] RNN ✗ ✗ ✗ NSL-KDD 83.28 3.06

[10] DDQN ✓ ✗ ✗ NSL-KDD 89.78 –

[22] DNN ✗ ✓ ✗ NSL-KDD 78.5 6.94

[23] AE-RL ✗ ✓ ✗ NSL-KDD 80.16 –

[25] DQN ✓ ✓ ✗ NSL-KDD 81.80 2.6

[24] DL H2O ✓ ✗ ✓ NSL-KDD 83 –

[3] OMSCA ✗ ✗ ✓ ISOT-CID 96.93 7.56

Our model DDQN ✓ ✓ ✓ NSL-KDD 83.40 1.48

ISOT-CID 96.87 1.5
∗ RNN: Recurrent Neural Network, DDQN: Double Deep-Q-Network, DNN: Deep Neural Network, DQN:

Deep-Q-Network, GAN: Generative Adversarial Network, AE-RL: Adversarial Environment Reinforcement

Learning, DL H2O: Deep Learning H2O, OMSCA: Online Multivariate Statistical Change Analysis

8 Conclusion

In this paper, we present an advanced deep reinforcement learning based cloud
intrusion detection system that provides high accuracy and low FPR when eval-
uated using ISOT-CID and NSL-KDD dataset. Our models aim to meet the
real-world constraints of limited processing resources and adaptability towards
novel attacks and changing attack patterns. For this, we did experimentation
on the dataset with a flow-based technique that is computationally lighter. We
introduced DDQN based IDS to handle the overestimation of action values in
the Deep Q Learning-based model. The Experimental results show significant
improvements in evaluation metrics as compared to individual classifiers. In
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Sect. 7.4, we verified the robustness of the proposed IDS against a practical black-
box adversarial attack. Further, Sect. 7.5 shows our system’s ability to handle
newer attack types (even with very little training data). Overall, the evaluation
of the model shows a better performance compared to state-of-the-art works and
its effectiveness for deploying in the cloud platforms. In the future, we intend
for the deployment, implementation and evaluation of the proposed IDS on a
practical cloud infrastructure.
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