
Quantum Resource Estimates of Grover’s
Key Search on ARIA

Amit Kumar Chauhan(B) and Somitra Kumar Sanadhya

Indian Institute of Technology Ropar, Rupnagar, India
amit.iitropar@gmail.com, somitra@iitrpr.ac.in

Abstract. Grover’s algorithm provides a quantum attack against block
ciphers by searching for a k-bit key using O(

√
2k) calls to the cipher,

when given a small number of plaintext-ciphertext pairs. Recent works
by Grassl et al. in PQCrypto’16 and Almazrooie et al. in QIP’18 have
estimated the cost of this attack against AES by analyzing the quantum
circuits of the cipher.

We present a quantum reversible circuit of ARIA, a Korean stan-
dardized block cipher that is widely deployed in government-to-public
services. Firstly, we design quantum circuits for the main components
of ARIA, and then combine them to construct the complete circuit of
ARIA. We implement Grover’s algorithm-based exhaustive key-search
attack on ARIA. For all three variants of ARIA-{128, 192, 256}, we
establish precise bounds for the number of qubits and the number of
Clifford+T gates that are required to implement Grover’s algorithm.

We also estimate the G-cost as the total number of gates, and DW -
cost as the product of circuit depth and width. To find the circuit depth
of various circuits such as squaring, multiplier, and permutation layer,
we implement them in an open-source quantum computing platform
QISKIT developed by IBM.

Keywords: Quantum cryptanalysis · Quantum circuit · Grover’s
search algorithm · Block cipher · ARIA

1 Introduction

Recent advancements in quantum computing technologies have enhanced the
viability of a large-scale quantum computer. Consequently, much of the tradi-
tional public-key cryptosystems such as RSA, ECDSA, ECDH will be completely
broken due to Shor’s algorithm [22]. However, it is widely believed that symmet-
ric cryptosystems like block ciphers and hash functions are quantum-immune.
The only known principle is the square-root speed-up over classical key search
or pre-image search attacks with Grover’s algorithm [11].

The national institute of standards and technology (NIST) has also initiated
a process to standardize the cryptographic primitives that are designed to remain
secure in the presence of quantum computers. NIST [19] defined various security
categories defined based on the concrete cost of an exhaustive key search on the
c© Springer Nature Switzerland AG 2020
L. Batina et al. (Eds.): SPACE 2020, LNCS 12586, pp. 238–258, 2020.
https://doi.org/10.1007/978-3-030-66626-2_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66626-2_13&domain=pdf
https://doi.org/10.1007/978-3-030-66626-2_13

Quantum Resource Estimates of Grover’s Key Search on ARIA 239

block cipher AES and collision search for the hash function SHA-3 as a reference
point. The relevant cost metrics include the number of qubits, the number of
Clifford+T gates, and the T -depth and overall circuit-depth. The NIST proposal
derives security categories on gate cost estimates from the gate-level descriptions
of the AES oracle by Grassl et al. [10].

Related Work. Grassl et al. [10] studied the quantum circuits of AES and
estimated the cost of quantum resources needed to apply Grover’s algorithm to
the AES oracle for key search. Almazrooie et al. [1] improved the quantum circuit
of AES-128. The work by Grassl et al. [10] focused on minimizing the number of
qubits. In contrast, Almazrooie et al. [1] focused on reducing the total number of
Toffoli gates by saving one multiplication in a binary field inversion circuit. Amy
et al. [3] estimated the cost of generic quantum pre-image attacks on SHA-2 and
SHA-3. Later, Kim et al. [15] discussed the time-space trade-off cost of quantum
resources on block ciphers in general and used AES as an example.

Recently, Langenberg et al. [17] developed the quantum circuits for AES that
demonstrate the significant improvements over the works by Grassl et al. [10]
and Almazrooie et al. [1]. Their work was based on the different S-box design
derived by Boyar and Peralta [6], which significantly reduces the number of Tof-
foli gates in the S-box and its Toffoli-depth. Jaques et al. [13] further studied the
quantum key-search attacks under a depth restriction. As a working example,
they implemented the AES Grover oracle in Q# quantum programming lan-
guage. They provided lower-cost estimates by considering different time-space
trade-offs based on the NIST security categories for maximum depth.

Bonnetain et al. [5] also studied the post-quantum security of AES within
a new framework for classical and quantum structured search. They used the
work by Grassl et al. [10] for deducing concrete gate counts for reduced-round
attacks.

Our Contribution. In this work, we present a reversible quantum circuit of the
block cipher ARIA-k [16], where k = 128, 192, 256 are the different key sizes. To
implement the full quantum circuit of ARIA, we separately present the quantum
circuits for squaring, multiplier, S-box, and the diffusion layer. For the invert-
ible linear map, we adopt an in-place PLU decomposition algorithm as imple-
mented in SageMath1 [24]. For each circuit used in ARIA, we establish the cost
of quantum resources for the number of qubits and the number of Pauli-X gates,
controlled-NOT gates, and Toffoli gates. We also compute their circuit depth by
implementing them in an open-source quantum computing platform Qiskit2 [9].
The source code of Qiskit and Sagemath implementations of squaring, multiplier,
S-boxes, and diffusion matrix for ARIA is publicly available3 under a free license
to allow independent verification of our results. For all three variants of ARIA-
{128, 192, 256}, we first provide the entire cost of these oracles for the number

1 https://www.sagemath.org.
2 https://qiskit.org.
3 https://github.com/amitcrypto/ARIA-Blocks-Qiskit.git.

https://www.sagemath.org
https://qiskit.org
https://github.com/amitcrypto/ARIA-Blocks-Qiskit.git

240 A. K. Chauhan and S. K. Sanadhya

of qubits, Pauli-X gates, controlled-NOT gates, Toffoli gates, and Toffoli-depth
and overall circuit depth. Later, when we apply Grover’s search algorithm [11] to
all three ARIA oracles, we consider the decomposition of reversible circuits into
a universal fault-tolerant gate set that can be implemented as the Clifford+T
gate set.

The Clifford group consists of Hadamard gate, Phase gate, and controlled-
NOT gate. An important non-Clifford gate is a Toffoli gate, which is universal
and composed of a few T gates and Clifford gates. For implementing the Toffoli
gate, we use Amy et al. [2]’s Toffoli decomposition that requires 7 T -gates and
8 Clifford gates with T -depth of 4 and a total depth of 8. However, Selinger [21]
offers a Toffoli decomposition with 7 T -gates and 18 Clifford gates, with T -depth
1 and 4 ancillae. To realize an �-fold controlled-NOT gate in terms of T -gates, we
use the result by Wiebe and Roetteler [23] and the estimated cost as (32 ·�−84).

We then provide the precise cost estimate of quantum resources for Grover’s
based key search attack in the Clifford+T model. We also compute the G-cost
as the total number of gates and DW -cost as the product of circuit depth and
width (the number of qubits) as defined by Jaques and Schanck [14]. We provide
the results in Table 6. We believe that like the work by Grassl et al. [10], our
work will further help to assess the security of ARIA against more advanced
quantum reduced-round attacks.

Organization. First, we briefly discuss quantum computation and Grover’s
algorithm in Sect. 2. Next, we recall the structure of block cipher ARIA in
Sect. 3. We rewrite the SubBytes function to get an advantage over the reversible
implementation of ARIA. We then separately evaluate the cost of each operation
for one round of ARIA, and the cost of round subkeys generation. In Sect. 4,
we present the full quantum reversible circuit of ARIA-128, and give overall
cost estimates of resources used in the quantum reversible circuit of ARIA-{128,
192, 256}. In Sect. 5, we provide the total resource estimates of an exhaustive
key search with Grover’s algorithm for ARIA-{128, 192, 256}. In Sect. 6, we
compare the quantum resource estimates of ARIA and AES [10,14]. In Sect. 7,
we conclude our work.

2 Preliminaries

2.1 Quantum Computation

A quantum computer acts on quantum states by applying quantum gates to its
quantum bits (qubits). A qubit (|0〉 or |1〉) is a quantum system defined over a
finite set B = {0, 1}. The state of a 2-qubit quantum system |ψ〉 is the super-
position defined as |ψ〉 = α |0〉 + β |1〉, where α, β ∈ C and |α|2 + |β|2 = 1.
In general, the states of an n-qubit quantum system can be described as unit
vectors in C

2n

under the orthonormal basis {|0 . . . 00〉 , |0 . . . 01〉 , . . . |1 . . . 11〉},
alternatively written as {|i〉 : 0 ≤ i < 2n}. Any quantum algorithm is described
by a sequence of gates in the form of a quantum circuit, and all quantum com-
putations are reversible. For circuit design, we use the standard quantum circuit

Quantum Resource Estimates of Grover’s Key Search on ARIA 241

model [18] and adopt the basic gate set {Pauli-X, H, CNOT, T, Toffoli}. We
briefly define the basic gates in Table 1. To estimate the cost of resources, we
consider the decomposition of reversible circuits over the Clifford+T gate set.

Table 1. Commonly used 1-, 2-, 3-qubit quantum gates, along with their corresponding
unitary matrices, circuit symbols, and a description of their actions.

2.2 Grover’s Search Algorithm

We briefly recall the interface that we need to provide for realizing a key search,
namely Grover’s algorithm [11]. The Grover searching procedure takes as an
input a quantum circuit implementing a Boolean function f : {0, 1}k → {0, 1}
in the usual way, i.e., via a quantum circuit Uf that implements |x〉 |y〉 �→
|x〉 |y ⊕ f(x)〉, where x ∈ {0, 1}k and y ∈ {0, 1}. The basic Grover’s algo-
rithm finds an element x0 such that f(x0) = 1. The Grover’s algorithm con-
sists of repeatedly applying the operation G to the initial state |ψ〉 ⊗ |φ〉, where
|ψ〉 = 1√

2k

∑
x∈{0,1}k |x〉 and |φ〉 = 1√

2
(|0〉 − |1〉). The Grover operator G is

defined as

G = Uf

((
H⊗k (2 |0〉 〈0| − 12k) H⊗k

) ⊗ 12

)

242 A. K. Chauhan and S. K. Sanadhya

where |0〉 denotes the all zero basis state of the appropriate size. In order to find a
solution x0 such that f(x0) = 1, G has to be applied O(

√
N) times to the cipher,

where N = 2k is the total number of possible solutions, and provided that there
is only one solution. This means that we can find a solution by applying H⊗k+1

to the initial state |0〉⊗k ⊗|1〉 and then applying G�, where � = �π
4

√
2k�, followed

by a measurement of the entire quantum register which will yield a solution x0

with high probability [7].
In finding the unique solution using Grover’s algorithm, we study the number

of gates and space requirements needed to apply Grover’s algorithm to the block
cipher ARIA.

3 Quantum Circuits to Implement ARIA

ARIA [16] is a 128-bit block cipher standardized as a Korean standard block
cipher. Its design is based on a substitution-permutation network such as AES.
ARIA supports three different key sizes – 128, 192 and 256 bits with different
number of rounds – 12, 14, 16 respectively. The 128-bit internal state and key
state are treated as a bytes matrix of 4 × 4 size, where the bytes are numbered
from 0 to 15 column-wise.

We will devote 128 qubits to hold the current internal state.

The ARIA cipher consists of two parts:

1. Round transformation – Each round of the ARIA cipher consists of the
following three basic operations, except the last round.

• Substitution layer (SL): a non-linear byte-wise substitution applied
to every byte of the state matrix in parallel, where two different substi-
tution layers exist for odd and even rounds.
• Diffusion layer (DL): a linear matrix multiplication of the state
matrix with a 16 × 16 involution matrix.
• Add round key (ARK): simply XORing of the state and a 128-bit
round key, which is derived from the master key.

Before the first round, an initial ARK operation is applied, and the DL oper-
ation is omitted in the last round.

2. Key scheduling algorithm – It generates the round keys for different
rounds from a master key K of 128, 192, or 256 bits. It works in two phases:

• Initialization phase: Four 128-bit values W0,W1,W2,W3 are gener-
ated from the master key MK, by using a 3-round Feistel cipher.
• Round key generation phase: By combining four values
W0,W1,W2,W3, the round subkeys for encryption are generated. The
number of round keys for ARIA-{128, 192, 256} are 13, 15, 17 respec-
tively.

Quantum Resource Estimates of Grover’s Key Search on ARIA 243

Next, we separately describe each operation of ARIA and measure the quantum
resource estimates for its reversible implementation.

3.1 Add Round Key (ARK)

In the implementation of the key expansion, we ensure that the current round
key is available on 128 dedicated wires. Then we simply XOR the 128-bit round
key with the current state.

Quantum Resource Estimates for ARK. Implementing the bit-wise XOR
of the round key needs 128 CNOT gates, which can be executed in parallel, and
therefore the circuit depth is 1.

3.2 Substitution Layer (SL)

ARIA has two different substitution layers for even and odd rounds. In each
odd round, the substitution layer consist of four 8-bit S-boxes in the following
order (S1, S2, S

−1
1 , S−1

2), and in each even round the substitution layer consists
of the following 4 S-boxes (S−1

1 , S−1
2 , S1, S2) operating on one column. Each S-

box replaces one byte of the current state with a new value. We treat a state
byte as an element α ∈ F2[x]/(x8 + x4 + x3 + x + 1).

1. The first S-box S1 : GF (28) → GF (28) is defined as

S1(α) := A.α−1 + a (1)

where A =

⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1
1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1

⎤

⎥
⎥
⎥
⎥
⎦

and a =

⎡

⎢
⎢
⎢
⎢
⎣

1
1
0
0
0
1
1
0

⎤

⎥
⎥
⎥
⎥
⎦

.

The inverse of S-box S1 can be defined as

S−1
1 (α) := (A−1.(α + a))−1 (2)

where A
−1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 1 0 0 1 0 1
1 0 0 1 0 0 1 0
0 1 0 0 1 0 0 1
1 0 1 0 0 1 0 0
0 1 0 1 0 0 1 0
0 0 1 0 1 0 0 1
1 0 0 1 0 1 0 0
0 1 0 0 1 0 1 0

⎤

⎥
⎥
⎥
⎥
⎦

and a =

⎡

⎢
⎢
⎢
⎢
⎣

1
1
0
0
0
1
1
0

⎤

⎥
⎥
⎥
⎥
⎦

.

2. The second S-box S2 : GF (28) → GF (28) is defined as

S2(α) := B.α247 + b (3)

244 A. K. Chauhan and S. K. Sanadhya

where B =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 1 1 1 1 0
0 0 1 0 1 1 1 1
1 0 0 1 0 1 1 1
1 1 0 0 1 0 1 1
1 1 1 1 0 0 1 0
0 1 1 1 1 0 0 1
1 0 1 1 1 1 0 0
0 1 0 1 1 1 1 0

⎤

⎥
⎥
⎥
⎥
⎦

and b =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
0
0
0
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

.

We rewrite the Eq. (3) as

S2(α) := B.(α−1)8 + b = B.C.α−1 + b

= D.α−1 + b (4)

where D =

⎡

⎢
⎢
⎢
⎢
⎣

0 1 0 1 0 1 1 1
0 0 1 1 1 1 1 1
1 1 1 0 1 1 0 1
1 1 0 0 0 0 1 1
0 1 0 0 0 0 1 1
1 1 0 0 1 1 1 0
0 1 1 0 0 0 1 1
1 1 1 1 0 1 1 0

⎤

⎥
⎥
⎥
⎥
⎦

and b =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
0
0
0
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

.

The inverse of S-box S2 can be defined as

S−1
2 (α) = (D−1.(α + b))−1 (5)

where D
−1 =

⎡

⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 0 0 0
0 0 1 0 0 1 1 0
0 0 0 0 1 0 1 0
1 1 1 0 0 0 1 1
1 1 1 0 1 1 0 0
0 1 1 0 1 0 1 1
1 0 1 1 1 1 0 1
1 0 0 1 0 0 1 1

⎤

⎥
⎥
⎥
⎥
⎦

and b =

⎡

⎢
⎢
⎢
⎢
⎣

0
1
0
0
0
1
1
1

⎤

⎥
⎥
⎥
⎥
⎦

.

Quantum Resource Estimates for Substitution Layer (SL). In the imple-
mentation of substitution layer, we first compute α−1 used in SubBytes functions
S1, S

−1
1 and S2, S

−1
2 given in Eqs. (1), (2), (3), (5) and then we apply the corre-

sponding affine transformations.
To compute α−1, we use Itoh-Tsujii multiplier [12] that is a series of multi-

plication and squaring operations in GF(2n). ARIA’s operations work in GF(28)
with irreducible polynomial P (x) = x8 + x4 + x3 + x + 1. Specifically, we can
write α−1 as

α−1 = α254 = ((α.α2).(α.α2)4.(α.α2)16.α64)2. (6)

The squaring in GF(28) can be implemented with only 12 CNOT gates, and
the circuit depth is 7. The resulting circuit is shown in Fig. 1.

The multiplication in GF(28) can be realized by using a classical Mastrovito
multiplier, which is adopted by Maslov et al. [8]. For the inputs a = [a0, . . . , a7]ᵀ

and b = [b0, . . . , b7]ᵀ in GF(28), let the product of a and b is denoted by c =
[c0, . . . , c7]ᵀ. The multiplier circuit for computing c can be implemented with 64
Toffoli gates and 21 CNOT gates, and the circuit depth is 37 and Toffoli-depth
is 28. The resulting circuit is shown in Fig. 2.

Quantum Resource Estimates of Grover’s Key Search on ARIA 245

a0

a1

a2

a3

a4

a5

a6

a7

a0

a4

a1

a6

a2

a5

a3

a7

Fig. 1. Circuit for squaring in F2[x]/(x8 + x4 + x3 + x + 1).

a0
a1
a2
a3
a4
a5
a6
a7
b0
b1
b2
b3
b4
b5
b6
b7
0

a0
a1
a2
a3
a4
a5
a6
a7
b0
b1
b2
b3
b4
b5
b6
b7
c0
c1
c2
c3
c4
c5
c6
c7

�e QT �d

0
0
0
0
0
0
0

�a

�b

�c = �a.�b

Fig. 2. Circuit for multiplier in F2[x]/(x8 + x4 + x3 + x + 1).

The SubBytes functions S1 and S2 given in Eqs. (1) and (3) can be implemented
with 33 squarings and 7 multiplications and the required number of qubits are
only 40. The resulting circuit is shown in Fig. 3. The same circuit with 40 qubits
was also given by Kim et al. [15].

|α >

S

M S S

S†

S S

M

S† S†

S† S†

SSSSSS

M

M

M†

S S

S S

S† S† S† S† S† S†

S† S†

M†

S

S† S† M†

S†S

|0 >

|0 >

|0 >

|0 >

|α >

|0 >

|0 >

|0 >

|0 >

|α >

|0 >

|0 >

|0 >

|α >

|S1(α) >

|0 >

|0 >

|0 >

|α254 >= |α−1 >

Affine

Fig. 3. Circuit for SubBytes functions S1 and S2. The gates labelled with S represent
the squaring circuit shown in Fig. 1, and the gates labelled with M represent the
multiplier circuit shown in Fig. 2. The gates labelled with S† and M† represent the
inverse squaring and inverse multiplication respectively. Different affine transformations
are used for computing S1 and S2 (see Fig. 4 and Fig. 6). The first wire represents the
input, the second wire represents the S-box output by computing the multiplicative
inverse α−1 which is equivalent to α254 in Galois field GF[28], and other three wires are
used as workspace (ancillary qubits).

246 A. K. Chauhan and S. K. Sanadhya

The affine function of S-box S1 can be implemented with only 26 CNOT
gates and 4 Pauli-X (NOT) gates. The resulting circuit is shown in Fig. 4. The
affine function of S-box S−1

1 can be implemented with only 18 CNOT gates and
4 Pauli-X (NOT) gates. The resulting circuit is shown in Fig. 5.

The affine function of S-box S2 can be implemented with only 35 CNOT
gates and 4 Pauli-X (NOT) gates. The resulting circuit is shown in Fig. 6. The
affine function of S-box S−1

2 can be implemented with only 27 CNOT gates and
4 Pauli-X (NOT) gates. The resulting circuit is shown in Fig. 7.

a0

a1

a2

a3

a4

a5

a6

a7

X

X

X

a0

a1

a2

a3

a4

a6

a7

a5XX

Fig. 4. Circuit for affine function of S1.

X

X

X

X

a0

a1

a2

a3

a4

a5

a6

a7

a2

a0

a1

a3

a4

a5

a6

a7

Fig. 5. Circuit for affine function of S−1
1 .

X

X

X

X

a0

a1

a2

a3

a4

a5

a6

a7

a1

a2

a0

a3

a5

a4

a6

a7

Fig. 6. Circuit for affine function of S2.

X

X

X

X

a0

a1

a2

a3

a4

a5

a6

a7

a3

a2

a5

a0

a4

a1

a7

a6

Fig. 7. Circuit for affine function of S−1
2 .

3.3 Diffusion Layer (DL)

The diffusion layer is defined by an invertible map D : GF (28)16 → GF (28)16

which is given by

(x0, x1, . . . , x15) �→ (y0, y1, . . . , y15), (7)

where (y0, y1, . . . , y15) can be computed by a matrix multiplication as follows.
⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

y0
y1
y2
y3
y4
y5
y6
y7
y8
y9
y10
y11
y12
y13
y14
y15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 0 1 1 0 1 0 1 1 0 0 0 1 1 0
0 0 1 0 0 1 0 1 1 1 0 0 1 0 0 1
0 1 0 0 1 0 1 0 0 0 1 1 1 0 0 1
1 0 0 0 0 1 0 1 0 0 1 1 0 1 1 0
1 0 1 0 0 1 0 0 1 0 0 1 0 0 1 1
0 1 0 1 1 0 0 0 0 1 1 0 0 0 1 1
1 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 1 1 1 0 0
1 1 0 0 1 0 0 1 0 0 1 0 0 1 0 1
1 1 0 0 0 1 1 0 0 0 0 1 1 0 1 0
0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 1
0 0 1 1 1 0 0 1 0 1 0 0 1 0 1 0
0 1 1 0 0 0 1 1 0 1 0 1 1 0 0 0
1 0 0 1 0 0 1 1 1 0 1 0 0 1 0 0
1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0
0 1 1 0 1 1 0 0 1 0 1 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

x0
x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12
x13
x14
x15

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

Quantum Resource Estimates for Diffusion Layer (DL). In the imple-
mentation of the diffusion layer, we convert the diffusion matrix of 16 × 16 size

Quantum Resource Estimates of Grover’s Key Search on ARIA 247

into a matrix of 128×128 size by replacing 0 with a zero matrix of 8×8 size and
1 with an identity matrix of 8×8 size. Using the PLU decomposition algorithm,
this modified diffusion matrix can be implemented with only 768 CNOT gates,
and the circuit depth is 26.

3.4 Key Scheduling Algorithm

ARIA’s key scheduling algorithm consists of two parts: initialization and round
key generation, which we describe as follows.

In the initialization phase, four 128-bit values W0,W1,W2,W3 are generated
from the master key MK, using a 3-round 256-bit Feistel cipher. MK can be of
128, 192, 256-bit sizes. The 256-bit value input to 256-bit Feistel is defined as

KL||KR = MK||00 . . . 0

where KL is a 128-bit value with bits from MK, and the remaining bits of MK
are the part of 128-bit value KR by appending zeroes to it.

Let Fo and Fe be odd and even round functions of ARIA round transfor-
mation. The round function takes 128-bit predefined constants CKi to be the
rational part of π−1 and are given as follows:

CK1 = 0x517cc1b727220a94fe12abe8fa9a6ee0

CK2 = 0x6db14acc9e21c820ff28b1d5ef5de2b0

CK3 = 0xdb92371d2126e970324977504e8c90e0.

The generation of four quantum words is as follows:

W0 = KL, W1 = Fo(W0, CK1) ⊕ KR,

W2 = Fe(W1, CK2) ⊕ W0, W3 = Fo(W2, CK3) ⊕ W1.

The initialization process of key schedule of ARIA is shown below in Fig. 8.

KL

KR

Fo Fe Fo

W3

CK1 CK2 CK3

W0 W1 W2
W2

Fig. 8. Initialization phase : 3-round Feistel scheme.

In the round key generation phase, we combine the four values
W0,W1,W2,W3 to obtain the encryption round keys RKi of 128-bit size each.
Note that number of rounds used in ARIA is 12, 14, 16, corresponding to the
key sizes 128, 192, 256 of the master key, respectively. Since one extra key is

248 A. K. Chauhan and S. K. Sanadhya

required for the last round key addition, the number of round keys needed is 13,
15, and 17, respectively. The round subkeys are generated as follows:

RK1 = (W0) ⊕ (W≫19
1),

RK3 = (W2) ⊕ (W≫19
3),

RK5 = (W0) ⊕ (W≫31
1),

RK7 = (W2) ⊕ (W≫31
3),

RK9 = (W0) ⊕ (W≪61
1),

RK11 = (W2) ⊕ (W≪61
3),

RK13 = (W0) ⊕ (W≪31
1),

RK15 = (W2) ⊕ (W≪31
3),

RK17 = (W0) ⊕ (W≪19
1).

RK2 = (W1) ⊕ (W≫19
2),

RK4 = (W≫19
0) ⊕ (W3),

RK6 = (W1) ⊕ (W≫31
2),

RK8 = (W≫31
0) ⊕ (W3),

RK10 = (W1) ⊕ (W≫61
2),

RK12 = (W≪61
0) ⊕ (W3),

RK14 = (W1) ⊕ (W≪31
2),

RK16 = (W≪31
0) ⊕ (W3), (8)

Quantum Resource Estimates for Round Key Generation. In the imple-
mentation of key generation, the main cost comes from the initialization part of
the key schedule of ARIA in generating the four quantum words W0,W1,W2,W3

by using a 256-bit Feistel cipher. The Feistel uses different inner round functions
for odd and even rounds, which is one round of ARIA, i.e., AddRoundKey, Sub-
Bytes, and Diffusion operations.

1. Add Round Key (ARK): We simply XOR the 128-bit key with the current
state. Thus, only 128 CNOT gates are required to implement this operation.

2. Substitution Layer (SL): Four S-boxes S1, S
−1
1 , S2, S

−1
2 are used in two

different substitution layers for odd and even rounds. Each layer uses four
times S1, S

−1
1 , S2, S

−1
2 , i.e., 16 S-boxes. We count the required quantum gates

to implement each of these S-boxes.

– Computing S1 : To find the multiplication inverse of input α, we require
33 squarings and 7 multiplications, including the uncomputing wires (see
Fig. 3). Squaring operation requires 12 CNOT gates (see Fig. 1), and
multiplication operation requires 64 Toffoli gates plus 21 CNOT gates
(see Fig. 2). To apply affine transformation, we require 26 CNOT gates
and 4 Pauli-X gates (see Fig. 4). Thus, the total cost is given as:

• Number of Toffoli gates = 64 × 7 = 448
• Number of CNOT gates = 12 × 33 + 21 × 7 + 26 = 569
• Number of Pauli-X gates = 4.

To compute S-boxes S−1
1 , S2, S−1

2 , we use the same circuit to find the
inverse as given in Fig. 3. However, the affine functions used in S−1

1 , S2,
S−1

2 are different from S1. Therefore, we discuss the cost of affine func-
tions separately while other costs remain same.

Quantum Resource Estimates of Grover’s Key Search on ARIA 249

– Computing S−1
1 : Here, applying affine transformation requires only 18

CNOT gates and 4 Pauli-X gates (see Fig. 5). Thus, the total cost is given
as:

• Number of Toffoli gates = 64 × 7 = 448
• Number of CNOT gates = 12 × 33 + 21 × 7 + 18 = 561
• Number of Pauli-X gates = 4.

– Computing S2 : Here, applying affine transformation requires only 35
CNOT gates and 4 Pauli-X gates (see Fig. 6). Thus, the total cost is
given as:

• Number of Toffoli gates = 64 × 7 = 448
• Number of CNOT gates = 12 × 33 + 21 × 7 + 35 = 578
• Number of Pauli-X gates = 4.

– Computing S−1
2 : Here, applying affine transformation requires only 27

CNOT gates and 4 Pauli-X gates (see Fig. 7). Thus, the total cost is given
as:

• Number of Toffoli gates = 64 × 7 = 448
• Number of CNOT gates = 12 × 33 + 21 × 7 + 27 = 570
• Number of Pauli-X gates = 4.

Therefore, the total number of quantum gates needed to implement the sub-
stitution layer are as follows.

– Total number of Toffoli gates = 448 × (4 × 4) = 7, 168
– Total number of CNOT gates = (569 + 561 + 578 + 570) × 4 = 9, 112
– Total number of Pauli-X gates = 4 × (4 × 4) = 64.

3. Diffusion Layer (DL): It is a linear operation and implementing it requires
only 768 CNOT gates.

Therefore, one round of ARIA requires the following number of gates:

– Total number of Toffoli gates = 7, 168
– Total number of CNOT gates = 128 + 9, 112 + 768 = 10, 008
– Total number of Pauli-X gates = 64.

The round subkeys RKi are generated using four quantum keywords
W0,W1,W2,W3 as given in the expression (8). It consists of only left or right
circular rotation and XOR operations. The circular rotations of words are imple-
mented for free because it is just a particular permutation of the state of the
quantum keywords W0,W1,W2,W3. The only gates required for subkeys genera-
tion RKi are CNOT gates. The number of CNOT gates required for each round
subkey is 512 since we are using only one qubit state |W4〉 to compute the round
subkeys and uncompute the states to save the qubits. For counting of CNOT
gates, one can refer to Fig. 9 for the generation of subkey RK1 working on the
state |W4〉.

250 A. K. Chauhan and S. K. Sanadhya

Table 2 demonstrates the estimated cost of generating W0,W1,W2,W3 in the
initialization phase, and the round subkeys RKi. Some extra Pauli-X gates are
also used to generate the round constants CK1, CK2, CK3 of 3-round Feistel.

Table 2. Quantum cost of generating four quantum words and round subkeys for the
key schedule of ARIA-{128, 192, 256}.

KeyWords (Wi) # Pauli-X # CNOT # Toffoli

W0 0 128 0

W1 64 + 65 = 129 10, 008 + 128 = 10, 136 7,168

W2 64 + 65 = 129 10, 008 + 128 = 10, 136 7,168

W3 64 + 57 = 121 10, 008 + 128 = 10, 136 7,168

Total 379 30,536 21,504

Round Subkeys # Pauli-X # CNOT # Toffoli

RKi for each i 0 128 × 4 = 512 0

4 Resource Estimates: Reversible ARIA Implementation

In this section, we provide the quantum resource estimates to implement the
ARIA-{128, 192, 256} for the number of qubits and the number of Pauli-X
gates, CNOT gates, and Toffoli gates. We present the full quantum reversible
circuit of ARIA-128, as shown in Fig. 9. Note that arranging 12 encryption
rounds of ARIA-128 in pipeline fashion requires 12 × 128 = 1536 qubits. In
order to save qubits, we, therefore, rearrange the encryption rounds in a “zigzag”
fashion as adopted by Grassl et al. [10] and Almazrooie et al. [1], to design the
reversible circuit of ARIA-128, which requires only 640 qubits of storage. Using
the “zigzag” strategy of designing the reversible circuit, we are able to reduce
the width but at the cost of increasing depth of the circuit.

The entire circuit of ARIA-128 in Fig. 9 makes use of 1408 qubits (number
of qubits required for both key generation and encryption algorithms) and 24
ancilla qubits, which have been used to calculate the multiplicative inverse in
the SubBytes function. These 24 ancilla qubits can be placed in between the
subkeys generation and the encryption rounds. Every vertical line represents one
quantum word of 128-qubits, and every horizontal line indicates 128 connections
of the corresponding gates or subroutines. The words KL and KR are assigned
for the master key, and the words CK1, CK2, CK3 are assigned to Feistel round
constants, which are used to generate four quantum keywords W0,W1,W2,W3

that are further used for subkeys generation. We also use the extra workspace
W4 of 128-qubits size for generating round subkeys. Each subkey needs only 4
CNOT and few left or right circular rotations, which are considered to be free to
implement. The words W5 to W9 are devoted to the encryption rounds of ARIA.

Note that ARIA-128 and ARIA-192 require 640 qubits of storage since we
need to reverse the encryption rounds on 640 qubits, and the reversing process

Quantum Resource Estimates of Grover’s Key Search on ARIA 251

Fig. 9. Quantum circuit of ARIA-128. Each vertical line (wire) constitutes 128 qubits.
The wires |KL〉 and |KR〉 represent the master key, next four wires are used for
generating keywords |W0〉 , |W1〉 , |W2〉 , |W3〉, the wire |w4〉 is used as ancillas for round
key generation, and the wires from |w5〉 to |w9〉 are used for main round operations. The
dark-red colored dash-lines represent the outputs from one round to another. (Color
figure online)

252 A. K. Chauhan and S. K. Sanadhya

is performed after rounds 5, 9, and 12. However, ARIA-256 requires 768 bits of
storage for reversing the rounds, and the reversing process is performed after
rounds 6, 11, and 15, requiring only 128 qubits more than ARIA-128.

In Tables 3, 4, 5, we provide the overall cost of quantum resource estimates
needed to implement full reversible circuits of ARIA-{128, 192, 256}.

Table 3. Quantum resource estimates for the implementation of ARIA-128.

Phase #Quantum Gates Depth #Qubits

#Pauli-X #CNOT #Toffoli Toffoli Overall Storage Ancilla

Initial 0 0 0 0 0 256 0

Key Gen 379 41,228 21,504 588 1,342 512 128

Encryption 1,216 189,896 136,192 3,724 7,918 640 24

Total 1,595 231,124 157,696 4,312 9,260 1,408 152

Table 4. Quantum resource estimates for the implementation of ARIA-192.

Phase #Quantum Gates Depth #Qubits

#Pauli-X #CNOT #Toffoli Toffoli Overall Storage Ancilla

Initial 0 0 0 0 0 256 0

Key Gen 379 43,336 21,504 588 1,358 512 128

Encryption 1,472 229,928 164,864 4,508 9,590 640 24

Total 1,851 273,264 183,368 5,096 10,948 1,408 152

Table 5. Quantum resource estimates for the implementation of ARIA-256.

Phase #Quantum Gates Depth #Qubits

#Pauli-X #CNOT #Toffoli Toffoli Overall Storage Ancilla

Initial 0 0 0 0 0 256 0

Key Gen 379 45,384 21,504 588 1,374 512 128

Encryption 1,792 279,968 200,704 5,488 11,680 768 24

Total 2,171 325,352 222,208 6,076 13,054 1,536 152

5 Grover Oracle and Key Search Resource Estimates

Assume that we have a quantum adversary who makes the use of Grover’s algo-
rithm to find a key on given a small number of plaintext-ciphertext pairs. To
apply Grover’s algorithm for an exhaustive key search on ARIA, we need a cir-
cuit to implement unitary operator Uf based on ARIA. Since ARIA works as a
PRF, it is possible that multiple keys leads to the same ciphertext,

ARIA(k0,m) = ARIA(k1,m) = . . . ,

where k0, k1 ∈ {0, 1}128 are different keys and m is given plaintext. To ensure key
uniqueness among other desirable solutions, more than a single pair of plaintext

Quantum Resource Estimates of Grover’s Key Search on ARIA 253

and ciphertext are required. Grassl et al. [10] proposed a method to calculate the
required number of pairs (rk) such that rk > 2k/n�, where k and n denote the
length of the key and plaintext respectively. Thus, to implement ARIA-128, one
needs 3 pairs of plaintext-ciphertext, and (3 × 1560 = 4680) qubits. However,
following the work by Langenberg et al. [17], we assume that rk = k/n� known
plaintext-ciphertext pairs are sufficient to avoid false positives in an exhaustive
key search for ARIA-k (k ∈ {128, 192, 256}). Thus, taking into account “cleaning
up” of wires, we need to implement:

– 2 ARIA instances (for r128 = 1 plaintext-ciphertext pair) for ARIA-128
– 4 ARIA instances (for r192 = 2 plaintext-ciphertext pairs) for ARIA-192
– 4 ARIA instances (for r256 = 2 plaintext-ciphertext pairs) for ARIA-256

5.1 Number of Qubits

As adopted in [10,17], to make the smaller T -depth, we can test the multi-
ple plaintext-ciphertext pairs in parallel. The total number of qubits needed is
rk.qk + 1, where qk is the number of qubits needed to implement ARIA.

– ARIA-128: 1 · 1, 560 + 1 = 1, 561 qubits for a Grover-based key search.
– ARIA-192: 2 · 1, 560 + 1 = 3, 121 qubits for a Grover-based key search.
– ARIA-256: 2 · 1, 688 + 1 = 3, 377 qubits for a Grover-based key search.

5.2 Gate Counts

Operator Uf . Inside the operator Uf , we need to compare the 128-bit outputs
of ARIA instances with rk given ciphertexts. We use a 128 · rk-controlled NOT
gates. We can also budget 2 · (rk − 1) · k CNOT gates to make the input key
available to all rk parallel ARIA instances (and uncomputing this operation
at the end). However, we need to implement the actual ARIA instances. From
Tables 3, 4, 5, we obtain the following resource estimates:

– ARIA-128 : Two ARIA instances require 2 · 157, 696 = 315, 392 Toffoli gates
with a Toffoli depth of 2 · 4, 312 = 8, 624. Additionally, we need 2 · 1, 595 =
3, 190 Pauli-X gates and 2 · 231, 124 = 462, 248 CNOT gates.

– ARIA-192 : Four ARIA instances require 4 · 183, 368 = 733, 472 Toffoli gates
with a Toffoli depth of 4 · 5, 096 = 20, 384. Additionally, we need 4 · 1, 851 =
7, 404 Pauli-X gates and 4 · 273, 264 = 1, 093, 056 CNOT gates.

– ARIA-256 : Four ARIA instances require 4 · 222, 208 = 888, 832 Toffoli gates
with a Toffoli depth of 4 · 6, 076 = 24, 304. Additionally, we need 4 · 2, 171 =
8, 684 Pauli-X gates and 4 · 325, 352 = 1, 301, 408 CNOT gates.

Grover Operator G. Grover’s algorithm repeatedly applies the operator

G = Uf

((
H ⊗ k (2 |0〉 〈0| − 12k) H ⊗ k

) ⊗ 12

)

where |0〉 is the all-zero basis state of appropriate size. So in addition to Uf ,
further gates are needed. Following [10], for the operator (2 |0〉 〈0|−12k), we also
budget a k-fold controlled-NOT gate. With �π

4 ·
√

2k� number of Grover iterations
for ARIA-k, we can now give estimates in the Clifford+T model (Fig. 10).

254 A. K. Chauhan and S. K. Sanadhya

Uf

|− > |− >

ARIA

ARIA

ARIA−1

ARIA−1|0 > |0 >

|− > |− >

=

c1

c2

Fig. 10. The reversible implementation of the function Uf for ARIA-128 is shown for
which r = 2 invocations of ARIA-128 suffice in order to make the target key unique.

5.3 Overall Cost

Here, we provide the overall quantum resource estimates for Grover’s based key
search in the Clifford+T model. We use the following results/observations:

– By Amy et al. [3], one Toffoli gate requires 7 T -gates and 8 Clifford gates, a
T -depth of 4, and a total depth of 8.

– By Wiebe and Roetteler [23], the number of T -gates to realize an �-fold
controlled-NOT gate (� ≥ 5) is estimated as (32 · � − 84).

– To estimate the total number of Clifford gates, we count only the Clifford
gates in the ARIA instances, plus the 2 · (rk − 1) · k CNOT gates inside Uf

for the parallel processing of plaintext-ciphertext pairs.
– To estimate the T -depth and overall circuit depth, we take into account only

T -depth and circuit depth of ARIA-k. For the S-box used in ARIA, the circuit
depth is 391. However, when we represent Toffoli gates in Clifford+T model,
the S-box circuit depth is 1,692.

Therefore, the estimated total cost for a Grover-based attack against ARIA-k for
k ∈ {128, 192, 256} is as follows.

1. ARIA-128:
• T-gates:

⌊
π
4 · 264

⌋ · (7 ·315, 392+32 ·128−84+32 ·128−84) ≈ 1.65 ·284

T -gates with a T -depth of
⌊

π
4 · 264

⌋ · 4 · 8, 624 ≈ 1.65 · 278.
• Clifford gates:

⌊
π
4 · 264

⌋ · (8 · 315, 392 + 3, 190 + 462, 248) ≈ 1.11 · 285.
• Circuit depth:

⌊
π
4 · 264

⌋ · 2 · (22 · 1, 692 + 21 · 26 + 112) ≈ 1.81 · 279.

2. ARIA-192:
• T-gates:

⌊
π
4 · 296

⌋ · (7 ·733, 472+32 ·192−84+32 ·192−84) ≈ 1.92 ·2117

T -gates with a T -depth of
⌊

π
4 · 296

⌋ · 4 · 20, 384 ≈ 1.95 · 2111.
• Clifford gates:

⌊
π
4 · 296

⌋ · (8 · 733, 472+7, 404+1, 093, 056) ≈ 1.30 · 2118.
• Circuit depth:

⌊
π
4 · 296

⌋ · 2 · (26 · 1, 692 + 25 · 26 + 132) ≈ 1.07 · 2112.

3. ARIA-256:
• T-gates:

⌊
π
4 · 2128

⌋ ·(7 ·888, 832+32 ·256−84+32 ·256−84) ≈ 1.16 ·2150

T -gates with a T -depth of
⌊

π
4 · 2128

⌋ · 4 · 24, 304 ≈ 1.16 · 2144.
• Clifford gates:

⌊
π
4 · 2128

⌋ · (8 ·888, 832+8, 684+1, 301, 408) ≈ 1.57 ·2150.
• Circuit depth:

⌊
π
4 · 2128

⌋ · 2 · (30 · 1, 692 + 29 · 26 + 152) ≈ 1.23 · 2144.

Quantum Resource Estimates of Grover’s Key Search on ARIA 255

6 Cost Comparison of ARIA and AES

For fairness and correctness, we choose the block cipher AES as a reference point
because of a well-studied quantum resource estimates for Grover’s search on
AES. In addition, ARIA and AES share many resemblances like SPN structure,
similar S-Box computations defined over the same irreducible polynomial, albeit
different mixcolumn operations and key-scheduling algorithm.

In Table 6, we compare the results on S-box computations for the number
of qubits, squaring, and multiplication operations to compute the multiplica-
tive inverse. The number of Toffoli gates is directly proportional to the required
number of multiplications in a multiplier circuit. For ARIA, one S-box computa-
tion requires 7 multiplications (see Fig. 3), which leads to 448 Toffoli gates. We
also compare the total number of S-box computations needed in the reversible
implementations of AES-128 and ARIA-128.

Table 6. Comparison of S-Box computations for AES and ARIA.

Single S-box Total S-box

Block ciphers (Multiplicative Inverse) computations

#Qubits #Multiplication #Squaring

AES-128 (Grassl et al. [10]) 40 8 23 320

AES-128 (Almazrooie et al. [1]) 48 7 14 320

ARIA-128 (this work) 40 7 33 304

Next, we consider the G-cost and DW -cost (the metrics proposed by Jaques
and Schanck [14]) for AES and ARIA. By G-cost, we mean the total number of
gates, and by DW -cost, we mean the product of circuit depth and width. Finally,
we compare overall cost estimates of quantum resources needed for Grover’s
algorithm with �π

4 ·
√

2k� AES and ARIA oracles iterations for exhaustive key
search attacks, without a depth restriction. On a lighter note, it is clear from
the comparison that the G-cost of ARIA and AES is almost the same, but the
DW-cost of ARIA is lower than the AES.

256 A. K. Chauhan and S. K. Sanadhya

7 Conclusion

We investigated the security of the block cipher ARIA-{128, 192, 256} against
Grover’s search algorithm. Firstly, we estimated the cost of quantum resources
needed to implement different components of ARIA such as S-box computations
(multiplicative inverse, squaring, multiplication operations), diffusion layer by
analyzing theoretically for the number of qubits and the number of Pauli-X
gates, CNOT gates, and Toffoli gates. We also estimated the T -depth and the
overall circuit depth. We then evaluated the overall cost of one Round of ARIA
and key expansion mechanism. We finally constructed a full quantum circuit of
ARIA-128, and provided the cost of quantum resources for full quantum circuits
of ARIA-{128, 192, 256}. We also provided the cost of Grover’s key search attack
against ARIA-{128, 192, 256} in the Clifford+T model. However, the established
quantum resource estimates remain far beyond the currently available technol-
ogy and resources. As a future research work, it might be interesting to reduce
Grover’s key search attack complexity against ARIA by introducing more opti-
mizations to the circuit, in particular the S-box circuit optimization technique
by Boyer and Peralta [6]. It would also be interesting to implement the Grover
oracle for ARIA in any quantum programming language for automatic resource
estimation like the works [13,20]. Another interesting open problem remains to
evaluate the cost of block ciphers like AES, ARIA by implementing them against
the multi-target attacks [4].

Acknowledgment. We would like to thank the anonymous reviewers of SPACE 2020
for their insightful comments and suggestions, which has significantly improved the
presentation and technical quality of this work. The second author would also like to
thank MATRICS grant 2019/1514 by the Science and Engineering Research Board
(SERB), Dept. of Science and Technology, Govt. of India for supporting the research
carried out in this work. We would also like to thank Dr. Kai-Min Chung for initial
discussions on quantum computing.

References

1. Almazrooie, M., Samsudin, A., Abdullah, R., Mutter, K.N.: Quantum reversible
circuit of AES-128. Quantum Inf. Process. 17(5), 1–30 (2018). https://doi.org/10.
1007/s11128-018-1864-3

2. Amy, M., Maslov, D., Mosca, M., Roetteler, M.: A meet-in-the-middle algorithm
for fast synthesis of depth-optimal quantum circuits. IEEE Trans. Comput.-Aided
Design Integr. Circu. Syst. 32(6), 818-830 (2013)

3. Amy, M., Di Matteo, O., Gheorghiu, V., Mosca, M., Parent, A., Schanck, J.: Esti-
mating the cost of generic quantum pre-image attacks on SHA-2 and SHA-3. In:
Avanzi, R., Heys, H. (eds.) SAC 2016. LNCS, vol. 10532, pp. 317–337. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-69453-5 18

4. Banegas, G., Bernstein, D.J.: Low-communication parallel quantum multi-target
preimage search. In: Adams, C., Camenisch, J. (eds.) SAC 2017. LNCS, vol. 10719,
pp. 325–335. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-72565-
9 16

https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/s11128-018-1864-3
https://doi.org/10.1007/978-3-319-69453-5_18
https://doi.org/10.1007/978-3-319-72565-9_16
https://doi.org/10.1007/978-3-319-72565-9_16

Quantum Resource Estimates of Grover’s Key Search on ARIA 257

5. Bonnetain, X., Naya-Plasencia, M., Schrottenloher, A.: Quantum security analysis
of AES. IACR Trans. Symmetric Cryptol. 2, 2019 (2019)

6. Boyar, J., Peralta, R.: A small depth-16 circuit for the AES S-Box. In: Gritzalis,
D., Furnell, S., Theoharidou, M. (eds.) SEC 2012. IAICT, vol. 376, pp. 287–298.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30436-1 24

7. Boyer, M., Brassard, G., Hoeyer, P., Tapp, A.: Tight bounds on quantum searching
(1996). arXiv:quant-ph/9605034

8. Cheung, D., Maslov, D., Mathew, J., Pradhan, D.K.: On the design and opti-
mization of a quantum polynomial-time attack on elliptic curve cryptography. In:
Kawano, Y., Mosca, M. (eds.) TQC 2008. LNCS, vol. 5106, pp. 96–104. Springer,
Heidelberg (2008). https://doi.org/10.1007/978-3-540-89304-2 9

9. Abraham, H., et al.: Qiskit: An open-source framework for quantum computing
(2019. https://qiskit.org

10. Grassl, M., Langenberg, B., Roetteler, M., Steinwandt, R.: Applying Grover’s algo-
rithm to AES: quantum resource estimates. In: Takagi, T. (ed.) PQCrypto 2016.
LNCS, vol. 9606, pp. 29–43. Springer, Cham (2016). https://doi.org/10.1007/978-
3-319-29360-8 3

11. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: ACM
Symposium on the Theory of Computing (1996)

12. Guajardo, J., Paar, C.: Itoh-Tsujii inversion in standard basis and its application in
cryptography and codes. Design Codes Cryptogr. 25(2), 207–216 (2002). https://
doi.org/10.1023/A:1013860532636

13. Jaques, S., Naehrig, M., Roetteler, M., Virdia, F.: Implementing Grover oracles for
quantum key search on AES and LowMC. In: Canteaut, A., Ishai, Y. (eds.) EURO-
CRYPT 2020. LNCS, vol. 12106, pp. 280–310. Springer, Cham (2020). https://doi.
org/10.1007/978-3-030-45724-2 10

14. Jaques, S., Schanck, J.M.: Quantum cryptanalysis in the RAM Model: claw-finding
attacks on SIKE. In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS,
vol. 11692, pp. 32–61. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
26948-7 2

15. Kim, P., Han, D., Jeong, K.C.: Time–space complexity of quantum search algo-
rithms in symmetric cryptanalysis: applying to AES and SHA-2. Quantum Inf.
Process. 17(12), 1–39 (2018). https://doi.org/10.1007/s11128-018-2107-3

16. Kwon, D., et al.: New block cipher ARIA. In: Information Security and Cryptology
- ICISC (2003)

17. Langenberg, B., Pham, H., Steinwandt, R.: Reducing the cost of implementing the
advanced encryption standard as a quantum circuit. IEEE Trans. Quantum Eng.
1, 1–12 (2020)

18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
10th, Anniversary edn. Cambridge Univ, Press (2011)

19. NIST. Submission requirements and evaluation criteria for the post-quantum
cryptography standardization process (2017). https://csrc.nist.gov/CSRC/media/
Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-
2016.pdf/

20. Ramos-Calderer, S., Bellini, E., Latorre, J.I., Manzano, M., Mateu, V.: Quantum
search for scaled hash function preimages. IACR Cryptol. ePrint Arch. 1062 (2020).
https://eprint.iacr.org/2020/1062

21. Selinger, P.: Quantum circuits of T -depth one. Phys. Rev. A 87, 042302 (2013)

https://doi.org/10.1007/978-3-642-30436-1_24
http://arxiv.org/abs/quant-ph/9605034
https://doi.org/10.1007/978-3-540-89304-2_9
https://qiskit.org
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1007/978-3-319-29360-8_3
https://doi.org/10.1023/A:1013860532636
https://doi.org/10.1023/A:1013860532636
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-45724-2_10
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/978-3-030-26948-7_2
https://doi.org/10.1007/s11128-018-2107-3
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/call-for-proposals-final-dec-2016.pdf/
https://eprint.iacr.org/2020/1062

258 A. K. Chauhan and S. K. Sanadhya

22. Shor, P.W.: Polynomial time algorithms for discrete logarithms and factoring on a
quantum computer. In: Adleman, L.M., Huang, M.-D. (eds.) ANTS 1994. LNCS,
vol. 877, pp. 289–289. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58691-1 68

23. Wiebe, N., Roetteler, M.: Quantum arithmetic and numerical analysis using repeat-
until-success circuits. Quantum Inf. Comput. 16(1&2) (2016)

24. William, S., et al.: Sagemath, the Sage Mathematics Software System Version 8.1
(2017). https://www.sagemath.org

https://doi.org/10.1007/3-540-58691-1_68
https://doi.org/10.1007/3-540-58691-1_68
https://www.sagemath.org

	Quantum Resource Estimates of Grover's Key Search on ARIA
	1 Introduction
	2 Preliminaries
	2.1 Quantum Computation
	2.2 Grover's Search Algorithm

	3 Quantum Circuits to Implement ARIA
	3.1 Add Round Key (ARK)
	3.2 Substitution Layer (SL)
	3.3 Diffusion Layer (DL)
	3.4 Key Scheduling Algorithm

	4 Resource Estimates: Reversible ARIA Implementation
	5 Grover Oracle and Key Search Resource Estimates
	5.1 Number of Qubits
	5.2 Gate Counts
	5.3 Overall Cost

	6 Cost Comparison of ARIA and AES
	7 Conclusion
	References

