
Cryptographically Secure Multi-tenant
Provisioning of FPGAs

Arnab Bag1(B), Sikhar Patranabis1, Debapriya Basu Roy2,
and Debdeep Mukhopadhyay1

1 Indian Institute of Technology, Kharagpur, Kharagpur, India
amiarnabbolchi@gmail.com

2 Technische Universität München, Munich, Germany

Abstract. Field-programmable gate arrays (FPGAs) have gained mas-
sive popularity today as accelerators for a variety of workloads, includ-
ing big data analytics, and parallel and distributed computing. This has
fueled the study of mechanisms to provision FPGAs among multiple ten-
ants as general purpose computing resources on the cloud. Such mecha-
nisms offer new challenges, such as ensuring IP protection and bitstream
confidentiality for mutually distrusting clients sharing the same FPGA.
A direct adoption of existing IP protection techniques from the single
tenancy setting do not completely address these challenges, and are also
not scalable enough for practical deployment.

In this paper, we propose a dedicated and scalable framework for
secure multi-tenant FPGA provisioning that can be easily integrated into
existing cloud-based infrastructures such as OpenStack. Our technique
has constant resource/memory overhead irrespective of the number of
tenants sharing a given FPGA, and is provably secure under well-studied
cryptographic assumptions. A prototype implementation of our propo-
sition on Xilinx Virtex-7 FPGAs is presented to validate its overheads
and scalability when supporting multiple tenants and workloads. To the
best of our knowledge, this is the first FPGA provisioning framework
to be prototyped that achieves a desirable balance between security and
scalability in the multi-tenancy setting.

Keywords: FPGAs · Security · Provisioning · Multi-tenant · Cloud
computing

1 Introduction

The modern era of cloud computing has actualized the idea of ubiquitous
provisioning of computational resources and services via a network. Cloud-
based solutions are now marketed by all leading enterprise IT vendors such as
IBM (PureApplication), Oracle (ExaData), Cisco (UCS) and Microsoft (Azure),
as well as Web companies such as Amazon (AWS) and Google (Compute
Engine). In the midst of this paradigm shift from traditional IT infrastructures

c© Springer Nature Switzerland AG 2020
L. Batina et al. (Eds.): SPACE 2020, LNCS 12586, pp. 208–225, 2020.
https://doi.org/10.1007/978-3-030-66626-2_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66626-2_11&domain=pdf
https://doi.org/10.1007/978-3-030-66626-2_11


Cryptographically Secure Multi-tenant Provisioning of FPGAs 209

to the cloud, field-programmable gate arrays (FPGAs) have risen as attractive
computational avenues for accelerating heavy workloads.

Modern FPGAs offer a number of advantages including reconfigurability,
high throughput, predictable latency and low power consumption. They also
offer dynamic partial reconfiguration (DPR) capabilities [21], that allow non-
invasive run-time modification of existing circuitry for on-the-fly functionality
enhancement. The recent trend of deploying FPGAs as computing resources on
the cloud is visible in upcoming commercial applications such as Microsoft’s
Project Catapult [28], that integrates FPGAs with cloud-based data centers
in a distributed architecture and enables using up to thousands of FPGAs to
accelerate a single service.

In this paper, we examine the following question:

Can FPGAs be viewed and realized in the cloud as general purpose pro-
grammable resources that can be re-configured as on-demand devices?

There is a growing interest today into whether FPGA resources may be
shared among multiple tenants and their applications, as opposed to the “all-
or-nothing” philosophy where a single tenant has complete control over the
FPGA [6]. It is interesting to note that the benefits of such sharing, which
includes maximal resource utilization, are already being realized in the GPU
domain. While GPUs were traditionally limited to only one user/tenant per
host, a paradigm shift is occurring with Nvidia providing hardware support for
multi-tenancy in its latest Kepler architecture GPU [1].

Very recently, Amazon has announced the addition of Xilinx FPGAs to their
cloud services [8], signaling that major commercial institutions are seeing market
demand in realizing FPGAs as general purpose shared computing resources in
the cloud. In this work, we focus on the security challenges that arise when an
FPGA accelerates multiple workloads from mutually distrusting tenants, and
possible techniques to mitigate such challenges.

Security Challenges. Provisioning shared FPGAs on the cloud offers a number
of challenges such as resource abstraction, ecosystem compatibility (libraries and
SDKs) and, most importantly, security. While some of these challenges have
been addressed comprehensively in the existing literature [6], security issues
emerging from such a model are largely under-studied. One such security issue
is IP protection. Multiple mutually distrusting tenants sharing a common pool of
FPGA resources are likely to demand guarantees for bitstream confidentiality.
Since FPGAs are inherently designed for single party access, FPGA vendors
today focus on ensuring the privacy of bitstreams originating from single users,
especially when deployed into hostile industrial/military environments.

Mitigation techniques typically used include bitstream encryption and
authentication, combined with fault-tolerance. However, a direct adoption of
such techniques in the multi-tenancy setting potentially blows up resource
requirements, imposes significant key-management overheads, and leads to an
overall lack of scalability.



210 A. Bag et al.

In particular, a simpler solution based on traditional public key encryption
would incur significant storage overheads since the secret key corresponding to
each partition would have to be stored separately and securely. This motivates
the need for dedicated and scalable security solutions tuned to the multi-tenancy
setting where the storage required does not grow linearly with the number of
partitions.

Existing Solutions. While a number of recent works [18,27,34] have helped
develop general acceptance for FPGAs as general-purpose computing elements in
portable ecosystems, security concerns regarding large-scale FPGA deployment
have been discussed only in the context of specific applications. For example,
the authors of [2] have looked into the security of specific applications such
as building databases, where FPGAs are used as accelerators. Their security
discussions are more at the application-level rather than the system-level.

Other works [6] focus on the threats originating from malicious tenants either
crashing the system or attempting illegal memory accesses. Their proposed mit-
igations are mostly based on virtualization, in the sense that they use dedicated
hypervisors and DMA units to regulate the memory access made by each ten-
ant’s bitstream file on the host FPGA node. However, they do not consider the
threats posed by co-resident VM attacks [11,31], where data resident on a target
VM can be stolen by a second malicious VM, so long as they co-exist on the
same physical node. This poses a massive threat to IP security in the shared
tenancy setting, and underlines the need for cryptographic security guarantees
in addition to architectural barricading.

While a number of cryptographic solutions have been proposed for IP pro-
tection in the single tenancy scenario [10,16], there exist no equivalent solutions
tuned to the shared tenancy setting to the best of our knowledge.

1.1 Our Contributions

In this paper, we propose a dedicated and scalable framework for secure multi-
tenant FPGA provisioning on the cloud. Our framework also has following desir-
able features:

– Our framework guarantees bitstream confiden tiality in exchange for a con-
stant amount of resource/memory overhead, irrespective of the number of ten-
ants sharing a given FPGA. We achieve this using a novel technique known
as key-aggregation that is provably secure under well-studied cryptographic
assumptions.

– The only trusted agent in our framework is the FPGA vendor. Note that even
in IP protection solutions in the single tenancy setting, the FPGA vendor
is typically a trusted entity. Hence, this is a reasonable assumption. More
importantly, the cloud service provider need not be trusted, which is desirable
from a tenant’s point of view.



Cryptographically Secure Multi-tenant Provisioning of FPGAs 211

Utilities Process

APIs

OS Controller Driver

Virtual
FPGA

Hypervisor Controller Driver

Hardware FPGA Node FPGA Node

Cloud Infrastructure

DMA
Controller

B C D

A

Virtual Machine for Tenant

Fig. 1. FPGA provisioning on a cloud [6]

– Our framework can be easily integrated into existing cloud-based infras-
tructures such as OpenStack, and does not interfere with other desirable
properties of an FPGA provisioning mechanism, such as resource virtualiza-
tion/isolation and platform compatibility.

Prototype Implementation. We illustrate the scalability of our proposed
approach via a prototype implementation on Xilinx Virtex-7 FPGAs. Our results
indicate that the proposed approach has a fixed overhead of around 5−8% of the
available FPGA resources. This overhead remains unaltered for any number of
tenants/workloads using the FPGA resources at any given point of time. Note the
choice of the Virtex-7 FPGA family for our prototype is only for benchmarking,
and may be extended to other FPGA vendors/families.

Applications in the Automotive Setting. FPGAs are being increasingly
used as accelerators in automotive applications. In particular, the high parallel
processing capabilities of FPGAs provide great advantages in applications such
as ADAS, Smart Park Assist systems, and power control systems in modern
vehicles. Most FPGAs also come with integrated peripheral cores that imple-
ment commonly-used functions like communication over controller area net-
work (CAN) [12]. In an automotive setting, a single FPGA may be required to
accelerate applications from multiple stakeholders, that are mutually distrusting
and wish to protect their individual IPs. The core techniques underlying our
proposed framework in this paper can be equivalently applied to build efficient
and scalable IP protection units for such applications.



212 A. Bag et al.

2 Secure Multi-tenant FPGA Provisioning: Our
Proposition

In this section, we present our proposal for secure provisioning of FPGAs among
multiple tenants on the cloud. We assume a basic FPGA provisioning setup on
a cloud [6], as illustrated in Fig. 1. The idea is to abstract the FPGA resources
to the client as an accelerator pool. Each FPGA is divided into multiple accel-
erator slots (e.g. A, B, C and D in Fig. 1), with one or more slots assigned to
a tenant. The dynamic partial reconfiguration mechanism of modern FPGAs
allows a tenant to view each such slot as a virtual FPGA, with specific resource
types, available capacity and compatible interfaces. The DMA controller module
is meant primarily for bandwidth and priority management across the various
FPGA partitions. At the hypervisor layer, the controller module chooses avail-
able FPGA nodes based on their compatibility with a tenant’s requirements, and
helps configure them with the desired bitstream file via the service layer. The
tenant essentially sees a VM, embedded with a virtual FPGA and containing the
necessary APIs and controller modules to configure the FPGA. The allocation of
resources to various tenants and the creation of corresponding VMs is handled
by a separate controller module. More details of this basic setup can be found
in [6]. Our aim is to propose an efficient and secure mechanism that ensures
IP protection in this setup, without compromising on the other well-established
features such as virtualization, inter-VM isolation and platform compatibility.

2.1 Bring Your Own Keys (BYOK)

The fundamental idea underlying our security proposal is as follows: each tenant
encrypts her bitstream using a secret-key of her own choice before configuring the
virtual FPGA with the same. Since bitstreams would potentially be encrypted
in bulk, a symmetric-key encryption algorithm such as AES-128 is the ideal
choice in this regard. Note that this approach immediately assures bitstream
confidentiality. In particular, since neither the service provider nor any malicious
agent can correctly guess the key chosen by a tenant (except with negligible
probability), they can no longer gain access to her bitstream.

Notwithstanding its apparent benefits, the aforementioned BYOK-based bit-
stream encryption technique poses two major challenges in the shared FPGA
setting - synchronizing bitstream encryption and decryption for different ten-
ants, and efficient key-management. The main novelty of our proposal is in the
application of key-aggregation [29] - a provably secure cryptographic technique -
to efficiently solve both these challenges. We begin by providing a brief overview
of a key-aggregate cryptosystem (KAC), along with a concrete construction for
the same. We then demonstrate how KAC solves the key-management and syn-
chronization challenges posed by the BYOK-based approach.



Cryptographically Secure Multi-tenant Provisioning of FPGAs 213

Fig. 2. An illustration of KAC over three entities

2.2 Key-Aggregate Cryptosystems (KAC)

KAC is a public-key mechanism to encapsulate multiple decryption-keys cor-
responding to an arbitrarily large number of independently encrypted entities
into a single constant-sized entity. In a KAC, each plaintext message/entity is
associated with a unique identity id, and is encrypted using a common master
public-key mpk, generated by the system administrator. The system adminis-
trator also generates a master secret-key msk, which in turn is used to gen-
erate decryption keys for various entities. The main advantage of KAC is its
ability to generate constant-size aggregate decryption keys, that combine the
power of several individual decryption keys. In other words, given ciphertexts
C1, C2 · · · , Cn corresponding to identities id1, id2, · · · , idn, it is possible to gen-
erate a constant-size aggregate decryption key skS for any arbitrary subset of
identities S ⊆ {id1, · · · , idn}. In addition, the aggregate key skS cannot be used
to decrypt any ciphertext Cj corresponding to an identity idj /∈ S. Figure 2
illustrates the concept of a KAC scheme with a simple toy example. Observe
that the individual secret-keys sk1 and sk3 for the identities id1 and id3 are com-
pressed into a single aggregate-key sk1,3, that can be used to decrypt both the
ciphertexts C1 and C3, but not C2. Additionally, sk1,3 has the same size as either
of sk1 and sk3, individually.

2.3 A Concrete KAC Construction on Elliptic Curves

Algorithm 1 briefly describes a provably secure construction for KAC to illus-
trate its key-aggregation property. The main mathematical structure used by
the construction is a prime order sub-group of elliptic curve points G, gener-
ated by a point P , and a bilinear map e that maps pairs of elements in G to a
unique element in another group GT . The construction supports a maximum of



214 A. Bag et al.

Algorithm 1. A Concrete KAC construction on Elliptic Curves
1: procedure KAC.Setup(n)
2: Take as input the number of entities n
3: Let P be an elliptic curve point of prime order q that generates a group G with

a bilinear map e : G × G −→ GT .
4: Randomly choose α, γ in the range [0, q − 1] and output the following:

mpk =
(
{
[
αj

]
P}j∈[0,n]∪[n+2,2n], [γ] P

)

msk = γ

5: end procedure
6: procedure KAC.Encrypt(mpk, i, M)
7: Take as input the master public key mpk, an entity identity i ∈ [1, n] and a

plaintext bitstream M .
8: Randomly choose r in the range [0,q-1] and set:

c0 = [r] P

c1 = [r]
(
[γ] P +

[
αi

]
P

)

c2 = M ⊕ H
(
e
([

α1] P, [αn] P
)r)

where H is a collision-resistant hash function and ⊕ denotes the bit-wise XOR
operation

9: Output the ciphertext C = (c0, c1, c2)
10: end procedure
11: procedure KAC.AggregateKey(msk,mpk, S)
12: Take as input the master secret key msk = γ, the master public key mpk and a

subset of entities S ⊆ [1, n].
13: Compute aS =

∑
j∈S

[
αn+1−j

]
P

14: Output the aggregate key skS = [γ] aS
15: Also output aS and bi,S =

∑
j∈S\{i}

[
αn+1−j+i

]
P for each i ∈ S

16: end procedure
17: procedure KAC.Decrypt(skS , aS , bi,S , C)
18: Take as input a ciphertext C = (c0, c1, c2) corresponding to an entity with

identity i, an aggregate key skS such that i ∈ S, along with aS and bi,S as defined
above.

19: Output the decrypted message M as:

M = c2 ⊕ H
(
e (aS , c1) · e (skS + bi,S , c0)

−1) (1)

where H is the same collision-resistant hash function as used in KAC.Encrypt
20: end procedure

n entities, and is provably secure against chosen-plaintext-attacks under a vari-
ant of the bilinear Diffie-Hellman assumption [13]. We refer the reader to [29]
for more details on the correctness and security of the construction. Note that
the notations P1 + P2 and [a]P denote point addition and scalar multiplication
operations, respectively, over all elliptic curve points P, P1, P2 and all scalars a.



Cryptographically Secure Multi-tenant Provisioning of FPGAs 215

Observe that the aggregate key skS is a single elliptic-curve point (with a fixed
representation size), irrespective of the size of the subset S.

2.4 Combining BYOK with KAC

The crux of our proposal lies in combining BYOK with KAC for efficient
key-management and synchronization of bitstream encryption-decryption. We
achieve this via the following three-step proposal:

Step-1: Setup. In this step, the FPGA vendor sets up a KAC system by gen-
erating a master public key and a master secret key. Without loss of generality,
we assume that each manufactured FPGA can be divided into a maximum of n
accelerator partitions, where each partition is associated with a unique partition
identity id, and represents an independent virtual FPGA from the tenant point of
view. A dedicated mapping between the virtual FPGA id and the corresponding
partition id may be suitably defined; we avoid details of the same for simplicity.
Each FPGA contains a KAC decryption engine, that is pre-programmed to use
a single aggregate decryption key skS corresponding to the subset S of partition
ids it hosts. As already mentioned, the KAC aggregate key is a constant-sized
entity (typically 256-320 bits), and can be securely stored in either a dedicated
non-volatile RAM, or in the eFUSE1 of certain advanced FPGA families such
as Xilinx Virtex-7.

Step-2: Bitstream Encryption. In keeping with the idea behind BYOK, each
tenant encrypts her bitstream using her own custom AES-128 key. This may be
done using commercially available software tools such as Xilinx Vivado. In our
proposal, this functionality is augmented to additionally encrypt the AES-128
key using the master public key of the KAC. The second encryption is performed
under the identity id of the partition assigned to the tenant.

Step-3: Bitstream Decryption. Bitstream encryption occurs on-chip in two
steps. Each FPGA is provided with a single KAC decryption core, while each
individual partition is provided with its own AES-128 decryption core. The KAC
decryption engine is first used to recover the AES-128 key chosen by the tenant.
Since a single tenant is expected to use the same AES-128 key in a given session,
the KAC decryption core needs to be invoked only once per tenant. The recovered
key is subsequently used to decrypt any number of encrypted bitstreams and
program the FPGA partition with the same.

1 https://www.xilinx.com/support/documentation/application notes/xapp1239-fpga
-bitstream-encryption.pdf.

https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1239-fpga-bitstream-encryption.pdf


216 A. Bag et al.

KAC
Encryption

Engine

AES-128
Encryption

Engine

id

Utilities Process

APIs

OS Controller Driver

Virtual
FPGA

ID

Hypervisor Controller Driver

Hardware FPGA Node FPGA Node

Cloud Infrastructure

DMA
Controller

KAC
Decryption

Engine

AES-128 Dec A AES-128 Dec B

AES-128 Dec C

Software Tool
K (Chosen by the tenant)

Aggregate Key in
Tamper-proof NVM

Bitstream
mpk

Public
Key Server

Fig. 3. Secure FPGA provisioning scheme: combining KAC with BYOK

3 Analysis of Our Proposal

3.1 Threat Models and Security

Our threat model considers the following potential IP stealing scenarios:

– Malicious External Agents: In this threat model, malicious external
agents attempt to gain unauthorized access to a tenant’s bitstream.

– Malicious Co-tenants: In this threat model, malicious co-tenants collude
to try and expose the bitstream of an honest tenant sharing the same FPGA.

– Malicious Service Provider: In this threat model, the service provider
itself attempts to steal the IP of a tenant (Fig. 3).

Note that in our proposal, bitstream decryption happens entirely on-chip. Hence,
IP stealing is possible only if a malicious adversary gains access to the AES-
128 key chosen by the tenant to encrypt her bitstream. This key is not known
apriori to any third party, including the service provider. The AES-128 key
is in turn encrypted using KAC, which is provably CPA secure [29], implying



Cryptographically Secure Multi-tenant Provisioning of FPGAs 217

Algorithm 2. Secure Multi-Tenant FPGA Provisioning
1: procedure Initial Setup (FPGA vendor)
2: (mpk,msk) ← KAC.Setup
3: Publish the master public key mpk for the KAC scheme
4: for each FPGA do
5: Partition the FPGA into accelerator slots (the maximum number of such

slots may be pre-defined depending on the FPGA family)
6: for each FPGA partition do
7: Assign a unique random identity id to the partition
8: end for
9: Let S denote the set of all id-s corresponding to partitions on the same

FPGA
10: (skS , aS , {bid,S}id∈S) ← KAC.AggregateKey (msk, S)
11: Embed skS in a tamper-proof non-volatile memory segment on the FPGA
12: Embed aS in a non-volatile memory segment on the FPGA (need not be

secure/tamper-proof ).
13: Embed each bid,S in a non-volatile memory segment of the partition with

identity id (again need not be secure/tamper proof )
14: end for
15: Each FPGA is provisioned with a single KAC decryption engine, while each

FPGA partition is provisioned with its own AES-128 decryption engine.
16: end procedure
17: procedure Bitstream Encryption(Bitstream)
18: Suppose a tenant is assigned an FPGA partition with identity id.
19: K ← AES.KeyGen
20: C1 ← AES.Encrypt (K,Bitstream)
21: C2 ← KAC.Encrypt (mpk, id, K)
22: Submit (C1, C2) to the framework for configuring the FPGA partition.
23: end procedure
24: procedure Bitstream Decryption(C1, C2)
25: K ← KAC.Decrypt (skS , C2)
26: Bitstream ← AES.Decrypt (K, C1)
27: end procedure

that the encrypted key cannot be accessed without the appropriate aggregate
decryption key for the KAC scheme. Since this key is constant-overhead and
is stored in dedicated secure storage, an external adversary cannot gain access
to the aggregate decryption key. Hence, our proposal ensures that neither an
external adversary nor the service provider can steal the IP of a tenant in the
shared FPGA setting.

As mentioned, we also consider threats from malicious co-tenants, who could
collude to try and expose the IP of an honest tenant sharing the same FPGA.
Note that the malicious tenants have access to the aggregate key(s) correspond-
ing to their own accelerator partitions, and not the aggregate key corresponding
to the partitions being used by the honest tenant. However, the KAC scheme
is provably collusion resistant against an unbounded number of malicious par-
ties [29], implying that, irrespective of the number of malicious tenants colluding,



218 A. Bag et al.

the aggregate decryption key of an honest tenant cannot be exposed. Thus, our
proposal guarantees IP security in the malicious co-tenant setting.

Note that, some recent works on side-channel attacks [20,30] target multi-
tenant FPGA systems. Currently, our proposal provides a secure solution for
multi-tenant FPGA use on the cloud which focuses on the performance and stor-
age (resource) efficiency, but not security against implementation-level attacks.
We shall consider the possible applicability of these attacks against the proposed
scheme and necessary countermeasures (if needed) in our future works.

3.2 Performance and Efficiency

Our proposal has the following desirable features from the point of view of effi-
ciency as well as security.

Constant Secure Storage Overhead per FPGA: Each FPGA stores a
single aggregate decryption key that suffices for all its partitions. As already
mentioned, KAC generates constant-overhead aggregate-keys irrespective of the
number of entities they correspond to. Hence, the memory requirement per
FPGA for secure key storage remains the same irrespective of the maximum
number of partitions n. In other words, the framework scales to any arbitrarily
large n without incurring any additional overhead for secure key storage.

Constant Encryption and Decryption Latency: The encryption and
decryption latencies for both KAC and AES-128 are constant, and independent
of the maximum number of partitions n supported by an FPGA. In particular,
the encryption and decryption sub-routines in the KAC scheme of [29] involve
a constant number of elliptic curve operations, and hence require a constant
amount of time.

No Leakage to the Cloud Service Provider: The new scheme achieves
synchronization between the encryption and decryption engines via a public-
key mechanism that is set up by the FPGA vendor. Since the entire bitstream
decryption happens on-chip, the confidentiality of the bitstream as well as that
of the AES-128 key from the cloud service provider (as well as any external mali-
cious agents) are guaranteed by the security of AES-128 and the CPA security
of the KAC scheme, respectively.

4 Prototype Implementation

In this section, we present a prototype implementation of our proposed protocol
on the Xilinx Virtex-7 family of FPGAs. In particular, we focus on the overhead
and performance results for the security-related components, namely KAC and
AES-128. The results are presented in two parts. The first part focuses on the
on-chip decryption engines, while the second part focuses on the software tool
for generating the encrypted bitstreams and encrypted AES-128 keys.



Cryptographically Secure Multi-tenant Provisioning of FPGAs 219

Table 1. Implementation Details: Elliptic Curve Operations, Optimal-Ate Pairing and
AES-128

Elliptic Curve

Operations

Module/

Algorithm
#Clock Cycles

Operating

Frequency

(in MHz)

Latency

(in ms)

Point Addition 705

180.505

3.905× 10−3

Point Doubling 528 2.925× 10−3

Scalar

Multiplication
279552 1.548

Opt-Ate Pairing

Operations

Module/

Algorithm
#Clock Cycles

Operating

Frequency

(MHz)

Latency

(ms)

Miller’s Loop 1669941
180.505

9.252

Final

Exponentiation
882403 4.888

AES-128

Operations

Module/

Algorithm
#Clock Cycles

Operating

Frequency

(MHz)

Latency

(ms)

Encryption/

Decryption
10 180.505 5.54× 10−5

4.1 On-Chip Decryption Engines

The two main components of our prototype implementation are the AES-128 and
KAC decryption engines. To implement the AES-128 decryption core, we adopt
a distributed look-up table (LUT)-based approach [23] for efficient and low-
latency implementations. While other benchmark implementations for AES-128
using composite field based approaches (such as polynomial, normal, redundant
and mixed bases) are well-known [32,35], distributed LUT-based approach is
especially tuned to FPGA-based implementations, and is hence chosen.

The KAC Decryption Engine. The KAC decryption engine, adopted
from Algorithm 1 [29], requires the implementation of an elliptic curve core
that also supports bilinear pairing operations, such as Tate and Optimal-Ate
pairing [7,9,36]. Since pairing-friendly elliptic curves with small characteris-
tics [7,17,26] have recently been analyzed as vulnerable to DLP attacks [14,15],
we choose an elliptic curve with a 256-bit characteristic prime from the fam-
ily of pairing-friendly Barreto-Naehrig (BN) curves [4]. All elliptic-curve opera-
tions, including point addition, and scalar multiplication are implemented using
a Montgomery ladder [5] for constant-time operations. Other constant-time
approaches such as window-non-adjacent form (w-NAF) [22] may also be used.
We used Miller’s algorithm [24] for Optimal-Ate pairing computation with com-
bined point operations and line function evaluation to reduce computation time.



220 A. Bag et al.

Table 2. Overhead Comparison for Comparable Throughput: BYOK + Authenticated
Key Exchange v/s BYOK + KAC for 10 partitions

Bitstream

Decryption

Methodology

Resource Consumption Secure Storage

Requirement(in Kb)

(10 partitions)

#Slices

(%)

#LUTs

(%)

#Registers

(%)

#DSPs

(%)

#BRAMs

(%)

BYOK+Auth. DHKE

(Naive Approach)

32880

(30.30)

70380

(16.24)

85848

(9.90)

400

(11.11)

200

(13.60)
3.84

BYOK+KAC

(Our Proposal)

5330

(4.91)

12747

(2.94)

11839

(1.36)

40

(1.11)

20

(1.36)
0.256

We would like to point out that the choice of curve for our prototype
implementation is only for demonstration; our proposal may be easily adopted
and implemented efficiently using standard curve choices, including Hessian,
Edwards, NIST and Koblitz curves [3,19,33], subject to the restriction that the
characteristics of these chosen curves is large.

Use of DSP Blocks. A novel feature of our implementation is the use of
DSP blocks to design efficient prime-field multipliers, which in turn are used in
the elliptic curve-based operational modules. Modern FPGAs such as the Xilinx
Virtex-7 are inherently equipped with numerous DSP blocks, which can be used
to design low-latency circuits for arithmetic operations. We exploited this fact to
design a high-speed prime field multiplier, that optimally uses these DSP blocks
based on an efficient high-radix Montgomery algorithm [25] for modular multi-
plication. The post-route timing reports for the elliptic curve operations and the
AES-128 operations are summarized in Table 1. Although we have chosen the
Xilinx Virtex-7 FPGA (xc7vx690tffg1761) family for the prototype implemen-
tation, our implementation may be readily ported to other FPGA families with
minimal effort.

Comparison with Näıve Approach. In Table 2, we compare the resource
overhead of our approach with an alternative näıve approach where each tenant
chooses her own key and exchanges the same via a secure and authenticated
Diffie-Hellman key exchange (DHKE) protocol. The second approach requires
elliptic curve scalar multiplication operations, that required dedicated scalar
multiplication units per FPGA partition. For the purpose of comparison, we
assume a total of 10 partitions on a given FPGA. Quite evidently, for a compara-
ble throughput, the area requirement of our proposed approach (BYOK+KAC)
is significantly more resource-thrifty, which may be attributed to the constant-
size aggregate key generation feature of the KAC scheme.

4.2 Software Encryption Engine

The software encryption engine in our prototype implementation allows a tenant
to encrypt her bitstream using an AES-128 key of her own choice, and subse-
quently, encrypt this key under the KAC scheme. As mentioned previously,



Cryptographically Secure Multi-tenant Provisioning of FPGAs 221

Table 3. Implementation Details: KAC Encryption Engine

Operation Point addition Point doubling Pairing KAC encryption

Latency (ms) 1.351 × 10−2 1.098 × 10−2 82.025 104.333

BYOK-based bitstream encryption can be readily availed using commercial
design tools such as Xilinx Vivado.

We implemented the KAC encryption engine in software using the open-
source Pairing-Based Cryptography (PBC) library2, that provides APIs to com-
pute pairings over the BN family of elliptic curves. The only pre-requisite for
using the PBC library is the open-source GNU Multiple Precision Arithmetic
Library3 (GMP). The PBC library works on a variety of operating systems,
including Linux, Mac OS, and Windows (32 and 64 bits).

It is important to note that similar to the decryption operation, the latency
for KAC encryption is also independent of the number of partitions a given
FPGA can support.

We present implementation results for the KAC encryption engine using the
PBC library in Table 3. The target platform is a standard desktop computer,
with an Intel Core i5-4570 CPU, 3.8 GB RAM, and an operating frequency of
3.20GHz. Use of PBC is primarily for demonstrating the utility of the framework.
Modern libraries like RELIC4 or MIRACL5 may be used for better performance.

5 Scalability of Our Framework

In order to elucidate the scalability of our proposed framework, we demonstrate
how the following parameters of our prototype implementation scale with the
maximum number of tenants/partitions per FPGA:

Secure Storage on FPGA. In Fig. 4, we compare the amount of secure key
storage required per FPGA in our proposed framework (combining KAC with
BYOK) against a framework that simply uses BYOK with authenticated Diffie-
Hellman key exchange. The latter scheme would require to store the AES-128
key for every tenant on the corresponding FPGA partition allocated to her.
Naturally, the storage requirement grows with the number of partitions that a
given FPGA can support. In our proposition, the aggregation capability of KAC
ensures that the tamper-resistant non-volatile storage requirement is indepen-
dent of number of partitions that a given FPGA can support. In other words,
our FPGA provisioning scheme has a far superior scalability in terms of secure
key storage, as compared to a simple BYOK-based provisioning scheme.

2 https://crypto.stanford.edu/pbc/.
https://crysp.uwaterloo.ca/software/PBCWrapper/.

3 https://gmplib.org/.
4 https://github.com/relic-toolkit/relic.
5 https://github.com/miracl/MIRACL.

https://crypto.stanford.edu/pbc/
https://crysp.uwaterloo.ca/software/PBCWrapper/
https://gmplib.org/
https://github.com/relic-toolkit/relic
https://github.com/miracl/MIRACL


222 A. Bag et al.

0 2 4 6 8 10 12 14 16 18 20
0

100

200

300

Number of Tenants per FPGA

S
ec

u
re

K
ey

S
to

ra
ge

(b
y
te

s)

BYOK Framework
BYOK+KAC Framework

Fig. 4. On-chip secure-storage requirements

0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

7

8

9

10

Number of Tenants per FPGA

P
er

ce
n
ta

ge
of

O
n
-C

h
ip

R
es

ou
rc

es
U
se

d

Slices
Look-Up Tables (LUTs)

Registers
DSP Blocks

Fig. 5. On-chip resource requirements for BYOK + KAC

On-Chip Resource Overhead. Since our framework requires only a sin-
gle KAC decryption engine per FPGA, the on-chip resource overhead remains
almost constant with respect to the number of partitions that a given FPGA
can support. This is illustrated in Fig. 5. The only slight increase is due to the
presence of an AES-decryption engine in every FPGA partition. The overall on-
chip resource overhead for up to 20 partitions on a single FPGA device is less
than 5% for LUTs and is less than 7% for Slices, which highlights the scalability
of our proposal.



Cryptographically Secure Multi-tenant Provisioning of FPGAs 223

Bitstream Encryption/Decryption Performance. Finally, as already men-
tioned, the bitstream encryption/decryption latency (both KAC and AES-128)
of our framework is independent of the number of partitions that a given FPGA
can support.

In summary, the incorporation of KAC plays a crucial role in ensuring that
our framework retains the same levels of performance and efficiency for arbi-
trarily large number of tenants sharing a single FPGA node. To the best of our
knowledge, this is the first FPGA provisioning framework to be prototyped that
achieves a desirable balance between security and scalability in the multi-tenancy
setting.

6 Conclusion

In this paper, we proposed a dedicated and scalable framework for secure multi-
tenant FPGA provisioning on the cloud. Our framework guarantees bitstream
confidentiality with constant amount of resource/memory overhead, irrespective
of the number of tenants sharing a given FPGA. We achieved this using a novel
technique known as key-aggregation that is provably secure under well-studied
cryptographic assumptions. Our framework can be easily integrated into exist-
ing cloud-based infrastructures such as OpenStack, and does not interfere with
other desirable properties of an FPGA provisioning mechanism, such as resource
virtualization/isolation and platform compatibility. We illustrated the scalabil-
ity of our proposed approach via a prototype implementation on Xilinx Virtex-7
FPGAs. Our results indicate that the proposed approach has a fixed overhead
of less than 5% of the available FPGA resources (LUT). This overhead remains
unaltered for any number of tenants/workloads using the FPGA resources at
any given point of time.

References

1. Nvidia Inc. GRID GPUs
2. Arasu, A., Eguro, K., Kaushik, R., Kossmann, D., Ramamurthy, R., Venkatesan,

R.: A secure coprocessor for database applications. In: 2013 23rd International
Conference on Field Programmable Logic and Applications (FPL), pp. 1–8. IEEE
(2013)

3. Azarderakhsh, R., Reyhani-Masoleh, A.: Efficient FPGA implementations of point
multiplication on binary Edwards and generalized Hessian curves using Gaussian
normal basis. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 20(8), 1453–1466
(2012)

4. Barreto, P.S.L.M., Naehrig, M.: Pairing-friendly elliptic curves of prime order. In:
Preneel, B., Tavares, S. (eds.) SAC 2005. LNCS, vol. 3897, pp. 319–331. Springer,
Heidelberg (2006). https://doi.org/10.1007/11693383 22

5. Bernstein, D.J., Lange, T., Schwabe, P.: The security impact of a new crypto-
graphic library. In: Hevia, A., Neven, G. (eds.) LATINCRYPT 2012. LNCS, vol.
7533, pp. 159–176. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-33481-8 9

https://doi.org/10.1007/11693383_22
https://doi.org/10.1007/978-3-642-33481-8_9
https://doi.org/10.1007/978-3-642-33481-8_9


224 A. Bag et al.

6. Chen, F., Shan, Y., Zhang, Y., Wang, Y., Franke, H., Chang, X., Wang, K.:
Enabling FPGAs in the cloud. In: Proceedings of the 11th ACM Conference on
Computing Frontiers, p. 3. ACMD (2014)

7. Duursma, I., Lee, H.S.: Tate pairing implementation for hyperelliptic curves ŷ 2=
x̂ p-x+ d. In: ASIACRYPT, vol. 2894, pp. 111–123. Springer (2003). https://doi.
org/10.1007/978-3-540-40061-5 7

8. Freund, K.: Amazon’s Xilinx FPGA Cloud: Why This May Be A Significant Mile-
stone (2016)

9. Frey, G., Muller, M., Ruck, H.G.: The Tate pairing and the discrete logarithm
applied to elliptic curve cryptosystems. IEEE Trans. Inf. Theory 45(5), 1717–1719
(1999)

10. Guajardo, J., Kumar, S.S., Schrijen, G.-J., Tuyls, P.: FPGA intrinsic PUFs and
their use for IP protection. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007.
LNCS, vol. 4727, pp. 63–80. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-74735-2 5

11. Irazoqui, G., Inci, M.S., Eisenbarth, T., Sunar, B.: Wait a minute! a fast, cross-
VM attack on AES. In: Stavrou, A., Bos, H., Portokalidis, G. (eds.) RAID 2014.
LNCS, vol. 8688, pp. 299–319. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-11379-1 15

12. Johansson, K.H., Törngren, M., Nielsen, L.: Vehicle applications of controller area
network. In: Hristu-Varsakelis, D., Levine, W.S. (eds.) Handbook of Networked
and Embedded Control Systems, pp. 741–765 (2005). https://doi.org/10.1007/0-
8176-4404-0 32

13. Joux, A.: A one round protocol for tripartite Diffie-Hellman. J. Cryptol. 17(4),
263–276 (2004). https://doi.org/10.1007/s00145-004-0312-y

14. Joux, A., Pierrot, C.: Technical history of discrete logarithms in small character-
istic finite fields - the road from subexponential to quasi-polynomial complexity.
Des. Codes Cryptograph. 78(1), 73–85 (2016). https://doi.org/10.1007/s10623-
015-0147-6

15. Joux, A., Vitse, V.: Elliptic curve discrete logarithm problem over small degree
extension fields. Application to the static Diffie-Hellman problem on E(Fq5) (2010)

16. Kean, T.: Cryptographic rights management of FPGA intellectual property cores.
In: Proceedings of the 2002 ACM/SIGDA Tenth International Symposium on
FIeld-programmable Gate Arrays, pp. 113–118. ACM (2002)

17. Kerins, T., Marnane, W.P., Popovici, E.M., Barreto, P.S.L.M.: Efficient hardware
for the tate pairing calculation in characteristic three. In: Rao, J.R., Sunar, B.
(eds.) CHES 2005. LNCS, vol. 3659, pp. 412–426. Springer, Heidelberg (2005).
https://doi.org/10.1007/11545262 30

18. Kirchgessner, R., Stitt, G., George, A., Lam, H.: VirtualRC: a virtual FPGA plat-
form for applications and tools portability. In: Proceedings of the ACM/SIGDA
International Symposium on Field Programmable Gate Arrays, pp. 205–208. ACM
(2012)

19. Koblitz, N.: Elliptic curve cryptosystems. Math. Comput. 48(177), 203–209 (1987)
20. Krautter, J., Gnad, D.R., Schellenberg, F., Moradi, A., Tahoori, M.B.: Active

fences against voltage-based side channels in multi-tenant FPGAS. IACR Cryptol.
ePrint Arch 2019:1152 (2019)

21. Lie, W., Feng-Yan, W.: Dynamic partial reconfiguration in FPGAs. In: 2009 Third
International Symposium on Intelligent Information Technology Application, IITA
2009, vol. 2, pp. 445–448. IEEE (2009)

https://doi.org/10.1007/978-3-540-40061-5_7
https://doi.org/10.1007/978-3-540-40061-5_7
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-540-74735-2_5
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/978-3-319-11379-1_15
https://doi.org/10.1007/0-8176-4404-0_32
https://doi.org/10.1007/0-8176-4404-0_32
https://doi.org/10.1007/s00145-004-0312-y
https://doi.org/10.1007/s10623-015-0147-6
https://doi.org/10.1007/s10623-015-0147-6
https://doi.org/10.1007/11545262_30


Cryptographically Secure Multi-tenant Provisioning of FPGAs 225

22. Longa, P., Miri, A.: New Multibase Non-Adjacent Form Scalar Multiplication and
its Application to Elliptic Curve Cryptosystems (extended version). IACR Cryp-
tology ePrint Archive 2008:52 (2008)

23. McLoone, M., McCanny, J.V.: Rijndael FPGA implementations utilizing look-up
tables. J. VLSI Signal Process. Syst. Signal Image Video Technol. 34(3), 261–275
(2003)

24. Miller, V.S.: The Weil pairing, and its efficient calculation. J. Cryptol. 17(4), 235–
261 (2004)

25. Mukhopadhyay, D., Roy, D.B.: Revisiting FPGA implementation of montgomery
multiplier in redundant number system for efficient ECC application in GF (p). In:
2018 28th International Conference on Field Programmable Logic and Applications
(FPL), pp. 323–3233. IEEE (2018)

26. Oliveira, L.B., Aranha, D.F., Morais, E., Daguano, F., López, J., Dahab, R.: Tiny-
tate: computing the Tate pairing in resource-constrained sensor nodes. In: Sixth
IEEE International Symposium on Network Computing and Applications, 2007.
NCA 2007, pp. 318–323, IEEE (2007)

27. Opitz, F., Sahak, E., Schwarz, B.: Accelerating distributed computing with FPGAs.
Xcell J. 3, 20–27 (2012)

28. Ovtcharov, K., Ruwase, O., Kim, J.Y., Fowers, J., Strauss, K., Chung, E.S.: Accel-
erating deep convolutional neural networks using specialized hardware. Microsoft
Res. Whitepaper 2(11), 1–4 (2015)

29. Patranabis, S., Shrivastava, Y., Mukhopadhyay, D.: Provably secure key-aggregate
cryptosystems with broadcast aggregate keys for online data sharing on the cloud.
IEEE Trans. Comput. 66(5), 891–904 (2017)

30. Provelengios, G., Holcomb, D., Tessier, R.: Characterizing power distribution
attacks in multi-user FPGA environments. In: 2019 29th International Confer-
ence on Field Programmable Logic and Applications (FPL), pp. 194–201. IEEE
(2019)

31. Ristenpart, T., Tromer, E., Shacham, H., Savage, S.: Hey, you, get off of my cloud:
exploring information leakage in third-party compute clouds. In: Proceedings of the
16th ACM Conference on Computer and Communications Security, pp. 199–212.
ACM (2009)

32. Rudra, A., Dubey, P.K., Jutla, C.S., Kumar, V., Rao, J.R., Rohatgi, P.: Efficient
Rijndael encryption implementation with composite field arithmetic. In: Koç, Ç.K.,
Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 171–184. Springer,
Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1 16

33. Shu, C., Gaj, K., El-Ghazawi, T.: Low latency elliptic curve cryptography acceler-
ators for NIST curves over binary fields. In: Proceedings of the 2005 IEEE Interna-
tional Conference on. Field-Programmable Technology, 2005, pp. 309–310. IEEE
(2005)

34. So, H.K.H., Brodersen, R.: A unified hardware/software runtime environment for
FPGA-based reconfigurable computers using BORPH. ACM Trans. Embed. Com-
put. Syst. (TECS) 7(2), 14 (2008)

35. Ueno, R., Homma, N., Sugawara, Y., Nogami, Y., Aoki, T.: Highly efficient GF
(2̂8) g f (2 8) inversion circuit based on redundant GF arithmetic and its applica-
tion to AES design. In: International Workshop on Cryptographic Hardware and
Embedded Systems, pp. 63–80. Springer (2015). https://doi.org/10.1007/978-3-
662-48324-4 4

36. Vercauteren, F.: Optimal pairings. IEEE Trans. Inf. Theory 56(1), 455–461 (2009)

https://doi.org/10.1007/3-540-44709-1_16
https://doi.org/10.1007/978-3-662-48324-4_4
https://doi.org/10.1007/978-3-662-48324-4_4

	Cryptographically Secure Multi-tenant Provisioning of FPGAs
	1 Introduction
	1.1 Our Contributions

	2 Secure Multi-tenant FPGA Provisioning: Our Proposition
	2.1 Bring Your Own Keys (BYOK)
	2.2 Key-Aggregate Cryptosystems (KAC)
	2.3 A Concrete KAC Construction on Elliptic Curves
	2.4 Combining BYOK with KAC

	3 Analysis of Our Proposal
	3.1 Threat Models and Security
	3.2 Performance and Efficiency

	4 Prototype Implementation
	4.1 On-Chip Decryption Engines
	4.2 Software Encryption Engine

	5 Scalability of Our Framework
	6 Conclusion
	References




