
An Insecurity Study of Ethereum Smart
Contracts

Bishwas C. Gupta, Nitesh Kumar, Anand Handa(B), and Sandeep K. Shukla

C3i Center, Department of CSE, Indian Institute of Technology, Kanpur,
Kanpur, India

{bishwas,niteshkr,ahanda,sandeeps}@cse.iitk.ac.in

Abstract. Ethereum is the second most valuable cryptocurrency, right
after Bitcoin. The most distinguishing feature of Ethereum was the intro-
duction of smart contracts which are essentially small computer programs
that sit on top of the blockchain. They are written in programming lan-
guages like Solidity and are executed by the Ethereum Virtual Machine
(EVM). Since these contracts are present on the blockchain itself, they
become immutable as long as the blockchains integrity is not compro-
mised. This makes it a nightmare for security researchers as the vul-
nerabilities found cannot be patched. Also, since Ethereum is a public
blockchain, all the contract bytecodes are available publicly. The DAO
and the Parity attack are two prominent attacks that have caused great
monetary losses. There are many tools that have been developed to cope
with these challenges. However, the lack of a benchmark to compare these
tools, non-standard vulnerability naming conventions, etc. make the job
of a security analyst very difficult.

This paper provides the first ever comprehensive comparison of smart
contract vulnerability discovery tools which are available in the pub-
lic domain based on a comprehensive benchmark developed here. The
benchmark development is based on a novel taxonomy of smart contract
vulnerabilities which has been created after a thorough study of security
vulnerabilities present in smart contracts.

Keywords: Ethereum blockchain · Smart contracts · Security
vulnerability discovery tools

1 Introduction

1.1 Ethereum

Ethereum is also a cryptocurrency backed blockchain like Bitcoin. It uses similar
techniques like proof of work (it will eventually move to a proof of stake based
consensus algorithm called Casper), hash pointers (Ethereum uses KECCAK-
256), etc. However, the main difference between Ethereum and Bitcoin is that

Partially Supported by Office of National Cyber Security Coordinator (NCSC),
Government of India.

c© Springer Nature Switzerland AG 2020
L. Batina et al. (Eds.): SPACE 2020, LNCS 12586, pp. 188–207, 2020.
https://doi.org/10.1007/978-3-030-66626-2_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66626-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-66626-2_10

An Insecurity Study of Ethereum Smart Contracts 189

unlike Bitcoin which is just a distributed ledger of transactions, Ethereum can
also run small computer programs which allow developers to develop decentral-
ized applications (or dApps). Also, unlike Bitcoin whose founder(s) are unknown,
Ethereum is the vision of Vitalik Buterin, who wrote the white paper [9]. It is
maintained by the Ethereum Foundation.

Unlike Bitcoin, Ethereum has two kinds of addresses [12] - Externally
Owned Accounts (EOAs) which are owned through public-private key pairs
and Contract Accounts these are special accounts which are controlled by
the smart contract deployed on them. They can be triggered only by an EOA.
Like Bitcoin, the users have to pay a small transaction fees for each transaction
they want to be included in the blockchain. This is paid in Ethereum’s native
currency called Ether.

1.2 Smart Contracts

Smart Contracts are essentially small programs that exist on the blockchain
and are executed by the Ethereum Virtual Machine (EVM). They do not need
any centralised trusted authority like banks since all the functionality required
is implemented in the smart contract logic, and since the code itself resides
on the blockchain, we can be sure that it has not been tampered with. This
property of being immutable is crucial in financial applications like escrow and
other payments. Also, it allows developers to develop other smart applications
by utilizing the power of blockchain technology. However, the concept of smart
contracts is not new. It was introduced by Nick Szabo [46] in 1997.

1. EVM: EVM stands for Ethereum Virtual Machine which serves a similar
purpose that Java Virtual Machine (JVM) does for Java by providing a layer
of abstraction between the code and the machine. This also makes the code
portable across machines. It also gives the developers an option to code in
their smart contract language of choice, as finally all the programs written
in different languages are translated by their respective compilers to EVM
byte-code. The Ethereum Yellow Paper [51] explains the intricate workings
of the Ethereum Virtual Machine in great detail.

2. Smart Contract Programming: The most popular programming language
for Ethereum Smart Contracts is Solidity. It is a language similar to Javascript
and C++, making it easy for existing software developers to write solidity
code. Other languages, though not as popular are Vyper and Bamboo. Before
Solidity was released, languages like Serpent and Mutan were used which have
since been deprecated [29]. The compiler (solidity’s compiler is called solc)
converts the source code to EVM bytecode. This code is called the contract
creation code. This is like a constructor to put the contract bytecode on the
blockchain and can be executed by the EVM only once to put the run-time
bytecode on the chain. The run-time bytecode is the code that is executed by
the EVM on every call of the contract. The run-time bytecode also contains
a swarm hash of the metadata file. This file can contain information like
functions, compiler version, etc. However, this is still an experimental feature
and not many have uploaded the metadata to the Swarm network [29].

190 B. C. Gupta et al.

3. Ether and Gas: Ether is the native cryptocurrency of the Ethereum network.
Gas is another feature of Ethereum that separates it from Bitcoin. Since
different smart contracts require varying amounts of computational power
and time, it would be unfair to the miners to base the transaction fees just
on the length of the transaction or have a constant transaction fees. Gas is
a unit introduced by Ethereum that measures the computational work done.
Each operation has an associated gas cost. However, gas is different from
Ether as the value of the latter is market dependent but that does not change
the ‘computational power’ required to execute the contract. Therefore, every
transaction mentions a gas price which is the price a person is willing to pay
in ether per unit of gas. The combination of these two give the transaction
fees in ether.

1.3 Smart Contract Security

The biggest advantage of smart contracts - their immutability also poses the
biggest threat from a security standpoint. This is because any bug found in
the smart contract after deployment cannot be patched. Recent attacks like the
DAO attack and the Parity attack have caused massive monetary losses. In such a
scenario it becomes imperative to develop and interact with smart contracts that
are secure. To achieve this goal, various tools have been developed by security
researchers. However, the lack of organized information around smart contract
security issues, a proper vulnerability naming convention and classification, and
a benchmark to compare existing tools make the job of a security researcher very
difficult.

The remainder of the paper is organized as follows - Sect. 2 introduces the
various smart contract vulnerabilities. Section 3 describes the need for a new
taxonomy and our novel taxonomy for smart contract vulnerabilities. In Sect.
4, we demonstrate our Vulnerability Benchmark for analyzing the security tools.
Section 5 introduces the different security tools and highlights the results of
the tools on the benchmark. Finally, we have past related works in Sect. 6 and
concluding remarks in Sect. 7.

2 Smart Contract Security Vulnerabilities

We divide the security vulnerabilities in Ethereum into two broad categories -
Blockchain 1.0 and Blockchain 2.0 vulnerabilities. Blockchain 1.0 vulnerabilities
include security vulnerabilities that are present in most blockchain based sys-
tems and that Ethereum shares with its predecessors like Bitcoin. Blockchain
2.0 vulnerabilities include vulnerabilities introduced in the system because of
the presence of smart contracts. Our work is concerned with the Blockchain 2.0
(Smart Contract) vulnerabilities. However, the Blockchain 1.0 vulnerabilities are
introduced for completeness.

An Insecurity Study of Ethereum Smart Contracts 191

2.1 Blockchain 1.0 Vulnerabilities

1. 51% attack: In proof of work, the miners try finding the nonce value to solve
the given cryptographic puzzle. However, if miner(s) get control of more than
51% of the compute power in the network then they essentially control what
goes into the blockchain - compromising its integrity [35].

2. Double Spending: Double spending [32] occurs when the attacker uses the
same cryptocurrency more than once. This is done by leveraging race condi-
tions, forks in the chain, or 51% attacks.

3. Selfish Mining: In selfish mining [23,41], a malicious miner does not publish
the block immediately after solving the proof of work puzzle. Instead, reveals
it only to its pool members which then work on the next block, while the
other network continues working for essentially nothing [31].

4. Eclipse Attack: In eclipse attacks [28], the victim’s incoming and outgoing
connections are taken over by attacker (using a botnet or otherwise). This
gives a filtered view of the blockchain to the victim.

5. BGP Hijacking Attack: The border gateway protocol (BGP) is used for
handling routing information over the internet. BGP hijacking is a common
attack. However in the context of public blockchains, it can be used to create
unwanted delays in the network [34].

6. Private key security: Private keys are used to control the addresses in
Ethereum. It is a security problem in itself to store these keys securely. As
blockchain is a decentralised system, there is no way to report a stolen private
key and prevent its misuse.

2.2 Blockchain 2.0 Vulnerabilities

1. Re-entrancy: A re-entrancy condition is when a malicious party can call
a vulnerable function of the contract again before the previous call is com-
pleted: once or multiple times. This type of function is especially problem-
atic in case of payable functions, as a vulnerable contract might be emptied
by calling the payable function repeatedly. The call() function is especially
vulnerable as it triggers code execution without setting a gas limit. To avoid
re-entrancy bugs, it is recommended to use transfer() and send() as they
limit the code execution to 2300 gas [40]. Also, it is advised to always do
the required work (i.e. change the balances, etc.) before the external call.
The DAO Attack is the most famous re-entrancy attack which lead to a
loss of US$50 Million [13] and resulted in the chain being forked into two -
Ethereum and Ethereum Classic.

2. Authorization through tx.origin: This can be interpreted as a type
of a phishing attack. In solidity, tx.origin and msg.sender are separate.
The account calling a contract is defined by msg.sender. tx.origin is the
original sender of the transaction, which might lead to a string of other calls.
However, if tx.origin is used for authorization, and the actual owner is
conned to call a malicious contract which in turn calls the victim contract,
then the authorization fails.

192 B. C. Gupta et al.

3. Unprotected Ether Withdrawal: Due to missing or inadequate access
control mechanisms, it might be the case that anyone is able to withdraw
Ether from the contract which is highly undesirable.

4. Unprotected Selfdestruct: selfdestruct kills a contract on the
blockchain and send the contract balance to the specified address. Opcode
SELFDESTRUCT is one of the few operations that costs negative gas as it
frees up space on the blockchain. This construct is important because con-
tracts may need to be killed if they are no longer required or if some bug
is discovered. However, if this construct is put without proper protection
mechanisms in place then anyone can kill the contract.

5. Unexpected Ether: Usually, when you send ether to a contract, its fall-
back function is executed. However, if the transfer of ether happens as a
result of a selfdestruct() call, then the fallback function is not called.
Therefore, a contract’s balance should never be used in an if condition as
it can be manipulated by a malicious user.

6. Function and Variable Visibility: Solidity has four visibility specifiers
for functions and variables. However, being declared public is the most
tricky from a security standpoint. If an important function like a payable
function or a constructor with a wrong name is declared as public, then it
can cause great monetary losses. This was observed in the Rubixi Contract
which was the copy of the DynamicPyramid contract. However, the con-
structor name was not changed, making the original constructor a public
function which anyone could call. This constructor decided the owner of the
contract. Since anyone could now become the owner of the contract, it was
compromised. Variable visibility does not have such drastic consequences
as public variables get a public getter function. The Parity wallet attack
also consisted of a function visibility bug.

7. Integer Overflow and Underflow: Solidity can handle up to 256 bit
numbers, and therefore increasing (or decreasing) a number over (or below)
the maximum (or minimum) value can result in overflows (or underflows).
It is recommended to use OpenZeppelin’s SafeMath library to mitigate such
attacks.

8. Variable Shadowing: Variable shadowing occurs when a variable with the
same name can be declared again. This can happen in case of a single con-
tract (at the contract and function level) and also with multiple contracts.
For example, a contract A inherits B, but both contracts have declared a
variable x.

9. Exception Handling: Like in any object oriented programming language,
exceptions may arise due to many reasons. These must be properly handled
at the programmer level. Also, lower level calls do not throw an exception.
They simple return a false value which needs to be checked and the excep-
tion should be handled manually.

10. Denial of Service: A denial of service attack from a smart contract’s
perspective happens when a smart contract becomes inaccessible to its users.
Common reasons include failure of external calls or gas costly programming
patterns.

An Insecurity Study of Ethereum Smart Contracts 193

11. Call to the Unknown: Ethereum Smart Contracts can make calls to
other smart contracts. If the addresses of these smart contracts may be
user provided then a malicious actor can utilize improper authentication to
call a malicious contract. If the address is hard-coded, then it does not give
the flexibility to update the contract to be called over time. Another issue is
a special method called delegatecall. This makes the dynamically loaded
code run in the caller’s context. Therefore, if a delegatecall is made to
a malicious contract, they can change storage values and potentially drain
all funds from the contract.

12. Bad Randomness: Online games and lotteries are common dApp use
cases. For these applications, a common choice for the seed of the random
number generator is the hash or timestamp of some block that appears in
the future. This is considered secure as the future is unpredictable. However,
a malicious attacker can bias the seed in his favour.

13. Untrustworthy Data Feeds: In context of blockchains, a data feeds (also
referred to as oracle) is an agent that verifies the integrity of the information
before putting it on the blockchain. Once the data is published on the chain,
its integrity can be guaranteed. However, the problem of making sure that
the data feeds themselves are trustworthy is an active research problem.

14. Transaction Order Dependence: The order in which the transactions
are picked up by miners might not be the same as the order in which they
arrive. This creates a problem for contracts that rely on the state of the
storage variables. Gas sent is usually important as it plays an important role
in determining which transactions are picked first. A malicious transaction
might be picked first, causing the original transaction to fail. This kind of
race-condition vulnerability is referred to as transaction order dependence.

15. Timestamp Dependence: A lot of applications have a requirement to
implement a notion of time in their applications. The most common method
of implementing this is using the block.timestamp either directly or indi-
rectly. However, a malicious miner with a significant computational power
can manipulate the timestamp to get an output in his/her favour.

3 New Taxonomy for Ethereum Smart Contract
Vulnerabilities

3.1 Existing Taxonomies and the Need for a New Taxonomy

The first taxonomy for smart contract vulnerabilities was given by Atzei et al. [5].
They divided the vulnerabilities into three broad categories based on their source.
This included Solidity, EVM and blockchain. The vulnerabilities discussed did
not give a holistic picture as it did not even contain common vulnerabilities like
access control, function visibility, and transaction order dependence. These vul-
nerabilities have been proven to be quite disastrous as shown in the infamous
Parity bug. Also, it was felt that only one level of hierarchy was less for proper
analysis. Dika [21] in his Master’s Thesis addressed many of the shortcomings of

194 B. C. Gupta et al.

the Atzei taxonomy. More vulnerability categories were added and an associated
severity level was also given for each vulnerability. However, the single level hier-
archy was carried forward from the previous work. Also, we noticed that some
vulnerability classes do not pose an immediate security risk. For example, use
of tx.origin was labelled as a vulnerability. However, just using tx.origin
does not cause a security breach. The problem occurs when it is used for autho-
rization. Similarly, blockhash may cause a security vulnerability if used as a
source of randomness. However just using it in the code does not make a con-
tract vulnerable. Because of these issues in the existing work, we felt that there
was a need for an improved taxonomy that was more hierarchical - for better
analysis and understanding. Also, issues of improper vulnerability naming and
incomplete vulnerability listing also needed refinement.

3.2 A New Taxonomy of Ethereum Smart Contract Vulnerabilities

Based on our research and study of Ethereum smart contract vulnerabilities
as discussed in Sect. 1, we have come up with a new and unified vulnerability
taxonomy as shown in Table 1. With this new taxonomy, we try to overcome
the problems in the existing literature. We try to cover almost all the security
vulnerabilities that have been reported. Since, these are usually reported under
different names, a security analyst would find that he/she is able to put any exist-
ing vulnerability he/she encounters under one of the many categories we have
created. Also, unlike previous works, we have tried to eliminate any redundan-
cies and/or incorrect categorizations. The taxonomy is hierarchical and therefore
analysis using this taxonomy would give the security researcher better insights
into the root security issues in smart contracts.

Based on the existing literature [21] and the OWASP Risk Rating Methodol-
ogy [50], the severity levels are color-coded. The authors in this work categorized
various severity levels according to their criticality level - high, medium, and low.
In our work, the severity level is color-coded with red being high, orange being
medium, and green being low.

4 Vulnerability Benchmark

4.1 Need for a Benchmark

It is observed that many security tools have come up for Ethereum smart con-
tracts over the years. However, it is also observed that these tools are usually
tested on different test-instances and in some cases even the ground truth is
unknown. Therefore, as a smart contract developer or a user, it becomes dif-
ficult to actually compare the performance of different tools without a proper
benchmark.

Dika [21] tried to solve this issue. However, he tested only three tools on just
23 vulnerable and 21 audited-safe contracts. A contract was called vulnerable
if it had any vulnerability. However, it was not checked that a tool properly
detected the vulnerability claimed and the results were presented as is.

An Insecurity Study of Ethereum Smart Contracts 195

Table 1. A new taxonomy of ethereum smart contract vulnerabilities

Solidity

Re-entrancy

Access Control

Protection Issues
Authorization through tx.origin
Unprotected Ether Withdrawal
Unprotected selfdestruct
Unexpected Ether

Visibility Issues
Function Visibility
Variable Visibility

Arithmetic Issues Integer Overflow & Underflow
Floating Point & Precision

Solidity Programming Issues

Uninitialized Storage Pointers
Variable Shadowing
Keeping Secrets
Type Casts
Lack of Proper Signature Verification
Write to Arbitrary Storage Location
Incorrect Inheritance Order
Typographical Errors
Use of Assembly
Use of Deprecated Functions/Constructions
Floating or No Pragma
Outdated Compiler Version

Exception Handling

Unchecked Call
Gasless Send
Call Stack Limit
Assert Violation
Requirement Violation

Call to the Unknown Dangerous Delegate Call
External Contract Referencing

Denial of Service DoS with block gas limit
DoS with failed call

EVM

Short Address Attack
Immutable bugs
Stack size limit

Blockchain

Bad Randomness
Untrustworthy Data Feeds
Transaction Order Dependence
Timestamp Dependence
Unpredictable state (Dynamic Libraries)

4.2 Benchmark Creation Methodology

To create the benchmark, we collected contracts known to be vulnerable from
various sources. This included:

196 B. C. Gupta et al.

– Smart Contract Weakness Classification (SWC) Registry [16]
– (Not So) Smart Contracts [17]
– EVM Analyzer Benchmark Suite [14]
– Research papers, theses and books [3–6,21]
– Various blog posts, articles, etc. [8,11,24,26,33,37,42,43,47,52]

After collecting all the instances, we manually removed the duplicate contracts -
this was important as we found that there was notable overlap between contracts
gathered from different sources. After this, we manually checked the contracts
and classified them as per the new taxonomy. Finally we compiled the smart
contracts into run-time bytecode. However, as each contract required a different
version of solidity, and solc-select [20] did not support such a large range of
compiler versions, we leveraged Remix IDE [25] to manually generate the run-
time byte-codes for each contract and stored it separately. This was not done
for the on-chain contracts and the run-time byte-codes for these were directly
taken from the blockchain. A summary of the benchmark creation methodology
is depicted in Fig. 1.

Collection of
solidity files from
various sources

Duplicate removal
from collected

files

Classification
according to the
new taxonomy

Generate
run-time

bytecodes using
RemixIDE

BENCHMARK

Collect run-time
bytecodes for on-chain

contractsSolidity files

Bytecode
files

Fig. 1. Vulnerability benchmark creation

4.3 Benchmark Statistics

Unlike the previous work by Dika where only 23 vulnerable contracts were
used, we have identified 162 unique vulnerable contracts. We have collected 34
on-chain vulnerable contracts. A few of them are - SmartBillions, Lottery,
EthStick, UGToken, etc. including infamous contracts like the DAO, Parity
Wallet, Rubixi and King of the Ether Throne.

It has been observed that Ethereum smart contracts have been used for cre-
ating ponzi-schemes to scam innocent people into loosing money by promising
extraordinarily high returns [6]. Even though a ponzi contract might not be a
direct security vulnerability, we have included them in our study because of the
high monetary impact of such contracts. Apart from ponzi schemes like Govern-
Mental, FirePonzi and Rubixi which have already been included, we added ponzi

An Insecurity Study of Ethereum Smart Contracts 197

schemes corresponding to the vulnerabilities - Does not Refund, Allow Owner
to withdraw funds from contracts namely - DynamicPyramid, GreedPit,
NanoPyramid, Tomeka, ProtectTheCastle, and EthVentures that exhibited
one or more of the following properties - contracts that do not refund and con-
tracts that allow the owner to withdraw funds. These properties are typical
in ponzi schemes, however they cannot be classified as security vulnerabilities
directly without knowing the context.

The final benchmark consists of 180 contracts spread over all the categories.
Out of these we have 162 unique contracts. This includes 40 on-chain contracts
(including six additional ponzi schemes). This is very high in comparison to the
23 vulnerable smart contracts identified by [21].

5 Study of Security Tools

5.1 Tools Available for Ethereum Smart Contracts

There are many different tools available for Ethereum Smart Contracts. These
tools have been gathered from research publications and through Internet
searches. In this section, we classify the various tools available into different
categories, so that the end users can easily find which tool to use for their par-
ticular application. Even though our work is primarily concerned with Security
Tools, the other tools are included for the reader’s convenience.

1. Security Tools: These are tools which take as input either the source code
or the bytecode of a contract and give outputs on the security issues present.
These are the tools that we are primarily concerned in with our work. Exam-
ples of security tools include Mythril [15], and Securify [49].

2. Visualization Tools: Visualization tools help give graphical outputs like
control flow graphs, dependency graphs, etc. of the given contract to help in
analysis. Tools like solgraph [44] and rattle [18] fall under this category.

3. Disassemblers and Decompilers: A dis-assembler converts the binary
code back into the high level language code while a decompiler converts the
binary code to a low level language for better understanding. evm-dis [30] is
a popular dis-assembler for smart contracts.

4. Linters: Linters are static analysis tools primarily focused on detecting poor
coding practices, programming errors, etc. Ethlint [22] is a common linting
tool of Ethereum smart contracts.

5. Miscellaneous Tools: This includes tools like SolMet [27] which help give
common code metrics like number of lines of code, number of functions per
contract, etc. for solidity source files.

5.2 Methods Employed by the Security Tools

1. Static Analysis: Static Analysis essentially means evaluating the program
code without actually running it. It looks at the code structure, the decom-
piled outputs, and control flow graphs to identify common security issues.

198 B. C. Gupta et al.

SmartCheck [48], Slither [19] and Remix IDE [25] are static analysis security
tools for Ethereum smart contracts.

2. Symbolic Execution: Symbolic execution is considered to be in the middle
of static and dynamic analysis. It explores possible execution paths for a
program without any concrete input values. Instead of values, it uses symbols
and keeps track of the symbolic state. It leverages constraint solvers to make
sure that all the properties are satisfied. Mythril [15] and Oyente [36] are the
popular Symbolic Execution tools for smart contract security.

3. Formal Verification: Formal Verification incorporates mathematical models
to make sure that the code is free of errors. Bhargavan et al. [7] conducted
a study of smart contracts using F*. However, the work is not available as
open source to the best of our knowledge.

5.3 Experimental Setup

For the purpose of the study, we select the security tools that are actively main-
tained, open-sourced, ready for use and cover a fairly large section of the vul-
nerabilities. Keeping the above constraints in mind, the following tools were
selected -

1. Remix IDE: Remix IDE [25] is primarily an integrated development envi-
ronment (IDE) for developing Solidity smart contracts. It can connect to
the Ethereum network using Metamask and developers can directly deploy
smart contracts from Remix. It is developed and maintained by the Ethereum
Foundation. The IDE has a security module to help developers with common
security issues like re-entrancy, etc. It requires the solidity file of the contract
to work. As a web interface was available, the testing using the benchmark
instances was carried out manually.

2. SmartCheck: SmartCheck [48] is a static analysis tool for Solidity and Vyper
smart contracts. It is developed by SmartDec and the University of Luxem-
bourg. Like other static analysis tools, it does not work on byte-codes and
requires the source codes to be present for analysis. It works by transform-
ing the source codes into an intermediate representation which is XML-based.
This representation is then checked against XPath patterns to highlight poten-
tial vulnerabilities in the code. The tool is open sourced and also has a web
interface hosted at [45].

3. Slither: Slither [19] is a static analysis tool for solidity source files written
in Python 3. It is open sourced and is developed by Trail of Bits. It works
on contracts written in solidity >= 0.4 and requires the solidity files for
analysis. It leverages an intermediate representation call SlithIR for code
analysis. However, it requires the correct solidity version to be installed in the
system. For this, we utilize another tool by Trail of Bits called solc-select
[20] to switch to the right compiler version which is predetermined manually.

4. Oyente: Oyente [36] is one of the earliest security tools for Solidity smart
contracts. It was developed by security researchers at the National University
of Singapore and is now being maintained by Melonport. Oyente leverages

An Insecurity Study of Ethereum Smart Contracts 199

symbolic execution to find potential vulnerabilites in the smart contracts. It
works with both byte-codes and solidity files. Being one of the first tools in
this area, Oyente has been extended by many researchers over the years. For
example, the control flow graphs generated by Oyente are also used by EthIR
[1], which is a high level analysis tool for Solidity. A web interface for the tool
is also available [38].

5. Securify: Securify [49] has been created by researchers at ETH Zurich in
collaboration with ChainSecurity for security testing of Ethereum smart con-
tracts. It works on both solidity source files and byte-codes. It has also
received funding from the Ethereum Foundation to help mitigate the secu-
rity issues in smart contracts. It analyzes the contract symbolically to get
semantic information and then checks against patterns to see if a particular
property holds or not. A web interface is also available at [10].

6. Mythril: Mythril [15] is a security tool developed by ConsenSys. It uses as
a combination of symbolic execution and taint analysis to identify common
security issues. Recently, a new initiative called MythX was launched with a
similar core as Mythril for smart contract developers to provide security as a
service. However, it is still in beta testing and is not available as open source.
Therefore, we use Mythril Classic for our testing purposes.

Table 2 summarizes the tools selected for the study along with versions of
the tools used. Table 3 shows the vulnerability coverage as claimed by the tools.
According to the claims, we observe that the vulnerability coverage across all the
tools is fairly good with most vulnerabilities being covered by one tool or another.
All the experiments were carried out on a machine running Ubuntu 18.04.2 LTS
on an Intel R© CoreTM i7-4770 CPU with 16 GB DDR3 RAM. Also, the tools
that worked on both solidity and bytecode files were tested on bytecode files
only. The results output by each tool were then converted to the new taxonomy
as shown in Table 3 to allow us to compare the tools uniformly.

Table 2. Summary of tools used in the study

Remix
IDE

Smart-
Check

Slither Oyente Securify Mythril

Version/
Date
Used

4-Mar-2019 2.0.1 0.4.0 0.2.7 17-Apr-19 0.20.4

Technique
Static

Analysis
Static

Analysis
Static

Analysis
Symbolic
Execution

Symbolic
Execution

Symbolic
Execution

WUI/
CLI

WUI WUI + CLI CLI WUI + CLI WUI + CLI WUI + CLI

Works on
src-file/
bytecode

src-file src-file src-file
src-file +
bytecode

src-file +
bytecode

src-file +
bytecode

Developed
by

Ethereum
Foundation

SmartDec Trail of Bits
NUS +

Melonport
ETH Zurich ConsenSys

200 B. C. Gupta et al.

Table 3. Vulnerability mapping to the new taxonomy

Reported by the Tool Mapping to the new Taxonomy
Remix IDE

Transaction origin Authorization through tx.origin
Check-effects Re-entrancy
Block timestamp usage Timestamp Dependence
block.blockhash usage Bad randomness
inline assembly Use of Assembly
Use of selfdestruct Unprotected selfdestruct
Low level calls/use of send Unchecked Call

SmartCheck
Deprecated Constructions Use of Deprecated Functions/Constructions
Gas limit in loops DoS with block gas limit
Upgrade to 0.5.0 Outdated Compiler Version
Pragmas version Floating or No Pragma
Send, Unchecked call, Call without data Unchecked Call
Using inline assembly Use of Assembly
Incorrect Blockhash Bad Randomness
Transfer in loop DoS with failed call
Exact time Timestamp dependence
Div mul Floating Point and Precision
Visibility Function Default Visibility
Locked money Ponzi Scheme – Do Not Refund
Redundant fallback reject, Balance equality Unexpected Ether
Array length manipulation Write to Arbitrary Storage Location

Slither
Reentrancy-eth,reentrancy-no-eth,reentrancy-benign Re-entrancy
tx-origin Authorization through tx.origin
timestamp Timestamp dependence
Uninitialized-state, uninitialized-local, uninitialized-storage Uninitialized storage pointers
suicidal Unprotected selfdestruct
assembly Use of Assembly
deprecated-standards Use of Deprecated Functions or Constructions
solc-version Outdated Compiler Version
calls-loop Denial of Service with failed call
arbitrary-send Unprotected Ether Withdrawal
incorrect-equality Unexpected Ether
Unused-return, low-level-calls Unchecked External Call
Shadowing-builtin, shadowing-local, shadowing-state Shadowing State Variables
controlled-delegatecall Dangerous Delegate Call
locked-ether Ponzi scheme – Does not Return

OYENTE
Call stack Stack size limit
Re-entrancy Re-entrancy
Time Dependency Timestamp Dependence
Integer Overflow, Integer Underflow Integer Overflow & Underflow
Money Concurrency Transaction Order Dependence

Mythril Classic
Integer Underflow, Integer Overflow Integer Overflow & Underflow
Unchecked Call Return Value Unchecked Call
Unprotected Selfdestruct Unprotected selfdestruct
Unprotected Ether Withdrawal Unprotected Ether Withdrawal
Use of tx.origin Authorization through tx.origin
Exception State Exception Handling
External Call To Fixed/User-Supplied Address Dangerous Delegate Call
Use of callcode Use of Deprecated Functions/Constructs
Dependence on predictable variable/environment variable Bad Randomness
Multiple Calls in a Single Transaction Denial of Service

Securify
DAO, DAOConstantGas Re-entrancy
LockedEther Ponzi Scheme – Do not Refund
MissingInputValidation Type Casts
RepeatedCall Dangerous Delegate Call
TODAmount, TODReceiver Transaction Ordering Dependence
UnhandledException Unchecked Call
UnrestrictedEtherFlow Unprotected Ether Withdrawal
UnrestrictedWrite Write to arbitrary storage location

An Insecurity Study of Ethereum Smart Contracts 201

6 Results

For each tool, we run it against the benchmark. Then, we identify the relevant
entries using the Table 4 to identify the vulnerabilities which the tool claims to
identify. We then, map the results using the mapping in Table 3 and present the
results in a tabular format in Table 5 and Table 6. The table for each tool depicts
the vulnerable contracts it detected successfully and correctly, the contracts it
could not detect correctly, and the contracts on which the tool could not finish
it’s evaluation because of some error or exception being raised. Securify is the
only tool in our study that marks a contract as ‘safe’ from a vulnerability. If a
vulnerable contract was wrongly labelled as ‘safe’, we call it a false negative.

Table 4. Tool-vulnerability matrix as claimed by the tools

Remix Slither SmartCheck Oyente Mythril Securify SUM

SO
L
ID

IT
Y

Re-entrancy Y Y Y Y 4
Authorization through tx.origin Y Y Y 3
Unprotected Ether Withdrawal Y Y Y 3
Unprotected selfdestruct Y Y Y 3
Unexpected Ether Y Y 2
Function Visibility Y 1
Variable Visibility 0
Integer Overflow & Underflow Y Y 2
Floating Point & Precision Y 1
Uninitialized Storage Pointers Y 1
Variable Shadowing Y 1
Keeping Secrets Y 1
Type Casts Y 1
Lack of Proper Signature Verification 0
Write to Arbitrary Storage Location Y Y 2
Incorrect Inheritance Order 0
Typographical Errors 0
Use of Assembly Y Y Y 3
Use of Deprecated Functions Y Y Y 3
Floating or No Pragma Y 1
Outdated Compiler Version Y Y 2
Unchecked Call Y Y Y Y 4
Gasless Send Y 1
Call Stack Limit Y 1
Assert Violation Y 1
Requirement Violation Y 1
Dangerous Delegate Call Y Y Y 3
External Contract Referencing 0
DoS with block gas limit Y Y 2
DoS with failed call Y Y Y 3

E
V

M

Short Address Attack 0
Immutable bugs 0
Stack size limit Y 1

B
/C

H
A

IN

Bad Randomness Y Y Y 3
Untrustworthy Data Feeds 0
Transaction Order Dependence Y Y 2
Timestamp Dependence Y Y Y Y 4
Unpredictable state 0

P
S Does not Return Y Y Y 3

Allows Owner to Withdraw Funds 0
TOTAL 7 15 15 5 7 14

1. Remix IDE: The performance of Remix IDE is surprisingly good. As seen in
Table 6, it detects vulnerabilities like tx.origin authorization, use of assem-
bly, unchecked call and timestamp dependence with 100% accuracy. However,

202 B. C. Gupta et al.

we find that these vulnerabilities are caught by mere presence of certain con-
structs without checking whether they actually result in a vulnerability or
not. For example, Timestamp Dependence flag is raised if timestamp is used
anywhere in the code. Similarly, tx.origin flag is raised if tx.origin is
used anywhere within the code without checking if any it causes any security
issue or not. The selfdestruct module works similarly. However it could
not detect the Parity Bug because it uses the older suicide construct. It
was also observed that for solidity versions 0.3.1 and prior, the check-effects
and the selfdestruct modules gave an error. This resulted in the famous DAO
contract not being analysed by the tool.

2. SmartCheck: The performance of SmartCheck is given in Table 6. It has
a good performance in only a few of the many categories that it can detect.
They include security issues like use of deprecated functions, unchecked call,
use of assembly, etc. However, the performance on other instances is not very
good.

3. Slither: Slither has a very good performance across most of the categories
as shown in Table 6. There was no category that it could not detect even
one instance from. The biggest drawback of slither is that does not work
with older solidity versions (prior to 0.4) and requires the correct version of
solidity to be present on the system. Because of this, a lot of contracts in the
benchmark gave errors with slither. However, it is a very good tool for smart
contract developers who are developing in newer versions of solidity.

4. Oyente: Being one of the earliest tools, Oyente is now showing it’s age. It
covers a very low number of vulnerabilities. The results are shown in Table 6.
Average EVM code coverage for the entire benchmark set was found to be
75.98%. Also, there was not a single report of integer overflow or underflow
across the complete benchmark. We believe this is some bug in the tool caus-
ing this behaviour.

5. Securify: Securify is the only tool that reports a contract as ‘safe’ from a
particular vulnerability. If the contract contains a vulnerability, and Securify
reports it as ‘safe’, we call it false negative. From Table 5 we can see that
Securify reports a lot of false negatives. However, it has a decent performance
on re-entrancy bug detection.

Table 5. Results of securify on the vulnerability benchmark

Vulnerability Total Detected
Not

Detected Error
False

Negative
Re-entrancy 10 6 0 2 2

Transaction Ordering Dependence 9 2 2 0 5
Dangerous Delegate Call 6 0 0 0 6

Unchecked Call 3 0 0 0 3
Type Casts 6 1 4 0 1

Ponzi – Do not Refund 4 0 0 0 4
Unprotected Ether Withdrawal 7 0 3 0 4

Write to arbitrary storage 2 0 2 0 0

An Insecurity Study of Ethereum Smart Contracts 203

Table 6. Results of various tools on the Vulnerability Benchmark

Results of Remix IDE on the Vulnerability Benchmark Results of SmartCheck on the Vulnerability Benchmark

Vulnerability Total Detected
Not

Detected Error Vulnerability Total Detected
Not

Detected Error

Auth through tx.origin 2 2 0 0 Outdated Compiler Version 1 0 0 1
Use of Assembly 1 1 0 0 Use of Deprecated 1 1 0 0
Timestamp Dependence 6 6 0 0 Unchecked Call 3 3 0 0
Unchecked Call 3 3 0 0 Use of Assembly 1 1 0 0
Unprotected selfdestruct 3 2 1 0 Function Visibility 12 9 3 0
Re-entrancy 10 5 3 2 Unexpected Ether 2 1 1 0
Bad Randomness 11 4 7 0 DoS with block gas limit 5 1 4 0

Results of Oyente on the Vulnerability Benchmark Time stamp dependence 6 1 5 0

Vulnerability Total Detected
Not

Detected Error Floating or No Pragma 2 0 1 1

Stack Size Limit 1 1 0 0 Bad Randomness 11 0 10 1
Re-entrancy 10 5 5 0 DoS with failed call 3 0 3 0
Timestamp Dependence 6 2 4 0 Floating Point and Precision 2 0 2 0
Transaction Order Dependence 9 5 4 0 Ponzi – Do Not Refund 4 0 4 0

Results of Slither on the Vulnerability Benchmark Write to Arbitrary Storage 2 0 2 0

Vulnerability Total Detected
Not

Detected Error Results of Mythril on the Vulnerability Benchmark

Auth through tx.origin 2 2 0 0 Vulnerability Total Detected
Not

Detected Error

Unprotected selfdestruct 3 2 0 1 Unchecked Call 3 1 0 2
Use of Assembly 1 1 0 0 Auth through tx.origin 2 1 0 1
Use of Deprecated Functions 1 1 0 0 Use of Deprecated Functions 1 1 0 0
Outdated Compiler Version 1 1 0 0 Unprotected selfdestruct 3 2 1 0
Unexpected Ether 2 2 0 0 Unprotected Ether Withdrawal 7 4 3 0
Unchecked Call 3 1 0 2 Integer Overflow & Underflow 31 11 10 10
Variable Shadowing 3 3 0 0 Dangerous Delegate Call 6 2 2 2
Uninitialized storage pointers 5 4 1 0 Exception Handling 29 12 14 3
Dangerous Delegate Call 6 2 1 3 Bad Randomness 11 1 4 6
Re-entrancy 10 4 3 3 Denial of Service 4 0 4 0
DoS with failed call 3 1 1 1 - - - - -
Timestamp dependence 6 1 2 3 - - - - -
Unprotected Ether Withdrawal 7 2 4 1 - - - - -
Ponzi – Does not Return 4 0 0 4 - - - - -

6. Mythril: The performance of Mythril on the benchmark is shown in Table 6.
It is able to detect the attacks with a fair accuracy, however it encounters a
lot of errors. This makes its performance inferior to some static analysis tools
like Slither.

The effectiveness of the tools in detecting the vulnerabilities in the benchmark
is shown in Table 7. The cells highlighted in green indicate that all the instances
of that vulnerability present in the benchmark are successfully detected, while
grey highlights the maximum vulnerabilities (though not all) accurately detected
across all the tools. We observe that many vulnerabilities are not being detected
by the tools. We also observe that even though the tools cover a wide spectrum
of vulnerabilities, they are not very accurate in detecting them. The best tool
from our study is Slither. It covers a wide range of vulnerabilities and is the
only tool that detected at-least one from each category it could successfully
evaluate. The only drawback is that it works on solidity versions greater than
0.4.0. Nevertheless, it is still a good tool for new smart contract developers.

7 Related Work

Atzei et al. [5] conducted the first survey of attacks on Ethereum smart contracts
and also gave the first taxonomy of Ethereum smart contract vulnerabilities.
They also look at some of the popular vulnerable contracts like the DAO, Rubixi,
GovernMental and King of the Ether throne.

204 B. C. Gupta et al.

Table 7. Tool effectiveness for different vulnerabilities

RemixIDE Slither SmartCheck Oyente Mythril Securify
SO

L
ID

IT
Y

Re-entrancy 5 4 5 6
Authorization through tx.origin 2 2 1
Unprotected Ether Withdrawal 2 4 0
Unprotected selfdestruct 2 2 2
Unexpected Ether 2 1
Function Visibility 9
Variable Visibility
Integer Overflow & Underflow - 11
Floating Point & Precision 0
Uninitialized Storage Pointers 4
Variable Shadowing 3
Keeping Secrets
Type Casts 1
Lack of Proper Signature Verification
Write to Arbitrary Storage Location 0 0
Incorrect Inheritance Order
Typographical Errors
Use of Assembly 1 1 1
Use of Deprecated Functions/Constructions 1 1 1
Floating or No Pragma 0
Outdated Compiler Version 1 0
Unchecked Call 3 1 3 1 0
Gasless Send 0
Call Stack Limit 0
Assert Violation 12
Requirement Violation 0
Dangerous Delegate Call 2 2 0
External Contract Referencing
DoS with block gas limit 1 0
DoS with failed call 1 0

E
V

M Immutable bugs
Stack size limit 1

B
/C

H
A

IN Bad Randomness 4 0 1
Transaction Order Dependence 5 2
Timestamp Dependence 6 1 1 2
Unpredictable state (Dynamic Libraries)

P
S Does not Return 0 0 0

Allows Owner to Withdraw Funds

Dika [21] in his master’s thesis, extended the taxonomy given by Atzei et al.
[5]. He also tested the effectiveness of three security tools on a data-set of 23
vulnerable and 21 safe contracts. It is observed that the data-set and the number
of tools used for the study is quite less. Also, the taxonomy needs hierarchy for
better analysis. Mense et al. [39] look at the security analysis tools available for
Ethereum smart contracts and cross reference them to the extended taxonomy
given by Dika [21] to identify the vulnerabilities captured by each tool. However,
the tool’s effectiveness in catching those vulnerabilities is not studied. Buterin
[8] in his post outlines the various vulnerable smart contracts with an elementary
categorization. He also emphasises the need to experiment with various tools and
standardization wherever possible to mitigate bugs in smart contracts. Angelo et
al. [2] surveyed the various tools available to Ethereum smart contract developers.
They do a very broad categorization of tools - those which are publicly available
and those which are not publicly available. Antonopoulos et al. [3] in their book
on Ethereum have dedicated a chapter on smart contract security. They cover the
various vulnerabilities encountered by smart contract developers and give real
world examples and preventative techniques. It is a good reference for smart
contract developers.

An Insecurity Study of Ethereum Smart Contracts 205

8 Conclusion

Security researchers and smart contract developers face three problems when
dealing with smart contracts - lack of an updated and organized study of the
possible vulnerabilities and their causes, lack of a standard taxonomy and nam-
ing convention of these vulnerabilities and lack of a benchmark to compare and
evaluate the performance of the different tools available for smart contract secu-
rity, so that they can make an informed decision about which tool to use. In
this work, we conduct an organized study of smart contract vulnerabilities and
develop a novel taxonomy that is hierarchical and uses nomenclature used pop-
ularly by security researchers. We also develop a comprehensive vulnerability
benchmark containing 180 vulnerable contracts across different vulnerability cat-
egories. This benchmark is based on the novel taxonomy explained in this work.
Finally, we compare and analyze the performance of different security tools using
the benchmark. We observe that the static analysis tools perform better than
the symbolic execution tools. As this is an active research area, updation of the
benchmark and the taxonomy is needed from time to time. Also, to detect false
positives, we may develop a non-vulnerable benchmark that contains instances
that might seem vulnerable at the first glance but do not pose a security risk. It
would be interesting to see the performance of the tools on such instances.

References

1. Albert, E., Gordillo, P., Livshits, B., Rubio, A., Sergey, I.: EthIR: a framework for
high-level analysis of ethereum bytecode. In: Lahiri, S.K., Wang, C. (eds.) ATVA
2018. LNCS, vol. 11138, pp. 513–520. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-01090-4 30

2. Di Angelo, M., Antipolis, S.: A survey of tools for analyzing ethereum smart con-
tracts (2019)

3. Antonopoulos, A.M., Wood, G.: Mastering Ethereum: Building Smart Contracts
and Dapps. O’Reilly Media, Sebastopol (2018)

4. Atzei, N., Bartoletti, M., Cimoli, T.: Attacks - A Survey of Attacks on
Ethereum Smart Contracts. http://blockchain.unica.it/projects/ethereum-survey/
attacks.html. Accessed 2 May 2019

5. Atzei, N., Bartoletti, M., Cimoli, T.: A survey of attacks on ethereum smart con-
tracts (SoK). In: Maffei, M., Ryan, M. (eds.) POST 2017. LNCS, vol. 10204, pp.
164–186. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54455-
6 8

6. Bartoletti, M., Carta, S., Cimoli, T., Saia, R.: Dissecting ponzi schemes on
ethereum: identification, analysis, and impact. arXiv preprint arXiv:1703.03779
(2017)

7. Bhargavan, K., et al.: Formal verification of smart contracts: short paper. In: Pro-
ceedings of the 2016 ACM Workshop on Programming Languages and Analysis for
Security, pp. 91–96. ACM (2016)

8. Buterin, V.: Thinking About Smart Contract Security. https://blog.ethereum.org/
2016/06/19/thinking-smart-contract-security/. Accessed 2 May 2019

9. Buterin, V., et al.: A next-generation smart contract and decentralized application
platform. White paper (2014)

https://doi.org/10.1007/978-3-030-01090-4_30
https://doi.org/10.1007/978-3-030-01090-4_30
http://blockchain.unica.it/projects/ethereum-survey/attacks.html
http://blockchain.unica.it/projects/ethereum-survey/attacks.html
https://doi.org/10.1007/978-3-662-54455-6_8
https://doi.org/10.1007/978-3-662-54455-6_8
http://arxiv.org/abs/1703.03779
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/
https://blog.ethereum.org/2016/06/19/thinking-smart-contract-security/

206 B. C. Gupta et al.

10. ChainSecurity. Securify Scanner for Ethereum Smart Contracts. https://securify.
chainsecurity.com. Accessed 16 May 2019

11. CityMayor. How Someone Tried to Exploit a Flaw in Our Smart Contract and Steal
All of Its Ether. https://blog.citymayor.co/posts/how-someone-tried-to-exploit-a-
flaw-in-our-smart-contract-and-steal-all-of-its-ether/. Accessed 2 May 2019

12. Ethereum Community. Ethereum Homestead Documentation. http://ethdocs.org/
en/latest/index.html. Accessed 10 May 2019

13. ConsenSys. Ethereum Smart Contract Best Practices - Known Attacks. https://
consensys.github.io/smart-contract-best-practices/known attacks/. Accessed 24
April 2019

14. Consensys. EVM Analyzer Benchmark Suite. https://github.com/ConsenSys/evm-
analyzer-benchmark-suite. Accessed 2 May 2019

15. ConsenSys. Mythril Classic. https://github.com/ConsenSys/mythril-classic.
Accessed 16 May 2019

16. Consensys. Smart Contract Weakness Classification and Test Cases. https://
smartcontractsecurity.github.io/SWC-registry/. Accessed 2 May 2019

17. Crytic. (Not So) Smart Contracts. https://github.com/crytic/not-so-smart-
contracts Accessed 2 May 2019

18. Crytic. rattle. https://github.com/crytic/rattle. Accessed 16 May 2019
19. Crytic. Slither, the Solidity source analyzer. https://github.com/crytic/slither.

Accessed 2 May 2019
20. Crytic. solc-select. https://github.com/crytic/solc-select. Accessed 2 May 2019
21. Dika, A.: Ethereum smart contracts: Security vulnerabilities and security tools.

Master’s thesis, NTNU (2017)
22. Dua, R.: EthLint. https://github.com/duaraghav8/Ethlint. Accessed 16 May 2019
23. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun.

ACM 61(7), 95–102 (2018)
24. Falkon, S.: The Story of the DAO - Its History and Consequences. https://medium.

com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee.
Accessed 2 May 2019

25. Ethereum Foundation. Remix - Solidity IDE. https://remix.ethereum.org/.
Accessed 2 May 2019

26. NCC Group. DASP - TOP 10. https://dasp.co/index.html. Accessed 2 May 2019
27. Hegedus, P.: Towards analyzing the complexity landscape of solidity based

ethereum smart contracts. Technologies 7(1), 6 (2019)
28. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s

peer-to-peer network. In: 24th USENIX Security Symposium (USENIX Security
15), pp. 129–144 (2015)

29. Hollander, L.: The Ethereum Virtual Machine - How does it work? https://medium.
com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e.
Accessed 10 May 2019

30. Johnson, N.: evmdis. https://github.com/arachnid/evmdis. Accessed 16 May 2019
31. Karame, G.O., Androulaki, E.: Bitcoin and Blockchain Security. Artech House

(2016)
32. Karame, G.O., Androulaki, E., Capkun, S.: Double-spending fast payments in bit-

coin. In: Proceedings of the 2012 ACM Conference on Computer and Communica-
tions Security, pp. 906–917. ACM (2012)

33. KingoftheEther. Post-Mortem Investigation, February 2016. https://www.
kingoftheether.com/postmortem.html. Accessed 2 May 2019

34. Li, X., Jiang, P., Chen, T., Luo, X., Wen, Q.: A survey on the security of blockchain
systems. Future Gen. Comput. Syst. 107, 841–853 (2020). ISSN: 0167-739X

https://securify.chainsecurity.com
https://securify.chainsecurity.com
https://blog.citymayor.co/posts/how-someone-tried-to-exploit-a-flaw-in-our-smart-contract-and-steal-all-of-its-ether/
https://blog.citymayor.co/posts/how-someone-tried-to-exploit-a-flaw-in-our-smart-contract-and-steal-all-of-its-ether/
http://ethdocs.org/en/latest/index.html
http://ethdocs.org/en/latest/index.html
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://consensys.github.io/smart-contract-best-practices/known_attacks/
https://github.com/ConsenSys/evm-analyzer-benchmark-suite
https://github.com/ConsenSys/evm-analyzer-benchmark-suite
https://github.com/ConsenSys/mythril-classic
https://smartcontractsecurity.github.io/SWC-registry/
https://smartcontractsecurity.github.io/SWC-registry/
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/not-so-smart-contracts
https://github.com/crytic/rattle
https://github.com/crytic/slither
https://github.com/crytic/solc-select
https://github.com/duaraghav8/Ethlint
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://medium.com/swlh/the-story-of-the-dao-its-history-and-consequences-71e6a8a551ee
https://remix.ethereum.org/
https://dasp.co/index.html
https://medium.com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e
https://medium.com/mycrypto/the-ethereum-virtual-machine-how-does-it-work-9abac2b7c9e
https://github.com/arachnid/evmdis
https://www.kingoftheether.com/postmortem.html
https://www.kingoftheether.com/postmortem.html

An Insecurity Study of Ethereum Smart Contracts 207

35. Lin, I.-C., Liao, T.-C.: A survey of blockchain security issues and challenges. IJ
Netw. Secur. 19(5), 653–659 (2017)

36. Luu, L., Chu, D.-H., Olickel, H., Saxena, P., Hobor, A.: Making smart contracts
smarter. In: Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security, pp. 254–269. ACM (2016)

37. Manning, A.: Solidity Security: Comprehensive list of known attack vec-
tors and common anti-patterns. https://blog.sigmaprime.io/solidity-security.html.
Accessed 2 May 2019

38. Melonport. Oyente. https://oyente.melonport.com. Accessed 2 May 2019
39. Mense, A., Flatscher, M.: Security vulnerabilities in ethereum smart contracts. In:

Proceedings of the 20th International Conference on Information Integration and
Web-based Applications & Services, iiWAS 2018, pp. 375–380. ACM, New York
(2018)

40. nick256. Smart Contract Security: Part 1 Reentrancy Attacks. https://hackernoon.
com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302. Accessed
24 Apr 2019

41. Niu, J., Feng, C.: Selfish Mining in Ethereum. arXiv e-prints, January 2019
42. PeckShield. New proxyOverflow Bug in Multiple ERC20 Smart Contracts. https://

blog.peckshield.com/2018/04/25/proxyOverflow/. Accessed 2 May 2019
43. Reutov, A.: Predicting Random Numbers in Ethereum Smart Contracts. https://

blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-
e5358c6b8620. Accessed 2 May 2019

44. Raine Revere. solgraph. https://github.com/raineorshine/solgraph. Accessed 16
May 2019

45. SmartDec. SmartCheck. https://tool.smartdec.net/. Accessed 2 May 2019
46. Szabo, N.: The idea of smart contracts. Nick Szabo’s Papers and Concise Tutorials,

6 (1997)
47. Parity Technologies. Parity: Security Alert. https://www.parity.io/security-alert-

2/. Accessed 2 May 2019
48. Tikhomirov, S., et al.: Smartcheck: static analysis of ethereum smart contracts.

In: 2018 IEEE/ACM 1st International Workshop on Emerging Trends in Software
Engineering for Blockchain (WETSEB), pp. 9–16. IEEE (2018)

49. Tsankov, P., Dan, A., Drachsler-Cohen, D., Gervais, A., Buenzli, F., Vechev, M.:
Securify: practical security analysis of smart contracts. In: Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security, pp. 67–82.
ACM (2018)

50. UcedaVelez, T.: OWASP Risk Rating Methodology. https://www.owasp.org/
index.php?title=OWASP Risk Rating Methodology&oldid=247702. Accessed 25
Apr 2019

51. Wood, G., et al.: Ethereum: A secure decentralised generalised transaction ledger.
Ethereum Project Yellow Paper (2014)

52. Yuan, M.: Building a safer crypto token. https://medium.com/cybermiles/
building-a-safer-crypto-token-27c96a7e78fd. Accessed 2 May 2019

https://blog.sigmaprime.io/solidity-security.html
https://oyente.melonport.com
https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
https://hackernoon.com/smart-contract-security-part-1-reentrancy-attacks-ddb3b2429302
https://blog.peckshield.com/2018/04/25/proxyOverflow/
https://blog.peckshield.com/2018/04/25/proxyOverflow/
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620
https://blog.positive.com/predicting-random-numbers-in-ethereum-smart-contracts-e5358c6b8620
https://github.com/raineorshine/solgraph
https://tool.smartdec.net/
https://www.parity.io/security-alert-2/
https://www.parity.io/security-alert-2/
https://www.owasp.org/index.php?title=OWASP_Risk_Rating_Methodology&oldid=247702
https://www.owasp.org/index.php?title=OWASP_Risk_Rating_Methodology&oldid=247702
https://medium.com/cybermiles/building-a-safer-crypto-token-27c96a7e78fd
https://medium.com/cybermiles/building-a-safer-crypto-token-27c96a7e78fd

	An Insecurity Study of Ethereum Smart Contracts
	1 Introduction
	1.1 Ethereum
	1.2 Smart Contracts
	1.3 Smart Contract Security

	2 Smart Contract Security Vulnerabilities
	2.1 Blockchain 1.0 Vulnerabilities
	2.2 Blockchain 2.0 Vulnerabilities

	3 New Taxonomy for Ethereum Smart Contract Vulnerabilities
	3.1 Existing Taxonomies and the Need for a New Taxonomy
	3.2 A New Taxonomy of Ethereum Smart Contract Vulnerabilities

	4 Vulnerability Benchmark
	4.1 Need for a Benchmark
	4.2 Benchmark Creation Methodology
	4.3 Benchmark Statistics

	5 Study of Security Tools
	5.1 Tools Available for Ethereum Smart Contracts
	5.2 Methods Employed by the Security Tools
	5.3 Experimental Setup

	6 Results
	7 Related Work
	8 Conclusion
	References

