
Delivering Multi-agent MicroServices
Using CArtAgO

Eoin O’Neill, David Lillis , Gregory M. P. O’Hare ,
and Rem W. Collier(B)

School of Computer Science, University College Dublin, Dublin, Ireland
eoin.o-neill.3@ucdconnect.ie,

{david.lillis,gregory.ohare,rem.collier}@ucd.ie

Abstract. This paper describes an agent programming language agnos-
tic implementation of the Multi-Agent MicroServices (MAMS) model
- an approach to integrating agents within microservices-based archi-
tectures. In this model, agents, deployed within microservices, expose
aspects of their state as virtual resources that are externally accessible
using REpresentational State Transfer (REST). Virtual resources are
implemented as CArtAgO artifacts, exposing their state to the agent
as a set of observable properties. Coupled with a set of artifact opera-
tions, this enables the agent to monitor and manage its own resources. In
the paper, we formally model our approach, defining passive and active
resource management strategies, and illustrate its use within a worked
example.

Keywords: Multi agent systems · Microservices · CArtAgo

1 Introduction

This paper builds on previous work that has introduced the Multi-Agent
MicroServices (MAMS) model [24,34]: a model that promotes a view of agents
as hypermedia entities whose body includes a set of virtual resources that can be
interacted with using REpresentational State Transfer (REST) [10] and can be
deployed as microservices. Overall, the work has three main objectives: to facil-
itate the seamless deployment of Multi-Agent Systems (MAS) within microser-
vices ecosystems; to exploit modern industry tools to enhance the deployment of
MAS; and ultimately, to enable the development of an emerging class of systems
known as Hypermedia MAS [4,5].

The specific focus of this paper is to improve on the approach described in [34]
by proposing an agent-programming language independent approach based on
CArtAgO [28] and to introduce support for hypermedia links through the use
the Hypertext Application Language (HAL) [16] as described in [24]. To achieve
this, Sect. 3 describes the refined MAMS model; Sect. 4 introduces the suite
of CArtAgO artifacts developed to implement the model; Sect. 5 describes the
integration with the ASTRA agent programming language; and Sect. 6 illustrates
its use through a worked example. Finally, Sects. 7 and 8 present discussion and
concluding remarks.
c© Springer Nature Switzerland AG 2020
C. Baroglio et al. (Eds.): EMAS 2020, LNAI 12589, pp. 1–20, 2020.
https://doi.org/10.1007/978-3-030-66534-0_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66534-0_1&domain=pdf
http://orcid.org/0000-0002-5702-4463
http://orcid.org/0000-0002-5124-1686
http://orcid.org/0000-0003-0319-0797
https://doi.org/10.1007/978-3-030-66534-0_1

2 E. O’Neill et al.

2 Related Work

There has been a significant amount of research into the integration of agents
and services. A good historical perspective on this can be found in [5]. An
excellent overview of agent-based service-oriented computing is provided in [12],
with a focus on Web Services technologies. [25] is an excellent recent survey of
agent-based cloud computing applications that is heavily focused on agent-based
service-oriented computing (in the cloud). Much of it tackles the relationship
between agents and services from a more traditional perspective. In this paper,
the objective is to focus more closely on the relationship between agents and
microservices - an architecture style linked to service-oriented computing that
promotes a more decentralised approach to software development.

Microservices are increasingly seen as an important innovator in software
design. They champion the decomposition of monolithic systems into loosely-
coupled networks of services [33] that are necessary to deliver internet-scale appli-
cations [9]. This has the effect of reducing the complexity of many of the com-
ponents, but comes at the cost of increasing the complexity of deployment [32].
However, this challenge has been met through the rise of DevOps [3] and Con-
tinuous Software Engineering methods [23].

The rise of microservices presents an opportunity for Multi-Agent Systems
(MAS) research. As is illustrated in [34], there is a strong affinity between the
principles of microservices and MAS that can be exploited to deliver innovations,
both in terms of the use of MAS technologies with microservices and the use of
microservices technologies with MAS. This affinity is reinforced in [30], which
argues that microservices can be used to facilitate agility of development for
agent-based Internet of Things (IoT) systems. This view is further reinforced
in [18], which argues that microservices-based IoT systems can be modelled as
agents, and in [17], which presents a multi-agent trust model for IoT.

While not directly referencing microservices, [21] argues for a new “Agents as
a Service” paradigm that would enable a new generation of agile services founded
on the MAS models and techniques. Similarly, [34] argued for the emergence of
an “Organisation as a Service” paradigm in which MAS implementations of
organisational models are implemented and deployed as microservices that can
be utilised by other non-agent-based microservices.

Key to realising this vision of agents and microservices is the need for dedi-
cated programming tools and frameworks that help to simplify the development
process. To date, there have been two main attempts to achieve this. Firstly, [35]
introduces CAOPLE: a Caste-centric Agent-Oriented Programming Language
and Environment for programming microservices. Conversely, [34] presents an
extension to ASTRA [6] (a variant of AgentSpeak(L) [26]) that supports the
implementation of microservices.

3 Multi-agent Micro-Services

The concept of Multi-Agent Micro-Services (MAMS) was originally introduced
in [34]. The paper argues that microservices share many common traits with

Delivering Multi-agent MicroServices Using CArtAgO 3

Multi-Agent Systems (MAS), to the extent that both approaches can be broadly
characterised as being concerned with the creation of loosely-coupled distributed
systems comprised of small independent (autonomous) components with internal
state. Of course, there are also many differences between the two approaches,
not least the incorporation of practical reasoning, but this commonality suggests
that we are beginning to see the emergence of approaches within industry that
are, at least, compatible with the MAS perspective.

As mentioned in the introduction, the ultimate goal of MAMS is to allow
agents to be deployed as entities that co-exist with other agents and resources in
a hypermedia space. This space encompass all resources that can be: addressed
using a Uniform Resource Identifier (URI); accessed using the HyperText Trans-
fer Protocol (HTTP); and connected through a network of hyperlinks. Through
these aspects, agents become not only identifiable and discoverable, but also
observable. That is, the body of an agent can be directly observed and inter-
acted with through the use of appropriate HTTP requests.

This notion of observability can lead to direct benefits in terms of enabling
emergent behaviour. To illustrate this, consider a scenario in which a person
overhears a conversation between other people in a public space. By listening to
the conversation, the person is able to build not only models of the beliefs and
goals of the other people, but also the protocols/rules that underpin the conver-
sation. At some point the person may interject into the conversation simply by
applying the learnt protocols/rules. With MAMS, this type of behaviour could
be replicated by modelling inboxes as virtual resources that return a filtered
view of the agents conversation history upon receipt of a GET request. Perform-
ing the GET request is the agent equivalent of listening in to the conversation
of the other agent. Upon receipt of the conversation history, it could mine the
messages to not only understand: what beliefs the other agent has, what services
it provides, and what protocols it uses for that interaction; but also the URIs of
the other agents that it has interacted with. This approach would also facilitate
integration with a model of agent conversation reasoning (e.g. [1,19]).

3.1 Basic MAMS Model

At its core, MAMS adopts the view of a microservice as a container for one
or more agents. Agents may be internal (private) to the container or external
(public). Public agents are associated with a Uniform Resource Identifier (URI)
based on a combination of the host name and port of the service plus the name of
the agent. They are also associated with a hypermedia body that is constructed
from a set of virtual resources. Private agents have standard string-based identi-
fiers and no hypermedia body. Both types of agent should be implemented using
a common agent programming language or framework. A microservice is not
considered a MAMS service if there are no public agents.

Figure 1 presents a sketch of a standard layered microservices architecture,
access to which is mediated by an API Gateway, a common microservices design

4 E. O’Neill et al.

Fig. 1. Agent/Service integration

pattern1 that employs a front-facing service that acts as a single point of entry
to the layered architecture. In the context of this architecture, one of the
goals of MAMS is to facilitate interaction between agent-based (A) and non
agent-based (S) microservices (i.e. agent-agent, agent-service, service-agent and
service-service). Agent-service interaction is achieved by giving agents the ability
to submit HTTP requests and process HTTP Responses. Service-agent interac-
tion is achieved by exposing the virtual resources through REST using URIs -
based on the associated agent’s URI - providing a HTTP-based interface that
does not require knowledge of agent concepts.

Agent-agent interaction, using an Agent Communication Language (ACL)
or equivalent, can also be realised through virtual resources. Specifically, each
agent’s inbox can be modelled as a virtual resource. Sending a message to an
agent is reduced to submitting a HTTP POST request to the receiver agent’s
inbox URI, with the content of the request being the message. This approach is
demonstrated later in Sect. 4.4. It is useful to note that FIPA’s HTTP message
transport service specification [22] works in a similar, if more convoluted, way:
the sender agent passes the message to a message transport service which wraps
the message in an envelope. It then POSTS the wrapped message to an Agent
Communication Channel hosted on the receiver agents platform which unwraps
the message and delivers it to the relevant agent.

Another form of agent-agent communication that is supported by MAMS is
through non-ACL-based virtual resources. Each agent is also able to interact
with other agents using the same model that is used for agent-service interac-
tion. While this can be used in place of ACL-based interaction, the more inter-
esting scenario is where the virtual resources represent abstractions of the agent
state, such as public beliefs and goals, lists of acquaintances, or services offered.
Such resources would be publicly accessible and, as such, discoverable by other
agents. This posits a view where agents could directly observe the behaviour of
other agents, explore the acquaintance networks of their own acquaintances, and
potentially seek out other agents that provide the services that they need access
to. Hyperlinks are essential to achieving this vision. While hyperlinks could be

1 https://microservices.io/patterns/apigateway.html.

https://microservices.io/patterns/apigateway.html

Delivering Multi-agent MicroServices Using CArtAgO 5

used externally to identify virtual resources, relevant links were not included in
the resource representations returned by HTTP requests. [24] extended the basic
MAMS model to include such hyperlinks based on the Hypertext Application
Language (HAL). This extended model is described briefly in the next section.

3.2 Extending MAMS with HAL

The introduction of a resource representation that includes hyperlinks is a key
step in achieving the vision of agents as hypermedia entities. There are many
potential technologies for use in this area, and [20] presents a good summary
of those in the context of the Web of Things. In [24], we selected Hypertext
Application Language (HAL) [16] for adoption with MAMS. While HAL is not
an IEFT standard, it is one of the simplest linked data models to have been
proposed, it is relatively easy to implement, and it is currently in use in multiple
projects2.

{

"_links": {

"self": { "href": "/api/books/1234" }

}

"id": 1234,

"title": "Hitchhiker's Guide to the Galaxy",

"author": "Adams, Douglas"

}

Fig. 2. Example HAL resource representation (from [11])

HAL augments JSON representations with additional keys prefixed by an
underscore (). The links key is used to define a set of named hypermedia
links relevant to the resource being represented. For example, the JSON in Fig. 2
represents a book resource. The self link, is the URI of the representation itself.
Additional links can added that define operations specific to the resource (e.g. a
library system may add a link to the loan resource for that book).

A weakness of HAL is that the semantics associated with the links is appli-
cation dependent. Using HAL requires the definition of what valid links can be
used for each resource. In response to this, best practice for the use of REST
in industry was reviewed. This highlighted that many REST APIs focus on two
styles of resource: individual items and lists of items [29] that were manipulated
through the mapping of HTTP verbs to Create/Read/Update/Delete (CRUD)
operations. Based on this, it was decided that a generalised implementation of
these resource types would be developed based on this best practice.

2 https://github.com/mikekelly/hal specification/wiki/APIs.

https://github.com/mikekelly/hal_specification/wiki/APIs

6 E. O’Neill et al.

Table 1. Core resource types and key HTTP verb mappings

Resource
type

URI POST GET PUT/ PATCH DELETE

Item /id n/a Get the item Update the item n/a

List /list name Add to
the list

Get entire list
of items

n/a n/a

ListItem /list name/id n/a Get the item Update the item Remove item
from list

Table 1 contains a summary of the standard set of HTTP verbs that are asso-
ciated with these resource types and their associated behaviours. For example,
as can be seen in this table, it is increasingly common for individual items (sin-
gleton resources) to support retrieval of their state using a GET request and a
partial/full update using PATCH/PUT. POST operations are typically not per-
mitted because they are creation-oriented (which does not apply to a singleton).
Similarly, DELETE operations are typically not supported because there is no
way to recreate the resource once it is deleted.

The choices described above represent just one possible resource implemen-
tation strategy for MAMS. It was made in an effort to facilitate exploration of
the MAMS model. Our long-term goal is to explore the use of JSON-LD [31]
due to its use of the Resource Definition Framework (RDF) as a schema [7].

4 An Artifact-Based Framework for Building MAMS
Agents

To illustrate the MAMS model, a prototype implementation has been devel-
oped. When designing the prototype, two potential approaches were discussed:
creating a bespoke implementation from first principles, or adapting an existing
framework. In this paper, the latter approach was preferred because our goal
is to provide an implementation that is agnostic to agent programming lan-
guage. To this end, the CArtAgO framework [28] was chose because it was felt
that virtual resources can be modelled as artifacts and because CArtAgO is an
established and tested technology that is integrated with multiple established
agent programming languages. This has allowed us to focus on the model rather
than lower-level integration issues.

A key difference between MAMS and the CArtAgO approach is that arti-
facts combine observable properties (state) and operations (behaviour) while
virtual resources support only state. In our implementation, the state of a vir-
tual resource is modelled as observable properties. Operations are provided to
enable the agent to manipulate the resource (e.g. updating an observable prop-
erty, linking the artifact, etc.) in a way that is compliant with the MAMS model.
A limitation of using CArtAgO is that virtual resources are private, but arti-
facts are designed to be shared. This means that it is possible to misuse our
implementation and an agent within the same microservice could gain access to

Delivering Multi-agent MicroServices Using CArtAgO 7

another agent’s virtual resources. As the aim of this study is to demonstrate a
prototype concept, rather than provide an industry standard deployable system,
we have not attempted to address this issue at this stage.

To implement the MAMS model, a number of artifacts have been developed
that represent key concepts. A high-level view of our approach is illustrated in
Fig. 3, where each agent is associated with a hypermedia body, consisting of
a set of CArtAgO artifacts that model the virtual resources of the agent. A
base artifact is provided as a shared base to which each resource artifact is
linked and this in turn is linked to a shared webserver artifact that exposes the
resources over HTTP. The webserver artifact is implemented using Netty: an
asynchronous Java-based event-driven network application framework for high
performance protocol servers3.

Fig. 3. Modelling a RESTful agent body as artifacts

The base artifact acts as the root of a resource tree that implements our
model of a MAMS agent. To be clear, we are using CArtAgO to implement our
model rather than attempting to extend CArtAgO to support the model. As a
result, we do not make use of underlying concepts such as the CArtAgO agent
body in this work.

Modelling resources explicitly as artifacts allows for clearly-defined semantics
that includes a description of how each HTTP verb will affect the state of the
artifact modelling the associated resource. It also specifies the interface between
the agent and the resource, which is defined in terms of the operation, observable
property, and signal concepts of CArtAgO. This paper describes two approaches
to implementing virtual resources as artifacts: a passive resource management

3 https://netty.io/.

https://netty.io/

8 E. O’Neill et al.

model (Sect. 4.2), and an active resource management model (Sect. 4.3). How-
ever, before discussing these approaches, Sect. 4.1 describes how artifacts are
used to implement virtual resources.

Two additional artifacts are created when a MAMS microservice is started.
The restclient artifact implements a REST client that can be used to perform
REST API calls. For example, the postRequest operation takes a URI and
string representation of a JSON body as input and generates a response code
and string content. Similar operations exist for GET, PUT and DELETE. The
comms artifact provides support for sending FIPA-ACL style messages to other
MAMS agents. More information on this is provided in Sect. 4.4.

4.1 Implementing Virtual Resources as Artifacts

Figure 4 illustrates how MAMS exposes artifact-based virtual resources on the
web and the relationship between an agent and the associated set of artifacts
that implement those resources. Each artifact created by the agent is linked to
another artifact, creating a back channel through which incoming HTTP requests
are routed to the relevant artifact. The back channel consists of a set of handlers
that implement the routing behaviour. Collectively, the set of handlers form a
tree structure rooted at the base artifact. Each handler is associated with a
single artifact and each path from the root to a handler represents the URI of a
virtual resource of the agent.

Fig. 4. Use of CArtAgO artifacts for linking RESTful resources to agents

Listing 1 contains some pseudocode for creating the body of an agent. As
can be seen, the agent starts by retrieving a reference to the webserver artifact.
Once it has this, a base artifact is created. This artifact is given a name of the
form base-<aid> (where “<aid>” is the agent’s unique identifier) and is then
linked to the webserver artifact. The agent focuses on the newly created artifact
so that it will receive updates on observable properties and signals. Finally, a

Delivering Multi-agent MicroServices Using CArtAgO 9

createRoute() operation is executed on the newly created base which creates
the associated handler and links it to the webserver artifact’s handler.

1 lookupArtifact("webserver", id)

2 makeArtifact("base-<aid>", "mams.BaseArtifact",[<aid>], id2)

3 linkArtifacts(id2, "out-1", id)

4 focus(id2)

5 createRoute()[id2]

Listing 1: Pseudo Code for Creating the body of a MAMS Agent

To support the model described in Table 1, three additional types of artifact
are required: item, list and listitem. However, the exact form that each of
these artifacts takes depends on whether a passive or active management model
is being used.

Section 4 defined the representation of an item resource as the set of observ-
able properties associated with it. Receipt of a request for a representation of
that resource involves transforming the observable properties into that relevant
representation format. For the model described in Sect. 3.2, we use a Java object
and an intermediary format that is transformed to/from JSON using the Jack-
son API4. For GET requests, the links field is appended to the resulting JSON
object based on the linkages that exist between artifacts (those that are used
to form the backchannel). For POST, PUT and PATCH requests, the JSON is
transformed into a Java object whose fields correspond to the observable prop-
erties of the artifact and whose values are used to update those propertied. To
facilitate this, each item or list artifact is associated (at creation time) with
a Java class that defines what type of object is to be used for the intermedi-
ary format. On creation, either default values are used to initialise observable
properties or an instance of the class is passed to provide the initial values.

4.2 Passive Resource Management

In the passive model, agents are not responsible for enforcing the changes associ-
ated with any HTTP requests received. They simply act in response to resource
changes. How the resource is updated depends on an associated set of semantics
which is loosely described in Table 1.

As the artifact receives each request, depending on the HTTP verb used,
the agent receives a CArtAgO signal indicating the nature of the update that
was applied. This allows the agent to act in response to expected changes in the
resources, but does not affect the speed by which the response is returned to the
system making the request. Additionally, the agent is also able to make changes
to the state of the resources through a suite of internal operations. The passive
model is illustrated in Fig. 5.

4 https://github.com/FasterXML/jackson.

https://github.com/FasterXML/jackson

10 E. O’Neill et al.

Fig. 5. Schematic of a passively managed resource

This idea allows rapid interaction between the resource and the entity making
the request, while maintaining that the agent is still informed about the state of
each resource. A key factor of this method is the fact that although the agent may
have control over the resource, the resource is open to the world as an endpoint.
This permits any service (or agent) to make a request and receive a timely response
from this entity, something that may not be possible when the mentalistic aspect
of deliberation that is associated with agents is introduced. In terms of usage, this
type of resource model seems suited either to closed systems where trust is not an
issue and all resource changes follow expected patterns of behaviour, or to open
systems where the manipulation of resources is a desirable aspect.

4.3 Active Resource Management

For active management, each artifact also has a set of HTTP verbs that it can
handle based on Table 1. In contrast, however, the agent is now placed in control
of the response given by any artifacts under its stewardship. This is illustrated
in Fig. 6.

Once a valid HTTP request is made of an artifact, a CArtAgO signal is
generated based on the type of HTTP verb passed to the agent. For GET and
DELETE requests, the request body is ignored. Conversely, the body is included
for POST, PUT and PATCH requests. This event is passed to the agent which
then deliberates to decide on the correct response.

If deemed acceptable, the agent executes the “accept” operation on the arti-
fact. The request is then be removed from the event queue and processed. A
response detailing that the request made was handled correctly would be issued.
In the case where the request was rejected by the agent, the “refuse” operation
would be invoked, issuing a response that the request was denied.

Delivering Multi-agent MicroServices Using CArtAgO 11

Fig. 6. Schematic of an actively managed resource

With regard to a use case, this scenario can be utilised when dealing with
a resource that is highly constrained and only wants to accept requests of a
given standard/type. This then lends itself to Quality of Service (QoS) based
systems, as it allows the system to guarantee certain criteria with regard to the
manipulation of resources.

4.4 FIPA-ACL Based Interaction

ACL-based communication between MAMS services is supported through the
creation of a custom inbox virtual resource. This resource is somewhat similar
to a standard list resource, with the exception that it only accepts POST
requests. This resource is designed to be used in tandem with the comms artifact,
which includes an operation for sending messages to MAMS agents via a POST
request. The content of the message is submitted in the form of a JSON string.
It is left to the developer to decide how to generate this content.

In its current form, the FIPA Message class that models messages only
includes the: sender, receiver, performative, language and content fields. The
content itself is converted into a JSON string that is transmitted as the body of
the POST. A signal is generated by the inbox resource for each message received.
The content of this signal the performative, the sender URI, and a string rep-
resentation of transmitted content. Again, conversion of this JSON into a more
useful form is left to the developer. The current prototype is currently released
as part of the ASTRA-MAMS integration, which is described in more detail next
in Sect. 5 and comes with built-in support for converting functional terms into
JSON and vice versa. It should be noted that the artifacts described here do
not map onto the model defined in Sect. 3.2 but are purpose-built to facilitate
FIPA-based interaction.

12 E. O’Neill et al.

5 Integration with ASTRA

To further explore our MAMS model, we have integrated our CArtAgO based
solution with the ASTRA agent programming language [6,8]. ASTRA is an imple-
mentation of AgentSpeak(ER)[27] a recent evolution of AgentSpeaK(L)[26].

All of the source code for MAMS and for the ASTRA integration with MAMS
is open source and available to download from Gitlab5. This includes:

– mams-cartago-core package: webserver, restclient, and base artifacts;
support for handlers and a basic web server.

– mams-cartago-hal package: implementation of item, list and itemlist
artifacts together with support for Java classes as schema.

– mams-astra-hal package: integration of ASTRA and also the MAMS +HAL
model and the prototype FIPA-ACL based communication model.

– examples: a set of sample programs (implemented as Maven projects).

1 agent MAMSAgent {

2 rule +!setup() {

3 cartago.startService();cartago.link();

4 cartago.makeArtifact("webserver", "mams.artifacts.WebServerArtifact",

5 cartago.params([9000]), cartago.ArtifactId id);

6 +artifact("webserver", "webserver", id);

7 cartago.makeArtifact("restclient", "mams.artifacts.RESTArtifact",

8 cartago.params([]), cartago.ArtifactId id2);

9 +artifact("restclient", "restclient", id2);

10 cartago.makeArtifact("comms", "fipa.artifact.Comms",

11 cartago.params([]), cartago.ArtifactId id3);

12 +artifact("comms", "comms", id3);

13 }

14 inference have(string name) :-

15 artifact(name, string qname, ArtifactId id);

16 rule +!init() {

17 cartago.link();!have("webserver");!have("restclient");

18 }

19 rule +!have(string name) : ~have(name) {

20 cartago.lookupArtifact(name, cartago.ArtifactId id);

21 +artifact(name, name, id);

22 }

23 rule +!created("base") : ~created("base") &

24 artifact("webserver", string qualifiedName, ArtifactId id2) {

25 string baseName = S.name()+"-base";

26 cartago.makeArtifact(baseName, "mams.artifacts.BaseArtifact",

27 cartago.params([S.name()]), cartago.ArtifactId id);

28 cartago.linkArtifacts(id, "out-1", id2);

29 cartago.focus(id);cartago.operation(id, createRoute());

30 +artifact("base", baseName, id);

31 }

32 }

Listing 2: Part of the mams.MAMSAgent program

5 https://gitlab.com/mams-ucd.

https://gitlab.com/mams-ucd

Delivering Multi-agent MicroServices Using CArtAgO 13

The main ASTRA code for creating a MAMS Agent is implemented in the
MAMSAgent class. Partial code for this class is shown in Listing 2. The +!setup()
rule on lines 2–13 is invoked only once by the first agent to be created. This plan
configures the MAMS service, creating all the default artifacts. In contrast, the
+!init() rule on lines 16–18 are to be used by all other MAMS agents. The
associated goal is used to link the agent to the already created artifacts. Once
the !init() goal has been achieved, the agent is able to create the base artifact
using the rule on lines 23–31.

1 agent MAMSAgent {

2 module mams.HALConverter hal;

3

4 rule $cartago.signal(string sa,

5 message(string perf, string sender, string content)) {

6 !signal_message(perf, sender, hal.toRawFunct("content", content));

7 }

8 rule +!signal_message(string performative,

9 string sender, content(funct content)) {

10 !message(performative, sender, content);

11 }

12 rule +!transmit(string perf, string receiver, funct content)

13 : artifact("comms", string qname, ArtifactId id) {

14 !itemProperty("base", "uri", funct agentUri);

15 cartago.operation(id, transmit(perf, F.valueAsString(agentUri, 0),

16 receiver, hal.toJsonString(content(content))));

17 }

18 }

Listing 3: FIPA ACL Code from mams.MAMSAgent class

The snippet of code in Listing 3 relates to the support for FIPA ACL based
communication. The module on line 2 includes support for for converting func-
tional term into JSON and vice-versa. The +!transmit() rule on lines 12–17
implement support for sending messages. This is matched by the rule on lines
4–7 which intercepts the raw CArtAgO signal relating to an incoming message.
The rule invokes a chain of subgoals that results in the conversion of the raw con-
tent of the message back into a form that corresponds more closely to a normal
ASTRA message event. The !message(...) goal generated on line 10 should be
could by the implementing agent to handle receipt of specific FIPA messages.

6 Illustration

To demonstrate our approach, a version of the Vickrey Auction example pre-
sented in [34] has been built using the framework described in Sect. 5. The resul-
tant code base is quite different because the original approach mixed code for
handling HTTP requests and responses with code for implementing the auc-
tions. In contrast, the code in our approach is more focused on implementing
the auctions.

14 E. O’Neill et al.

The implemented system exposes a set of virtual resources that are linked
to specific agents within the implementation. As shown in Fig. 7, the Manager
agent is associated with the /clients and the /items resources and the Bidder
agents, which are created by the Manager, are each responsible for their own
/wanted resource.

Fig. 7. Vickrey auction implementation (taken from [34])

1 agent PassiveMAMSAgent extends MAMSAgent {

2 rule +!listResource(string name, string cls)

3 : ~have(name) & artifact("base", string baseName, cartago.ArtifactId id2) {

4 string resName = baseName+"-"+name;

5 cartago.makeArtifact(resName, "mams.passive.PassiveListArtifact",

6 cartago.params([name, cls]), cartago.ArtifactId id);

7 cartago.linkArtifacts(id, "out-1", id2);

8 cartago.focus(id);

9 cartago.operation(id, createRoute());

10 +artifact(name, resName, id);

11 +listResource(name, cls);

12 }

13 }

14 agent Manager extends PassiveMAMSAgent {

15 rule +!init() {

16 MAMSAgent::!init();!created("base");

17 !listResource("clients", "auction.Client");

18 ...

19 }

20 rule $cartago.signal(string A,listItemCreated(string N,string T))

21 : bidder_count(int cnt) {

22 -+bidder_count(cnt + 1);

23 !monitorPassiveItem(N, T, A+"-"+N);

24 string BN = "bidder_"+cnt+"_"+N;

25 system.createAgent(BN, "Bidder"); +for_client(BN, A+"-"+N);

26 }

27 }

Listing 4: Part of the mams.PassiveMAMSAgent program

Delivering Multi-agent MicroServices Using CArtAgO 15

The mams.PassiveMAMSAgent agent program provides plans to support the
creation of passively-managed artifacts. Listing 4 shows a plan that can be used
to create a list resource. Below this, a second piece of code from the Manager
agent program illustrates how to use this to create a list of clients. It also demon-
strates how CArtAgO signals are used to alert the agent to the creation of new
items. A templating mechanism is provided that uses Java classes (here the
auction.Client class) as a schema for items.

7 Discussion

One of the main benefits of the approach presented in this paper is that it
standardises how to build MAMS-based applications. This has led to a num-
ber of improvements compared against the initial implementation of MAMS as
described in [34]:

– Explicit Modelling of Resources: The original MAMS model maintained an
implicit model of resources whose state was represented within the agents’
beliefs. The approach advocated in this paper models resources explicitly. A
key benefit of this has been the ability to define explicit resource types (see
Table 1), with associated semantics for valid HTTP requests, that are encoded
within the the resource model.

– Support for Extensibility: The implementation of resources is designed to be
extensible and permit the addition of other resource types as is necessary.
This is essential as it permits the development of bespoke resource models
and types. We view the creation of such resources as essential to support the
implementation of concepts such as decentralised trust management [2] and
social reputation [13].

– Use of a Linked Data Model: Linking of resources provides a way for external
systems to discover and navigate complex APIs. Support for this has been
realised through the use of the Hypertext Application Language (HAL) and
through the adoption of agreed standards for representing the specific types
of resource supported in this paper.

– A Cleaner Approach to Resource Management: The original MAMS model
supported only one form of resource management, which was intimately linked
to the agent program. The developer of the program was responsible for
handling all HTTP requests. The model presented in this paper offers a more
refined approach, where valid HTTP requests (those that are permitted for
the given resource type) are vetted by the associated agent (invalid requests
are automatically rejected). In this paper, we term this agent-in-the-loop
approach active resource management (see Sect. 4.3).

– A Passive Resource Management Model: In addition to the active model, this
paper introduces a passive resource management model that separates agents
from resource updates. Instead, agents are passive observers that monitor
their associated resources for changes or who can modify the state of their
resources directly (through internal operations that are equivalent to those
supported by HTTP Requests).

16 E. O’Neill et al.

– Language Independence: Finally, a last key advantage of the approach
described in this paper is that it is agnostic to the agent programming lan-
guage used. This has been achieve by focusing on an artifact-based model of
virtual resources that is language independent.

For this project, we chose HAL as the hypermedia resource representation
as it has many beneficial qualities that were suitable for a project such as ours
which is working towards the idea of Hypermedia MAS [4]. HAL enables ease of
navigation around a set of resources by maintaining a set of links that describe
relationships between individual resources. This lends itself to the idea of an
agent exploring, discovering and reasoning about a given set of resources. HAL
provided us with a very simplistic way of displaying how an agent’s ‘body’ is
made up of the virtual resources that it manages. HAL was very useful in terms
of allowing us to showcase our theoretical model in a very simple view, how-
ever, it is not without its limitations. HAL does not support resource metadata
for describing the semantics of resources and can only specify the media type
expected when de-referencing a linked resource. Additionally, HAL does not
support hypermedia controls other than simple links and so cannot describe the
service-specific semantics of operations on resources.

After reviewing hypermedia APIs, [20] provides a great breakdown of the
state of the art in this field. It describes two main approaches to implementing
hypermedia APIs: a bottom-up approach as well as a top-down approach. Bot-
tom up approaches include HAL as well as the Constrained RESTful Application
Language (CoRAL). As this paper is written from a Web of Things (WoT) per-
spective, both HAL and CoRAL are described as being able to represent both
Things in a WoT context but also to represent complex web resources, which ties
in with our research. Interestingly, CoRAL provides a solution to some of the
shortcomings of HAL in that it supports the representation of simple resource
metadata, as well as providing hypermedia controls by describing operations
that can be performed on resources via forms.

The top-down approaches include the W3C Web of Things Specification that
describes the Thing Description (TD) and a Web Thing Description provided
by Mozilla. The top-down approaches are quite restrictive, insofar as that they
have to represent a ‘thing’ as a cohesive unit of data and functionality. A key
difference between these two approaches from the perspective of this research is
that in the examples of the top-down approaches, any navigation away from that
cohesive unit results in a JSON object that represents data, not another resource.
Based on the working examples provided, there seemed to be no clear navigation
from generated data back to a description of the resource. In contrast, when
navigating the hyperlinks provided in both HAL and CoRAL, one is navigating
between resources, and each resource has its own set of relevant hyperlinks. It is
the expressiveness of the bottom-up approaches that is key to allowing services
and agents to navigate a resource. The top-down approaches, however, support
semantic descriptions of resources using JSON-LD, which provides a level of
context. Additionally, based on the latest draft specification of CoRAL [14], it
also allows for the expressions of simple RDF statements. However, it currently

Delivering Multi-agent MicroServices Using CArtAgO 17

does not support more extensive representations such as JSON-LD. CoRAL is
still a working draft but is a forerunner for a resource representation that can
represent complex web resources related to this research, as it contains many
key attributes.

There are several positive elements to each of these approaches to imple-
menting hypermedia APIs. However, from the perspective of this research, it
is our view that a combination of these positive elements would be best suited
as a mechanism for representing resources. Another popular resource that we
believe should be considered when discussing the correct path to choose with
regard to resource representation is the likes of the OpenAPI6 specification and
RAML7. These tools are used to build a representation of an API that is both
human and machine-readable, in both JSON and XML. These tools have been
used in industrial contexts in order to provide in-depth descriptions of how to
interact with services with minimal implementation on the consumer side. These
services provide very clear and detailed information on how to interact with a
given resource, including the correct HTTP verb to use. This is very useful from
a RESTful perspective as it allows each resource to define all the HTTP verbs
each resource supports. It is this level of detail that we see being included in
hypermedia resource representation in order to promote autonomous interaction
among services and agents. Understanding which approach is most suitable, or
combination there of, is a key challenge to the evolution of MAMS.

Finally, [15] presents recent work on CArtAgO that exposes artifacts through
a Web API. This contrasts with the work presented in this paper as it focuses
first on simply exposing artifacts and secondly does so as a web API rather
than as REST resources. As discussed in Sect. 4, the MAMS approach is quite
different to the CArtAgO approach. As a result of using CArtAgO, steps such
as the exposing of an agent’s virtual resource became a much more complicated
process. This is due to the fact that artifacts in the CArtAgO framework are
inherently shared among all the entities in the environment, and in order to
portray the fact that an artifact ‘belonged’ to a given agent, each artifact had
to be linked to the base artifact of each agent. Although using CArtAgO was a
limitation from this perspective, using CArtAgO as an environment framework
allowed us to showcase that MAMS has cross-compatibility with other agent
programming languages and is not tightly-coupled with any particular language.

8 Conclusions

This paper presents a novel approach to the implementation of Multi-Agent
MicroServices (MAMS), a model that sits at the intersection between Multi-
Agent Systems and Microservices. The model embraces current industry best
practice and technology stacks and proposes introduces the idea of virtual
resources as a mechanism for facilitating the seamless integration of agents into
microservices-based architectures. Through this, we gain access to a wealth of
6 https://swagger.io/specification/.
7 https://raml.org/.

https://swagger.io/specification/
https://raml.org/

18 E. O’Neill et al.

technologies and experience in how to deploy systems at scale while at the same
time situating those agents in a larger web-enabled ecosystem.

Future work will seek to address a number of limitations of the model
described here. This includes some improvements to the underlying architec-
ture, but more significantly, the decoupling of resources and representations to
allow multiple representations to be returned for a given resource. A main goal
of this research in the near future is to work towards creating a hypermedia
resource representation that can provide semantically enriched navigational cues
that describe possible actions on given resources with enough detail in order to
allow for interaction with minimal implementation on the side of the consumer,
a combination of the solutions discussed in Sect. 7, from our perspective, asso-
ciated with the current working standards. Ultimately, the aim is to support all
the linked data formats described in [20] as well as any others that evolve over
time.

A specific target is the implementation of support for JSON-LD [31] repre-
sentations which we intend to use in CONSUS8: a research project that seeks,
in part, to develop multi-agent decision-support tools for smart agriculture.

Acknowledgements. This research is funded under the SFI Strategic Partnerships
Programme (16/ SPP/3296) and is co-funded by Origin Enterprises Plc.

References

1. Ancona, D., Drossopoulou, S., Mascardi, V.: Automatic generation of self-
monitoring MASs from multiparty global session types in Jason. In: Baldoni, M.,
Dennis, L., Mascardi, V., Vasconcelos, W. (eds.) DALT 2012. LNCS (LNAI), vol.
7784, pp. 76–95. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
37890-4 5

2. Aref, A.M., Tran, T.T.: A decentralized trustworthiness estimation model for open,
multiagent systems (DTMAS). J. Trust Manag. 2(1), 3 (2015). https://doi.org/10.
1186/s40493-015-0014-4

3. Balalaie, A., Heydarnoori, A., Jamshidi, P.: Microservices architecture enables
devops: migration to a cloud-native architecture. IEEE Softw. 33(3), 42–52 (2016)

4. El Fallah-Seghrouchni, A., Ricci, A., Son, T.C. (eds.): EMAS 2017. LNCS (LNAI),
vol. 10738. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91899-0

5. Ciortea, A., Mayer, S., Gandon, F., Boissier, O., Ricci, A., Zimmermann, A.: A
decade in hindsight: the missing bridge between multi-agent systems and the world
wide web. In: Proceedings of the 18th International Conference on Autonomous
Agents and MultiAgent Systems, pp. 1659–1663. International Foundation for
Autonomous Agents and Multiagent Systems (2019)

6. Collier, R.W., Russell, S., Lillis, D.: Reflecting on agent programming with AgentS-
peak(L). In: Chen, Q., Torroni, P., Villata, S., Hsu, J., Omicini, A. (eds.) PRIMA
2015. LNCS (LNAI), vol. 9387, pp. 351–366. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-25524-8 22

8 http://www.consus.ie.

https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1007/978-3-642-37890-4_5
https://doi.org/10.1186/s40493-015-0014-4
https://doi.org/10.1186/s40493-015-0014-4
https://doi.org/10.1007/978-3-319-91899-0
https://doi.org/10.1007/978-3-319-25524-8_22
https://doi.org/10.1007/978-3-319-25524-8_22
http://www.consus.ie

Delivering Multi-agent MicroServices Using CArtAgO 19

7. Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J.,
Erdmann, M., Horrocks, I.: The semantic web: the roles of XML and RDF. IEEE
Internet Comput. 4(5), 63–73 (2000)

8. Dhaon, A., Collier, R.W.: Multiple inheritance in agent speak (l)-style program-
ming languages. In: Proceedings of the 4th International Workshop on Program-
ming based on Actors Agents and Decentralized Control, pp. 109–120 (2014)

9. Dragoni, N., Lanese, I., Larsen, S.T., Mazzara, M., Mustafin, R., Safina, L.:
Microservices: how to make your application scale. In: Petrenko, A.K., Voronkov,
A. (eds.) PSI 2017. LNCS, vol. 10742, pp. 95–104. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-74313-4 8

10. Fielding, R.T.: REST: Architectural Styles and the Design of Network-based
Software Architectures. Doctoral dissertation (2000). http://www.ics.uci.edu/
∼fielding/pubs/dissertation/top.htm

11. Framework, Z.: Hypertext application language website (2019). https://
weierophinney.github.io/hal/hal/. Accessed 29 Oct 2019

12. Griffiths, N., Chao, K.-M. (eds.): Agent-Based Service-Oriented Computing. AIKP.
Springer, London (2010). https://doi.org/10.1007/978-1-84996-041-0

13. Hahn, C., Fley, B., Florian, M., Spresny, D., Fischer, K.: Social reputation: A
mechanism for flexible self-regulation of multiagent systems. J. Artif. Soc. Soc.
Simul. 10(1), 1–8 (2007)

14. Hartke, K.: The constrained restful application language (coral) (2020). https://
datatracker.ietf.org/doc/draft-ietf-core-coral/. Accessed 08 Apr 2020

15. International Foundation for Autonomous Agents and Multiagent Systems: Engi-
neering Scalable Distributed Environments and Organizations for MAS (2019)

16. Kelly, M.: Json hypertext applicaion language specification (2016). https://tools.
ietf.org/html/draft-kelly-json-hal-08. Accessed 29 Oct 2019

17. Kravari, K., Bassiliades, N.: Storm: a social agent-based trust model for the internet
of things adopting microservice architecture. Simul. Model. Pract. Theory 94, 286–
302 (2019)

18. Krivic, P., Skocir, P., Kusek, M., Jezic, G.: Microservices as agents in IoT systems.
In: Jezic, G., Kusek, M., Chen-Burger, Y.-H.J., Howlett, R.J., Jain, L.C. (eds.)
KES-AMSTA 2017. SIST, vol. 74, pp. 22–31. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-59394-4 3

19. Lillis, D.: Internalising Interaction Protocols as First-Class Programming Elements
in Multi Agent Systems. Ph.D. thesis, University College Dublin (2012)

20. Martins, J.A., Mazayev, A., Correia, N.: Hypermedia APIs for the web of things.
IEEE Access 5, 20058–20067 (2017)

21. Mascardi, V., Weyns, D.: Engineering multi-agent systems Anno 2025. In: Weyns,
D., Mascardi, V., Ricci, A. (eds.) EMAS 2018. LNCS (LNAI), vol. 11375, pp. 3–16.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25693-7 1

22. O’Brien, P.D., Nicol, R.C.: FIPA-towards a standard for software agents. BT Tech-
nol. J. 16(3), 51–59 (1998). https://doi.org/10.1023/A:1009621729979

23. O’Connor, R.V., Elger, P., Clarke, P.M.: Continuous software engineering-a
microservices architecture perspective. J. Softw. Evol. Process 29(11), e1866 (2017)

24. O’Neill, E., Lillis, D., O’Hare, G.M., Collier, R.W.: Explicit modelling of resources
for multi-agent microservices using the cartago framework. In: 2020Proceedings of
the 18th International Joint Conference on Autonomous Agents and Multi-Agent
Systems, Auckland, NZ. International Foundation for Autonomous Agents and
MultiAgent Systems (IFAAMAS) (2020)

https://doi.org/10.1007/978-3-319-74313-4_8
https://doi.org/10.1007/978-3-319-74313-4_8
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
https://weierophinney.github.io/hal/hal/
https://weierophinney.github.io/hal/hal/
https://doi.org/10.1007/978-1-84996-041-0
https://datatracker.ietf.org/doc/draft-ietf-core-coral/
https://datatracker.ietf.org/doc/draft-ietf-core-coral/
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://tools.ietf.org/html/draft-kelly-json-hal-08
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-319-59394-4_3
https://doi.org/10.1007/978-3-030-25693-7_1
https://doi.org/10.1023/A:1009621729979

20 E. O’Neill et al.

25. De la Prieta, F., Rodŕıguez-González, S., Chamoso, P., Corchado, J.M., Bajo, J.:
Survey of agent-based cloud computing applications. Future Gener. Comput. Syst.
100, 223–236 (2019)

26. Rao, A.S.: AgentSpeak(L): BDI agents speak out in a logical computable language.
In: Van de Velde, W., Perram, J.W. (eds.) MAAMAW 1996. LNCS, vol. 1038, pp.
42–55. Springer, Heidelberg (1996). https://doi.org/10.1007/BFb0031845

27. Ricci, A., Bordini, R.H., Hubner, J.F., Collier, R.: Agentspeak (er): An exten-
sion of agentspeak (l) improving encapsulation and reasoning about goals. In: The
17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018). International Foundation for Autonomous Agents and MultiA-
gent Systems (IFAAMAS) (2018)

28. Ricci, A., Viroli, M., Omicini, A.: CArtAgO: framework for prototyping artifact-
based environments in MAS. In: Weyns, D., Parunak, H.V.D., Michel, F. (eds.)
E4MAS 2006. LNCS (LNAI), vol. 4389, pp. 67–86. Springer, Heidelberg (2007).
https://doi.org/10.1007/978-3-540-71103-2 4

29. Roy, C.: Restful API design: Microserices. https://medium.com/@cknextmove/
restful-api-design-microservices-f983e3ea3563. Accessed 25 Oct 2019

30. Savaglio, C., Ganzha, M., Paprzycki, M., Bădică, C., Ivanović, M., Fortino, G.:
Agent-based internet of things: State-of-the-art and research challenges. Future
Gener. Comput. Syst 102, 1038–1053 (2020)

31. Sporny, M., Longley, D., Kellogg, G., Lanthaler, M., Lindström, N.: Json-ld 1.0.
W3C Recomm. 16, 41 (2014)

32. Thönes, J.: Microservices. IEEE Softw. 32(1), 116–116 (2015)
33. Villamizar, M., et al.: Evaluating the monolithic and the microservice architec-

ture pattern to deploy web applications in the cloud. In: 2015 10th Computing
Colombian Conference (10CCC), pp. 583–590. IEEE (2015)

34. Collier, R.W., O’Neill, E., Lillis, D., O’Hare, G.: Mams: Multi-agent microservices.
In: Companion Proceedings of The 2019 World Wide Web Conference, pp. 655–662.
ACM (2019)

35. Xu, C., Zhu, H., Bayley, I., Lightfoot, D., Green, M., Marshall, P.: Caople: a pro-
gramming language for microservices SaaS. In: 2016 IEEE Symposium on Service-
Oriented System Engineering (SOSE), pp. 34–43. IEEE (2016)

https://doi.org/10.1007/BFb0031845
https://doi.org/10.1007/978-3-540-71103-2_4
https://medium.com/@cknextmove/restful-api-design-microservices-f983e3ea3563
https://medium.com/@cknextmove/restful-api-design-microservices-f983e3ea3563

	Delivering Multi-agent MicroServices Using CArtAgO
	1 Introduction
	2 Related Work
	3 Multi-agent Micro-Services
	3.1 Basic MAMS Model
	3.2 Extending MAMS with HAL

	4 An Artifact-Based Framework for Building MAMS Agents
	4.1 Implementing Virtual Resources as Artifacts
	4.2 Passive Resource Management
	4.3 Active Resource Management
	4.4 FIPA-ACL Based Interaction

	5 Integration with ASTRA
	6 Illustration
	7 Discussion
	8 Conclusions
	References

