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Strategies for Engineering Photosynthesis 
for Enhanced Plant Biomass Production

Wataru Yamori

Abstract  Crop productivity would have to increase by 60–110% compared with 
the 2005 level by 2050 to meet both the food and energy demands of the growing 
population. Although more than 90% of crop biomass is derived from photosyn-
thetic products, photosynthetic improvements have not yet been addressed by 
breeding. Thus, it has been considered that enhancing photosynthetic capacity is 
considered a promising approach for increasing crop yield. Now, we need to iden-
tify the specific targets that would improve leaf photosynthesis to realize a new 
Green Revolution. This chapter summarizes the various genetic engineering 
approaches that can be used to enhance photosynthetic capacity and crop productiv-
ity. The targets considered for the possible candidates include Rubisco, Rubisco 
activase, enzymes of the Calvin–Benson cycle, and CO2 transport, as well as photo-
synthetic electron transport. Finally, it describes the importance of considering 
ways to improve photosynthesis not under the stable environmental conditions 
already examined in many studies with the aim of improving photosynthetic capac-
ity, but under natural conditions in which various environmental factors, and espe-
cially irradiation, continually fluctuate.

Keywords  Calvin–Benson cycle · CO2 assimilation · CO2 transport · Electron 
transport · Photosynthesis · Rubisco

1  �Introduction

Crop productivity would have to increase by 60–110% compared with the 2005 
level by 2050 to meet both the food and energy demands of the growing population 
(Tilman et al. 2011; Alexandratos and Bruinsma 2012). At the same time, the CO2 
concentration in the atmosphere is increasing and is predicted to reach 550 μmol/
mol by 2050 (IPCC 2013; Ballantyne et al. 2012), which will lead to an increase in 
air temperature. Thus, it is considered that approaches designed to improve plant 
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biomass and crop yield should take account of global climate change and the pre-
dicted future environmental conditions.

It has been reported that in most cases leaf photosynthetic rate does not correlate 
positively with grain yield (Richards 2000). Some critical reviews suggest that 
improving photosynthesis would not be a useful strategy for enhancing crop pro-
ductivity (Gu et al. 2014; Sinclair et al. 2004). However, a meta-analysis of several 
studies on elevated CO2 experiments in various crops has indicated that any strategy 
for increasing photosynthesis can enhance crop yield (Ainsworth et  al. 2008). 
Similarly, it has been proposed that altering photosynthetic electron transport rates 
by manipulating the cytochrome b6/f complex can improve both the photosynthetic 
capacity and crop yield of transgenic plants (Yamori et al. 2016a; Fig. 1). Enhancing 
photosynthetic capacity in plants is now considered a promising approach for 
increasing crop yield and decreasing the atmospheric concentration of CO2, which 
is the primary component of greenhouse gases.

This chapter summarizes the various genetic engineering approaches that can be 
used to enhance photosynthetic capacity and plant production. The targets consid-
ered for the possible candidates include Rubisco, Rubisco activase, enzymes of the 
Calvin–Benson cycle, and CO2 transport, as well as photosynthetic electron 
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Fig. 1  Relationship 
between CO2 assimilation 
rate at a CO2 concentration 
of 390 μmol/mol, total 
plant dry weight at the 
final stage, and grain yield 
in rice. Wild type: open 
triangles; transgenic plants 
that contain variable 
amounts of Rieske FeS 
protein in the cytochrome 
b6/f complex from 10 to 
100% of wild-type levels: 
filled circles. The 
regression lines are shown
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transport. Finally, it describes the importance of considering ways to improve pho-
tosynthesis not under the stable environmental conditions already examined in 
many studies with the aim of improving photosynthetic capacity, but under natural 
conditions in which various environmental factors, and especially irradiation, con-
tinually fluctuate.

2  �Improving Rubisco Performance

2.1  �Rubisco Kinetics

Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) is an enzyme involved 
in the first step of CO2 fixation in photosynthesis (Fig. 2). Rubisco has a low cata-
lytic efficiency and can only fix approximately two to four CO2 molecules per sec-
ond per active site in higher C3 plants. Thus, 20–30% of the nitrogen in the leaves of 
C3 plants is invested in Rubisco to compensate for its low activity (Spreitzer and 
Salvucci 2002). There is a strong positive correlation between leaf Rubisco content 
and photosynthetic rate (Evans 1989; Makino et al. 1997; Wright et al. 2004), indi-
cating that Rubisco would be rate-limiting as regards photosynthesis at the current 
CO2 concentration. Rubisco can fix CO2 in photosynthesis and O2 in photorespira-
tion (Fig. 2). Photosynthetic CO2 fixation produces two molecules of phosphoglyc-
erate (PGA) for every carbon fixed, while photorespiration produces one PGA and 
one phosphoglycolate (PGO). PGO must be recycled to PGA, with a loss of CO2 
and NH3 via a photorespiratory pathway. Although the released CO2 may be re-fixed 
by the chloroplasts and the NH3 re-assimilated in the leaves (Morris et al. 1988; 
Busch et al. 2013), photorespiration is considered to be a wasteful reaction. Thus, it 
may be possible to improve photosynthetic efficiency by modifying Rubisco in 
plants to increase catalytic activity and/or decrease oxygenation rate.

In plants, Rubisco usually consists of two types of protein subunit: a chloroplast-
encoded large subunit, which contains the active site, and nuclear-encoded small 
subunits. The introduction of Rubisco variants with high specificity values such as 
that from C4 plants and cyanobacteria into plants could improve the photosynthetic 
efficiency of crop plants. Previously, transgenic tobacco plants expressing Flaveria 
bidentis (C4) and F. pringlei (C3) Rubisco large subunit chimeras revealed that the 
substitution of methionine-309 with isoleucine is responsible for increases in the 
carboxylation rate of Rubisco (Whitney et al. 2011). However, the CO2 assimilation 
rate and plant growth were lower in transgenic plants than in wild-type plants since 
transformants decreased the Rubisco content of the former compared with the latter. 
Lin et al. (2014) successfully produced transgenic tobacco plants with functional 
Rubisco by replacing the Rubisco with the large and small subunit genes found in 
cyanobacterium. The transgenic plants increased the CO2 assimilation rate per 
Rubisco content, but they grew more slowly than wild-type plants. Thus, although 
mutated forms of Rubisco protein have been achieved in tobacco plants, the 
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site-directed mutagenesis of Rubisco has as yet been largely unsuccessful (Furbank 
et al. 2015). If the replacement of the Rubisco variants of C3-type Rubisco (i.e., a 
low catalytic turnover rate for Rubisco, kcat, and a low Michaelis–Menten constant, 
Km; a high Km for CO2 indicates low CO2 affinity) with C4-type or cyanobacteria-
type Rubisco variants (i.e., high kcat and high Km) is successful, the transgenic C3 
plants could enhance their photosynthetic efficiency and plant growth toward the 
high-CO2 world of the near future.

Although the evidence from transplastomic studies of Rubisco indicates that the 
catalytic variability resides within its large subunit, the importance of its small sub-
units to Rubisco catalysis has also attracted attention. Recent success has demon-
strated that the introduction of a C4-Rubisco small subunit (rbcS) gene from sorghum 
into rice successfully produced chimeric Rubisco with a greater kcat in transgenic 
rice (Ishikawa et al. 2011). This breakthrough could provide future ways to engineer 
Rubisco in various important crops such as wheat and rice.

2.2  �Photorespiration Bypass

Rubisco is a dual-function enzyme that fixes CO2 or O2, and these functions are 
known as photosynthesis and photorespiration, respectively. While photosynthesis 
results in a net fixation of CO2, the photorespiratory pathway requires ATP and 
releases previously fixed CO2 (Fig. 3). The photorespiration rate is affected by the 
concentration of CO2 in the chloroplast (Cc) relative to the O2 concentration, and 
increases with increasing temperature. At current atmospheric CO2 concentrations 
and a temperature of 30 °C, the rate of photorespiratory CO2 release from the mito-
chondria is approximately 25% of the CO2 assimilation rate (Sage et  al. 2012). 
Thus, lowering photorespiratory flux could alleviate the decrease in photosynthetic 
efficiency in C3 plants. However, manipulations aimed at blocking the photorespira-
tory pathway had detrimental effects on plant growth (Kozaki and Takeba 1996; 
Walker et al. 2016). Nonetheless, advances have been made for engineering plants 
that can make better use of the CO2 released from photorespiration via photorespira-
tory bypasses (Carvalho et  al. 2012; Kebeish et  al. 2007; Maier et  al. 2012; 
Peterhansel et al. 2013).

To date, three different strategies have been designed to bypass photorespiration 
in C3 plants (Fig.  3). The first pathway was engineered using Escherichia coli 
encoded genes from the glycerate pathway that convert glycolate to glycerate and 
release CO2 within the chloroplast (Kebeish et al. 2007; Peterhansel et al. 2013). 
Transgenic plants engineered with this pathway decreased photorespiration and 
enhanced photosynthesis, resulting in improved plant growth (Kebeish et al. 2007). 
With the second approach, transgenic plants engineered with a glycolate catabolic 
cycle designed to oxidize glycolate to CO2 in chloroplasts (Fig. 3) displayed higher 
photosynthetic rates and greater plant growth (Maier et al. 2012; Peterhansel et al. 
2013). These observations show that shifting glycolate metabolism from the photo-
respiratory pathway via peroxisome and mitochondria to the chloroplast is 
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beneficial for plants and can enhance photosynthesis. The third bypass was created 
by short-circuiting the original C2 cycle to avoid NH3

+ release and to prevent energy 
loss in its refixation (Carvalho et al. 2012). The glyoxalase in peroxisomes can be 
converted to hydroxypyruvate by introducing glyoxylate carboligase and hydroxypy-
ruvate isomerase from E. coli into the plant peroxisomes, and feeding them back to 
the C2 cycle (Fig. 3) (Carvalho et al. 2012; Peterhansel et al. 2013). However, in 
transgenic plants, the photorespiratory cycle has not yet been completely bypassed 
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and the short-circuiting led to damage of the photosynthetic apparatus and thus 
deleterious phenotypes (Carvalho et al. 2012).

Facilitating photorespiratory flux through the overexpression of subunits of gly-
cine decarboxylase (GDC), which produces CO2 by the photorespiratory process, 
could be another approach for improving photorespiration (Timm et al. 2016). GDC 
comprises four proteins, three enzymes (P-protein, T-protein, and L-protein), and a 
small lipoylated protein known as H-protein, which has no catalytic activity and 
interacts with the other proteins. The overexpression of either GDC-H protein or 
GDC-L protein in Arabidopsis thaliana resulted in increases in CO2 assimilation 
rate and plant biomass (Timm et al. 2012, 2015, 2016). Additionally, the overex-
pression of GDC-H contributed to greater plant growth in tobacco (Nicotiana taba-
cum) in both a controlled environment and under field conditions (Lopez-Calcagno 
et al. 2018). Although the underlying mechanism responsible for these effects has 
not been fully elucidated, it has been proposed that the Calvin–Benson cycle is 
stimulated by the increase in GDC activity, resulting in a decrease in the steady-
state levels of photorespiratory metabolites.

3  �Improving Thermotolerance of Rubisco Activase

The Rubisco catalytic sites must be activated to fix CO2 (Fig. 2). This requires the 
carbamylation of a lysine residue at the Rubisco catalytic site, allowing the binding 
of Mg2+ and ribulose-1,5-bisphosphate (RuBP). Rubisco activase facilitates carba-
mylation and the maintenance of Rubisco activity by removing inhibitors such as 
tight-binding sugar phosphates from the Rubisco catalytic sites in an ATP-dependent 
manner (Spreitzer and Salvucci 2002; Portis Jr 2003; Parry et al. 2008).

In many plant species, the Rubisco activation state decreases at high tempera-
tures (Crafts-Brandner and Salvucci 2000; Salvucci and Crafts-Brandner 2004a; 
Yamori et al. 2006b, 2014; Yamori and von Caemmerer 2009). Rubisco deactivation 
at high temperature could have occurred because Rubisco activase is insufficiently 
active to keep pace with the faster rates of Rubisco inactivation at high temperature 
due to its thermolability (Salvucci and Crafts-Brandner 2004b). A decrease in 
Rubisco activase content resulted in decreases in photosynthetic rate at high tem-
perature when using mutants/transgenic plants in Arabidopsis (Salvucci et al. 2006), 
rice (Yamori et al. 2012), and tobacco (Yamori and von Caemmerer 2009). Also, the 
overexpression of Rubisco activase from maize into rice stimulated the Rubisco 
activation state and photosynthetic rate at high temperature (Yamori et al. 2012). 
Moreover, transgenic Arabidopsis expressing thermotolerant Rubisco activase iso-
forms generated by either gene shuffling technology (Kurek et al. 2007) or chimeric 
Rubisco activase constructs (Kumar et al. 2009) improved photosynthesis, biomass 
production, and seed yield. In addition, the introduction of Rubisco activase from 
cotton into a cool-season species such as Camelina resulted in improvement in the 
thermotolerance of photosynthesis (Carmo-Silva and Salvucci 2012). This is also 
supported by a recent report stating that genes encoding thermostable Rubisco 
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activase from a wild relative (Oryza australiensis) were overexpressed in domesti-
cated rice (O. sativa), leading to an improvement in plant growth and seed yield in 
rice under heat stress (Scafaro et al. 2018). Taken together, Rubisco activase activity 
would constitute a major limiting factor for photosynthesis under high temperature 
and engineering Rubisco activase would be an efficient way to improve crop yield 
under high temperatures. The structure of Rubisco activase has already been deter-
mined, providing insight into its interactions with Rubisco (Stotz et al. 2011) and its 
counterpart CbbX in red algae (Mueller-Cajar et al. 2011). This structural informa-
tion coupled with the knowledge of regulation in Rubisco activase will help to 
improve its thermostability and catalytic properties.

4  �Increasing CO2 Concentration Around Rubisco

Photosynthesis in C3 plants is limited by the large drawdown in CO2 concentrations 
from the atmosphere to the Rubisco catalytic sites in chloroplasts. The CO2 diffu-
sion conductance responsible for this drawdown is attributed to the stomatal pores 
and the paths across the mesophyll from the cell surface to the Rubisco catalytic 
sites in chloroplasts (Evans et al. 2009). Increasing CO2 concentration in chloro-
plasts and thereby minimizing photorespiration is therefore a promising target in 
terms of increasing photosynthetic rate in crops. CO2 diffusion to the chloroplast 
can be influenced by modifying conductance through the stomata (stomatal conduc-
tance) to the intercellular air space, either by increasing stomatal density (Tanaka 
et al. 2013) or by preventing stomatal closure (Kusumi et al. 2012; Yamori et al. 
2020). Both approaches would result in increases in photosynthetic rate at the cost 
of higher transpiration rates and lower water-use efficiency.

An alternative approach addresses the other major diffusion conductance route 
for CO2 from the intercellular air space into the mesophyll cell chloroplasts (meso-
phyll conductance). In contrast to modifying stomatal conductance, increasing 
mesophyll conductance does not negatively affect water-use efficiency. The resis-
tance of the cell wall (25–50%) and chloroplast (24–76%) accounts for most of the 
total resistance (Evans et al. 2009), meaning that CO2 diffusion can potentially be 
improved by modifying plants so that they have smaller mesophyll cells (i.e., a 
higher surface area of the chloroplasts is exposed to intercellular air spaces, Sc) with 
thinner cell walls (Terashima et  al. 2011). The second important component of 
mesophyll conductance involves CO2 diffusion through the plasma and chloroplast 
membranes (Evans et  al. 2009), and several approaches are being developed to 
increase CO2 concentration in chloroplasts in C3 plants by increasing membrane 
permeability for CO2. Aquaporins that are permeable to CO2 are proteins that assist 
CO2 diffusion through the membranes by providing pores through which CO2 can 
be channeled (Kaldenhoff 2012). It has been shown that disruption to the aquaporin 
AtPIP1;2 gene limits CO2 transport across the membrane (Heckwolf et al. 2011), 
while the overexpression of different aquaporin genes results in increased gm (Hanba 
et al. 2004; Flexas et al. 2006). Furthermore, it has been shown that the expression 
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of an aquaporin in A. thaliana stimulates CO2 flux through a mesophyll membrane 
(Uehlein et al. 2012).

Once CO2 is transferred to the cytosol, it is partially converted into HCO3
− to 

facilitate its diffusion into the chloroplast, and the HCO3
− is then dehydrated back 

to CO2 by carbonic anhydrase to maintain a high CO2 flux through the chloroplast 
membrane. Thus, carbonic anhydrase plays a role in facilitating the diffusion of CO2 
in the chloroplast stroma by interconverting between CO2 and HCO3

− (Evans et al. 
2009). It has been suggested that the amount of carbonic anhydrase found in plants 
somewhat limits conductance in the stroma of C3 crops, and thus there would be a 
possibility to improve this aspect by molecular engineering (Tholen and Zhu 2011).

A substantial increase in the CO2 concentration around Rubisco to enhance pho-
tosynthesis and water-use efficiency has been expected as the result of the installa-
tion of a carbon concentrating mechanism (CCM) in C3 plants (Fig. 4). Cyanobacteria 
have evolved a CCM in which Rubisco is encapsulated in a cellular compartment 
known as a carboxysome (Price et al. 2011). In carboxysomes, CO2 concentration is 
enriched by up to 1000-fold, thus significantly decreasing the photorespiration rate. 
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Fig. 4  Schematic diagram of mechanisms for concentrating CO2 around Rubisco. The diagram 
shows CO2 transfers from the outside to the intercellular air space through the stomatal pore and 
the CO2 diffuses through the cell wall and plasma membrane into the cytosol. Aquaporins assist the 
CO2 diffusion into the cytosol of the mesophyll cell through the membranes by providing pores 
through which CO2 can be channeled. Introducing a cyanobacterial HCO3

− transporter (e.g., bicA 
and sbtA) into the chloroplast envelope could improve CO2 transport. The introduction of a 
Rubisco- and carbonic-anhydrase-containing compartment, such as the carboxysome, could fur-
ther increase the CO2 concentration around Rubisco, resulting in minimization of the photorespira-
tion rate. (The figure is adapted from Price et al. (2011) and Yamori et al. (2016b))
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To incorporate CCM from cyanobacteria into C3 plants, the following distinct fea-
tures need to be addressed: (1) CO2 and HCO3

− transport mechanism and (2) func-
tional carboxysome assembly. Incorporating cyanobacterial HCO3

− transporters 
into the chloroplast envelope of C3 plants would provide a parallel route for inor-
ganic carbon to enter the chloroplast, in addition to the diffusion of dissolved CO2 
(Price et al. 2011, 2013). To date, five different inorganic carbon transport mecha-
nisms have been identified in cyanobacteria (Price et al. 2011, 2013). A previous 
study showed that overexpressing the ictB gene, an HCO3

− transporter in cyanobac-
teria, in A. thaliana and N. tabacum plants contributed more to increases in photo-
synthesis and water-use efficiency than in the wild type (Lieman-Hurwitz et  al. 
2003). Furthermore, the overexpression of the ictB gene in soybeans led to increases 
in mesophyll conductance, photosynthesis, and plant productivity in both ambient 
and elevated CO2 environments under both greenhouse and field conditions (Hay 
et al. 2017). It is now considered that a fully functional CCM in C3 plants would 
require the introduction of HCO3

− transporters, adjustments in the expression of 
chloroplast carbonic anhydrase to allow HCO3

− accumulation, and the establish-
ment of a Rubisco- and carbonic-anhydrase-containing compartment, such as a car-
boxysome (Price et  al. 2011, 2013). Recently, well-assembled carboxysome 
structures were successfully expressed in plants (Long et al. 2018). Incorporation of 
cyanobacterial Rubisco large and small subunit genes along with genes for carboxy-
some structural proteins could improve Rubisco catalytic properties, but decrease 
total Rubisco content, resulting in lower photosynthetic rates and growth than in 
tobacco wild-type (Long et al. 2018). Since the incorporation of CCM into crops 
has been expected to improve crop yields, efforts toward transplantation are 
under way.

C4 plants evolved CCM in two types of photosynthetic cells, where CO2 is ini-
tially fixed in the mesophyll cells by the enzyme phosphoenolpyruvate carboxylase 
(PEPC) to produce a C4 acid. The organic acid diffuses to the bundle-sheath cells, 
where it is decarboxylated, resulting in significantly increased CO2 concentrations 
around Rubisco. Currently, considerable efforts are under way to incorporate the 
features of the complex C4 pathway into C3 crops such as rice (Covshoff and Hibberd 
2012; von Caemmerer et al. 2012). Challenges associated with this approach include 
morphological adjustments, such as the establishment of a Kranz(-like) anatomy, as 
well as the introduction of C4 biochemistry into C3 leaves. The benefits of the intro-
duction of the C4 photosynthetic pathway would include higher yield as well as 
improved nitrogen-use efficiency and water-use efficiency.

5  �Enhancing Activity of Calvin–Benson-Cycle Enzymes

The Calvin–Benson cycle uses ATP and NADPH from photosynthetic electron 
transport to fix CO2 in carbon skeletons that are mainly used for sucrose and starch 
production (Fig. 2). The Calvin–Benson cycle also supplies intermediates to many 
other pathways in the chloroplast, including the shikimate pathway for the 

W. Yamori



41

biosynthesis of amino acids, lignin, isoprenoid, and precursors for nucleotide 
metabolism and cell wall synthesis. This cycle comprises 11 different enzymes, 
catalyzes 13 reactions, and is initiated by Rubisco (Raines 2003). Four of the 11 
enzymes are regulated by thioredoxins: glyceraldehyde 3-phosphate dehydrogenase 
(GAPDH), fructose 1,6-bisphosphatase (FBPase), sedoheptulose-1,7-bisphospha-
tase (SBPase), and phosphoribulokinase (PRK). Two of the 11 enzymes catalyze 
reversible reactions: aldolase and transketolase.

Previous studies have demonstrated that moderate reductions in Calvin–Benson-
cycle enzymes such as SBPase and fructose 1,6-bisphosphate aldolase (FBPA) 
induce significant decreases in photosynthetic rate and plant growth, indicating that 
these enzymes would limit photosynthesis (Ding et  al. 2016; Haake et  al. 1998, 
1999; Harrison et  al. 1998, 2001; Lawson et  al. 2006; Ölcer et  al. 2001; Raines 
2003; Raines and Paul 2006; Raines et al. 1999; Hatano-Iwasaki and Ogawa 2012). 
Furthermore, the disruption of the chloroplastic FBPase was also shown to nega-
tively affect photosynthetic rate (Kossmann et al. 1994; Rojas-González et al. 2015; 
Sahrawy et al. 2004). These results strongly suggest that photosynthetic CO2 fixa-
tion could be improved by increasing the activity of individual Calvin–Benson-
cycle enzymes. Evidence supporting this hypothesis was provided by transgenic 
tobacco plants overexpressing SBPase (Lefebvre et al. 2005; Tamoi et al. 2006), 
FBPase (Tamoi et  al. 2006), the cyanobacterial bifunctional SBPase/FBPase 
(Miyagawa et al. 2001), or FBPA (Uematsu et al. 2012). These single manipulations 
resulted in increases in photosynthetic rate and plant growth. Recently, SBPase has 
been receiving a lot of attention, and its role in determining carbon flux in the 
Calvin–Benson cycle under natural environmental conditions has been revealed. 
Transgenic tobacco plants overexpressing SBPase from A. thaliana exhibited an 
enhanced photosynthetic rate and biomass production when grown under free-air 
CO2 enrichment (FACE) conditions at a CO2 concentration of 585  μmol/mol 
(Rosenthal et  al. 2011). Moreover, the expression of cyanobacterial bifunctional 
FBPase/SBPase increases photosynthetic rate in soybeans grown under field condi-
tions and prevents yield losses under high-CO2 and high-temperature conditions 
(Köhler et al. 2016). In addition, transgenic lines with increased SBPase exhibited 
improvement of leaf photosynthesis, total biomass, and seed yield in wheat under 
greenhouse conditions (Driever et  al. 2017). Taken together, the manipulation of 
SBPase could increase photosynthetic capacity and could be an efficient way to 
improve photosynthetic rate and crop yield, especially in a future high-CO2 world.

6  �Enhancing Electron Transport Rate 
in Thylakoid Membranes

ATP and NADPH generated during photosynthetic electron transport in thylakoid 
membranes are used to power photosynthetic carbon reduction. In a future high-
CO2 world, CO2 assimilation rate would be limited by the RuBP regeneration rate in 
the Calvin–Benson cycle (Farquhar et al. 1980), which in turn will be limited by 
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chloroplast electron transport capacity (Yamori et al. 2011). The cytochrome b6/f 
complex has a unique role in chloroplast electron transport (Fig. 5) as it can act in 
both linear electron transport (production of ATP and NADPH) and cyclic electron 
transport (ATP generation only). There is a strong linear relationship between chlo-
roplast electron transport rate and cytochrome b6/f complex content at any leaf tem-
perature (Yamori et  al. 2011). Thus, this could be a suitable target for genetic 
manipulation to improve photosynthesis and thus plant yield.

Previous experiments with antisense lines have shown that even a moderate 
decrease in the amounts of chloroplastic ferredoxin NADP(H) oxidoreductase 
(FNR), which catalyzes the terminal reaction of the photosynthetic electron trans-
port chain by transferring electrons from reduced ferredoxin to NADP+, has a nega-
tive impact on photosynthetic rate under both low and high light conditions 
(Hajirezaei et  al. 2002). However, the overexpression of FNR (Rodriguez et  al. 
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Fig. 5  Schematic diagram of electron transport in thylakoid membranes. Electron transport, 
driven by the excitation of photosystem I (PS I) and photosystem II (PS II), results in the reduction 
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ton motive force (pmf), which constitutes ∆pH across the thylakoid membrane as well as mem-
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2007) or ferredoxin (Yamamoto et al. 2006) did not increase photosynthesis or plant 
growth in tobacco, irrespective of growth light conditions. Electron transfer between 
the cytochrome b6/f complex and photosystem I is mediated by plastocyanin in 
higher plants, whereas, in many algae, it is mediated by cytochrome c6. Variations 
in plastocyanin levels have been reported to coincide with variations in photosyn-
thetic electron transport activity (Burkey 1994; Burkey et al. 1996; Schöttler et al. 
2004), leading to the conclusion that plastocyanin pool size could limit photosyn-
thetic electron transport. It has been reported that the introduction of a parallel elec-
tron carrier between the cytochrome b6/f complex and photosystem I through the 
expression of an algal cytochrome c6 gene in A. thaliana improved electron trans-
port rate, leading to improved plant growth (Chida et  al. 2007). An analysis of 
knockout plants for two homologous plastocyanin isoforms (PETE1 and PETE2) in 
A. thaliana showed that plastocyanin content can be significantly decreased with no 
apparent changes in photosynthetic rate, suggesting that the concentration of plas-
tocyanin does not limit photosynthetic electron transport rate (Pesaresi et al. 2009). 
However, the overexpression of either PETE1 or PETE2 results in an increase in 
biomass production (Pesaresi et al. 2009). Thus, there is still a discrepancy between 
the experimental knockout data and the overexpression lines.

It was also shown in antisense studies that decreasing Rieske FeS protein content 
resulted in a decrease in cytochrome b6/f complex level, leading to a decrease in 
photosynthetic electron transport, plant biomass, and seed yield in tobacco and rice 
(Price et al. 1998; Yamori et al. 2016a). These findings identified the cytochrome 
b6/f complex as a limiting step in electron transport and would suggest that the over-
expression of Rieske FeS protein could be a suitable target for increasing photosyn-
thesis and yield. This has been proven by recent work showing that the overexpression 
of Rieske FeS protein had a substantial and significant impact on electron transport, 
plant biomass, and seed yield in Arabidopsis plants (Simkin et al. 2017).

Other reports have documented an enhancement in plant biomass realized by the 
genetic manipulation of photosynthetic electron transport. In plant cells, NADP is 
mainly located in the chloroplast, where NADP+ functions as the final electron 
acceptor of the photosynthetic electron transport chain (Wigge et al. 1993). NAD 
kinase regulates the NAD(H)/NADP(H) balance through its catalysis of NAD phos-
phorylation in the presence of ATP (Kawai and Murata 2008). In A. thaliana, one of 
the NADK isoforms localized in the chloroplast (NADK2; Chai et al. 2005) cata-
lyzes a key step in the regulation of NAD/NADP ratio (Kawai and Murata 2008). 
The overexpression of chloroplastic NADK2 from Arabidopsis plants into rice suc-
ceeded in enhancing electron transport and CO2 assimilation rates (Takahara 
et al. 2010).

In situations in which the electron transport rate is limited by the amount of 
available light that can be absorbed by the plant, increased light harvesting might 
enhance photosynthetic rate and plant productivity. Land plants use chlorophyll a 
and b, which absorb light at wavelengths of 400–700 nm. Chlorophyll d, which is 
used by Acaryochloris (Miyashita et al. 1996), and chlorophyll f, which was discov-
ered in the cyanobacterial communities of stromatolites (Chen et al. 2010), have 
red-shifted absorption spectra that enable their host organisms to perform oxygenic 
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photosynthesis at the much longer wavelengths of 700–750 nm, which are inacces-
sible to other organisms. Introducing these chlorophylls into higher plants to sup-
plement or replace the existing chlorophylls could potentially increase the amount 
of usable photon flux by up to 19% (Chen and Blankenship 2011). The up-regula-
tion of Arabidopsis chlorophyllide a oxygenase (CAO), involved in chlorophyll b 
biosynthesis, in tobacco has been shown to increase electron transport rate, CO2 
assimilation, and plant biomass (Biswal et al. 2012). In addition, plants with a muta-
tion in TAP38, an enzyme involved in the dephosphorylation of the light harvesting 
complex of photosystem II, exhibited an increased photosynthetic electron flow, 
leading to improved plant growth under low-light conditions (Pribil et al. 2010). In 
the same manner, facilitation of the chloroplast accumulation response, which 
shows that chloroplasts accumulate along periclinal cell walls at low light, led to 
improved leaf photosynthesis and plant biomass production in A. thaliana (Gotoh 
et al. 2018). Since the photosynthetic electron transport chain provides energy and 
reducing equivalents for the reduction of fixed CO2 to carbohydrates in the Calvin–
Benson cycle as well as for nitrogen assimilation and other processes, the genetic 
manipulation of photosynthetic electron transport could be a candidate for improv-
ing the entire photosynthetic system, and thus plant yield.

7  �Improving Photosynthetic Performance Under Fluctuating 
Light in Natural Environments

Research into finding ways to increase crop yield has focused on improving steady-
state photosynthesis. However, leaves in natural plant canopies experience a highly 
variable light environment over the course of a day because of changes in cloud 
cover and overshadowing canopy cover (Fig. 6; Yamori 2016). By contrast, trans-
genic plants have not yet been used to clarify the limiting step of non-steady-state 
photosynthesis, and thus few studies address the improvement of non-steady-state 
photosynthesis. When light intensity is increased suddenly after a prolonged period 
of low light or darkness, photosynthetic rate increases gradually over several min-
utes and approaches a steady state (Pearcy 1990; Yamori 2016). This phenomenon 
has been termed “photosynthetic induction,” and it is typically divided into three 
limiting phases: (1) electron transport systems; (2) activation of Calvin-cycle 
enzymes, especially Rubisco; and (3) CO2 diffusion into the chloroplast (Fig. 6). 
The first of these three phases is often completed within 1–2 min of increases in 
irradiance, the second requires 5–10 min, and the third could take 10–30 min to 
reach a steady-state (Pearcy 1990). The slow induction results in a time lag between 
the changes in irradiance and those in the photosynthetic rate. This delay may cause 
damage to the photosynthetic apparatus and eventually decrease plant productivity 
if excess energy accumulates during repeated fluctuations in light intensity (Murchie 
and Niyogi 2011; Tikkanen et al. 2012; Yamori 2016; Yamori et al. 2016c). Daily 
photosynthetic rates under fluctuating light conditions can be up to 20–35% lower 
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than the optimal photosynthetic rates under constant light (Naumburg and Ellsworth 
2002; Taylor and Long 2017). Therefore, characterization of the mechanisms that 
regulate photosynthetic responses to fluctuating light intensities may lead to 
improved photosynthetic induction and crop yield under natural conditions (Tanaka 
et  al. 2019). The following section summarizes the various genetic engineering 
approaches that can be used to enhance photosynthesis under fluctuating light con-
ditions (Fig. 7).

7.1  �Electron Transport

Photosynthetic electron transport systems consist of linear and cyclic electron trans-
port around photosystem I (Fig. 7). Linear electron transport generates both ATP 
and NADPH for a Calvin–Benson cycle, photorespiration, and other metabolisms. 
On the other hand, cyclic electron transport produces ATP without producing 
NADPH to balance the ATP/NADPH production ratio and is now considered to be 
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essential in providing protection from photodamage via the thermal dissipation of 
excess absorbed light (NPQ, non-photochemical quenching) (Yamori and Shikanai 
2016). There are two cyclic electron flows around photosystem I: the main pathway 
depends on PGR5/PGRL1 proteins and the minor pathway depends on a chloroplast 
NADH dehydrogenase-like (NDH) complex. It has been shown in rice that PGR5/
PGRL1-dependent cyclic electron transport is a key regulator of rapid photosyn-
thetic responses to high light intensity under fluctuating light, and that both PGR5/
PGRL1-dependent and NDH-dependent cyclic electron transport have physiologi-
cal roles for photoprotection in sustaining photosynthesis and plant growth in rice 
under repeated light fluctuations (Yamori et al. 2016c). In cyanobacteria, pseudo-
cyclic electron transport by flavodiiron protein (Flv) mediates the photoreduction of 
O2 to H2O and is essential for photosystem-I photoprotection in fluctuating light 
(Allahverdiyeva et al. 2013). Recent work indicated that the introduction of the Flv 
gene from moss (Physcomitrella patens) into Arabidopsis and rice led to the 
enhancement of cyclic electron transport, resulting in successful improvement of 
the resistance of photosynthetic machinery under fluctuating light conditions 
(Fig. 7; Yamamoto et al. 2016; Wada et al. 2018).

NPQ can be activated and relaxed within minutes and is a highly regulatory pro-
cess involving multiple factors, such as the protonation of PsbS protein and the 
activation of a xanthophyll cycle that converts the pigment violaxanthin (V) to 
antheraxanthin (A) and zeaxanthin (Z) (for a review, see Yamori and Shikanai 2016). 
In tobacco, the simultaneous overexpression of PsbS, violaxanthin de-epoxidase, 
and zeaxanthin epoxidase increases the rate of NPQ relaxation, which subsequently 
increases growth under fluctuating light in field conditions (Fig. 7; Kromdijk et al. 
2016). Thus, plant productivity and crop yield appear to be highly dependent on 
NPQ under fluctuating light conditions in nature.

It has been reported that ion channels/transporters across chloroplast enve-
lopes and thylakoid membranes play fundamental roles in the regulation of pho-
tosynthetic electron transport (Figs. 5 and 7; Finazzi et al. 2015). Photosynthetic 
electron transport is coupled with proton translocation across the thylakoid 
membrane, resulting in the formation of transmembrane H+ concentration (ΔpH) 
and electrical potential (ΔΨ) gradients. Although both ΔpH and Δψ contribute 
to ATP synthesis as a proton motive force (pmf), only the ΔpH component can 
activate the PsbS- and xanthophyll-cycle-dependent NPQ while down-regulat-
ing electron transport during the plastoquinol oxidation step at the cytochrome 
b6/f complex (photosynthetic control, Kramer et al. 2003; Yamori and Shikanai 
2016). Recent evidence suggests that several ion channels, such as the thylakoid 
K+ channel TPK3, K+ efflux antiporter KEA3, and Cl− channel Best1/VCCN1, 
adjust electron transport and functions in photoprotective mechanisms (Figs. 5 
and 7; Carraretto et al. 2013; Kunz et al. 2014; Duan et al. 2016; Herdean et al. 
2016). The knockout of Best1/VCCN1, which leads to an influx of Cl− into the 
lumen, resulted in disturbance of the pmf components, resulting in a decreased 
rate of NPQ induction (Duan et al. 2016; Herdean et al. 2016). These data sug-
gest that a Cl− influx into the lumen would fine-tune pmf and allow the plant to 
adjust photosynthesis to variable light. On the other hand, TPK3 effluxes K+ 
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from the thylakoid lumen to the stroma and partially dissipates ΔΨ to allow 
more H+ to enter the lumen and thus enables a significant ΔpH to be formed, 
thus balancing photoprotection and photochemical efficiency (Carraretto et al. 
2013). Moreover, KEA3 effluxes H+ with the counter influx of K+, exchanging 
Δψ for ΔpH, which is critical for photosynthetic acclimation after transitions 
from high to low light (Kunz et al. 2014; Armbruster et al. 2014). The activity 
of KEA3 accelerates the down-regulation of pH-dependent NPQ after transi-
tions to low light, leading to the faster recovery of high photosystem II quantum 
efficiency and increased CO2 assimilation. The overexpression of KEA3 accel-
erates the relaxation of photoprotective energy-dependent quenching after tran-
sitions from high to low light in Arabidopsis and tobacco (Armbruster et  al. 
2016). Thus, the KEA3 function is critical in terms of realizing high photosyn-
thetic efficiency under fluctuating light. Taken together, these findings under-
score the potential for accelerating NPQ relaxation once light intensity is 
decreased so as not to decrease the efficiency of light energy use under light-
limiting conditions in improving photosynthetic efficiency under fluctuating 
light in field conditions (Fig. 7).

7.2  �Activation of Calvin-Cycle Enzymes, Especially Rubisco

Rubisco must be activated by Rubisco activase to catalyze CO2 assimilation in the 
Calvin–Benson cycle (Fig. 7). A positive relationship has been observed between 
Rubisco activase content and the speed of the photosynthetic induction response in 
A. thaliana (Mott et  al. 1997), tobacco (Hammond et  al. 1998; Yamori and von 
Caemmerer 2009), and rice (Masumoto et al. 2012; Yamori et al. 2012). Thus, it is 
considered that the Rubisco activation state could be a limiting factor for the induc-
tion response to a sudden increase in light intensity. In most species, Rubisco acti-
vase is present in two isoforms: redox-regulated α-isoform and redox-insensitive 
β-isoform (Portis Jr 2003). In transgenic Arabidopsis plants containing only the 
β-isoform, photosynthetic induction after a transition from low to high light was 
faster than in the wild type, as Rubisco activase activity was constitutively high and 
independent of irradiance (Carmo-Silva and Salvucci 2013; Kaiser et  al. 2016). 
Furthermore, the overexpression of β-isoform from maize in rice led to an improve-
ment in photosynthetic induction via the rapid regulation of the Rubisco activation 
state by Rubisco activase following an increase in light intensity and/or the mainte-
nance of a high Rubisco activation state under low light (Yamori et al. 2012). Taken 
together, modifying the concentration of Rubisco activase and its composition could 
be used to improve photosynthetic performance and plant growth under fluctuating 
light conditions.

Thioredoxins are ubiquitous enzymes in chloroplasts, and the thioredoxin sys-
tems are responsible for the light-induced activation of enzymes in the Calvin–
Benson cycle, including GAPDH, FBPase, SBPase, and PRK (Thormählen et al. 
2017); ATP synthesis (Hisabori et  al. 2013); malate-oxaloacetate shuttle 
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(Miginiac-Maslow et al. 2000); and starch metabolism (Thormählen et al. 2013). 
There are two plastid thioredoxins systems: (1) the ferredoxin-thioredoxin sys-
tem, which consists of ferredoxin-thioredoxin reductase (FTR) and multiple thio-
redoxins, and (2) the NADPH-dependent thioredoxin reductase (NTRC) system, 
which contains a complete thioredoxin system (Fig. 7). Recent reports focusing 
on the overexpression of chloroplast thioredoxin components in plants support the 
concept of the high impact of thioredoxins on plant fitness. Transgenic tobacco 
lines overexpressing thioredoxin f, one of the thioredoxin families, showed a large 
increase in plant biomass and starch content, which was further stimulated by an 
increase in light intensity (Sanz-Barrio et  al. 2013). The overexpression of the 
endogenous NTRC gene in Arabidopsis also increased plant growth under moder-
ate light intensity (Toivola et al. 2013). Furthermore, a recent study showed that 
both ferredoxin-dependent thioredoxin m, one of the thioredoxin families, and 
NADPH-dependent NTRC are indispensable for photosynthetic acclimation in 
fluctuating light intensities (Nikkanen et al. 2016; Thormählen et al. 2017). Thus, 
it is highly possible that thioredoxin-mediated redox regulation allows the activa-
tion state of these enzymes to be modulated in response to fluctuating light in field 
conditions.

7.3  �CO2 Diffusion into the Chloroplast

The diffusion of CO2 to the Rubisco catalytic sites in the chloroplast is mediated 
by both stomatal and mesophyll conductance (Fig. 7). Under naturally fluctuating 
environmental conditions, stomatal responses are much slower than photosyn-
thetic responses. Manipulating stomatal conductance so that it responds more 
quickly to irradiance could greatly enhance photosynthesis and water-use effi-
ciency in fluctuating irradiance (Lawson and Blatt 2014; Vialet-Chabrand et al. 
2017). Removal of the stomatal limitation could increase photosynthetic induc-
tion in aba2-1 Arabidopsis mutant, which impaired ABA synthesis and thus 
showed constitutively high stomatal conductance (Kaiser et al. 2016). Moreover, 
SLAC1-deficient rice mutant, which knocked out an anion channel protein in the 
plasma membrane of stomatal guard cells, constitutively opened stomata and con-
tributed to higher photosynthetic rates more than the wild type in naturally fluctu-
ating light (Yamori et  al. 2020). Papanatsiou et  al. (2019) induced a synthetic, 
light-gated K+ channel in guard cells in Arabidopsis and succeeded in facilitating 
stomatal opening under light exposure and closing after irradiation, leading to 
greater plant growth in fluctuating light. Furthermore, several Arabidopsis mutants 
with stay-open stomata and the PATROL1 (proton ATPase translocation control 1) 
overexpression Arabidopsis line with faster stomatal opening responses exhibited 
higher photosynthetic rates and plant growth in fluctuating light than the wild 
type, whereas those lines showed similar photosynthetic rates and plant growth in 
constant light (Shimadzu et  al. 2019; Kimura et  al. 2020). Taken together, 
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enhancing stomatal conductance could result in better use of plant photosynthetic 
capacity in naturally fluctuating light.

In addition to stomatal conductance, mesophyll conductance could place a large 
diffusional limitation on photosynthesis. The extent to which mesophyll conduc-
tance limits photosynthesis under fluctuating light is largely unknown, although it 
has been reported that mesophyll conductance could impose a major limitation to 
photosynthesis during the steady state. Mesophyll conductance can vary within 
minutes, and is affected by changes in irradiance, CO2, and temperature (Flexas 
et al. 2007, 2008, 2012; Tazoe et al. 2011; Tholen et al. 2008; Yamori et al. 2006a), 
making it a potentially important process. Recently, we succeeded to characterize 
induction both of mesophyll conductance and stomatal conductance after a step 
change in light from darkness to high or low light and showed that mesophyll con-
ductance would impose a smaller limitation to photosynthesis under fluctuating 
light conditions, but both of mesophyll conductance and stomatal conductance 
would contribute to the limitation of photosynthesis during induction (Sakoda et al. 
2021). Relevant factors that might contribute to variations in mesophyll conduc-
tance are carbonic anhydrase and aquaporins.

8  �Future Prospects

The present rate of increase in crop yields is insufficient to keep pace with the rapid 
increase in the global population. Thus, the development of crops with higher yield 
by improving photosynthesis is essential if we are to meet future food and energy 
demands. Therefore, suitable approaches must be explored for generating more effi-
cient plants with higher yield. Enhancement of leaf photosynthetic capacity would 
provide one attractive way of achieving increases in crop yield since plant growth 
depends largely on photosynthesis. In this review, we have highlighted crucial tar-
gets that could be manipulated to enhance crop productivity (Fig.  7). To date, 
research into finding new ways to increase crop yield has focused on improving 
steady-state photosynthesis. However, leaves in natural plant canopies experience a 
highly variable light environment over the course of a day. Thus, the improvements 
in photosynthesis and yield observed in model plants grown in constant growth 
chambers may not be completely transferrable to crop species under field condi-
tions. Therefore, an understanding of the key factors operating in natural environ-
ments and responsible for increases in yield is essential if we are to achieve the 
maximum yield potential.

Furthermore, improving photosynthesis to increase food production ultimately 
means maximizing the photosynthetic efficiency of the crop canopy rather than that of 
an individual plant. One approach would be to alter the plant architecture and bio-
chemistry and thus distribute irradiation more evenly throughout the canopy in order 
to achieve the highest conversion efficiency of solar radiation to biomass. Recent 
genome editing technologies have been progressing and they will enable easier and 
more precise manipulation of the photosynthesis process in crops. Our understanding 
of photosynthesis will help us to achieve our goal of sustainable food production.
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