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Abstract Rice production needs to be sustained in the coming decades, with 
changing climatic conditions becoming more conducive to the prevalence of disease 
outbreaks. Major rice diseases collectively cause enormous economic damage and 
yield instability. Breeding for disease-resistant rice varieties could be one of the best 
options to counter these disease outbreaks. Disease-screening protocols and newer 
technologies are essential for effective phenotyping and would aid in gene discov-
ery and function. Understanding the genetics of disease mechanisms and stacking 
of broad-spectrum disease-resistance genes could lead to faster development of rice 
varieties with multiple disease resistance. New molecular breeding approaches are 
discussed for the development of these varieties. The molecular biology of disease 
resistance is now better understood and could be well manipulated for improved 
resilience. Transgenic approaches for disease resistance are discussed. Genome- 
editing tools for the development of disease-resistant rice varieties are thoroughly 
discussed. The use of bioinformatics tools to speed up the process and to obtain a 
better understanding of molecular genetics mechanisms of disease resistance is 
explained.

Keywords Rice · Biotic diseases · Phenotypic screening · QTLs and genes · 
Breeding strategies · Genome editing

M. Jamaloddin · C. G. Gokulan · A. Maliha · H. K. Patel 
Centre for Cellular and Molecular Biology (CCMB), Hyderabad, India 

A. Mahender · C. Balachiranjeevi 
Rice Breeding Platform, International Rice Research Institute (IRRI),  
Los Baños, Laguna, Philippines 

J. Ali (*) 
Hybrid Rice Breeding Cluster, Hybrid Rice Development Consortium (HRDC), Rice 
Breeding Platform, International Rice Research Institute (IRRI),  
Los Baños, Laguna, Philippines
e-mail: J.Ali@irri.org

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-66530-2_10&domain=pdf
https://doi.org/10.1007/978-3-030-66530-2_10#DOI
mailto:J.Ali@irri.org


316

1  Introduction

Rice (Oryza sativa L.) is a staple and the most crucial food security crop in the 
world. It plays a vital role in the human diet and feeds more than 50% of the world’s 
population (Rathna Priya et al. 2019). By 2050, global demand for rice is projected 
to rise more than 40% to feed the rapidly growing world population (Milovanovic 
and Smutka 2017). Despite impressive global increases in production from 289 mil-
lion tons in 1968 to 782 million tons in 2018, this quantum jump still has to keep 
pace with demand for rice from the rising population (FAOSTAT 2020). At present, 
rice cultivation throughout South Asia and in ASEAN countries is facing significant 
threats because of a few major biotic stresses (Yugander et al. 2017). Approximately 
52% of the global productivity of rice grain yield is severely damaged by biotic fac-
tors, of which nearly 31% is due to various diseases such as bacterial blight (caused 
by Xanthomonas oryzae), blast (caused by Magnaporthe  grisea), sheath blight 
(caused by Rhizoctonia solani), and tungro disease (tungro bacilliform virus and 
tungro spherical virus) (Park et al. 2008). Detailed information about the symptoms 
caused by these major diseases, along with the favorable conditions required by 
these pathogens and yield losses incurred, is presented in Table 1. The severity of 
biotic stresses in rice production is increasing at a startling pace of late because of 
rapid changes in climate (Jamaloddin et al. 2020). Changing climatic conditions are 
contributing to the emergence of new virulent races and the occurrence of diseases 
in new localities. Many diseases considered as minor thus far have become eco-
nomically significant in many rice-cultivating areas and are exacerbating their 
impact (Anderson et  al. 2004). According to Zhang et  al. (2009), rice crops are 
affected by around 70 pathogens, especially viruses, bacteria, fungi, and nematodes. 
Estimated yield loss because of pathogens globally and as per hotspot range for rice 
is 30% (24.6–40.9%) (Savary et al. 2019). Over the past 150 years, many rice dis-
eases have caused outbreaks and spread rapidly in different parts of the world. Rice 
diseases were observed for the first time in different locations, such as bacterial 
blight and sheath blight in Japan during 1884–1885 and 1910, respectively; false 
smut in the United States during 1906; blast in Africa during 1922; rice tungro in the 
Philippines during 1940; rice brown spot in India during 1942; bacterial leaf streak 
in India during 1963; and rice yellow mottle disease in Kenya during 1966. These 
diseases, along with a few newly emerging epidemics, are becoming a significant 
threat to rice production.

Despite so many alternatives for crop protection, plant pathogens still pose a 
challenge to agriculture. Several management practices have been adopted to 
decrease their impact, such as chemical control, biological control, optimum fertil-
izer application, appropriate planting dates, and disease forecasting. However, not 
all of these methods are environment-friendly and alone are not enough to control 
the diseases completely. The present situation thus requires environment-friendly 
and cost-effective modern technologies such as the development and cultivation of 
disease-resistant cultivars. The development of these varieties using only conven-
tional breeding methods consumes a lot of time, land, and labor. In this context, 
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Table 1 Key features of major diseases in rice

Disease Pathogen Symptoms
Favorable 
conditions Yield loss Reference

Blast Caused by the 
fungus 
Magnaporthe 
oryzae (Mo)

Early-stage 
symptoms appear 
as white to 
gray-green lesions 
with dark green 
specks. These soon 
enlarge and 
spindle-shaped 
lesions appear with 
a gray center and 
dark brown margin.

Prolonged period 
free from moisture. 
High humidity 
conditions. Gentle 
or no wind at night. 
Night temperatures 
from 17 to 
22 °C. High rate of 
fertilizer.

70–80% Jamaloddin 
et al. 
(2020)

Bacterial 
blight 
(BB)

Caused by 
bacterium 
Xanthomonas 
oryzae pv. 
oryzae (Xoo)

Normally, disease 
appears at heading 
stage, but can occur 
early in severe 
conditions. Infected 
plants’ young 
leaves change from 
pale green to 
gray-green and roll 
up. As the disease 
progresses, the 
entire leaf may 
eventually be 
affected, becoming 
whitish or grayish 
and then dying.

Suitable 
temperature is 
25–30 °C. High 
humidity (above 
70%), rain, and 
deep water. Severe 
winds, which cause 
wounds. High rate 
of fertilizer.

Up to 50% Liu et al. 
(2014)

Bacterial 
leaf 
streak 
(BLS)

Caused by 
bacterium 
Xanthomonas 
oryzae pv. 
oryzicola (Xoc)

Plants can be 
affected from 
maximum tillering 
to panicle 
initiation. 
Symptoms appear 
on leaf blades as 
narrow, dark 
greenish water- 
soaked interveinal 
streaks of various 
lengths. Later, 
these streaks 
become light 
brown to yellowish 
gray.

There is a higher 
probability of 
developing it in 
areas having weeds 
and stubbles 
harboring infection. 
Temperatures from 
25 to 34 °C with 
relative humidity 
>70% are more 
congenial.

8–32% Liu et al. 
(2014)

(continued)
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Table 1 (continued)

Disease Pathogen Symptoms
Favorable 
conditions Yield loss Reference

Tungro Caused by Rice 
tungro 
bacilliform 
virus (RTBV) 
and rice tungro 
spherical virus 
(RTSV)

Infection can occur 
during all growth 
stages but mostly 
during the 
vegetative phase. 
The tillering stage 
is the most 
vulnerable. Leaves 
of infected plants 
become yellow or 
orange-yellow and 
may also have 
rust-colored spots. 
Most of the 
panicles are 
entirely or partially 
sterile with ill-filled 
grains.

Viruses are 
transmitted by 
leafhoppers that 
feed on tungro- 
infected plants. 
Leafhoppers are 
capable of 
transmitting viruses 
to other plants 
within 5–7 days.

Up to 
100%

Bunawan 
et al. 
(2014)

False 
smut

Caused by the 
fungus 
Villosiclava 
virens 
(anamorph: 
Ustilaginoidea 
virens)

False smut can 
infect individual 
rice grains. Only a 
few panicle grains 
are usually 
infected, and the 
remaining grains 
are normal. A smut 
ball appears at first 
and grows 
gradually up to 
1 cm. As fungi 
growth intensifies, 
the smut balls burst 
and become orange 
and then later 
yellowish green/
greenish black in 
color.

The disease can 
occur in areas with 
high relative 
humidity (>90%) 
and temperature 
ranging from 25 to 
35 °C. Rain and 
soils with high 
nitrogen content 
also favor false 
smut. Wind can 
spread the fungal 
spores from plant to 
plant.

In severe 
cases, 
tillers will 
be affected 
85–100%.

Huang 
et al. 
(2019)

(continued)
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Table 1 (continued)

Disease Pathogen Symptoms
Favorable 
conditions Yield loss Reference

Sheath 
blight

Caused by the 
fungus 
Rhizoctonia 
solani

The fungus attacks 
the plants from 
tillering to heading 
stage. Initial 
symptoms appear 
on leaf sheaths near 
the water line in the 
form of oval or 
irregular greenish 
gray lesions. Later, 
lesions extend to 
the upper parts of 
the plants and 
rapidly coalesce, 
covering entire 
tillers from the 
water line to the 
flag leaf.

Temperature from 
28 to 32 °C, high 
rates of N fertilizer, 
high seed rate or 
low spacing, dense 
canopy, inoculum in 
soil or floating on 
the water, and 
continuous 
cultivation of 
high-yielding 
varieties favor 
disease 
development. The 
crop is more 
vulnerable during 
the rainy season.

20–60% Molla et al. 
(2020)

Sheath 
rot

Caused by 
fungus 
Sarocladium 
oryzae

The sheath rot 
lesion starts at the 
uppermost leaf 
sheath consisting of 
young panicles 
within. Early 
symptoms are 
oblong to irregular 
lesions on the 
leaves with dark 
reddish brown 
margins and 
brownish gray 
throughout. The 
disease can cause 
partial emergence 
of panicles present 
in the infected 
sheaths. The 
unmerged panicles 
rot and turn dark 
brown with a 
whitish powdery 
growth inside the 
sheaths. Infected 
panicles and grains 
look sterile, 
ill-filled, shriveled, 
and discolored.

More prevalent 
during wet seasons 
than dry seasons. 
High relative 
humidity and 
temperatures from 
20 to 28 °C from 
heading to crop 
maturity. High rates 
of N fertilizer 
application. Plant 
injuries and wounds 
caused by insects 
such as stem borers 
at the panicle 
initiation stage.

20–85% Peeters 
et al. 
(2020)
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molecular markers come to the rescue of plant breeders by helping them decrease 
the time between breeding and achieving the desired product. The discovery of 
DNA markers led to a new tool in plant breeding called marker-assisted selection 
(MAS), which is one of the widely used components of a discipline called molecu-
lar breeding. The application of DNA markers to plant breeding significantly 
increased its efficiency and precision. MAS is now one of the most advanced meth-
odologies on hand for the transfer of one or more desired genes/genomic regions 
into elite rice varieties in more durable combinations. Deploying a single R-gene 
often leads to resistance breakdown in a short period as the pathogen evolves and 
makes itself resistant to the action of the gene. Therefore, pyramiding of multiple 
R-genes imparting resistance against different races of a pathogen through MAS is 
an efficient way to attain long-term and broad-spectrum resistance. Although this is 
an advanced method, it has some disadvantages. The main drawback of this approach 
is that one parent, or even both parents, used in the breeding program may carry 
quantitative trait loci (QTL) alleles that are either similar or exact to the ones pres-
ent in the elite germplasm accessions used in other breeding programs. In such a 
situation, the QTL being introgressed may contribute only partially to the trait 
improvement. In other cases, the impact of a QTL may differ based on the genetic 
background as a result of interactions with other loci or epistasis (Holland 2001). 
Moreover, there are many more important traits for which no genes have been 
reported so far. In such situations in which a gene is not available in the gene pool, 
researchers are forced to look outside the gene pool toward other genera or some-
times toward another kingdom to find the desired gene.

Genetic modification (GM) technology has been developed to make changes to 
an organism’s genes to give it new traits that would not occur in nature or to elimi-
nate undesirable characteristics. GM technology using recombinant DNA technol-
ogy is useful for developing disease-resistant varieties but still has not reached 
farmers because of a lack of public acceptance and political issues in many coun-
tries. Under these situations, researchers are left with an option to create mutations 
in the gene pool with an expectation to generate variation for a trait not naturally 
present in the gene pool.

Mutation breeding is helpful in creating novel mutants with genetic variations 
for plant breeding and functional genomics. It could be used for rice crop improve-
ment programs. Mutation induction can be of advantage to produce cultivars with 
desired characteristics within defined germplasm pools. Normally, gamma-rays 
(γ-rays) and ethyl methane sulfonate (EMS) have been used extensively to develop 
rice mutants. In rice, there have been reports of some important mutant collections 
developed to carry out functional studies and Hirochika et al. (2004) made available 
a list of the mutant libraries. Madamba et al. (2009) found a gamma-ray-induced 
IR64 mutant, G978, that gave enhanced resistance to blast and bacterial blight. The 
resistance was found to be quantitative and nonrace-specific against bacterial and 
fungal pathogens. The mutation was shown to be inherited as a single recessive 
gene, Bsdr1, and it caused a shorter stature relative to IR64 and was mapped as a 
QTL to a 3.8-Mb region on chromosome 12. Comparison of the gene expression 
profiles of the mutant and wild type showed the candidate gene to encode a U-box 
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domain-containing protein. The disrupted gene exhibited a loss of expression in the 
mutant and cosegregated with the mutant phenotype (Madamba et al. 2009). These 
techniques of causing mutations have a problem of creating more undesirable than 
desirable phenotypes. In other words, these techniques result in random mutations 
in the genome. The frequency of variations can be controlled but not in the genomic 
region where they are desired to occur. To achieve a desirable outcome from these 
experiments, a large population of mutants has to be screened, and this requires a lot 
of time, space, and resources.

Ultimately, the new era of genome engineering technologies offers vast potential 
for crop improvement as they allow site-specific modifications of DNA sequences 
to be executed under laboratory conditions. The accessibility to vast genomic 
resources and an easy-to-handle genome size make rice more amenable for GM 
technologies. Advances in genomics and the development of various genome- 
editing technologies using engineered site-specific nucleases (SSNs) have made the 
application of genome engineering to crops easy. Among various SSNs, the 
CRISPR/Cas9 system is commonly applied because of its simplicity, robustness, 
and high efficiency (Wang et al. 2018). In comparison with other genome-editing 
tools such as zinc-finger nucleases and transcription activator-like effector nucle-
ases (TALENs), this technique is versatile and simple (Ma et al. 2015b). This tech-
nology has been applied to agricultural crop plants with the aim of crop improvement. 
Oliva et al. (2019) used the CRISPR-Cas9 system to introduce mutations in three 
SWEET gene promoters to make robust and broad-spectrum bacterial blight- 
resistant lines. There is still much scope for its use and application.

In the future, the challenge for scientists is not only to develop rice varieties for 
specific diseases but also to select for horizontal resistance without altering other 
desirable traits of elite rice varieties. A systematically designed experiment involv-
ing highly efficient molecular tools would make it possible to achieve this outcome. 
Hence, the current chapter amalgamates details on the present status of the key 
diseases that affect rice production, various molecular strategies for attaining dis-
ease resistance, and prospects of molecular breeding for disease resistance in rice.

2  Phenotypic Screening Techniques for Major Diseases 
of Rice: Pathogen Inoculum, Plant Infection Assays, 
and Disease Scoring

2.1  Bacterial Blight

Bacterial blight (BB), caused by Xanthomonas oryzae pv. oryzae (Xoo), targets the 
seedling stage of rice, resulting in leaves turning grayish green and rolling up. 
Usually, BB inoculation can be done in two ways, either in the field or in the green-
house. Many techniques are available to infect the plant with inoculum such as clip-
ping, needle prick, paint-brush, and spray methods. But the most preferable, 
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efficient, and feasible for inoculation is the clipping method (Jabeen et al. 2011). 
Individually, collected Xoo strains are multiplied and stored on modified 
Wakimoto’sagar (Sundaram et al. 2009) and the selected rice plants at 45-days-old 
stage are clip-inoculated with a freshly prepared bacterial suspension (~108–9 cfu/
mL) by the following method given by Kauffman et al. (1973). In this method, 1–2- 
cm tips of five leaves are clipped with scissors, after they were already dipped in 
bacterial suspension culture, and disease score is recorded 2 weeks post-inoculation 
both by visual scoring and by measuring the lesion length (LL) as per the Standard 
Evaluation System (SES) scale of the International Rice Research Institute (IRRI 
1996) (0–3 = resistant, 3–5 = moderately resistant (MR), 5–7 = moderately suscep-
tible (MS), and 7–9 = susceptible).

2.2  Blast Disease

The causal organism for blast disease is a fungus, Magnaporthe oryzae (Mo). 
Symptoms of blast can appear during any developmental stage and on all parts of 
the rice plant, including leaves, leaf collars, necks, panicles, pedicels, and seeds. 
Standard screening protocols of rice varieties for susceptibility to rice blast are usu-
ally carried out by spraying the plant with conidial suspensions under greenhouse 
and field conditions using local isolates of the pathogen (Takahashi et al. 2009). 
However, for screening against exotic strains, quarantine restrictions are frequently 
applied to control any escape of the pathogen into the surrounding environment (Jia 
et al. 2003). In field conditions, artificial leaf blast disease screening usually takes 
place in a Uniform Blast Nursery (UBN) (Jamaloddin et  al. 2020). Applying an 
excess rate of nitrogen fertilizer (150  kg  N/ha) makes rice more vulnerable to 
spreading blast infection. Artificial inoculation is done with a highly virulent blast 
race (fungal conidial suspension at a concentration of 1 × 105 spores/mL) by spray-
ing on UBN beds 25–30 days after sowing (DAS). Later, the beds are covered with 
polythene sheets during the night to create humid conditions for disease develop-
ment. The disease score is collected 10–15 days after infection, depending on the 
severity of the infection on the susceptible check using the SES (IRRI 1996). In 
in vitro conditions, spot inoculation and filter paper inoculation methods are used 
for inoculation at the vegetative and reproductive stages of rice plants (Jia et  al. 
2003; Takahashi et al. 2009).

2.3  Sheath Blight

Sheath blight (ShB) disease is caused by a fungus, Rhizoctonia solani. The fungus 
attacks the rice plant from tillering to heading stage. The early symptoms of sheath 
blight involve oval circles on leaves just above the waterline. Various screening 
methods have been developed to screen for ShB in greenhouse and field conditions. 
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Eizenga et al. (2002) delineated a growth-chamber screening technique for sheath 
blight on Oryza spp. Later, Jia et al. (2003) developed the detached-leaf method. For 
screening ShB under greenhouse conditions, three inoculation methods have been 
described: liquid-cultured mycelia ball, mycelia suspension, and agar block. Out of 
these, the liquid culture mycelia ball is a more efficient and better method for suc-
cessful inoculation (Park et al. 2008). Field screening at the reproductive stage is the 
most commonly used method. But field trials require a lot of labor and a large 
amount of seed material, inoculum, and high-humidity conditions for up to 
3–5 months to complete the evaluations (Jia et al. 2007). Normally, screening of 
selected material for ShB tolerance/susceptibility is done using a highly virulent 
isolate of Rhizoctonia solani. Initially, ShB isolate is maintained on a potato dex-
trose agar (PDA, extract from 200 g/L of potato, 20 g/L of dextrose, and 20 g/L of 
agar) plate and incubated at 28 °C in darkness. For plant inoculations, Typha stem 
pieces (3–4 cm) are cut and autoclaved in plastic covers. This sterile Typha is inocu-
lated with a 5-mm mycelial plug of R. solani from a 3-day-old PDA plate and incu-
bated in the dark for 10 days at 28 °C. The colonized Typha pieces will be used for 
inoculating the rice plants at a rate of three to four pieces per hill.

Disease phenotype will be scored 2 weeks after inoculation by measuring the 
relative lesion height (RLH) as per the following formula:

 
RLH Lesion length Plant height% /( ) = ( )´100  

The IRRI (1996) phenotype scale is used to classify the plants based on their 
disease severity index from 0 to 9.

2.4  Sheath Rot of Rice

Sheath rot (ShR) is a symptom that is observed in rice plants when infected by any 
of the following pathogens: Sarocladium oryzae, Fusarium sp., Pseudomonas sp., 
and Cochliobolus lunatus. Other pathogens have been reported to cause similar 
symptoms in rice (Bigirimana et al. 2015). Multiple screening techniques that are 
being used for sheath rot disease resistance in rice include the mealybug inoculation 
method, rice grain/hull inoculum, leaf piece inoculum, cotton swabbing of conidial 
spores, spraying or injecting conidial suspension on the sheath, and detached til-
ler–based assays (Mahadevaiah et  al. 2015; Samiyappan et  al. 2003). The estab-
lished screening methods differ depending on the causal agent of ShR as well as the 
growth stage of the plant. The pathogen is cultured on PDA plates for up to 14 days 
at 28 °C (Panda and Mishra 2019). A study by Mahadevaiah et al. (2015) compared 
multiple inoculation methods for Sarocladium oryzae during different growth stages 
and observed that seed inoculation is a suitable screening method for screening for 
disease resistance in young plants or early infection. In this method, the seeds are 
soaked overnight in conidial suspension (105 spores/mL) and then germinated. The 
number of germinated plants and lesion lengths 14 days after inoculation are scored. 
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For screening plants in peak vegetative to booting stage, foliar inoculation methods 
were able to provide reliable and conclusive results 15 days after infection. For a 
faster in vitro screening, the detached-tiller assay is recommended, in which the til-
lers are cut and placed on moist paper and inoculated with mycelial mats. Visible 
lesions are observed as early as 3 days postinoculation (Samiyappan et al. 2003; 
Mahadevaiah et al. 2017). Disease severity is estimated by measuring the area of the 
sheath and/or leaf affected (Mahadevaiah et al. 2017). Pseudomonas fuscovaginae 
also causes ShR in rice (Bigirimana et al. 2015). Adorada et al. (2013) reported and 
recommended multiple screening techniques for screening ShR caused by P. fusco-
vaginae. The bacteria are cultured using King’s medium B initially for about 24 h. 
For plant inoculations, the following methods were found to be effective: (1) pin- 
pricking the upper leaf sheath using a needle dipped in bacterial suspension (107 cfu/
mL) and measuring disease severity 14 days postinoculation in plants at the booting 
stage; (2) spraying the inoculum was found effective and is recommended for mass 
screening for ShR resistance in plants at the booting stage; (3) for early-stage resis-
tance, soaking seeds in bacterial inoculum before germination is recommended, 
followed by measuring the decrease in seedling height 10  days later (Adorada 
et al. 2013).

2.5  False Smut

The fungus Ustilaginoidea virens causes false smut of rice. This fungus attacks the 
developing panicles and leads to the formation of smutted balls (cottony flakes 
around the grains). The fungus is generally cultured on potato sucrose agar plates or 
potato sucrose broth for mass production of conidial suspension (Panguluri and 
Kumar 2013). Screening for false smut is done during the booting stage of the plants 
through the following methods. Spraying conidial suspension (5 × 104 spores/mL) 
at the booting stage is one of the recommended ways for screening for false smut 
(Kaur and Singh 2017). Another method involves injecting the conidial suspension 
into the boot (Panguluri and Kumar 2013; Kaur 2014). It has been observed that 
spraying spores has produced a higher disease incidence and this is suitable for 
screening for resistant varieties (Kaur 2014). Disease severity is scored by calculat-
ing the percentages of infected tillers and infected grains per panicle and a score is 
assigned as recommended by Rice SES (IRRI 2013; Chaudhari et al. 2019).

2.6  Tungro Disease of Rice

Rice tungro is caused by two viruses, RTBV (rice tungro bacilliform virus) and 
RTSV (rice tungro spherical virus), and is transmitted by green leafhopper (GLH: 
Nephotettix virescens (Dist.)). The viral infection is manifested by the stunted 
growth of rice plants and yellowing of leaves (Anjaneyulu et al. 1982; Panguluri and 
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Kumar 2013). Nursery screening for tungro resistance in rice is carried out by let-
ting three to five viruliferous GLH per plant (20–30 days old) feed in a closed envi-
ronment and scoring the disease symptoms 14 days later as recommended by Rice 
SES (Anjaneyulu et al. 1982; Sebastian et al. 1996).

2.7  Bacterial Leaf Streak

Bacterial leaf streak (BLS) of rice is caused by the bacterium Xanthomonas oryzae 
pv. oryzicola (Xoc). BLS is manifested as water-soaked lesions on the leaf surface, 
which can result in decreased photosynthesis and hence diminished yield (He et al. 
2012). Screening for BLS resistance is mainly performed using either of two meth-
ods. For screening seedlings, bacteria are initially grown in peptone sucrose broth, 
and a bacterial suspension from 108 to 109  cfu/mL is used for infiltrating the 
expanded leaves using a needleless syringe. The disease symptoms are scored 
14  days postinoculation (Ju et  al. 2017). For field screening or screening older 
plants, matured leaves are pin-pricked with needles that are dipped in bacterial inoc-
ulum on either side of the leaves. The lesions caused are measured 20 days postin-
oculation (Tang et al. 2000; Chen et al. 2006a, b; He et al. 2012). Disease severity 
is scored as per Rice SES.

3  Genetics of Disease Resistance

Deployment of genes conferring host-plant resistance provides an economical, 
durable, effective, and environmentally safe approach to combat plant diseases and 
decrease yield losses (Fig.  1). Major resistance genes from different resistance 
donors have been reported for various rice diseases. So far, more than 44 resistance 
genes have been identified against bacterial blight (Kim and Reinke 2019). More than 
100 distinctive blast-resistance genes have been reported on different rice chromosomes 
and, out of these, 21 genes have been cloned (Devi et al. 2020). Two major sheath 
blight QTLs (qShB9-2 and qSBR11-1) have been reported (Channamallikarjuna et al. 
2010). But, thus far, genetic diversity for high resistance to/tolerance of ShB has not 
been reported in either cultivated rice or its wild relatives; thus, cloning of genes for 
ShB resistance is straggling (Bonman 1992). For bacterial leaf streak (BLS), no 
major resistance genes (R-genes) have been identified and only a few QTLs have 
been mapped. Out of these, qXO-2-1, qXO-4-1, and qXO-11-2 were showing resis-
tance to more than nine Xoc and Xoo strains (Bossa-Castro et al. 2018). In the case 
of tungro disease, a resistance QTL was found in Indian landrace ARC 11554 and 
was localized on chromosome 4 (Wang et al. 2016). False smut resistance in several 
rice cultivars has been identified as a quantitative trait controlled by multiple genes 
(Andargie et al. 2018; Han et al. 2020). But, to date, no rice variety has been identi-
fied to show complete resistance to false smut, whereas many cultivars exhibit 
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considerable differences in quantitative field resistance to the pathogen (Huang 
et al. 2019). According to previous studies, the genetics of sheath rot disease resis-
tance was dissected by studying the segregating pattern in an F2 population 
(Rajashekara et  al. 2014; Mvuyekure et  al. 2017) and recombinant inbred lines 
(Graichen et al. 2010; Mahadevaiah et al. 2017). Some of these R-genes or loci have 
been extensively used in MAS breeding programs, and some of them have been 
fine-mapped and are undergoing cloning efforts. Detailed information on resistance 
genes/QTLs for economically important rice diseases (i.e., bacterial blight, blast, 
and sheath blight) appears in Tables 2, 3, and 4, respectively.

4  Breeding for Disease Resistance

Rice breeders have come up with many disease-resistant cultivars adapted to differ-
ent rice-growing regions worldwide by applying conventional breeding approaches. 
Because of the dominance and epistasis effects of genes conferring resistance to a 
few diseases, gene pyramiding through conventional breeding methods becomes a 
challenge. Also, genes having similar responses to two or more races of a pathogen 
are difficult to recognize and transfer by conventional approaches (Joseph et  al. 
2004; Sundaram et al. 2009; Rajpurohit et al. 2011). The exercise of breeding for 
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Fig. 1 (a) An illustration of the different biotic diseases in rice and (b) a funnel diagram represent-
ing the sources of valuable traits (tolerance of biotic diseases, yield components, and superior grain 
quality) that exist in traditional and wild rice germplasm. Using various phenotypic screening 
techniques and genome sequencing technologies can enable us to understand the molecular genet-
ics and physiological mechanisms of stress tolerance. The identified genomic regions of QTLs and 
genes associated with the key traits play a vital role in understanding the interactions and further 
improving disease tolerance and superior grain quality traits with the help of marker-assisted selec-
tion and genomic selection approaches for crop improvement
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Table 3 List of blast resistance genes/QTLs

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

1 Pit 1 2,270,216–
3,043,185

9.08–
12.17

Tjahaja Cloned Hayashi 
and 
Yoshida 
(2009)

2 Pi27(t) 1 6,230,045–
6,976,491

24.29–
27.90

IR64 (I) Mapped 
within 
21.6 cM

Sallaud 
et al. 
(2003)

3 Pi24(t) 1 5,242,654–
5,556,378

20.97–
22.22

Azuenca (J) QTL mapping Zhuang 
et al. 
(2002)

4 Pitp(t) 1 25,135,400–
28,667,306

100.54–
117.49

Tetep Cosegregation 
marker was 
identified

Barman 
et al. 
(2004)

5 Pi35(t) 1 33,000,000–
34,150,000

132.0–
136.6

Hokkai 188 (J) Cloned Xu et al. 
(2014)

6 Pi37 1 33,110,281–
33,489,931

132.44–
133.95

St. No. 1 (J) Cloned Lin et al. 
(2007)

7 Pi64 1 – – Yangmaogu (J) Cloned Ma et al. 
(2015a)

8 Pid1(t) 2 21,875,000–
22,475,000

87.5–
89.9

Digu Mapped 
within 
11.8 cM

Chen et al. 
(2004)

9 Pig(t) 2 34,346,727–
35,135,783

137.38–
140.54

Guangchang 
zhan (I)

Mapped 
within 
11.8 cM

Zhou et al. 
(2004)

10 Pitq5 2 37,625,000–
39,475,000

150.5–
157.9

Teqing QTL mapping Tabien 
et al. 
(2002)

11 Piy1(t) 2 38,300,000–
38,525,000

153.2–
154.1

Yanxian No. 1 Mapped 
within 1.6 cM

Lei et al. 
(2005)

12 Piy2(t) 2 38,300,000–
38,525,001

153.2–
154.1

Yanxian No. 1 Mapped 
within 3.0 cM

Lei et al. 
(2005)

13 Pib 2 38,300,000–
38,525,000

153.2–
154.1

Tohoku IL9 Cloned Wang et al. 
(1999)

14 Pi25(t) 2 34,360,810–
37,725,160

137.44–
150.90

IR64 (I) QTL mapping Wu and 
Tanksley 
(1993)

15 Pi14(t) 2 1–6,725,831 1.00–
26.90

Maowangu Linkage 
analysis using 
isozyme 
markers

Pan et al. 
(1996)

16 Pi16(t) 2 1–6,725,831 1.00–
26.91

Aus373 (I) Linkage 
analysis using 
isozyme 
markers

Pan and 
Tanisaka 
(1997)
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Table 3 (continued)

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

17 Pi68(t) 3 14,738–
14,761

9.30–
9.70

INGR15002 QTL mapping Devi et al. 
(2020)

18 Pi63/
Pikahei- 
1(t)

4 – – Kahei Cloned Xu et al. 
(2014)

19 pi21 4 5,242,654–
5,556,378

20.97–
22.22

Owarihatamochi Cloned Fukuoka 
et al. 
(2009)

20 Pikur1 4 24,611,955–
33,558,479

98.44–
134.23

Kuroka (J) Linkage 
analysis using 
phenotypic 
marker

Goto 
(1988)

21 Pi39(t) 4 26,850,000–
27,050,000

107.4–
108.2

Chubu 111 (J) Mapped 
within 0.3 cM

Liu et al. 
(2007)

22 Pi(t) 4 2,270,216–
3,043,185

9.08–
12.17

Tjahaja Linkage 
analysis using 
phenotypic 
marker

Causse 
et al. 
(1994)

23 Pi26(t) 5 8,751,256–
11,676,579

35.00–
46.70

Gumei 2 (I) QTL mapping Wu and 
Tanksley 
(1993)

24 Pi23(t) 5 10,755,867–
19,175,845

43.02–
76.70

Sweon 365 QTL mapping Ahn et al. 
(1997)

25 Pi10 5 14,521,809–
18,854,305

58.08–
75.41

Tongil Mapped 
within 6.7 cM

Naqvi et al. 
(1995)

26 Pi2 6 – – C101A51 Cloned Zhou et al. 
(2006)

27 Pi22(t) 6 4,897,048–
6,023,472

19.50–
24.09

Suweon365 (J) QTL mapping Ahn et al. 
(1997)

28 Pi26(t) 6 8,751,256–
11,676,579

35.00–
46.70

Azucena (J) QTL mapping Wu et al. 
(2005)

29 Pi27(t) 6 5,556,378–
744,329

22.22–
2.97

IR64 (I) Mapped 
within 
21.6 cM

Sallaud 
et al. 
(2003)

30 Pi40(t) 6 16,274,830–
17,531,111

65.09–
70.12

O. australiensis 
(W)

Mapped 
within 1.8 cM

Jeung et al. 
(2007)

31 Piz 6 10,155,975–
10,517,612

40.60–
42.07

Zenith (J) Mapped 
within 
0.43 cM

Ahn et al. 
(1996)

32 Piz-t 6 14,675,000 58.70 Toride 1 Cloned Hayashi 
et al. 
(2006)

33 Pi9 6 10,386,510–
10,389,466

41.50–
41.55

O. minuta (W) Cloned Qu et al. 
(2006)
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Table 3 (continued)

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

34 Pi25 6 18,080,056–
19,257,588

72.32–
77.03

Gumei 2 Cloned Chen et al. 
(2011a)

35 Pid2 6 17,159,337–
17,163,868

68.63–
68.65

Digu Cloned Chen et al. 
(2006b)

36 Pigm(t) 6 10,367,751–
10,421,545

41.47–
41.68

Gumei 4 Mapped 
within 70 kb

Deng et al. 
(2017)

37 Pi50 6 – – Er-Ba-zhan 
(EBZ)

Cloned Su et al. 
(2015)

38 Pid3-I1 6 – – MC276 Cloned Inukai 
et al. 
(2019)

39 Pi17(t) 7 22,250,443–
24,995,083

89.00–
99.90

DJ 123 Mapped 
within 1.8 cM

Pan et al. 
(1996)

40 Pi36 8 2,870,061–
2,884,353

11.48–
11.53

Q61 (I) Cloned Liu et al. 
(2005)

41 Pi33 8 5,915,858–
6,152,906

23.66–
24.61

IR64 (I) Mapped 
within 1.6 cM

Berruyer 
et al. 
(2003)

42 Pizh 8 4,372,113–
21,012,219

17.48–
84.04

Zhai-Ya-Quing8 
(I)

QTL mapping Sallaud 
et al. 
(2003)

43 Pi29(t) 8 9,664,057–
16,241,105

38.65–
64.96

IR64 (I) Mapped 
within 0.7 cM

Sallaud 
et al. 
(2003)

44 Pii2(t) 9 1,022,662–
7,222,779

4.09–
28.89

Azucena Linkage 
analysis using 
phenotypic 
markers

Kinoshita 
and 
Kiyosawa 
(1997)

45 Pi5 9 7,825,000–
8,250,000

31.30–
33.00

RIL125, 
RIL249, RIL260 
(Moroberekan)

Mapped 
within 170 kb

Lee et al. 
(2009)

46 Pi3(t) 9 7,825,000–
8,250,001

31.3–
33.1

Kan-Tao Linkage 
analysis using 
RFLP markers

Causse 
et al. 
(1994)

47 Pi15 9 9,641,358–
9,685,993

38.56–
38.74

GA25 (J) Mapped 
within 0.7 cM

Pan et al. 
(1996)

48 Pii 9 – – Hitomebore Cloned Takagi 
et al. 
(2013a)

49 Pi28(t) 10 19,565,132–
22,667,948

78.26–
90.67

IR64 (I) QTL mapping Sallaud 
et al. 
(2003)

50 Pia 11 – – Aichi Asahi (J) Cloned Okuyama 
et al. 
(2011)
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Table 3 (continued)

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

51 PiCO39(t) 11 6,304,007–
6,888,870

25.21–
27.55

CO39 (I) Cloned Cesari 
et al. 
(2013)

52 Pilm2 11 13,635,033–
28,377,565

54.54–
113.50

Lemont QTL mapping Tabien 
et al. 
(2002)

53 Pi30(t) 11 441,392–
6,578,785

1.76–
26.31

IR64 (I) QTL mapping Sallaud 
et al. 
(2003)

54 Pi7(t) 11 17,850,000–
21,075,000

71.40–
84.30

RIL29 
(Moroberekan)

QTL mapping Wang et al. 
(1994)

55 Pi34 11 19,423,000–
19,490,000

77.69–
77.96

Chubu32 (J) QTL mapping Zenbayashi 
et al. 
(2002)

56 Pi38 11 19,137,900–
21,979,485

76.55–
87.91

Tadukan (I) Mapped 
within 20 cM

Gowda 
et al. 
(2006)

57 PBR 11 20,125,000–
30,075,000

80.5–
120.3

St. No. 1 Mapped 
within 
22.9 cM

Fujii et al. 
(1995)

58 Pb1 11 – – Modan Cloned Hayashi 
et al. 
(2010)

59 Pi44(t) 11 22,850,000–
29,475,000

91.40–
117.90

RIL29 
(Moroberekan)

– Chen et al. 
(1999)

60 Pik-h/
Pi54

11 24,761,902–
24,762,922

99.0–
99.05

Tetep Cloned Sharma 
et al. 
(2005b)

61 Pi1 11 26,498,854–
28,374,448

105.99–
113.49

LAC23 (J) Mapped 
within 
11.4 cM

Hua et al. 
(2012)

62 Pik-m 11 27,314,916–
27,532,928

109.25–
110.13

Tsuyuake (J) Cloned Ashikawa 
et al. 
(2008)

63 Pi18(t) 11 26,796,917–
28,376,959

107.18–
113.50

Suweon365 (J) Mapped using 
RFLP markers

Ahn et al. 
(1996)

64 Pik 11 27,314,916–
27,532,928

109.25–
110.13

Kusabue (I) Cloned Zhai et al. 
(2011)

65 Pik-p 11 K60 Cloned Yuan et al. 
(2011)

66 Pik-s 11 27,314,916–
27,532,929

109.25–
110.15

Shin 2 (J) Mapped 
within 2.7 cM

Fjellstrom 
et al. 
(2004)

(continued)
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Table 3 (continued)

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

67 Pik-g 11 27,314,916–
27,532,930

109.25–
110.16

GA20 (J) Linkage 
analysis to 
other 
resistance 
genes

Pan et al. 
(1996)

68 Pise1 11 5,740,642–
16,730,739

22.96–
66.92

Sensho Linkage 
analysis using 
phenotypic 
markers

Goto 
(1970)

69 Pif 11 24,695,583–
28,462,103

98.78–
113.84

Chugoku 31-1 
(St. No. 1)

QTL mapping Shinoda 
et al. 
(1971)

70 Mpiz 11 4,073,024–
16,730,739

16.29–
66.92

Zenith (J) Linkage 
analysis using 
phenotypic 
markers

Goto 
(1970)

71 Pikur2 11 2,840,211–
18,372,685

11.36–
73.49

Kuroka (J) Linkage 
analysis using 
phenotypic 
markers

Goto 
(1988)

72 Piisi 11 2,840,211–
19,029,573

11.36–
76.11

Imochi Shirazu 
(J)

Linkage 
analysis using 
phenotypic 
markers

Goto 
(1970)

73 Pike 11 Xiangzao 143 Cloned Chen et al. 
(2015)

74 Pi24(t) 12 5,242,654–
5,556,378

20.97–
22.22

Azuenca (J) QTL mapping Zhuang 
et al. 
(2002)

75 Pi62(t) 12 2,426,648–
18,050,026

9.70–
77.00

Yashiro-mochi 
(J), Tsuyuake

Mapped 
within 1.9 cM

Wu et al. 
(2008)

76 Pitq6 12 5,758,663–
7,731,471

23.00–
30.92

Tequing (I) QTL mapping Tabien 
et al. 
(2002)

77 Pi6(t) 12 1–6,725,831 1–1.68 Apura (I) – McCouch 
et al. 
(1994)

78 Pi12 12 6,988,220–
15,120,464

27.95–
60.48

Moroberekan (J) Linkage 
analysis using 
RFLP markers

Inukai 
et al. 
(1996)

79 Pi21(t) 12 5,242,654–
5,556,378

20.94–
22.22

Owarihata 
mochi (J)

– Ahn et al. 
(1997)

80 Pi31(t) 12 7,731,471–
11,915,469

30.92–
47.66

IR64 (I) QTL mapping Sallaud 
et al. 
(2003)
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disease resistance could never obtain a break because of the emergence of new 
pathotypes, which could overcome the resistance. Advances in rice genomics pro-
vided tools such as molecular markers for plant breeders to effectively develop cul-
tivars with resistance against various diseases, which is an environment-friendly 
alternative vis-à-vis the use of agrochemicals (Miah et al. 2013). Molecular markers 
can be used to map and introgress one or more desired genes for biotic and abiotic 
stress resistance from diverse gene pools (Suh et al. 2009). Marker-assisted selec-
tion for pyramiding desired genes without altering other quality characteristics of a 
rice cultivar is crucial in rice improvement (Sundaram et al. 2008; Suh et al. 2009; 
Shanti et al. 2010). As an added advantage, the availability of gene-linked molecular 
markers for the resistance genes eases the identification of plants harboring two or 
more R-genes at any growth stage without a bioassay (Sundaram et al. 2008; Shanti 
et al. 2010; Bainsla and Meena 2016).

Three bacterial blight-resistance genes (xa5, xa13, and Xa21) were pyramided 
into susceptible cultivar PR106 using MAS.  The introgression lines were tested 
against 17 Xoo isolates under both glasshouse and field conditions. The trials sug-
gested that the combination of genes provided broad-spectrum resistance against 

Table 3 (continued)

S. No.
Gene/
QTL Chr.

Position 
(bp)

Position 
(cM)

Donor rice 
variety

Method of 
identification References

81 Pi32(t) 12 13,103,039–
18,867,450

52.41–
75.46

IR64 (I) QTL mapping Sallaud 
et al. 
(2003)

82 Pi157 12 12,375,000–
15,550,000

49.5–
62.2

Moroberekan Mapped 
within 9.5 cM

Causse 
et al. 
(1994)

83 Pita 12 10,603,772–
10,609,330

42.41–
42.43

Tadukan (I) Cloned Hayashi 
et al. 
(2006)

84 Pita-2 12 10,078,620–
13,211,331

40.31–
52.84

Shimokita (J) Mapped 
within 4.0 cM

Nakamura 
et al. 
(1997)

85 Pi19(t) 12 8,826,555–
13,417,088

35.30–
53.67

Aichi Asahi (J) Linkage 
analysis to 
other 
resistance 
genes

Iwata 
(1996)

86 Pi39(t) 12 – – Chubu 111 (J), Mapped 
within 37 kb

Liu et al. 
(2007)

87 Pi20(t) 12 12,875,000–
12,950,000

51.50–
51.80

IR24 (I) Mapped 
within 0.6 cM

Liu et al. 
(2008)

88 PiGD-3(t) 12 13,950,000 55.80 Sanhuangzhan 2 QTL mapping Liu et al. 
(2005)

89 Ptr 12 Katy Cloned Zhao et al. 
(2018)

Source: Revised and updated from Tanweer et al. (2015)
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the pathogen races predominant in the region (Singh et al. 2001). Recent advances 
in DNA sequencing have made fine-mapping and characterization of the mapped 
genes easier, thus contributing significantly to the use of MAS for the development 
of resistant cultivars. The complete list of cloned genes was collected from Q-TARO 
(http://qtaro.abr.affrc.go.jp/) and OryGenesDB (https://orygenesdb.cirad.fr/data.
html) (Fig. 2). These genes were mainly associated with bacterial blight and blast 
resistance in rice. Interestingly, the regions on chromosomes 1, 4, and 5 were asso-
ciated with multiple resistance genes, and these genes were colocalized in the same 
regions. These genomic regions play a major role in the resistance/tolerance mecha-
nisms for diseases. To date, there are 46 BB R-genes mapped from different sources, 
out of which 29 are dominant, 12 are recessive, nine cloned, and nine fine-mapped 
(Chen et al. 2020). More than 100 R-genes (Pi) have been reported, and around 500 
QTLs were associated with blast resistance. However, only 25 Pi genes were cloned 
and characterized (Sharma et al. 2012; Ashkani et al. 2015). Several R QTLs were 
reported against bacterial leaf streak, but their study was limited to inheritance anal-
ysis (He et al. 2012).

4.1  MAS/MABB Foreground/Background Selection

To address the limitations of conventional breeding, molecular breeding through 
MAS is among the most precise tools used to introgress multiple resistance genes 
into an elite varietal background at one time. Plant breeders were already successful 

Fig. 2 Physical position of major biotic disease-resistance genes in rice. The chromosome left 
side indicates the location of genes and the right side shows the names of genes collected from the 
Q-TARO and Oryza base databases. The color indicates the genes related to various diseases such 
as bacterial leaf blight (red color) and blast (blue color), and green color indicates insect resis-
tance in rice

M. Jamaloddin et al.

http://qtaro.abr.affrc.go.jp/
https://orygenesdb.cirad.fr/data.html
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in using this tool in developing resistant rice cultivars by deploying broad-spectrum 
multiple-R-genes with the help of MAS (Huang et al. 1997; Sanchez et al. 2000; 
Sundaram et al. 2008; Hari et al. 2013; Hajira et al. 2016; Balachiranjeevi et al. 
2018; Swathi et  al. 2019; Jamaloddin et  al. 2020). In marker-assisted backcross 
breeding (MABB), a combination of foreground selection and background selection 
followed by continuous backcrossing can recover up to 99% of the recurrent parent 
genome (RPG) (Tanksley et al. 1989). In foreground selection, gene-linked mark-
ers, or functional markers (SSRs, InDels, and SNPs), are applied to detect the asso-
ciated R-genes in the target population at any stage of plant growth. In contrast, 
background selection applied by using polymorphic information (SSRs, SNPs) 
between the donor and recurrent parents can estimate RPG recovery in each back-
cross generation at any plant growth stage (Singh et al. 2001). Recently, the Green 
Super Rice (GSR) breeding strategy proved that one backcross followed by selfing 
could recover more than 90% of the recurrent parent genome (Balachiranjeevi 
et al. 2019).

4.2  Pyramiding Disease-Resistance Genes

Pyramiding of various biotic disease-resistance genes into a rice cultivar makes it a 
good candidate for breeders to introgress the resistance into locally adapted variet-
ies that produce higher yield but are susceptible to diseases. The process of gene 
pyramiding through conventional breeding alone becomes difficult because the 
linkage between some undesirable traits is difficult to break even after repeated 
backcrossing (Tanksley et al. 1989). Pyramiding of two or more resistance genes 
renders the phenotypic assessment of rice genotypes ineffective as distinguishing 
the effect of each individual gene precisely becomes difficult since each gene 
imparts resistance to more than one race of the pathogen. Moreover, when a domi-
nant and a recessive allele are present, the effect of the recessive gene is concealed. 
The availability of tightly linked markers for each of the resistance genes thus eases 
the recognition of plants with multiple genes. Initially, in rice, Huang et al. (1997) 
successfully introgressed four major BB resistance genes (Xa4, Xa5, Xa13, and 
Xa21) and developed breeding lines with combinations of two, three, and four 
genes. In an extension of this work, several research institutions in India and other 
countries have studied the effectiveness of the pyramided genes against BB disease, 
to which most of the popular varieties were susceptible. This research has opened 
the gates in India to address the susceptibility of popular rice varieties such as 
PR106 (Singh et al. 2001), Pusa Basmati-1 (Joseph et al. 2004), and Samba Mahsuri 
(Sundaram et al. 2008) by pyramiding the BB R-genes (xa5, xa13, and Xa21) in the 
initial phase of improvement. Later, the improvement of popular rice varieties and 
parental lines continued mainly against BB (Xa21, Xa23, xa5, xa13, Xa4, Xa7, 
Xa33, and Xa38) and blast disease (Pi genes Pi2, Pi9, Pi40, Pi54, Piz, and Pi1) 
separately or by combining R-genes for both diseases (Gopalakrishnan et al. 2008; 
Sundaram et al. 2009; Hari et al. 2013; Balachiranjeevi et al. 2015; Yugander et al. 
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2018; Rekha et al. 2018; Swathi et al. 2019; Jamaloddin et al. 2020). The possibility 
of recombination between the gene of interest and the linked marker has led to the 
selection of false-positive rice genotypes in the marker-assisted selection process, 
which could be overcome by using gene-specific functional markers (Ingvardsen 
et al. 2008). Many genetic markers, also called functional markers, have been iden-
tified for different disease-resistance genes in rice, such as BB-resistance genes xa5 
(Iyer-Pascuzzi and McCouch 2007), xa13 (Chu et al. 2006), and Xa21 (Song et al. 
1995). The gene-pyramided lines enable the conducting of quantitative analysis to 
assess the effect of each gene and interactions between them and, most importantly, 
enhancing the performance, stability, and longevity of genetic resistance.

4.3  Varieties Improved and Developed

Highly accepted varieties and parental lines were improved against multiple dis-
eases through MAS. For the first time, Huang et al. (1997) developed lines pyra-
mided with two, three, and four genes through MAS and tested their resistance 
against BB. The resistance levels of introgressed lines showed an elevated resis-
tance compared with lines containing a single gene. Later, Singh et  al. (2001) 
improved Indian rice cultivar PR106 against BB through MAS by pyramiding xa5, 
xa13, and Xa21 genes, followed by Joseph et  al. (2004), who improved popular 
basmati variety Pusa Basmati-1, and Sundaram et al. (2008) improved popular vari-
ety Samba Mahsuri for BB and reported more than 95% RPG recovery through 
MABB. Through MAS, three blast genes (Pi1, Pi2, and Pi33) were introduced in 
the background of popular Russian rice variety Kuboyar. The improved lines of 
Kuboyar were used to develop blast-resistant hybrids by using them as hybrid 
parental lines. Similarly, Hari et al. (2011) improved restorer line KMR3R for resis-
tance against BB by transferring the Xa21 gene along with Rf3 and Rf4 (restorer of 
fertility) genes through MABB. Balachiranjeevi et al. (2015) imparted resistance to 
a maintainer line (DRR17B) by introgressing Xa21 and Pi54 genes against BB and 
blast disease, respectively.

4.4  Multiple Disease-Resistance Breeding Strategies

In breeding for disease resistance, multiple methodologies such as pedigree, modi-
fied bulk, single seed descent (SSD), doubled-haploid (DH), and MAB have been 
used to develop resistant rice varieties (Mackill et al. 1996; Khush 2005; Collard 
et al. 2013). In addition to these strategies, the GSR breeding program was one of 
the successful strategies that involved vigorous phenotypic screening at early back-
cross stages (BC1F2 to BC1F4) combined with three successive rounds of stringent 
selection for the best plant type to come up with climate-resilient rice varieties. This 
strategy could develop homozygous inbred cultivars within a short span of 4–5 years 
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vis-à-vis 9–10 years with a conventional breeding program (Yu et al. 2020). The 
GSR breeding strategy is carried out in three steps. The first is to develop early 
backcross BC1F2 populations by crossing a widely adapted recipient variety with a 
diverse set of donors. Second is to simultaneously do phenotypic screening of early 
backcross-derived lines of BC1F2, BC1F3, and BC1F4 generations under the different 
abiotic and biotic stress conditions in a rigorous manner to identify and select intro-
gression lines (ILs) tolerant of different stresses as compared to the tolerant and 
susceptible checks. The third step is the mapping of genomic regions influenced by 
particular climate fluctuations and their characterization to decode the molecular 
and physiological basis of the identified genomic regions (Ali et al. 2017). Three 
rounds of screening of populations from BC1F2 to BC1F4 for different diseases 
simultaneously could help in the development of varieties with tolerance of multiple 
biotic stresses. The GSR breeding strategy led to successful mapping of the Xa39 
gene and deploying it in the background of Huang-Hua-Zhang (Zhang et al. 2015). 
Further, through the designed QTL pyramiding approach, one could combine selec-
tive ILs carrying different biotic and abiotic stress-tolerance genes/QTLs derived 
from different donors but having a common recipient parent. Similar to the GSR 
breeding program, breeders have simultaneously pyramided multiple disease- 
resistance genes (BB + blast) with different combinations such as Xa21 + Pi54, 
Xa21 + Pi54 + Pi2, and xa5 + xa13 + Xa21 + Pi54 + Pi2 into the background of an 
elite cultivar by employing MAS and MABB (Jiang et al. 2015; Jamaloddin et al. 
2020). Recently, one of the successful breeding strategies (the GSR breeding pro-
gram) revealed lots of hidden genetic diversity for disease resistance through MAS 
and also proved that RPG recovery could surpass 90% with one backcross followed 
by selfing (Balachiranjeevi et al. 2019). Furthermore, Feng et al. (2018) reported 
that pyramiding the detected QTLs effectively broadened the genetic base. Research 
is being extended to dissect the detected QTLs in order to identify candidate genes 
through functional validation using a map-based cloning approach.

5  Molecular Mechanisms of Disease Resistance

A wide variety of pathogens, including bacteria, fungi, and viruses, attacks crop 
plants. Either a pathogen can successfully invade, leading to the development of 
disease, or the plant can resist the pathogen using an active or passive form of resis-
tance. Different strategies have been developed by various pathogens to enter, infect, 
and reproduce in plants. Pathogens are mainly classified as necrotrophs and bio-
trophs based on the method they use to invade, infect, and attack a plant (Oliver and 
Ipcho 2004). Necrotrophic pathogens kill the host-plant tissue soon after they estab-
lish infection and then develop and feed on the dead tissue. Unlike these, biotrophic 
pathogens require a live-host tissue for their growth and reproduction.

Specific defense mechanisms work effectively against biotrophs through a 
hypersensitive response developed by rapid local cell death surrounding infection, 
and this serves to hinder the growth and invasion of pathogens into other plant parts. 
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This mechanism arises when the first level of the defense mechanism is breached by 
the pathogen (Zipfel and Felix 2005). Usually, most pathogens that infect plants, 
such as fungi, harbor secretory proteins, which disrupt these barriers (Serrano et al. 
2014). After the entry of the pathogen into the host cell, it is recognized by special 
molecules called microbe-/pathogen-associated molecular patterns (MAMPs or 
PAMPs), which include ergosterol, peptidoglycan, lipopolysaccharide, and bacte-
rial flagella in proteins. The innate immune system recognizes these proteins with 
the help of host plasma membrane-bound receptors called pattern recognition 
receptors (PRRs) to further obstruct the growth of infection, providing MAMP- 
triggered immunity (MTI). PRRs also detect molecules that become released in the 
host when the pathogens cause damage (damage-associated molecular patterns, 
DAMPs). The binding of these components also triggers pattern-triggered immu-
nity (PTI) and downstream defense responses (Tena et al. 2011). Overall, the recog-
nition of PAMP/MAMP or DAMP results in the activation of PTI, triggering the 
production of different reactive oxygen species (ROS), initiation of mitogen- 
activated protein (MAP) kinase activity, and various transcription factor activation, 
thus limiting the spread of pathogens completely (Nürnberger and Kemmerling 2009).

The widely accepted model of plant disease resistance is explained by a two- 
level innate immune system. The two levels include PTI, which is usually a weak, 
basal, and generic immune response, and the other is effector-triggered immunity 
(ETI), which is a potent response and is specific to the pathogen in question (Jones 
and Dangl 2006). PTI is mediated by the PRRs that recognize molecular patterns 
associated with the pathogens or the resulting damage products (PAMPs or DAMPs). 
On the other hand, ETI includes recognition of a pathogen-specific factor and results 
in a severe and rapid form of immune response leading to localized cell death (also 
known as a hypersensitive response or HR) to hinder the pathogen from spreading 
any further. ETI is achieved by a gene-to-gene interaction and is thus specific to the 
race of the pathogen. While PRRs mediate PTI, ETI is mediated by specific genes 
that belong to the nucleotide-binding-leucine-rich repeat (NB-LRR) domain- 
containing proteins, otherwise called resistance (R) genes. The recognition of cog-
nate ligands results in activation of signaling events that in turn results in the 
generation of different forms of immune response such as callose and lignin deposi-
tion, production of antimicrobial compounds, induction of cell death, changes in 
primary and secondary metabolic flux, and synthesis of secondary metabolites 
depending on the type of elicitors. Other classifications of genes involved in disease 
resistance include major resistance (MR) genes and defense-related genes (DR), 
whose roles cannot be explained by the definition of PTI- and ETI-associated genes 
(Ke et  al. 2017). PTI is considered to be quantitative in nature, that is, multiple 
genes function together to achieve immunity, also known as a QTL. ETI against a 
pathogen strain is controlled by a single gene and is specific only to those strains 
that contain the cognate avirulence (Avr) protein that the R-gene recognizes, thus 
leading to a qualitative resistance. Studies in the past few decades established a 
framework of how the resistance mechanisms act using model pathosystems. Along 
this line, rice resistance to its major pathogens such as Xanthomonas oryzae ssp., 
Magnaporthe oryzae, and Rhizoctonia solani has been studied to a reasonable 
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extent. However, rice resistance to other pathogens still needs more investigation to 
come to a consensus. This section summarizes the established mechanisms of dis-
ease resistance in rice.

Plant resistance is dictated by the type of resistance genes and a network of sig-
naling pathways (Chisholm et al. 2006). Broadly, the plant defense system can be 
categorized into two classes: basal defense and specific defense. The basal defense 
system is much more effective against necrotrophic pathogens (Singh et al. 2018). 
Elicitors are molecules that induce a plant defense response at very low concentra-
tions (Thakur and Sohal 2013). The role of the basal defense system is to check the 
entry of pathogens and provide immunity at the starting stage of infection. This 
defense response involves membrane permeability, activating ion fluxes (Ca2+, K+, 
H+), generating ROS, producing nitric oxide (NO), and phosphorylation/dephos-
phorylation of proteins by protein kinases and phosphatases. It also includes the 
production of signaling molecules such as jasmonic acid (JA), salycilic acid (SA), 
and ethylene (ET). These proteins are characteristic players in the regulation of 
defense signal transduction cascades. These steps further trigger an array of signal-
ing that leads to the regulation of the expression of defense-related genes and the 
stimulation of defense responses. These responses include cell-wall strengthening 
(callose and lignin deposition), phytoalexin synthesis, and activation of kinase cas-
cades escorted by a hypersensitive response (Jones and Dangl 2006).

5.1  Resistance to Bacterial Blight

To date, 46 resistance genes have been identified to confer resistance to Xoo in rice. 
Among them, 11 genes were cloned and functionally characterized. Some of the 
resistance genes are quantitative in nature, whereas others confer qualitative resis-
tance (Ke et al. 2017; Jiang et al. 2020; Chen et al. 2020). The 11 cloned genes fall 
under different classes of resistance genes: LRR-RLKs (leucine-rich repeat receptor- 
like kinases), NB-LRR, a wall-associated kinase, executor R proteins, SWEET (sug-
ars will eventually be exported transporters) genes, and a transcription factor gamma 
subunit protein. Three of the cloned resistance genes, Xa3/Xa26, Xa4, and Xa21, 
code for kinases. Xa4 is a wall-associated kinase (Ke et al. 2017; Jiang et al. 2020) 
that provides resistance to certain races of Xoo through cell-wall reinforcement. 
Xa3/Xa26 and Xa21 are LRR-RLKs that recognize Xoo-associated molecules 
AvrXa3 and sulphated RaxX, respectively. Xa21- and Xa3/Xa26-mediated resis-
tance has been found to be positively regulated by OsSERK2 (rice somatic embryo-
genesis receptor kinase 2). Nine genes were found to be regulating Xa21-mediated 
resistance positively or negatively. Xa4-mediated resistance leads to the accumula-
tion of phytoalexins. Xa1, an NB-LRR, recognizes intact transcription activation- 
like effectors (TALEs) from Xoo and thus leads to resistance. SWEET genes code 
for sugar transporters and were identified to be targets of different Xoo TALEs, 
thereby acting as susceptibility factors. Natural polymorphisms were identified in 
the promoters of three SWEET genes, OsSWEET11/Os8N3/xa13, OsSWEET13/
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xa25, and OsSWEET14/Os11N3/xa41, which promote their induction by cognate 
TALEs, thus providing recessive resistance. Genes, including Xa10, Xa23, and 
Xa27, are classified as executor R-genes as the expression of the respective resis-
tance alleles is induced by Xoo TALEs. These genes are characterized by the pres-
ence of multiple potential transmembrane domains whose expression induction 
results in HR and thus resistance to Xoo. Another recessive resistance gene, xa5, 
codes for transcription factor IIA gamma subunit 5 (TFIIAγ5) with valine to gluta-
mine mutation in the 39th position. The susceptible allele, Xa5, is hijacked by the 
TALEs to induce the expression of other host susceptibility genes. The mutation 
disrupts the ability of TALEs to bind to TFIIAγ5, thus leading to resistance (Ke 
et al. 2017; Jiang et al. 2020).

5.2  Resistance to Bacterial Leaf Streak

To date, no major BLS-resistance genes have been identified. However, the xa5 
gene was mapped to be a major resistance QTL for Xoc resistance. It was previ-
ously observed that TALEs from Xoc also hijack TFIIAγ5 for inducing host 
susceptibility genes. In another study, Xo1, a resistance locus in an American 
rice variety, was identified to be responsible for resistance to African Xoc strains 
but not to Asian strains. Xa21 was identified to provide weak resistance to Xoc 
through the recognition of Ax21, a quorum-sensing molecule produced by Xoc 
(Jiang et  al. 2020). Three major broad-spectrum resistance QTLs, qXO-2-1, 
qXO-4-1, and qXO-11-2, were identified to confer resistance to Xoo and Xoc 
(Bossa-Castro et al. 2018).

5.3  Resistance to Rice Blast

More than 100 resistance genes and 500 QTLs are known to be associated with 
blast resistance in rice. However, to date, only 25 genes have been cloned (Li 
et al. 2019b). These 25 cloned R-genes are called Pi genes. Of the 25 Pi genes, 
22 encode NB-LRR family proteins. A majority of these R-genes trigger ETI, 
thus leading to qualitative or race-specific resistance. So far, seven R-genes have 
been identified to confer broad-spectrum resistance to blast: Pi7, Pi9, Pi21, 
Pi50, Pi57, Pigm, and Ptr. Apart from canonical R-genes, so far, five defense-
related genes were also shown to confer resistance to blast: bsr-d1, bsr-k1, 
spl11, spl33, and OsBBI1, Pi9, Pi50, Pigm, Ptr, and OsBBI1 are dominant resis-
tance genes or positive regulators of blast resistance, whereas the rest of them 
are recessive resistance genes, in other words, their wild-type alleles negatively 
regulate blast resistance (Li et al. 2019b).
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5.4  Resistance to Sheath Blight

Information on the mechanisms that govern ShB resistance in rice is just being 
uncovered. There are no reports on a single resistance gene that confers resistance 
to ShB. However, many QTLs have been identified to be associated with ShB resis-
tance. Most of the QTLs were reported to provide a minor contribution to the resis-
tance phenotype, whereas two QTLs (qShB9-2 and qShB11-1) were found to 
contribute more than 10% to ShB resistance. Sequence analyses revealed the pres-
ence of various defense-associated genes in these QTLs. qShB9-2 was identified in 
many rice varieties that exhibit resistance to ShB.  It was observed that qShB9-2 
contains a β-1,3-glucanase, OsWAK91, and 12 other possible candidate genes. On 
the other hand, the qShB11-1 interval was shown to have receptor-like kinases, a 
lipase, and a tandem array of 11 chitinase genes. Tens of minor QTLs were found to 
be associated with ShB resistance. Nevertheless, no information is available on the 
gene(s) responsible for the resistance. Studies using resistant cultivars shed light on 
the possible mechanisms by which rice fights Rhizoctonia solani. Various studies 
showed changes in metabolic pathways, including primary and secondary metabo-
lites. Intermediates of glycolysis and tricarboxylic acid cycle were found to be accu-
mulated in rice post  R.solani infection, indicating the possible involvement of 
primary metabolism in response to the pathogen. Also, the accumulation of second-
ary metabolites such as phytoalexins, chlorogenic acid, polyphenols, and flavonoids 
was reported to be higher in the tolerant varieties than in the susceptible varieties 
postchitin treatment (Molla et  al. 2020). ROS deregulation has been observed to 
delay pathogen colonization in resistant cultivars (Oreiro et al. 2019).

5.5  Broad-Spectrum Resistance Genes

From a breeder’s point of view, a single locus/gene is more preferred as it would 
permit easier introgression. Many defense-related genes have been identified to pro-
vide broad-spectrum resistance to either multiple races of a pathogen (vertical resis-
tance) or multiple pathogens altogether (horizontal resistance). Such responses are 
quantitative in nature and hence can be highly durable and practical to keep infec-
tious diseases at bay. Several previous studies have been reported that the expres-
sion of defense-response genes (DR genes) such as rice germin-like proteins 
(OsGLP) or a class of DR genes present in a QTL along with R genes is also most 
probably associated with rice resistance, as knockdown of these genes escalated the 
susceptibility against two major rice fungal diseases, blast and sheath blight 
(Manosalva et al. 2009). OsPAL4 is reported to impart broad-spectrum resistance to 
rice (Tonnessen et al. 2015). A LysM receptor-like kinase (RLS), OsCERK1, regu-
lates cytoplasmic OsRLCK176 and OsRLCK185 recognizes chitin and peptidogly-
cans activating immune signaling pathways in rice against blast and bacterial blight 
diseases. OsSERK1, OsWAK25, OsWRKY45-1, OsWRKY45-2, OsWRKY13, OsDR8, 

Molecular Approaches for Disease Resistance in Rice



352

OsMPK6, OsPAL4, OsNH1, OsLYP4, OsBSR1, and OSK35 have all been shown to 
regulate resistance to bacterial blight and rice blast positively. OsPAD4 and OsPAL4 
positively regulate resistance to ShB, whereas OsWAK25 negatively regulates ShB 
resistance (Ke et  al. 2017). These genes, although identified in different studies, 
play a highly connected role in helping rice fight the invading pathogens. More 
comprehensive studies are needed to link the dots to construct a complete map of 
rice resistance to diseases.

6  Impact of Major Nutrient Fertilizers on Biotic Disease 
Resistance in Rice

The rapidly increasing world population requires a sustainable nutritional global 
food supply, which is a significant concern for crop production. Changing climatic 
scenarios and decreasing natural resources suggest that there is a need to intensify 
agricultural production using an efficient agronomic nutrient management (ANM) 
system. Following efficient ANM technologies can enable us to understand and 
mitigate the adverse impacts of stress, inadequate soil fertility status, pathogens, 
and pests (Dordas 2008).

Several efficient screening technologies exist, such as smart water irrigation sys-
tems, integrated fertilizer applications, and disease biocontrol strategies, that have 
been developed and adopted in different ecosystems to control various diseases in 
rice (Bargaz et  al. 2018). Among these, the rate of fertilizer used, judicious and 
timely applications of nutrients, and availability of these nutrients play a crucial role 
in plant growth and also in developing defense mechanisms against various pests 
and diseases (Fageria et  al. 2008; Sun et  al. 2020). The management of nutrient 
statuses in the soil, especially nitrogen (N), phosphorus (P), and potassium (K), is 
an eco-friendly strategy to control different biotic stresses instead of frequent appli-
cation of pesticides. Globally, the efficiency of fertilizer use by the crop and the 
correct rates of fertilizer applications are poorly studied. Earlier studies have indi-
cated that only 30–35% of N, 10–25% of P, and 35–50% of K are taken up by plants. 
Particularly in China, the amount of fertilizer used has increased drastically from 
270 to 350 kg/ha, which is more than 75% of the global average of fertilizer applica-
tion. This excessive amount of N fertilizer leads to leaching, which is a significant 
cause of groundwater pollution and degradation of soil quality (Teng et al. 2016).

Developing sustainable agriculture is one of the major strategies to increase 
global rice production. Application of nutrient fertilizer at the right rate and stage 
and also microorganisms are the key factors in disease control. The essential nutri-
ent elements can decrease disease severity but also increase the severity of disease 
incidence (Dordas 2008). Nitrogen is one of the key elements for plant growth and 
development, which are involved in the major physiological and metabolic path-
ways related to N assimilation (Bolton and Thomma 2008; Mur et al. 2017). Plenty 
of research has been conducted on the role of N and its interaction with disease 
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resistance and the results are inconsistent, with a poor understanding of the resis-
tance mechanisms in physiological and metabolic pathways. These differences may 
be due to various stress signaling mechanisms caused by the different forms of N 
(NH4

+ and NO3
−), the type of pathogen specificity, and the stage of N application 

(Dordas 2008). However, several researchers have suggested that the correct time 
application of fertilizers has been significantly increasing disease resistance and 
decreasing the use of fungicides (Anderson 2002; Hervieux et al. 2002; Bhat et al. 
2013). Recently, Sun et al. (2020) reviewed N applications and their critical role in 
the defense mechanisms in various diseases such as blast, downy mildew, stem rot, 
powdery mildew, leaf rust, stem rust, and rice blast diseases in plants. Balancing of 
these nutrients is imperative to understand the cellular structure and composition, 
which mainly affect plant defense mechanisms. For instance, high rates of N appli-
cation lead to a significant impact on susceptibility by decreasing the thickness of 
cell-wall components (cellulose and lignin), whereas decreasing N applications lead 
to an increase in lodging resistance by changes in stem lignification and secondary 
cell-wall synthesis (Zhang et al. 2017b; Sun et al. 2018). Also, decreasing N fertil-
izer significantly increases the incidence of major insect pests, including brown 
planthopper, leaffolder, and stem borer, the key insect pests in the major rice- 
growing areas in Asian countries (Lu et al. 2007). Some reports have suggested that 
N applications significantly influence the size of leaf blast lesions (Matsuyama 
1973; Kaur et al. 1979). Sime et al. (2017) studied the different rates of nutrient 
fertilizer application and their relation to blast disease. The combination of NPK 
(20-10-10) at a rate of 200 kg/ha has a remarkable impact on decreasing blast dis-
ease in all phases of plant growth. Similarly, Reddy et al. (1979) reported an optimal 
rate of N application (76 kg/ha) to maximize grain yield and also minimize disease. 
One of the major diseases is bacterial leaf blight of rice, caused by Xanthomonas 
oryzae, which increased significantly when a higher amount of N fertilizer (>100 kg/
ha) was applied, and yield decreased. Begum et al. (2011) reported that a balanced 
application of nutrient fertilizers, including K, significantly decreased the percent-
age of BLB. The application of K fertilizer has dramatically decreased the intensity 
of various infectious diseases such as BLB, sheath blight, and stem rot in rice, and 
also in other cereal crops (Sharma et al. 2005a). Decreasing BLB severity by apply-
ing K topdressing is a viable approach just before disease-occurring stages and this 
makes it possible to maximize grain yield and have lesser disease development.

Using slag-based silicon (Si) fertilizer in rice fields is an alternative approach to 
control the major disease brown spot, which is caused by the fungus Bipolaris ory-
zae. This disease causes significant yield losses, mainly in tropical and subtropical 
areas, where the frequent occurrences of heavy rainfall and high temperature are the 
main factors in decreasing the Si content in highly weathered soils (Raven 2003). 
The major role of these Si applications is to mediate resistance mechanisms through 
the physiological and metabolic pathways that can lead to creating more pronounced 
cell silicification in rice leaves, and the strong leaf epidermal surface might increase 
the resistance to fungal penetration (Hayasaka et al. 2008; Sun et al. 2010; Ning 
et al. 2014). These Si fertilizers provided clear evidence showing the importance of 
increasing the thickness of the silicon layer in the epidermal cell walls that are 
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supposed to be the main site for conferring resistance to brown spot disease in rice. 
Interestingly, Wu et al. (2017) experimented with the transcriptional responses in 
two different nutrient fertilizers, Si and N concentrations, and their relation to BPH 
infestation. These two elements had a trade-off mechanism in terms of resistance. 
The interaction of these two elements clearly showed decreases in the expression of 
Si transporters such as OsLsi1 and OsLsi2 under high rates of N application, 
whereas, in the N transporters OsNRT1:1, OsGS2, OsFd-GOGAT, OsNADH- 
GOGAT2, and OsGDH2, expression increased under a high rate of Si fertilizer. This 
demonstrated that N and Si had antagonistic interactions in rice (Wu et al. 2017). 
Similarly, Robichaux (2001) identified a significant decrease in the major disease 
sheath blight, caused by the fungal pathogen Rhizoctonia solani, by adding calcium 
silicate in greenhouse and field conditions. Rice grain yield is increased by almost 
13% from the use of a calcium silicate application rate of 3.3 mg/ha and also a sig-
nificant decrease in ShB in different soil types. These results have proven that Si 
fertilizer can diminish fungal disease severity by increasing the Si concentration in 
rice leaves and boosting grain yield.

7  Genome-Editing Tools for Improving Disease Resistance

Diseases cause a considerable yield loss annually (Heinrichs and Muniappan 2017; 
Mushtaq et al. 2019). Breeding for disease resistance has been pursued for a long 
time. The traditional practice is to introgress disease resistance into elite cultivars 
through breeding techniques. Although a successful method, it has its downside 
(Zafar et al. 2020). The traditional way is time-, labor-, and resource-consuming 
(Romero and Gatica-Arias 2019). With the arrival of the genomics era, identifying 
disease-resistance genes has become highly efficient, and resistance alleles can be 
identified at a single base resolution. With such a massive potential in hand and 
constant improvement in various genome-editing (GE) tools such as site-specific 
mutagenesis (SSM), meganucleases (MNs), zinc-finger nucleases (ZFNs), tran-
scription activator-like effector nucleases (TALENs), and clustered regularly inter-
spaced short palindromic repeat (CRISPR)/CRISPR-associated protein (CRISPR/
Cas), this has opened a novel path to achieve the improvement of disease resistance 
in various crops (Zhang et al. 2017a; Mishra et al. 2018; Zafar et al. 2020). Recently, 
several researchers have reviewed the various GE tool applications and their limita-
tions in target gene specificity and accuracy (Abdallah et  al. 2015; Mishra et  al. 
2018; Zafar et al. 2020). As compared with SSM, MNs, and ZFNs, the most widely 
used GE tools such as TALENs and the CRISPR/Cas system have a versatile, fast, 
and relatively efficient GE method. Over the past several years, these two methods 
have transformed the field of genome engineering, and they can easily edit and also 
recognize specific genomic regions (Gaj et al. 2016). These methods have a signifi-
cant impact on the genomic revolution that has accelerated the discovery of novel 
sequence variations and breakthroughs in the scientific knowledge to demonstrate 
the power of these GE tools in establishing resistance to pathogens in various 
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diseases. The rapid progress in the CRISPR-Cas9 system makes it a highly accurate 
and efficient method that can edit in multiple genes at multiple locations using a 
single molecular construct (Cong et al. 2013).

7.1  Site-Specific Mutagenesis: The Path So Far

Site-specific mutagenesis is achieved by deploying a class of enzymes called 
“nucleases” fused with DNA-binding motifs to target specific sequences in the 
genome. The activity of nuclease results in double-strand breaks at the target site, 
which are then repaired by the host DNA repair mechanisms via nonhomologous 
end joining (NHEJ) or homologous recombination (Feng et al. 2013). During this 
process, small insertions or deletions occur in the genome, thus disrupting the gene 
sequence (Mishra et al. 2018). SSM is an evolving area of research with newer tools 
often emerging with improved precision and efficiency.

7.1.1  Meganucleases

Meganucleases (MNs) are endonucleases (enzymes that cut within a strand) that 
occur naturally and possess sequence-specific DNA-binding and nuclease activities. 
The application of MNs for site-targeted mutagenesis began in the 1980s. Owing to 
the recognition of long DNA sequences (18–40 bp), MNs were a good choice. On 
the other hand, the number of naturally occurring MNs was limited, thus diminish-
ing their wider application. Moreover, custom modification of MNs is a viable but 
expensive option (Abdallah et al. 2015).

7.1.2  Zinc-Finger Nucleases and TALENs

Zinc-finger nucleases (ZFNs) kick-started the wider application of site-specific 
mutagenesis in 1996 (Kim et al. 1996). The zinc-finger motif is one of the most 
copious DNA-binding motifs present in eukaryotes (Klug and Schwabe 1995). Each 
ZF motif recognizes a specific 3-bp sequence in the major groove of DNA. Thus, 
tandemly placing multiple ZF motifs of different base specificity and fusing them to 
a nuclease can result in the generation of a molecular scissor that can precisely cut 
the target site. Modular assembly-based methods enabled the construction of ZFNs 
that can virtually target any DNA sequence (Gaj et al. 2013). However, limitations 
of using ZFNs exist. The modular assembly is a complex and expensive process that 
requires many optimizations. Off-target cleavage is another challenge that many 
SSM techniques face (Ramirez et al. 2008; Gupta and Musunuru 2014).

Transcription activator-like effectors (TALEs) are proteins that naturally occur in 
the genus Xanthomonas, which predominantly consists of phytopathogenic bacteria 
(Boch et  al. 2009; Moscou and Bogdanove 2009). TALEs are employed by 
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Xanthomonas oryzae pv. Oryzae (Xoo) to target and activate the expression of spe-
cific host genes to increase the susceptibility of the host. The specific binding to 
DNA is achieved by a 33–35-amino-acid-long tandem repeat domain, each of which 
targets a specific base. The base specificity is conferred by the amino acids that are 
located in the 12th and 13th positions of the series. These positions are called repeat 
variable di-residues (RVDs) (Boch et al. 2009; Moscou and Bogdanove 2009; Gaj 
et al. 2013; Abdallah et al. 2015). Exploiting this brought in a revolution in the field 
of genome editing called TALENs. TALENs are TALE nucleases wherein the DNA- 
binding motif of a TALE is fused with a catalytic domain of a nuclease, thus allow-
ing the domain to target and cleave a specific sequence in the genome. By modifying 
the RVDs, one could define the target site and thus assemble a custom TALEN to 
target any region of interest in the genome (Christian et al. 2010; Boch 2011). The 
design and delivery of TALENs, however, pose a setback for the technique owing to 
their large size (Abdallah et al. 2015).

7.1.3  CRISPR-Based Genome Editing

Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR- 
associated (Cas), collectively called CRISPR-Cas, is a microbial adaptive immune 
strategy that works based on an RNA-guided nuclease complex to cleave foreign 
genetic elements. A CRISPR-Cas locus is a cluster of Cas genes, noncoding RNA, 
and an array of repetitive elements. The repeated elements are interspaced with 
protospacers (short variable repeats that are derived from foreign DNA targets). 
Together, the noncoding RNA and protospacers constitute the CRISPR RNA 
(crRNA). Each protospacer is associated with a protospacer adjacent motif (PAM) 
that differs between the types of CRISPR systems. Depending on the organization 
and composition of the nuclease genes, the CRISPR-Cas system is classified into 
Class I and Class II. Each class has three types of CRISPR-Cas system each. The 
Class I CRISPR system is less used owing to its limited knowledge and associated 
complexities. The Class II system, on the other hand, is a well-characterized and 
highly used genome-editing system. Class II is further subclassified into three types 
(types II, V, and VI) based on the specificities for nucleotide substrates, PAM, and 
the Cas genes that affect the substrate cleavage (Koonin and Makarova 2019; Moon 
et al. 2019). A brief overview is discussed below.

CRISPR-Cas9 from Streptomyces pyogenes is the founding system for CRISPR- 
based genome editing, which is economical, easier, and more efficient. Cas9 is an 
RNA-guided nuclease that causes double-strand breaks in the genomic region that 
is complementary to the crRNA provided that the 3′ of the DNA sequence is 
5′-NGG-3′ (G-rich PAM). In addition, the CRISPR-Cas9 system needs a trans- 
acting crRNA (tracrRNA) to be functional (Deltcheva et al. 2011; Jinek et al. 2012). 
Cas9 proteins of different bacterial origins have different PAM specificities, spacer 
lengths, and sizes. Improvements in the techniques made it possible to multiplex 
genome editing with the use of polycistronic tRNA-gRNA (PTG), wherein the 
tRNA processing system is used to construct a tandem array of tRNA and gRNA 
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(attached to the spacer), which would be transcribed as a full primary transcript that 
is later processed and cleaved to release individual single-guide RNAs (sgRNAs), 
each of which targets a unique region in the genome (Zafar et al. 2020).

Cpf1, also known as Cas12a, belongs to the type V CRISPR-Cas system. Unlike 
Cas9, Cas12a does not need tracrRNA for the complex to be functional and it rec-
ognizes a 5′ T-rich PAM sequence (5′-TTTN-3′ or 5′-TTN-3′) (Zetsche et al. 2015). 
Also, Cpf1 exhibits RNase activity that can cleave pre-crRNAs to mature crRNA, 
thus enabling the possibility of including multiple crRNAs in a single cassette. Cpf1 
allows the use of longer gRNAs of up to 100 nt (Zetsche et al. 2015; Mishra et al. 
2018). This system is gaining usage because of its higher specificity and enhanced 
efficiency. Advances are made in terms of increasing the range of targets by engi-
neering the complex to target other PAMs.

Base editing can be used to modify single bases in the genome, thus opening an 
avenue to increase the allelic diversity of the genes and also to create specific muta-
tions to alter a gene function. The use of the CRISPR-Cas system achieves this in 
conjunction with base-modifying enzymes such as cytidine deaminase (to induce 
C:G to A:T mutations) or adenine deaminase (to induce A:T to G:C mutations). 
Base-editing techniques eliminate the need for double-strand breaks and thus the 
activation of DNA repair pathways (Lu and Zhu 2017; Hao et al. 2019).

Gene knock-in thus far required double-strand breaks and activation of homology- 
directed repair (HDR), which uses a donor template (carrying the gene copy to be 
knocked-in) to incorporate the new copy in the genome. This technique is extremely 
limited because of the less frequent and cell cycle stage-dependent nature of 
HDR. Also, the effective delivery of the donor template has posed a serious chal-
lenge. To overcome this, an elegant method was devised, called prime editing. Prime 
editing depends on a two-component system that includes (1) Cas9 nickase fused 
with a reverse transcriptase and (2) a prime editing guide RNA (pegRNA) that car-
ries the desired edit(s) to be incorporated into the genome. Once delivered, the com-
plex is guided to the target site by pegRNA and a nick is created in the genome. The 
nicked DNA serves as a primer that the reverse transcriptase uses to reverse tran-
scribe the pegRNA, thus incorporating the edit into the genome (Anzalone et al. 
2019; Lin et al. 2020). All the above-discussed techniques were successfully applied 
in rice and other plant species to edit various genes. The following few paragraphs 
will provide a glimpse of the application of genome editing in rice, focusing mainly 
on disease resistance.

7.2  Application of Genome Editing in Biotic Stress 
Tolerance in Rice

Conventional breeding has been successfully employed to date to develop disease- 
resistant rice varieties by introgressing resistance genes from wild rice varieties or 
landraces into elite cultivars. Although successful, it is a time-consuming 
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procedure, and also the wild germplasm does not contain genes/loci for all the eco-
nomically important traits that are of concern for breeders. With the advent of 
genome editing, several research groups started testing the possibility of using 
genome editing in rice and were by and large successful.

7.2.1  Resistance to Biotic Stress Factors

Genome editing has been successfully employed to generate rice plants resistant to 
various biotic stress factors, including bacterial blight, bacterial leaf streak, blast, 
and tungro virus. The application of genome-editing techniques for BB resistance 
began with modifying the promoter of a BB susceptibility gene, OsSWEET14 
(Os11N3), using TALENs (Li et al. 2012). SWEET genes are sugar transporters, and 
the expression of certain SWEET genes is induced upon Xoo infection by the action 
of TALEs. So far, the SWEET genes, including OsSWEET11, OsSWEET12, 
OsSWEET13, OsSWEET14, and OsSWEET15, have been shown to be induced by 
Xoo and could act as susceptibility factors (Streubel et al. 2013). TAL effectors bind 
to the effector-binding elements (EBEs) in the target promoter and activate the 
expression of the downstream gene, which tends to be a susceptibility factor in 
many cases. Different TAL effectors induce many such susceptibility genes, and 
their cognate EBEs were also deciphered. Li et  al. (2012) have successfully 
employed TALENs to modify the EBEs of OsSWEET14. This study established the 
possibility of using genome-editing techniques to generate disease-resistant variet-
ies as well as to understand the targets of different TAL effectors. Jiang et al. (2020) 
have conducted a proof-of-concept study to confirm the applicability of the CRISPR- 
Cas9 system in rice by editing the promoters of OsSWEET11 and OsSWEET14 
genes (Jiang et al. 2013). In a study using CRISPR-Cas9, Zhou et al. (2015) created 
a null mutant of OsSWEET13 to show that PthXo2 (an Xoo TAL effector)-depen-
dent disease occurrence needs intact OsSWEET13. Xu et al. (2019) used CRISPR- 
Cas9 to edit OsSWEET11 and OsSWEET14 to engineer broad-spectrum resistance 
to BB in rice variety Kitaake. In addition to that, they identified new EBEs in the 
promoter of OsSWEET13 and successfully used CRISPR-Cas9 to disrupt the EBE, 
thus generating a rice line that was resistant to all the tested Xoo isolates (n = 133) 
(Xu et al. 2019). Oliva et al. (2019) generated five mutations in the promoters of 
OsSWEET11, OsSWEET13, and OsSWEET14 in three rice lines, Kitaake, IR64, and 
Ciherang-Sub1. All the lines were reported to show robust and broad-spectrum 
resistance in the paddy trials (Oliva et al. 2019). Zhou et al. (2018) used CRISPR- 
Cas9 to create a knockout of a susceptibility gene called BsrK-1 (broad-spectrum 
resistance Kitaake-1), which resulted in resistance to BB as well as blast. BsrK-1 is 
a tetratricopeptide domain-containing protein that was shown to bind to the mRNAs 
of multiple OsPAL (phenylalanine ammonia-lyase) genes and promote their turn-
over. In BsrK-1 knockouts, the accumulation of OsPAL mRNA was observed along 
with increased resistance to diseases (Zhou et  al. 2018). The feasibility of the 

M. Jamaloddin et al.



359

transgene- free method of genome editing was tested by mutating Os8N3/
OsSWEET11 (Kim et al. 2019). Cai et al. (2017) demonstrated that a TAL effector 
(Tal7) from X. oryzae pv. oryzicola RS105 targets the promoter of rice Cyclin-D4-1 
and induces its expression. They have successfully applied TALEN-based genome 
editing to disrupt the EBE in the promoter of Cyclin-D4-1, which leads to resistance 
to RS105 infection.

The applicability of CRISPR-Cas9 for generating blast-resistant rice lines has 
been demonstrated by performing both single-site and multisite-targeted mutagen-
esis of OsERF922, a negative regulator of blast resistance, to produce knockouts. 
All the mutants showed blast resistance while not having any adverse effect on other 
agronomic traits (Wang et al. 2016). Rice tungro disease (RTD) is a disease caused 
by rice tungrospherical virus (RTSV) and rice tungrobacilliform virus (RTBV) and 
is transmitted by green leafhoppers. RTD results in yellowing of leaves, decreased 
tiller numbers, and stunted growth (Azzam and Chancellor 2002; Lee et al. 2010). 
Macovei et al. (2018) generated RTSV-resistant lines in the background of IR64 
using the CRISPR-Cas9 system. In this study, the eIF4G gene was successfully 
mutated independently, using three different gRNAs, and the mutant plants showed 
heritable resistance to RTSV (Macovei et al. 2018).

7.2.2  Summary of Nonbiotic Stress-Related Phenotypes

The application of genome editing in rice is rising with time. Other than for biotic 
stress tolerance, genome editing has been successfully applied to edit several genes 
having various roles, including nutritional value, yield, and abiotic stress tolerance 
(Shan et al. 2015; Li et al. 2016; Sun et al. 2016; Shen et al. 2017; Tang et al. 2017; 
Abe et al. 2018; Endo et al. 2019; Romero and Gatica-Arias 2019).

7.3  Improvements in the Techniques

Currently, transgene-free methods are being tested and employed for genome edit-
ing wherein the mutant plants do not contain any of the CRISPR-Cas9 components. 
This is achieved in several ways, including using Cas9-gRNA ribonucleoproteins 
(RNPs). This RNP complex is directly delivered into plant cells by transfection or 
particle bombardment. The RNP complex can perform the editing and will be 
degraded by the cellular types of machinery. Another approach is to transiently 
express CRISPR-Cas9 from DNA or RNA in plants from regenerated calli. Both 
methods suffer from the possibility of component degradation, which might lead to 
less-efficient editing. To eliminate this disadvantage, He et al. (2018) came up with 
the suicide gene-based method of a transgene-free CRISPR-Cas9 approach in rice. 
In this method, a pair of suicidal genes, encoding toxic proteins that kill plant cells, 
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are incorporated into the CRISPR-Cas9 cassette. Therefore, no plant with a 
CRISPR-Cas9 construct will survive, thus eliminating the plants containing the 
transgenes. Among other surviving plants, the true mutants can be screened and 
identified using appropriate techniques. In addition to protein-coding genes, miR-
NAs are being targeted for editing owing to their involvement in various growth, 
development, and stress-response pathways. The use of the CRISPR-Cas system to 
edit miRNAs has been functionally validated in rice (Zhou et al. 2017; Mangrauthia 
et al. 2017).

8  Bioinformatics Tools for Disease Resistance 
and Management

Bioinformatics is an interdisciplinary field that uses computational tools to 
capture and interpret the function of various genes. The advent of genomics has 
revolutionized every aspect of life science. The availability of a large amount of 
data has necessitated better ways to analyze, interpret, and organize the results 
for the scientific community (Bayat 2002; Vassilev et al. 2005). Thousands of 
databases and repositories are available for various datasets such as for the 
genome, gene and protein sequences, expression and coexpression of genes, 
and genomic variations such as SNPs and InDels, to name a few (Garg and 
Jaiswal 2016). With time, sequencing platforms have seen an astounding revo-
lution and are becoming more efficient and affordable day by day. Since the 
first report on the whole-genome sequence of rice in 2005, many varieties were 
further sequenced as a part of the 3000 Rice Genomes Project (Matsumoto et al. 
2005; Li et al. 2014). The data obtained from the project resulted in establishing 
rice variation databases and these data have provided invaluable insights into 
rice evolution and domestication (Chen et  al. 2019). Moreover, the readily 
available data can guide breeders to wisely choose varieties and markers for 
breeding various traits from one cultivar to another. Procedures to score the 
expression of genes have also undergone an overwhelming transformation from 
methods such as serial analysis of gene expression (SAGE) to microarrays to 
RNA-sequencing (Perez-de-Castro et al. 2012). As a result, other than genome 
databases, gene and protein expression databases play an important role in elu-
cidating the various mechanisms that control a given trait, such as days to flow-
ering, growth and development, abiotic stress tolerance, and disease resistance, 
among others. Multiple other tools and databases are available to study and 
acquire information on different aspects, including phylogenomics, protein-
protein interaction, promoter analysis, gene and QTL information, marker-trait 
association, and metabolite profiles (Garg and Jaiswal 2016). This section aims 
to provide an overview of the application of bioinformatics in breeding for dis-
ease resistance in rice.
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8.1  The Role of Bioinformatics in Mapping Genomic Loci

8.1.1  Mapping QTLs and Genes Associated with Disease Resistance

Mapping the loci responsible for a desired trait has been successfully carried out for 
years using a conventional method such as simple sequence repeat (SSR)-based 
genotyping of a mapping population. With the arrival of affordable sequencing tech-
niques, QTLs and genes can now be mapped at a gene-level resolution. Methods 
such as MutMap and QTLseq have made it possible not only to identify the genomic 
locus responsible for a trait but also to pinpoint the causal variation within a gene 
that led to the phenotype (Abe et al. 2012; Takagi et al. 2013b). Thus, SNP markers 
that are highly associated with a trait can be identified and employed in breeding 
programmed for efficient introgression of the trait. In a proof-of-concept study, 
Takagi et al. (2013a) had identified a QTL conferring partial resistance to blast dis-
ease of rice. Following this attempt, multiple studies have successfully used this 
procedure to map QTLs for various traits in rice and other species. A rice blast 
resistance gene called Pii was mapped by another method called MutMap-Gap 
(Takagi et al. 2013b).

Sequencing data have been successfully used to compare the genomes of differ-
ent cultivars and obtain the resistance alleles of cloned rice blast resistance genes 
(Mahesh et al. 2016). Genes with highly repetitive sequences pose a challenge in 
accurately characterizing them in context with short-read sequences. A recent study 
by Read et  al. (2020) addressed this challenge by using a long-read sequencing 
approach called nanopore sequencing in combination with Illumina sequencing to 
assemble the genome of American rice variety Carolina Gold Select and identify 
529 complete or partial NB-LRR domain-containing protein genes that are highly 
repetitive in nature. The study identified a major disease resistance locus called Xo1 
that confers resistance to Xanthomonas oryzae pv. oryzae (the causal agent of bacte-
rial blight of rice) and X. oryzae pv. oryzicola (the causal agent of bacterial leaf 
streak of rice). Also, a blast resistance gene called Pi63 at the Xo1 locus was identi-
fied (Read et al. 2020). Another study compared the genomes of 13 domesticated 
and wild rice relatives and shed light on the complex phylogeny of the Oryza genus 
and identified many haplotypes of disease-resistance genes that can be of potential 
use for breeding (Stein et  al. 2018). Using the genome sequence of rice variety 
Tetep, an extensive set of molecular markers was designed for breeding novel resis-
tant varieties (Wang et al. 2019).

8.1.2  Genome-Wide Association Studies

Genome-wide association studies (GWAS) exploit the natural variation among dif-
ferent cultivars to identify trait-associated genes (Hu et al. 2018). This is one of the 
preferred methods for the identification of gene targets for breeding. The availabil-
ity of genome sequences and phenotype data, along with powerful statistical and 
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bioinformatics tools, have made it possible to analyze hundreds or thousands of 
genomes in one go and identify genes and haplotypes that are associated with given 
traits. A GWAS on 373 indica rice sequences identified SNPs associated with 14 
different agronomic characteristics (Huang et al. 2010). A GWAS with a panel of 
584 rice accessions led to the identification of a gene called PiPR1 that confers 
partial resistance to blast disease of rice (Liu et al. 2020). Other GWAS have identi-
fied tens of QTLs and new alleles of known blast-resistance genes (Li et al. 2019a).

8.1.3  Speeding Up Breeding

The main setback with conventional breeding methods is the time taken for devel-
oping a new variety. Also, for durable disease resistance and other complex traits, it 
is essential to efficiently identify minor-effect QTLs and use the associated markers 
in breeding programs. The existing methods, including QTL mapping from biparen-
tal crossing and GWAS, are not up to the mark to efficiently identify such minor- 
effect QTLs (Bhat et al. 2016). To address both of these concerns, genomic selection 
(GS) was proposed (Meuwissen et al. 2001). Unlike MAS, GS does not necessarily 
need QTL information before selection. GS uses reference population data contain-
ing phenotype and high-density marker data to predict breeding values for all the 
markers. Based on the predicted values, the breeding population data will be ana-
lyzed to select the individual that possesses the desirable phenotype (Perez-de- 
Castro et  al. 2012; Hu et  al. 2018). In this way, it is possible to introgress even 
minor-effect QTLs efficiently, as there are no biased marker effects, unlike with 
MAS. Studies on other plant species have shown the higher prediction accuracy of 
GS in genetic gains and a significant decrease in the time taken for breeding (Hu 
et al. 2018). Although proposed two decades ago, the implementation of GS in crop 
breeding has just begun, mainly because of the advent of high-throughput and 
affordable genotyping methods that produce dense marker information such as 
genotyping-by-sequencing and automated phenotyping (Bhat et  al. 2016). Given 
the importance of disease-resistance breeding in rice, the application of GS could be 
of tremendous benefit.

8.1.4  Using Machine Learning and Artificial Intelligence

The field of computational biology is advancing at an unprecedented rate with the 
arrival of machine learning (ML) and artificial intelligence (AI). In ML, the machine 
gains experience by identifying patterns in given datasets and using that experience 
to interpret the data in question. ML has applications in various aspects of plant sci-
ences, including phenotyping and increasing the accuracy of sequence analysis 
pipelines, such as differentiating true SNPs from spurious SNPs (Hu et al. 2018). 
ML was successfully used to phenotype and categorize foliar stresses in soybean 
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with high accuracy (Ghosal et al. 2018). Various parameters such as yield, develop-
mental stage, weed status, crop quality, water and soil management, and disease 
occurrence were successfully predicted using ML (Liakos et  al. 2018). In rice, 
bakanae disease (caused by Fusarium fujikuroi) was predicted with an accuracy of 
87.9% using support vector machine classifiers, a popular ML tool that is often used 
to overcome classification and regression problems (Chung et al. 2016). Although 
few in number, these studies have put forth the applicability of advanced computa-
tional strategies to improve agriculture.

9  Future Prospects and Conclusions

The rice crop plays an essential role in ensuring global food security and providing 
nutritional security for the rapidly growing world population. Increasing grain yield 
is a significant target for plant breeders apart from identifying resistance to/toler-
ance of biotic and abiotic stresses. Enhancing genetic gain is also a primary concern 
to meet the food demand of the ever-increasing world population, especially with 
global climate change. In recent years, the innovations in rice breeding programs 
and advanced genomics technologies such as next-generation sequencing and high- 
throughput genotyping have been fully exploited to understand trait interactions and 
select promising rice genotypes for use in breeding programs. The genetic improve-
ments in yield component traits and increasing yield significantly under biotic and 
abiotic stresses have not been achieved to a great extent due to the complex nature 
of these stresses. The knowledge of integrated genomics and high-throughput phe-
nomics technologies has laid the foundation to understand these complex traits and 
also associated molecular genetics and physiological mechanisms that can enable 
breeders to find better rice genotypes and to move forward as knowledge-based rice 
breeding is the most acceptable approach in developing climate-smart stress- tolerant 
and high-yielding rice genotypes. This approach has advanced at a fast pace with 
low-cost, efficiency, and high resolution of genetic mapping for QTLs and genes 
and also haplotype blocks to find allelic variations for the target trait of interest. The 
current advances in CRISPR/Cas9 genome-editing tools have led to significant tar-
geted changes in specific trait-associated genes and changes in single base levels 
that promise to accelerate crop improvement. These genomic-assisted breeding 
tools are breeder-friendly, and smart decisions in breeding programs can enhance 
the efficiency of the selection of rice genotypes in a short period.
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