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Preface

Deep learning is the latest buzzword to understand and utilize new sensor technol-
ogy and is a primary tool for smart city development. New adaptation and infra-
structure development in developing countries are mainly influenced by computer 
technologies such as deep learning and machine learning approaches. Deep learning 
methods can cover wider engineering disciplines with various real-world applica-
tions such as speech recognition, computer vision, and smart computing scenarios. 
These methods require broad domain knowledge of various subjects; for example, 
advanced driver-assistance system (ADAS) design requires the knowledge of maths, 
physics, computer vision (CV), mechanics, and sensor technology. Various deep 
learning concepts about healthcare, smart systems, recommendation systems, etc., 
with real-time discussions are covered in this book. Deep learning is capable of 
working with unstructured data that requires more time for humans to extract the 
relevant information. Industry 4.0 standards have perceived the power of deep learn-
ing methodology and are utilizing the artificial intelligence (AI) systems for cyber-
physical system (CPS). Deep learning is a subset of machine learning in artificial 
intelligence (AI) that utilizes an artificial neural network (ANN) to operate CPS. The 
current pandemic situation has attracted several researchers to study the design of 
healthcare-oriented systems using machine learning algorithms. The outbreak of 
vector-borne diseases – such as chikungunya, malaria, and dengue – predicted using 
machine learning as well as its spread in the Indian subcontinent is elucidated in 
detail. During this covid-19 period, researchers focus on ways for the identification 
of increase in cholesterol level as well as for contactless sensing and diagnosis. The 
prediction of eukaryotic plasma cholesterol from human G protein-coupled recep-
tors (GPCRs) is studied through K-nearest neighbor (KNN) and support vector 
machine (SVM) approach. In many cases, a hybrid approach is required to balance 
the drawbacks of each approach and to derive a potential application for better pre-
diction. In this book, the hybrid KNN–SVM approach is shown to examine the pat-
tern of cholesterol level, and the obtained data is validated with experimental 
studies. The detection of early-stage diabetic retinopathy using convolutional neural 
network (CNN) approach is also addressed. Due to its novelty and accuracy, the 
retinal scan comparison is performed with the data set to assess the present eye 
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condition of a  person. The most widely used deep learning techniques, such as 
CNN, recurrent neural networks (RNN), Tensorflow, Python tool, deep convolu-
tional generative adversarial network (DCGAN), Auto-encoders, long short-term 
memory (LSTM), and gated recurrent unit (GRU), are discussed. The identification 
of image and text using these algorithms, their working perspectives, and their con-
textual speed are explained for readers. Deep learning in bioinformatics enables to 
identify hidden information and make correct predictions. Omics data analysis, pro-
tein structure prediction, and biomedical image processing are explained with real-
time data set. Character recognition and Opencv are mostly used in CPS for 
automation and machine-to-machine interaction. Both Opencv and character recog-
nition algorithms are capable of operating in single-board computers (SBCs) and 
have a wide application in the current Industry 4.0 era. CNN-based document analy-
sis, document recognition, scene-text classification, and localizations were dis-
cussed with real-time results, and the comparison is also done with standard 
benchmark algorithms. This book provides an overview of deep learning and 
machine learning techniques for better prediction and smart computing 
environments.

Vijayawada, AP, India  Kolla Bhanu Prakash
Seri Iskandar, Perak, Malaysia  Ramani Kannan
Perundurai, Tamil Nadu, India  S. Albert Alexander
Chennai, Tamil Nadu, India  G. R. Kanagachidambaresan
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Introduction to Deep Learning

R. Indrakumari, T. Poongodi, and Kiran Singh

1  Introduction

The human brain is the incredible organ that dictates the signals received from 
sound, sight, smell, touch, and taste. The brain stores emotions, experiences, memo-
ries, and even dreams. The brain takes decisions and solves many problems that 
even the powerful supercomputers lack [1]. Based on this, researchers are dreamed 
of constructing intelligent machines like the brain. Later researchers invented robots 
to assist human activities, automatic disease detection microscopes, and self-driving 
cars. These inventions still required human interventions to do some computational 
problems. To tackle this problem, researchers want to build a machine that can learn 
by themselves and solve more complex problems in the speed of the human brain. 
These necessities pave the way to the most active field of artificial machine intelli-
gence called deep learning.

2  Neurons

The basic unit of the human brain is the neurons. Very small portions of the brain, 
about the size of wheat, have over 10,000 neurons with more than 6000 connections 
with other neurons [2]. The information perceived by the brain is captured by the 
neurons, and the same is passed from a neuron to others for processing, and the final 
result is sent to other cells. It is depicted in Fig. 1. Dendrites are an antenna-like 
structure in the neurons that receives the inputs. Based on the frequency of usage, 

R. Indrakumari (*) · T. Poongodi · K. Singh 
School of Computing Science and Engineering, Galgotias University,  
Greater Noida, Uttar Pradesh, India
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the inputs are classified into strengthened and weakened. The connection strength 
estimates the involvement of the input pertaining to the neuron’s output. The input 
signals are weighted by the connection strength and summed collectively in the cell 
body. The calculated sum takes the form of a new signal, and it is thriven along the 
cell’s axon to reach the destination neurons.

In 1943, Warren S. McCulloch and Walter H. Pitts [3] concentrated on the func-
tional understanding of the neurons that exist in the human brain and created a 
computer-based artificial model as shown in Fig. 2.

As in the biological neurons, the artificial neuron receives inputs x1, x2, x3….xn, 
and respectively input is multiplied by particular weights w1, w2, w3,….wn, and the 
calculated sum is considered to make the logit of the neuron:

 
Z w x

i

n

i i=
=
∑

0  
(1)

Some logit may include a constant value called the bias. Finally, the logit is 
passed through a function f to make the desired output y = f (z).

3  History of Deep Learning

The history of deep learning started in the early 1940s when Warren McCulloch and 
Walter Pitts developed a computer model focusing on the human neural system. 
They applied mathematics and algorithms and called it “threshold logic” to imitate 
the thinking process. Deep learning is a subsequent derivative of machine learning 
that applies algorithms, processes the data, and develops abstractions. Various 

Fig. 1 Biological neuron’s structure

R. Indrakumari et al.
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algorithms are applied to process data, to recognize objects and human speech. The 
output of the former layer is provided as the input to the next layer.

In 1960 Henry J. Kelley has started to develop the Backpropagation Model and 
was extended by Stuart Dreyfus in 1962. The early version of Backpropagation was 
not so efficient and clumsy. Following this, in 1965, Valentin Grigor’evich Lapa has 
proposed cybernetics and forecasting techniques, and Alexey Grigoryevich 
Ivakhnenko has proposed the data handling methodology using polynomial activa-
tion functions. The best feature chosen statistically is forwarded to the next layer 
manually.

Kunihiko Fukushima has developed the first convolutional neural networks with 
multiple pooling and convolutional layers. Later in 1979, he developed neocogni-
tron, a multilayered and hierarchical artificial neural network design that can recog-
nize visual patterns. Neocognitron is said to be the best model at that time as it uses 
new learning methods with top-down connections. It contains the selective attention 
model which recognizes the individual patterns. The developed neocognitron can be 
able to identify the unknown and missing information with a concept called 
inference.

In the late 1970s, Seppo Linnainmaa wrote a Fortran code for backpropagation. 
In 1985, Williams and Hinton studied that backpropagation can provide “interest-
ing” distribution representations. Yann LeCun combined backpropagation with con-
volutional neural networks and showed the first practical demonstration to read 
“handwritten” digits at Bell Labs in 1989. Later many optimistic researchers 

Fig. 2 Neuron in an artificial neural net

Introduction to Deep Learning
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exaggerated artificial intelligence; notably in 1995, Dana Cortes and Vladimir 
Vapnik have proposed a model to map and identify similar data, called the support 
vector machine. In 1997, Sepp Hochreiter and Juergen Schmidhuber have proposed 
long short-term memory (LSTM) for recurrent neural networks (Fig. 3).

The new era for deep learning began in 1999 as it is the evolution of graphics 
processing units (GPUs). In 2000, the vanishing gradient problem is identified 
which paved the way for the development of long short-term memory. Fei-Fei Li an 
AI expert assembled ImageNet which can process more than 14 million labeled 
images. During 2011 and 2012, AlexNet a convolutional neural network won many 
international competitions. In 2012, Google Brain announced a project called The 
Cat Experiment, which overcomes the limitations of unsupervised learning. At pres-
ent, the evolution of artificial intelligence and the processing of big data are depen-
dent on deep learning.

4  Feed-Forward Neural Networks

The neurons in the human brain are arranged as layered structure, and even most of 
the human intelligence part in the brain, the cerebral cortex, is of six layers [4]. The 
perceived information travels from layer to another layer until obtaining the concep-
tual understanding from the sensory input.

Fig. 3 Roadmap of deep learning history

R. Indrakumari et al.
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In Fig. 4, a three-layer perceptron is shown with the hidden layer that contains 
neurons with nonlinear activation functions. Arbitrarily complex decision and com-
putation of any likelihood function can be easily done by a three-layer perceptron.

From Fig. 4, it is noted that the connection traverses from the low-level layer to 
the high-level layer and there are no communications among neurons which exist in 
the same layer as well from the higher to the lower level. Hence these setup is called 
the feed-forward networks. The middle layer in Fig. 4 is the hidden layer where the 
magic happens when the neural network tries to solve complex problems. Every 
layer in Fig. 4 has an equal number of neurons, which is not mandatory. The input 
and output are represented as vectors. Linear neurons are represented by a linear 
function in the form of fz = az + b . Linear neurons are easy to compute but restricted 
with limitations. A feed-forward network with only linear neurons contains no hid-
den layer which enables the users to get vital features from the input layer. In prac-
tice, there are three possible types of neurons, namely, sigmoid neuron, tanh neurons, 
and ReLU neurons, that dumped the nonlinearity concept. The sigmoid neurons use 
the function

 
f

e z
=

+ −

1

1  
(2)

The above equation represents that when the value of logit is actually small, then 
the output is very close to 0, and it is 1 when the value of logistic is very large. 
Between the values 0 and 1, the neuron takes the shape of S as shown in Fig. 4.

Based on the types of connections the neural network architecture is categorized 
into “recurrent neural networks” in which there exists a synaptic connection from 
output to the input whereas in “feed-forward neural networks” there exists a feed-
back operation from output to inputs. Neural networks are constructed as either 
single layers or multilayer.

Fig. 4 Three-layer perceptron network with continuous inputs, two output, and two hidden layers

Input Layer ∈R5 Hidden Layer ∈R5 Output Layer ∈R2

Introduction to Deep Learning
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4.1  Backpropagation

Backpropagation is the heart of neural network training which fine-tunes the weights 
of neural net obtained in the previous epoch. It was developed in 1970, and research-
ers fully appreciated it after 1986 when David Rumelhart, Geoffrey Hinton, and 
Ronald Williams published a paper describing that backpropagation works faster 
and provides solutions for previously unsolved problems. Backpropagation is a kind 
of supervised learning method for multilayer artificial neural networks (ANNs) with 
applications ranging from classification, pattern recognition, medical diagnostics, 
etc. The backpropagation algorithm made the multilayer perceptron networks 
occupy a place in the neural network’s research toolbox. The multilayer perceptron 
is perceived as a feed-forward network with more than one layer of nodes between 
the input and output nodes. It updates the synaptic weights by propagating a gradi-
ent vector back to the input in which the elements are defined as the derivative of an 
error measure for a parameter. The error signals are the significant difference 
between the actual and the desired outputs.

The backpropagation algorithms are considered as a generalized view of the 
least-mean-square (LMS) algorithm that consists of a forward pass and a backward 

pass. The backpropagation computes specifically all the partial derivatives ∂
∂
f

wi

 
where wi is the ith parameter and f is the output.

Consider a multilayer feed-forward neural network as shown in Fig. 2. Let us 
assume a neuron i is present in the output layer and the error signal for nth iteration 
is given by the equation

 
ei m di yi m( ) = ( )–

 
(3)

where di is the desired output for neuron i and y j (m) is the actual output for 
neuron i, computed using the current weights of the network at iteration m.

Equation 2 represents the instant error energy value y for the neuron i as

 
ε i im e m( ) = ( )1

2
2

 
(4)

The instantaneous value εi(m) is the sum of all εi(m) for all neurons in the output 
layer as represented in Eq. 3

 
ε

ε
i

i S
im e m( ) = ( )∑12
2

 
(5)

where S is the set of all neurons present in the output layer. For consideration, sup-
pose a training set contains N patterns, and the average square energy for the net-
work is given by Eq. 4:
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ε εavg

n

N

N
m= ( )

=
∑1

1  
(6)

The modes of backpropagation algorithms are (a) batch mode and (b) sequential 
mode. In the batch mode, the weight updates are done after an epoch is completed. 
In contrast to this, the sequential mode or stochastic mode updates are performed 
after the presentation of each training example. The following equation gives the 
output expression for the neuron i

 
y m f w m y mi

i

n

ij i( ) = ( ) ( )









=
∑

0  
(7)

where n represents the total number of inputs to the neuron i from the previous layer 
and f is the activation function used in the neuron i.

The updated weight to be applied to the weights of the neuron i is directly pro-
portional to the partial derivative of the instantaneous error energy ε(n) for the cor-
responding weight, and it is represented as

 

∂ ( )
∂ ( )
ε m

w mij  

(8)

Using the chain rule of calculus, it is expressed as

 

∂ ( )
∂ ( )

=
∂ ( )
∂ ( )

∂ ( )
∂ ( )

∂ ( )
∂ ( )

ε εm

w m

m

e m

e m
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i

i

i

ij  

(9)

Equation 10 is obtained from Eqs. (2), (1), and (5)
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(10)
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where
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Substituting Eqs. (8), (9), and (10) in Eq. 9, the following expression arrives

 

∂ ( )
∂ ( )

= − ( ) ( ) ( )







 ( )′

=
∑

ε n

w m
e m f w m y m y m

ij
j

i

m

ij i i
0  

(13)

Delta rule is used to provide the correction ∆wij(m), and it is expressed as

 

∆w m
n

w mij
ij

( ) = −
∂ ( )
∂ ( )

η
ε

 

(14)

where ŋ is a constant pre-determined parameter for the learning rate in the back-
propagation algorithm.

5  Types of Deep Learning Networks

The deep learning network is classified into three classes depending upon the tech-
niques and architectures used for a particular application like synthesis, classifica-
tion, and recognition. They are classified into:

 (i) Unsupervised deep learning network
 (ii) Supervised deep learning network
 (iii) Hybrid deep learning networks

Unsupervised deep learning network captures higher-order correlation data for 
synthesis purposes when there is no clear target class defined. In supervised learn-
ing of deep networks, discriminative power is provided for pattern classification by 
portraying the distributions of classes accustomed on the data which is visible. It is 
otherwise known as discriminative deep networks. A hybrid deep neural network 
exploits both discriminative and generative components. Moreover, a hybrid deep 
neural network model is structured by converging homogeneous convolution neural 
network (CNN) classifiers. The CNN classifiers are trained to yield an output as one 
for the predicted class and zero for all the other classes.
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9

6  Deep Learning Architecture

In this deep learning architecture section, the commonly used deep learning 
approaches are discussed. Representation is a significant factor in deep learning. In 
the traditional method, the input features are extracted from raw data to be fed in 
machine learning algorithms. It relies on domain knowledge and the practitioner’s 
expertise to determine the pattern. Traditional Software Engineering methodology 
like create, analyze, select, and evaluate are time-consuming and laborious. In con-
trast, the appropriate features are learned from the data directly without any human 
intervention and facilitate the discovery of dormant relationship among data that 
might be otherwise hidden or unknown.

In deep learning, the complex data representation is commonly expressed as 
compositions of simpler representations. Most of the deep learning algorithms are 
constructed based on the conceptual framework of artificial neural network (ANN), 
and it comprises interconnected nodes called as “neurons” which are organized in 
layers shown in Fig. 5. The neuron which does not exist in these two layers is called 
hidden units, and it stores the set of weights W.

Artificial neural network weights can be augmented by minimizing the loss func-
tion, for instance, negative log-likelihood, and it is denoted in Eq. 1:

 
E D P Y y x p

i

D

i iθ θ λ θ, |, |,( ) = − =( )  +
=
∑

0

log    
 

(15)

Fig. 5 Neural network with 1, 2, 1 input, hidden, and output layers

Input Layer ∈R3

Hidden Layer ∈R3

Output Layer ∈R3
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The first term minimizes the total log loss in the whole training dataset D.
The second term minimizes the p-norm of learned parameter θi, and it is con-

trolled by λ a tunable parameter.
It is referred as regularization, and it prevents a model to be overfitting. Normally, 

the loss function can be optimized using a backpropagation mechanism, and it is 
meant for weight optimization that reduces the loss by traversing backward from the 
final layer in the network. Some of the deep learning open-source tools are Keras3, 
Theano2, TensorFlow1, Caffe6, DeepLearning4j8, CNTK7, PyTorch5, and Torch4. 
Some commonly used deep learning models discussed are based on optimization 
strategy and ANN’s architecture. The deep learning algorithms are categorized into 
supervised and unsupervised techniques. The supervised deep learning architecture 
includes convolutional neural networks, multilayer perceptrons, and recurrent neu-
ral networks. The unsupervised deep learning architecture includes autoencoders 
and restricted Boltzmann machines (Fig. 6).

6.1  Supervised Learning

6.1.1  Multilayer Perceptron (MLP)

Multilayer perceptron holds many hidden layers; the neurons in the base layer i is 
completely connected to neurons in i + 1 layer. Such type of network is restricted to 
have minimal hidden layers, and the data is allowed to transmit in one direction 
only. A weighted sum is computed for the outputs received from the hidden layer in 
each hidden unit. Equation 16 represents a nonlinear activation function σ of the 
computed sum. At this point, d refers to the number of units available in the previous 
layer, and xj is referred as the output received from the previous layer jth node. bij and 
wij are considered as bias and weight terms that are associated with each xij. Tanh or 

Deep learning 
architecture

Supervised 
learning

Mul�layer 
Perceptron 

(MLP)

Recurrent 
Neural Network 

(RNN)

Long Short Term 
Memory (LSTM)

Gated 
Recurrent Units 

(GRU)

Convolu�onal 
Neural Network 

(CNN)

Unsupervised 
learning

Bolzmann 
Machine (BM)

Restricted 
Bolzmann 

Machine (RBM)

Deep Belief 
Network (DBN)

AutoEncoder 
(AE)

Sparse 
AutoEncoder 

(SAE) 

Varia�onal  
Autoencoder

Denoising 
Autoencoder 

(DAE)

Fig. 6 Deep learning architecture and output layers
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sigmoid are taken as the nonlinear activation functions in the conventional network, 
and rectified linear units (ReLU) [8] are used in modern networks.

A multilayer perceptron comprises of multiple hidden layers where

 

hi x w b
j

d

j ij ij= +










=
∑σ

1  

(16)

After optimizing hidden layer weights during training, a correlation among the 
input x and output y is learned. The availability of many hidden layers makes the 
input data representation in a high-level abstract view because of the hidden layer’s 
nonlinear activations. It is one of the simplest models among other learning archi-
tectures which incorporate completely connected neurons in the final layer.

6.1.2  Recurrent Neural Network (RNN)

CNN is an appropriate choice if the input data has a neat spatial structure (e.g., col-
lection of pixels in an image), and RNN is a logical choice if the input data is 
ordered sequentially (e.g., natural language or time series data). One-dimensional 
sequence is fed into a CNN; the output of the extracted features will be shallow [8], 
meaning only closed localized relationships among few neighbors are considered 
for feature representations. RNNs are capable of handling long-range temporal 
dependencies. In RNN, hidden state ht is updated based on the triggering of current 
input xt at a time t and the previously hidden state ht-1. Consequently, the final hid-
den state contains complete information from all of its elements after processing an 
entire sequence. RNN includes:

 1. Long short-term memory (LSTM)
 2. Gated recurrent units (GRU)

The symbolic representation of RNN is shown in Fig.  7, with its equivalent 
extended representation, for instance, three input units, three hidden units, and an 
output. The input time step is united with the present hidden state that depends on 
the previous hidden state.

RNN includes LSTM and GRU models, the most popular variants referred to as 
gated RNN. The conventional RNN consists of interconnected hidden units, whereas 

Fig. 7 RNN with extended representation
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a gated RNN is substituted by a cell that holds an internal recurrence loop, and sig-
nificantly the gates in this model control the information flow. The main advantage 
of gated RNN lies in modelling longer-term sequential dependencies.

6.1.3  Convolutional Neural Network (CNN)

CNN is a famous tool in recent years, particularly in image processing, and are 
stirred by the organization of the cat’s visual cortex [5]. The local connectivity is 
imposed on the raw data on CNN.  For example, more significant features are 
extracted by perceiving the image as a group of local pixel patches rather consider-
ing 50 x 50 image as individual 2500 unrelated pixels. A one-dimensional time 
series may also be viewed as a set of local signal segments. In particular, the equa-
tion for one-dimensional convolution is given as

 
C

a
1d x a w t a= ( ) −( )

=−∞

∞

∑ .
 

(17)

where x refers to the input signal and w refers to the weight function or convolu-
tion filter.

The equation for two-dimensional convolution is given, where k is a kernel and 
X is a 2D grid:

 
C X m n K i m j nd

m n
2 = ( ) − −( )∑∑ , ,

 
(18)

The feature maps are extracted by calculating the weights of the input in a filter 
or a kernel. CNN encompasses sparse interactions considered as filters normally 
smaller than the input that results in less number of parameters. Parameter sharing 
is correspondingly encouraged in CNN because every filter is functional to the 
entire input. However, in CNN the same input is received from the previous layer 
which perfectly learns several lower level features. Subsampling is applied to aggre-
gate the features which are extracted. The CNN architecture consists of two convo-
lutional layers trailed by a pooling layer as depicted in Fig. 8. The application of 
CNNs is best in computer vision [6, 7].

Fig. 8 ConvNet and output layers
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6.2  Unsupervised Learning

6.2.1  Autoencoder (AE)

Autoencoder (AE) is the deep learning model that exemplifies the concept of unsu-
pervised representation learning. Initially, it has pertained to supervised learning 
models once the labeled data was limited, but it is still remained to be useful for 
complete unsupervised learning such as phenotype discovery. In AE, the input is 
encoded into a lower-dimensional space z, and it is decoded further by reconstruct-
ing x  of the corresponding input x. Hence, the encoding and decoding processes of 
an encoder are respectively given in equation with a single hidden layer. The encod-
ing and decoding weights are represented as W and W0, and the reconstruction error 
is minimized. Z is a reliable encoded representation.

 
z = +( )σ Wx b

 
(19)

 
x W z b= +( )′ ′σ

 
(20)

As soon as an AE is well trained, then a single input is fed in the network and the 
innermost hidden layer activated to serve as input for the encoded representation 
(Fig. 9).

The input data is transformed into a structure where AE stores the utmost signifi-
cant derived dimensions. It is similar to traditional dimensionality reduction tech-
niques, namely, singular value decomposition (SVD) and principal component 
analysis (PCA). Deep autoencoder networks can be trained in a greedy manner, 
which is referred as the stacking process. Some of the autoencoder variants are:

 1. Sparse autoencoder (SAE)
 2. Variational autoencoder (VAE)
 3. Denoising autoencoder (DAE)

6.2.2  Restricted Boltzmann Machine (RBM)

RBM is an unsupervised learning architecture that learns input data representation. 
It is almost similar to AE; instead, RBMs estimate the probability distribution of the 
available input data. Hence, it is perceived as a generative model where the data was 
generated in the underlying process. The canonical RBM is a model that consists of 
binary visible units 



v , and hidden units 


h  along with the energy function as shown 
in the equation:

 
E v h b v c v Wv hT T T,( ) = − − −

 
(21)
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In Boltzmann machine (BM), every unit is completely connected, while in 
restricted Boltzmann machine, there is no connection among the hidden units. 
Restricted Boltzmann machine is typically trained using a stochastic optimization 
like Gibbs sampling, and it yields the learned representation of the given input data 
that is viewed as the final form of h. Moreover, RBMs can be stacked hierarchically 
to construct a deep belief network (DBN) particularly for supervised learning.

7  Platforms for Deep Learning/Deep Learning Frameworks

Many software packages are available for researchers to ease the construction of 
deep learning architectures, but few years back non-deep learning professionals 
faced many difficulties to hadle the software packages. This circumstance lasted 
until Google introduced the DistBelief system in 2012. Following DistBelief, simi-
lar software packages like TensorFlow, Microsoft Cognitive Toolkit (previously 
CNTK), DeepLearning4j, Caffe, Torch, Keras, Neural Designer, H2o.ai, and Deep 
Learning Kit have extensively spurred the industry (Fig. 10).

Fig. 9 Autoencoder example and output layers
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7.1  TensorFlow

The concept of TensorFlow is highly associated with the mathematics involved in 
engineering and physics. Later TensorFlow has made its way to computer science 
which is associated with logic and discrete mathematics. Advanced machine learn-
ing concepts utilize the manipulation and calculus of tensors. TensorFlow is an open-
source end-to-end machine learning library for production and research. It offers 
APIs for expert and beginner-level learners to develop applications for the cloud, 
mobile, web, and desktop. For beginner-level learners, TensorFlow recommends 
Keras API to develop and train the deep learning models. For advanced operations 
like forward passes, customizing layers, and training the loops with auto- 
differentiation, define-by-run interface API is recommended. Pre-made estimators 
are available to implement common machine learning algorithms. The architecture 
of TensorFlow is divided into four functioning parts, namely, data processor, model 
builder, training, and estimating the model. It accepts the inputs as tensors or multi- 
dimensional array, constructs operation flowchart which explains the multiple opera-
tions subjected to input, and finally comes out as output. Hence the name TensorFlow 
arises as the tensors flow through a list of operations and produce the desired output 
on the other side. TensorFlow is based on static graph computation, to visualize the 
constructed neural network with the help of TensorBoard. TensorFlow supports 
algorithms like classification, linear regression, deep learning wipe, deep learning 
classification, boosted tree classification, and boosted tree regression.

Fig. 10 Deep learning platform and output layers
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7.2  Microsoft Cognitive Toolkit

Microsoft Cognitive Toolkit is also a deep learning toolkit that considers neural 
networks as a sequence of computational procedure using a directed graph. The 
former version of this toolkit is the Computational Network Toolkit (CNTK). The 
latest version is CNTK v.2.0 Beta 1, available with new Python and C++ APIs using 
BrainScript as its own language. The Computational Network Toolkit libraries are 
developed using the C++ language. The Python APIs preserve abstractions for 
model definition, data reading, learning algorithms, and disbursed training. CNTK 
2 is considered as the supplement of Python API with the feature of protocol buffer 
serialization developed by Google. CNTK 2 supports Fast R-CNN algorithm that 
supports the object-detection algorithm. Fast R-CNN algorithm is based on reus-
ability concept that reuses computations from the convolution layers by adding a 
ROI pooling scheme. Microsoft Cognitive Toolkit is an open-source, multi-GPU 
machine, highly supportive for neural network training to classify and recognize 
images, text, and speech. Microsoft Cognitive Toolkit is the backbone for Skype live 
translation, Xbox, Bing, and Cortana. It supports a range of neural network types 
like convolutional neural network (CNN), feed-forward network (FFN), recurrent/
long short-term memory (RNN/LSTM), sequence-to-sequence with attention, and 
batch normalization. Microsoft Cognitive Toolkit supports unsupervised learning, 
reinforcement learning, generative adversarial networks, and automatic hyper- 
parameter tuning. Parallelism can be achieved with the highest accuracy, even for 
the largest models in the GPU memory.

7.3  Caffe

Convolution Architecture For Feature Extraction (Caffe) is a deep learning frame-
work developed by Berkeley AI Research with speed, expression, and modularity as 
its features. The speed of Caffe makes it suitable for industry development and 
research works. It can process nearly 60 M images per day with a single NVIDIA 
K40 GPU. The extensible code feature promotes active development. Expressive 
architecture encourages innovation and application. The usage of hard coding is 
minimized in model development.

7.4  DeepLearning4j

DeepLearning4j is a free and open-source deep learning library based on Java that 
provides complete solution for deep learning in various applications like deep pre-
dictive mining and knowledge discovery on CPUs and GPUs (graphics processing 
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units). DeepLearning4j integrates the algorithms of artificial intelligence (AI) and 
techniques that are applicable for cyber forensics, business intelligence, robotic pro-
cess automation (RBA), predictive analysis, network intrusion detection and pre-
vention, face recognition, recommender systems, anomaly detection, regression, 
and many others. DeepLearning4j can import models from the advanced deep learn-
ing frameworks like Keras, Theano, Caffe, and TensorFlow. DeepLearning4j can 
initiate the interface for both Python and Java programming without any compati-
bility problem. The features of DeepLearning4j are based on microservice architec-
ture. It provides scalability on Hadoop for big data and supports GPUs for scalability 
on Amazon Web Services (AWS) cloud. It is based on a distributed architecture with 
multi-threading; provides parallel computing and training and APIs for Java, 
Python, and Scala; and supports CPUs and GPUs, and massive amounts of data can 
be processed using clusters. The libraries and components associated with 
DeepLearning4j are ND4j, JavaCPP, DataVec, and RL4J.  ND4j is the combined 
application of NumPy and Java virtual machine (JVM). ND4j is a library that pro-
vides rapid processing of matrix data, numerical computations, and performance- 
aware execution of multi-dimensional objects including linear algebra, signal 
processing, optimization, gradient descent, transformations, etc. JavaCPP is an 
interface and bridging tool for C++ and Java without ant third-party and intermedi-
ate applications. DataVec is a tool for ETL (extract, transform, and load) which 
facilitates the transformation of raw data to vector format with preprocessing to 
make it companionable for training in machine learning implementations. It sup-
ports binary, videos, images, text, CSV, etc. RL4J is the reinforcement learning for 
Java platforms with the integration of Deep Q-Learning, Asynchronous Actor-Critic 
Agents (A3C), etc.

7.5  Keras

Keras is an open-source neural network library developed by François Chollet, with 
features like fast, modular, and user friendly in Python platform that works on top 
of TensorFlow or Theano. Backend is a library within Keras to handle low-level 
computation as Keras is dedicated to advanced API wrapper. Backend performs the 
low-level computations like convolutions, tensor products with the aid of Theano or 
TensorFlow. It is capable of running on top of Theano, CNTK, or TensorFlow. Keras 
high-level API compiles the model which is designed with optimizer and loss func-
tions and handles training process with fit function. Keras can support many plat-
forms and devices, and it can be deployed in Web browser with .js support, Raspberry 
Pi, iOS with CoreML, Android with TensorFlow Android, and Cloud engine. Keras 
supports parallel data processing, and hence it handles huge volume of data and 
speeds up the training process.
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7.6  Neural Designer

Neural Designer is a deep learning tool which is used to implement analytics algo-
rithms and make it easy to handle. It is designed with a graphical user interface that 
defines the flow of work and gives accurate result. It is easy to handle as there is no 
programming or block diagrams involved. The user interface helps the user and 
instructs the procedure in a well-defined manner. Neural viewer is a visualization 
tool which displays the correct results in the form of exportable charts, tables, and 
pictures. Neural Designer has advanced algorithms that allow the users to construct 
incomparable predictive models. With the help of complicated data preprocessing 
methodology, the calculation of principal components and cleaning of outliers are 
made easy. In Neural Designer, the user can construct the most powerful predictive 
models with the help of various error and regularization methods. In addition to this, 
powerful strategies like Levenberg-Marquardt and quasi-Newton method are 
included to produce more precise computations. It also contains few strategies for 
testing the generalization capabilities of a predictive model. It holds higher process-
ing speed and better memory management with CPU parallelization characteristics 
by means of GPU acceleration with CUDA and OpenMP.

7.7  Torch

Torch (Lua) is a Matlab-like environment for deep and not-so-deep machine learn-
ing solutions with flexible tensor implementation facility. Some of the features auto-
matically compute gradients and hold multi-backend tensor for faster CPU/GPU 
computation, and rapid prototyping is possible as it supports high-level language.

8  Deep Learning Application

8.1  Speech Recognition

Speech recognition utilizes deep learning concepts and becomes the foremost appli-
cation of deep learning by cautiously using its power. In 2010, deep learning makes 
its footprint in the speech recognition application. Gaussian mixture model (GMM) is 
the traditional speech recognition system which is based on hidden Markov models 
(HMMs). Here the speech signal is considered as short-time stationary signal or 
piecewise stationary signal, and hence Markov model is apt for this application. The 
limitation of this method is that it is inefficient for modelling nonlinear functions [20]. 
In contrast to HMMs, neural networks prove its efficiency in discriminative training. 
Neural networks provide better results for short-time signals; when it is continuous 
speech signals, the efficiency is questionable because it is not able to model temporal 
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dependencies for continuous signals. In 2012, Microsoft announced a deep learning-
based novel version of their Microsoft Audio Video Indexing Service (MAVIS). The 
result published by Microsoft clearly showed that deep learning-based application 
reduces word error rate (WER) when compared to Gaussian mixtures [21].

8.2  Deep Learning in HealthCare

Healthcare system is facing a new era by utilizing advanced technologies and provid-
ing right treatment for right patient at right time. Deep learning is the most powerful 
tool that allows a machine to learn from huge volume of data to make decisions. 
Researchers found that processing pharmaceutical information with multilayer neu-
ral networks produces accurate predictive decisions in various clinical applications. 
Deep learning architecture is based on hierarchical learning structure, and it has the 
capacity to integrate heterogeneous data to produce greater generalization. Many 
studies proved that deep learning paved its way toward the next-generation health-
care system that can accommodate billions of patient records to predict diseases, 
personalized prescriptions, clinical trials, and treatment recommendations. Using the 
temporal deep learning approach, Wang et al. have won the Parkinson’s Progression 
Markers Initiative data challenge in identifying the subtypes of Parkinson’s disease 
[9]. The traditional matrix- or vector-based approach is not considered as the best 
method as Parkinson’s disease is vastly progressive and it is difficult to identify the 
disease progression patterns. Moreover, Wang et  al. identified another three 
Parkinson’s disease subtypes using LSTM RNN model, which demonstrates the 
dominance and potential of deep learning models in healthcare issues.

The deep learning architecture applicable for healthcare system mostly falls on 
recurrent neural networks (RNNs) [10], convolutional neural networks (CNNs) [11], 
autoencoders (AEs) [12], and restricted Boltzmann machines (RBMs) [13]. The 
major application of deep learning in healthcare system falls on image processing, 
especially to predict Alzheimer’s disease using magnetic resonance imaging (MRI) 
scans [14, 15]. The risk of osteoarthritis can be detected using CNNs that represent 
low-field knee MRI hierarchically to automatically segment cartilage. Deep learning 
is used to segment multiple sclerosis lesions in multi-channel 3D MRI in order to 
predict malignant and benign breast nodules. Deep learning is being used to process 
electronic health record (EHR) data in the field of laboratory test, diagnosis, and 
medication and for free-text clinical notes. Area under the receiver operating charac-
teristic curve and F-score methodology prove that deep learning accuracy is superior 
than traditional machine learning process [16]. DeepCare, a deep dynamic network, 
is a RNN with long short-term memory (LSTM) hidden units, pooling, and word 
embedding which identifies the current state of illness and predicts the future conse-
quences [17]. Choi et al. [18] have developed Doctor AI model that predicts diagno-
ses and medications using RNNs with gated recurrent unit (GRU). Miotto et al. [19] 
used a three-layer stacked denoising autoencoder (SDA) and proposed a deep patient 
representation from the EHRs to predict risks based on random forest classifiers.
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8.3  Deep Learning in Natural Language Processing

Natural language processing (NLP) is a computational methodology for automatic 
analysis of human language. Research activities in document text and language are 
increasing nowadays in the signal processing community. Deep learning contribu-
tion is in language modelling to give a probability to sequence of linguistic symbol 
or word. Natural language processing (NLP) started in the era of batch processing 
and punch card in that the analysis takes up to 7 minutes [22]. Deep learning algo-
rithms and architectures are doing impressive advancements in the fields of pattern 
recognition. Collobert et al. [23] explained that a deep learning [24] framework can 
perform well in many natural language processing tasks such as semantic role label-
ing (SRL), named-entity recognition (NER), and POS tagging [25]. Following 
Collobert et al., various versions of advanced deep learning-based algorithms have 
evolved to resolve various difficult natural language processing tasks [26–28].

9  Conclusion

Deep learning is a branch of machine learning algorithm that is used to model data 
with the help of architectures consisting of multiple nonlinear transformations. This 
chapter explained the basis for deep learning, and its evolution is discussed with a 
roadmap. The architectures, learning methods, and its applications are elaborated. 
The platforms and their brands are discussed deeply with their applications. The 
general applications and the life-saving applications of deep learning in healthcare 
system are clearly explained. The future of deep learning is very bright, and the 
great thing about deep learning is that it is doing extremely well at dealing with vast 
amount of disparate data that are relevant in current era of smart sensors that collect 
huge amount of information.
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Deep Learning Applications with Python

Nahil Ahmed Hassan , Abhigith Neil Abraham, and Ajeesh Ramanujan

1  Introduction

One of the most desirable features of a programming language used for working 
with the deployment of deep learning models would be the ability for quick proto-
typing with minimal effort. This, along with other myriads of benefits, has made 
Python incredibly popular among the deep learning community. The presence of 
comprehensive frameworks for data preprocessing, visualization, and model devel-
opment within the Python environment has made deep learning workflow simpler 
and also to be executed in a few lines of code.

Python is renowned for its coherent, readable code and is practically unmatched 
in terms of ease of use and clarity, particularly for beginners in the field. The sim-
plicity in programming allows the developers to implement the complex algorithms 
and networks in deep learning without the hassle of knowing the inner working of 
the language. This feature also facilitates faster development and comprehensive 
testing for developing models, which is of prime importance in this domain.

Extensibility is another feature that makes Python suitable for deep learning 
applications. The abundance in the collection of modules and libraries that facilitate 
the various stages in the workflow of a deep learning problem makes the language 
more productive for developers as development time, and coding, decreases sub-
stantially. The excellent compatibility of popular deep learning frameworks like 
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TensorFlow and PyTorch with Python along with the availability of libraries like 
NumPy and SciPy for scientific computation, Matplotlib for visualizations, and 
Scikit-Learn for data analysis makes the language an ideal playground for learning 
and solving deep learning problems.

Being an interpreted language, Python is slower compared to other compiled 
languages like C++ and Java. This limitation concerning the execution time can be 
constraining in circumstances where high performance is a necessity. However, effi-
cient data structures and reduced development time can, to an extent, make up for 
the deficiency in execution time.

The following sections in this chapter will introduce different applications that 
deep learning has had a significant influence on the recent past. Each section com-
prises a brief introduction of the problem, the approaches used to solve them in the 
past, and how deep learning methods have been able to obtain better results. 
Following this, each section will have a full practical Python implementation of the 
problem encompassing the entire workflow for dealing with the challenge.

2  Deep Learning for Face Recognition

2.1  Brief Introduction

Facial recognition is one of the most prominent biometric techniques used for iden-
tity authentication and verification. It is the identification of an individual based on 
the photograph of their face. Facial recognition techniques are extensively used in 
areas like public security, social media, and other commercial domains in daily life. 
A facial recognition system will automatically identify faces present in a still image 
or even a video. The vast increase in the availability of cheap and powerful embed-
ded devices has generated a tremendous rise in face recognition applications and 
research [18, p. 1].

Right from the 1990s, facial recognition generated immense scientific curiosity 
among the computer vision researchers. One of the first methods in face recognition 
to attain popularity was the Eigenface approach [38]. But this approach was unable 
to address the uncontrollable variations in faces from the model’s assumptions. This 
disadvantage led to the emergence of local feature-based models like Gabor [28] 
and LBP [2], which overcame the weaknesses of the previous models through local 
filtering. However, all these works struggled with sophisticated variations in facial 
appearance.

Deep learning models, especially convolutional neural networks (CNNs), gained 
immense popularity after AlexNet [26] won the ImageNet competition. The ability 
of CNNs to capture and learn various representation levels at different abstractions 
provides strong invariance to different facial appearance variations. In 2014, 
DeepFace [37] was able to achieve near human-level performance on the LFW [16] 
benchmark dataset with a 9-layer CNN trained using a dataset containing 4 million 
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facial images. Following this, several deep learning-based research on facial recog-
nition arose, which eventually led to a tremendous improvement in accuracy over a 
short period. VGGFace [33], VGGFace2 [5], and FaceNet [35] are some of the other 
prominent works in facial recognition which have been able to generate state-of- 
the-art results.

2.2  Datasets

The presence of a large-scale database is a necessary condition for the effective 
working of a facial recognition system. With saturation in the performance over 
simple databases like LFW [16], researchers started developing large-scale complex 
databases for obtaining better results. Most of the early state-of-the-art works like 
DeepFace [37] and FaceNet [35] were trained using large-scale private databases. 
This situation led to researchers being unable to reproduce the results these works 
attained or to compare their models due to lack of public datasets.

CASIA-Webface [42] was the first exhaustively used public dataset for facial 
recognition consisting of 0.5 M images of 10,000 celebrities. More and more public 
datasets with a large number of images for training deep models made an appear-
ance over time. Datasets like MS-Celeb-1 M [14], VGGFace2 [5] and MegaFace 
[23], consist of over 1 M images and are extensively used for facial recognition 
research.

2.3  Practical Example

In this section, a ResNet50 [15, p.775] model trained using the VGGFace2 dataset 
is used to perform facial recognition. The authors of VGGFace2 have open-sourced 
their models and have released implementations for popular frameworks like Caffe 
and PyTorch, but not for TensorFlow or Keras. The keras-vggface [29] is an open- 
source python-based library that has implemented VGGFace and VGGFace2 pre-
trained models in Keras. It also provides various utility functions for preprocessing 
images and decoding predictions.

The library can be installed using the pip command.

 

MTCNN or “multi-task cascaded convolutional neural network” [19] is one of 
the popularly used models for face detection within images, which has achieved 
excellent results. The mtcnn [6] library in Python loads the Keras implementation 
of the MTCNN model into the Python program.

This can be installed using the pip command as well.
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On the successful installation of these libraries, the necessary libraries are 
imported.

 

Now a function for detecting faces from an image should be implemented. The 
function will take two parameters, namely, img and req_size, as arguments. The 
img argument requires the image array to be used for face extraction, and the req_
size parameter specifies the size to which the extracted face image must be resized. 
For using the mtcnn library, we must instantiate the network by calling the 
MTCNN() constructor. The mtcnn library provides a utility function called detect_
faces(), which allows direct detection of faces from an image. This function returns 
a list of JSON objects where the keys of these objects are “box,” “confidence,” and 
“keypoints.” The values of the “box” JSON object will provide us with the coordi-
nates of the bounding box in the form [x, y, width, height]. These coordinates are 
used to extract the face for detection from the image.

 

Now, we choose an image of actress Emma Atkins. Let the input image be named 
“emma-atkins.jpg” as shown in Fig. 1. The image is loaded into a NumPy array 
using the plt.imread() function. This array along with the required size of (224,224) 
is passed on as arguments to the function call for detection of the face from the image.
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Now that the face has been extracted from the image loaded, facial recognition is 
carried out on the output photograph in Fig. 1. For this, the pretrained ResNet50 
model is loaded using the keras-vggface library. The VGGFace() constructor from 
the library is called with the model parameter set to “resnet50” to instantiate the 
VGGFace model.

 

Fig. 1 Input image along with extracted output image
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The output of the above code snippet specifies that there are 8631 neurons in the 
final dense layer of the VGGModel. This observation is in accordance with the fact 
that the VGGFace2 models were trained using the 8631 output classes in the 
MS-Celeb-1 M dataset.

Following this, two utility functions, preprocess_input and decode_predic-
tions, have to be imported from the keras-vggface library. The preprocess_input 
scales the pixel values of the image in the same way the data was scaled during the 
training of the VGGFace model. After the extracted face has been preprocessed 
using the preprocess_input function, the identity of the image is predicted using the 
model.predict() function. This returns a NumPy array that contains the output 
probability values of each of the 8631 output neurons in the final dense layer. The 
decode_predictions function maps this NumPy array to their corresponding celeb-
rity name label and also fetches the top five celebrities with the highest 
probabilities.

 

It can be seen that the pretrained ResNet50 model was able to correctly identify 
the face in the image as that of Emma Atkins with a probability of 98.658%.

To understand how the features are extracted from an input image, it is intuitive 
to visualize the convolutional neural network’s intermediate outputs. These visual-
izations are useful in understanding how successive convolutional layers transform 
their input and what each filter does to the input image that the layer receives.
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Figure 2 shows the visualizations of the intermediate outputs of the first two 
convolutional layers of the pretrained VGGFace model when the input image is fed 
forward into it. It can be inferred that the features extracted by a particular layer 
become more and more abstract to the depth of the layer, i.e., the first convolution 
layer retains almost all the information present in the input image, but careful analy-
sis of the intermediate outputs of the last layers reveals them to be much less capa-
ble of being interpreted and carrying less information pertinent to the input image 
fed into the network.

Figure 3 depicts the output from the layer “conv5_3_3x3,” which consists of 512 
filters, that is placed at the tail end of the ResNet50 network used in this example. This 
intermediate output carries very little information from the input image we fed for-
ward but has increasingly more information related to the class or target label of the 
picture. The networks continuously filter out the unnecessary features and focus more 
on the useful information within the image, which helps the network in classifying.

3  Deep Learning for Fingerprint Recognition

3.1  Brief Introduction

Fingerprint recognition refers to the identification of an individual based on the 
comparison of two fingerprints. Fingerprint-based identification is considered one 
of the most reliable biometric techniques since it is virtually impossible to forge a 

Fig. 2 (a, b) Visualization of all the channels of the first two convolutional layers of the network
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signature of a particular identity. The technique is widely used in the field of foren-
sics, airport security, etc. The automated fingerprint identification system is a sys-
tem that utilizes digital image processing capabilities to obtain, store, and analyze 
fingerprint data. Such a system also allows the matching of one fingerprint with 
another for recognition and identification purposes. With the advent of novel meth-
ods and techniques to match fingerprints without any kind of human assistance, 
fingerprint recognition has had significant improvement over its former iterations.

Many of the solutions and research upon the fingerprint recognition problem 
revolve around the regular minutiae-based matching. There have also been works 
based upon the construction of hand-crafted features followed by the pairing of the 
fingerprint. These methods require extensive data preprocessing and the usage of 
several hand-crafted features, which may not be optimal while dealing with datasets 
containing a large number of images and output classes.

Deep learning methods, in the recent past, have had great success in the tasks of 
image recognition and classification. Especially convolutional neural networks 
(CNNs) have been able to extract features that far outperform the models based 
upon conventional hand-made features. There have been numerous works where 
CNNs have been applied to the task of fingerprint recognition which has been able 
to produce excellent results. Shrein [45] used a network comprising five convolu-
tion layers to produce 95.9% accuracy on the NIST-DB4 dataset. Other similar 
works upon fingerprint recognition include [9, 34], etc.

3.2  Datasets

Fingerprint recognition datasets consist of fingerprint data obtained from live-scan 
sensors and digitized fingerprint impressions from documents. The FVC databases 
[11] are databases that were created for each FVC competition that was organized 

Fig. 3 Visualization of all the channels of the layer “conv5_3_3x3”
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in the years 2000, 2002, 2004, and 2006. These datasets were obtained using differ-
ent sensors like low-cost optical sensors, low-cost capacitive sensors, etc. Another 
popular set of public datasets used for fingerprint recognition are the ones released 
by the National Institute of Standards and Technology (NIST). NIST has released 
several special biometric databases like NIST-DB4, NIST-DB9, and NIST-DB14, 
where each one is focused upon a different challenge pertinent to recognition. There 
have also been other prominent public datasets that are able to incorporate the traits 
acquired by live-scan sensors like the MCYT Bimodal Database [32], BIOMET 
Multimodal Database [12], and several others.

3.3  Practical Example

In this section, a Siamese convolutional neural network [24] is used to perform fin-
gerprint recognition. The network comprises identical CNNs that share the same 
weights. A pair of images of the same class or different classes is provided as input 
to the training of the network. The similarity criterion of the input image pairs is 
learned by the network with the aid of a contrastive loss function. It would be much 
less computationally expensive to train a Siamese CNN over a conventional CNN 
from scratch for a dataset of average size.

The training of the model is done using the Sokoto Coventry Fingerprint Dataset 
[36]. The dataset consists of 6000 fingerprint images from 600 African subjects. The 
dataset also consists of synthetically altered versions of these fingerprints. A sample 
fingerprint image of a random identity along with its altered versions is shown in 
Fig. 4. The dataset is freely available for research purposes at https://www.kaggle.
com/ruizgara/socofing. The altered images in the dataset have been classified into 
three based on the difficulty in the parameter settings used for the alteration, namely, 
easy, medium, and hard.

To begin with, all the necessary libraries are imported. The imgaug is a python 
library that supports a wide range of augmentation techniques on images. The train_
test_split function in the sklearn library is used to split an array into train and test 
subsets randomly.

Fig. 4 Sample fingerprint along with its altered versions and their corresponding labels
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Once the libraries are imported, the dataset has to be loaded onto the program. The 
synthetically altered images and the real ones with their corresponding labels are 
loaded using the np.load() function. The labels are loaded as a set of NumPy arrays of 
the form [subject_id, gender, left/right, finger]. These label attributes are extracted 
from the filename of each image. All the synthetically altered pictures and their corre-
sponding labels are grouped into NumPy arrays x_data and y_data, respectively. 
These NumPy arrays are provided as input into the train_test_split() function to split 
these fingerprint images and their corresponding labels into training and validation sets.

 

In order to create a mapping between the index of the images contained in the 
x_real dataset and their corresponding labels, a dictionary is created. This will 
come in handy while preparing batches of data for training.

Since Siamese CNN is being used, batches of images need to be generated for 
training. To implement this, a custom data generator class of type tf.keras.utils.
Sequence is defined to specify how each batch of data will be generated from the 
dataset for training. The batch of images to be fed into the Siamese network must be 
created in such a way that a pair of images is chosen at random from the batch and 
its corresponding target variable Yi is given an appropriate value based on whether 
the pair of fingerprints is of the same identity or not. The __getitem__ function of 
the class allows us to implement this. This function also enables us to implement the 
various augmentation techniques provided by the imgaug library on the batch gen-
erated allowing the model to be less prone to overfitting. The on_epoch_end 
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function is used to shuffle the batch of images at the end of each epoch which will 
eventually make the model much more robust. For further explanation of the func-
tions used, refer to the tf.keras.utils.Sequence official documentation.
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The Siamese network defined has two identical CNNs with the same weights. 
Each CNN is composed of two sets of a block of a convolution layer with 32 filters 
of dimension (3,3) followed by a max pool layer with a filter of dimension (2,2) to 
reduce the dimensionality of the image. The input to each of these networks is fin-
gerprint images of size (96*96). Once a pair of images is passed through these 
subnetworks, the corresponding image feature tensors extracted are subtracted. 
They are then passed on to another block of a convolution layer, followed by a max 
pool layer with the same previous configurations. The Flatten layer converts the (n 
* n) dimensional image to a vector of dimensions (n2 * 1). The following fully con-
nected layer takes this (n2 * 1) dimensional vector as input with a ReLU activation. 
Finally, the Dense layer is connected to the final layer, which consists of a single 
neuron and a softmax activation function to produce the final output. The model 
produces an output of 1 if the pair of fingerprints belongs to the same identity else 
produces 0. The architecture of the proposed model is displayed in the output using 
the model.summary() function.
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Now that both the model and the data have been set up as required, the training 
of the network can be done using the model.fit() function with the training and vali-
dation objects of the custom data generator class passed as parameters. The number 
of epochs is set to 10.

 

At the end of ten epochs, the Siamese CNN achieves a training accuracy of 
97.87% and a validation accuracy of 98.47%. Now, the results are plotted using the 
history callback provided by Keras. The callback keeps track of various metrics like 
the loss and accuracy for both training and validation datasets. The history object is 
returned when the model.fit() function is called upon. The resultant loss and accu-
racy curves are shown in Fig. 5 (Fig. 6).

 

Deep Learning Applications with Python



36

In order to test the Siamese CNN trained in this example, a random fingerprint 
will be chosen from the validation set, and a couple of pairs of images will be cre-
ated from the chosen image with one pair belonging to the same identity while the 
other with another random identity. Both these pairs are fed forward into the net-
work, and the corresponding results are plotted. The model produced an output of 1 
for the pair of fingerprints where the identities matched and 0 for the one which didn’t.

Fig. 5 Training and validation accuracy and loss curves

Fig. 6 Plot of the random image selected along with both its matched and unmatched pairs. The 
model output is also shown alongside each fingerprint
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In order to visualize the results obtained from the trained model, the intermediate 
outputs of convolutional layers from the Siamese CNN are shown in the following 
figures. Figures 7 and 8 visualize the intermediate outputs from the convolutional 
layers in the subnetworks when the random fingerprint and the matched fingerprint 
obtained from the last code snippet are fed forward into the Siamese network as a 
pair. Figure 9 shows the activations of the rest of the network after the correspond-
ing image feature tensors are obtained from their respective subnetworks.

4  Deep Learning for Character Recognition

4.1  Brief Introduction

Character recognition is the problem of acquiring character in a text and converting 
it into a digitized format. This involves the detection of characters from paper docu-
ments, touch screen devices, scanned documents, etc. It is also one of the earlier 
tasks since the advent of computer vision. Character recognition techniques are 
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Fig. 7 Intermediate outputs from the convolutional layers in the subnetwork when the random 
fingerprint chosen is fed forward

Fig. 8 Intermediate outputs from the convolutional layers in the subnetwork when the matched 
fingerprint is fed forward

Fig. 9 (a) Activation from the subtract layer after the corresponding image feature tensors are 
obtained from the subnetworks (b) Intermediate output from the convolution layer following the 
subtract layer
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widely used along with banking, legal, and other industries. Once the detected char-
acters are converted to machine-readable form, you can export the data into sup-
ported file formats for editing or processing the collected data for further use. Even 
though several works have been able to achieve admirable results, this recognition 
task remains one of the most challenging due to the presence of its many variations 
like different writing styles, noise, and other factors.

The character recognition problem can be broken down into its subdomains, 
digit recognition, and letter recognition. The combination of machine learning 
approaches like support vector machines (SVM), random forests (RF), k nearest 
neighbors (kNN), and decision trees (DT), combined with image classification tech-
niques, rooted for the progress of character recognition in the past decade.

These traditional machine learning-based works often provide limited precision 
in regard to pattern recognition tasks. Deep learning models, since its advent, espe-
cially CNNs have been able to alleviate these shortcomings and produce better 
accurate solutions. The ability of CNNs to be able to extract highly representative 
image features without the manual tuning of the network makes them highly desir-
able for character recognition tasks. This has led to a substantial increase in research 
works trying to incorporate deep learning models to tackle character recognition for 
various languages [1, 7] and their efforts have been able to surpass the results of 
former iterations.

4.2  Datasets

The character recognition problem has a substantial number of good benchmarks 
for analyzing various approaches and techniques. The most popular among them 
would be the MNIST [27, p. 2287] dataset. The MNIST dataset, which is a subset 
of the database known as the NIST (National Institute of Standards and Technology) 
Special Database 19, is an easily accessible public dataset consisting of 60,000 gray 
scale images of handwritten digits from 0 to 9. Because of the uncomplicated nature 
of the dataset, most deep learning models and CNNs have been able to achieve 
incredibly high accuracy on it.

The EMNIST [8, pp.2922–2924] dataset is another dataset derived from the 
NIST Special Database 19. This dataset directly matches the image specifications 
and dataset structure of the MNIST dataset. However, the dataset is much more 
challenging in terms of the interclass similarities and the larger number of output 
classes. Also, the dataset contains various subsets where each one addresses a dif-
ferent challenge for the researchers. Some examples from the EMNIST dataset are 
plotted in Fig. 10.

There are also several other datasets used for recognition based upon different 
languages. One of the most exhaustively used regional datasets is the Devanagari 
Handwritten Character Dataset [1], a dataset comprising about 1800 handwritten 
Devanagari characters. Other language datasets like Chars74K [10] and Chinese 
characters [44] are also extensively used for recognition tasks.
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4.3  Practical Example

As mentioned in the prior subsection, the entire EMNIST dataset is composed of 
various subsets to address different problems associated with the dataset. In this 
example, the EMNIST balanced dataset is used to perform character recognition. 
This 47-class dataset has a fair subset of all the different classes, unlike the complete 
EMNIST dataset. The following code snippet imports all the necessary libraries. The 
TensorFlow dataset library enables users to load a collection of public research data-
sets into the program with ease without the hassle of writing a different script. This 
package is used to load the balanced version of the EMNIST dataset onto the program.

 

Fig. 10 Random examples from the EMNIST balanced dataset
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Now the tensorflow_datsasets package is used to load the dataset onto the pro-
gram. The tfds.load() function downloads and prepares the dataset from the source 
and loads it to the program. The details of the package and its various helper func-
tions can be found in the official TensorFlow documentation.

 

Now that the dataset has been loaded into separate training and test sets, prepro-
cessing of these has to be conducted. Since the pixel values range from 0 to 255, they 
are converted to the range of 0–1 by dividing the whole NumPy array by 255. This 
maneuver will further produce a reduction in the magnitude of computation. Also, all 
the EMNIST images by default are inverted horizontally and rotated by 90 degrees. 
So the np.transpose() operation has to be done on all the pictures in both the training 
and test set to set them straight. The result of these operations can be seen in Fig. 11.

Fig. 11 Before and after inversion and rotation
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Also, the label must be preprocessed in such a way that the label array must be 
converted into a binary class matrix. This can be performed using the tf.keras.utils.
to_categorical function which will return a binary matrix representation of the input.

 

The next step is to model the CNN required for this example. Since the EMNIST 
dataset is more complicated than the MNIST dataset due to the intrinsic variations, 
a deeper CNN will be necessary to capture the features from them for better predic-
tion. The network is modeled using the Sequential model provided by Keras. Since 
the dataset comprises multiple classes, the categorical_crossentropy loss function, 
along with the Adamax optimizer, will be used to compile the model. The follow-
ing lines of code will model the network for this example.
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Once the model is defined, it can be trained using the model.fit() function. The 
training and testing images, along with their labels, are passed to the function. The 
batch size, along with the number of epochs for training, is also specified as 
arguments.

 

The model on training for 20 epochs attains a training accuracy of 90.03% and a 
validation accuracy of 89.78%. The training and validation accuracy curves are 
plotted using the history callback returned. The resultant graphs produced are shown 
in Fig. 12.
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Now that the model is trained, testing can be conducted by taking a random 
image from the pile of test images and feeding it forward through the network. The 
index of a random image is chosen by using the randrange function provided by the 
random module. The model .predict() function is used to produce the prediction of 
the network. The np.argmax() function is used to obtain the index of the class with 
the largest probability.

 

The random image, along with the predicted class label, is plotted using the mat-
plotlib library in the above code fragment. The result is shown in Fig. 13.

Figure 14 shows the intermediate outputs produced by the first three convolu-
tional layers in the network on feed forwarding the random image that was chosen 
in the last code snippet. It is observed that the input image features become much 
less abstract as they move deeper into the CNN.

5  Deep Learning for Smart Grids

5.1  Brief Introduction

Smart grid technology evolved from a system of over-a-century-old conventional 
grids. While standard grids can only provide one-way communication from the gen-
eration to the consumer, smart grids can provide two-way communication. The 

Fig. 12 Training and validation accuracy and loss curves
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Fig. 13 Random image chosen for prediction along with the predicted class label

Fig. 14 (a–c) Intermediate outputs from the first three convolutional layers on feed forwarding the 
random image chosen earlier for testing
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communication network can also aggregate the actions of all the users and effi-
ciently provide the whole system with lower losses, high quality, and more reliabil-
ity, along with environmental sustainability and economic efficiency. The arrival of 
smart grids caused an increase in the use of digital information, more control fea-
tures, and more requirements for the grid system analytics.

Deep learning has had significant success in load forecasting, microgrid manage-
ment, demand response, fault analysis, etc. in a smart grid. Application-oriented 
deep learning systems can be provided for these problems, thus, achieving more 
accuracy and reliability. One of the most popular terms related to smart grids is 
smart metering. Smart metering is the technology that records consumption of elec-
tric energy, and the information is updated to the supplier on a regular basis. Typical 
smart meters record energy on an hourly or more frequent basis and report at least 
daily. Deep learning techniques can be applied to forecast the energy consumption 
by smart meters in residential households by taking into consideration the weather, 
consumer activity pattern, and other statistics.

Early works in the application of deep learning in smart grids used to include 
either one of CNNs(Convolutional Neural Networks), K-means, LSTMs (Long 
Short Term Memory), GRUs(Gated Recurrent Units) or a combination of these for 
the forecasting of hourly or daily loads [30, 43]. The addition of renewable resources 
and customer participation results in an uncertain and complex environment. To 
ensure secure and stable operation of power systems, DRL (deep reinforcement 
learning) can be used for computing accurate control schemes for decision and con-
trol problems [31, 41].

5.2  Datasets

One of the most accessible datasets for smart grids is the smart meters in London 
data (“Smart Meters In London”, 2020), which contains the energy consumption 
readings for a sample of 5567 households in London City which contributed to the 
Low Carbon London Project during the period from November 2011 to February 
2014. The smart meter data is correlated only with electricity consumption.

Other popular datasets include the Residential Energy Consumption Survey 
dataset [40], which contains energy characteristics on the housing unit, usage pat-
terns, and household demographics. Another one is the Reference Energy 
Disaggregation dataset [25], which consists of power data collected across several 
weeks among six different homes and main power supply characteristics like high- 
frequency current/voltage data for two of these homes.
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5.3  Practical Example

In this example, a deep learning model is used to predict the average energy con-
sumption in kWh from a time series data. The model is trained using the dataset 
obtained from smart meters in London mentioned in the prior subsection. This data-
set contains information regarding energy consumption per household, across vari-
ous time durations. The data also includes information on the hourly and daily 
weather conditions, and this must be taken into consideration for the preparation of 
the data frame.

Energy consumption data is taken per day per household. Doing so helps normal-
ize data for the household count, which tends to be inconsistent across the dataset. 
The relationships between weather conditions and energy consumption are explored 
by creating clusters for the weather data and then adding weather identifiers to day- 
level data. The UK holiday data is added as an indicator to the day-level data, and 
the time series data is then predicted using a GRU (gated recurrent unit).

Initially, all the necessary libraries are imported.

 

The predictions are made for energy demand in the future. Therefore only the 
energy sum, i.e., total energy use per day for a given household, is taken. The data 
is prepared according to these needs from the entire dataset using the following 
code snippet.
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The code will create a file named “energy.csv” with four columns: index, day, 
LC Lid, and energy sum. It can be observed from the dataset that the energy data 
collected across different days have different numbers of households. This observa-
tion can be due to the phenomenon of the increased acquiring of smart meters in 
London. It could lead to a false interpretation that the energy for a particular day 
might be high when there could be a chance that the data was only collected for 
more houses. For verifying this observation, house count for each day is observed.

 

The data collection across households is inconsistent. Therefore “energy per 
household” will be the target to predict rather than energy alone.

 

The daily average energy is now obtained:

 

The daily level of weather information containing 32 columns is taken using the 
dark sky API in the dataset. Only the relevant attributes from the weather data are 
chosen, and any rows containing null values are also dropped.
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The weather data is now merged with energy data to analyze the relationship 
between weather conditions and electricity consumption.

 

The correlation matrix contains the columns of the weather variables, which has 
a significant correlation with energy consumption.

 

Weather clusters have to be created to see if the weather of the day can be defined 
based on features like temperature and precipitation and avoid unnecessary infor-
mation in the weather data. Before creating clusters, the values must be normalized 
into the feature range of 0–1. The normalization is achieved using the 
MinMaxScaler() provided by the sklearn library. Once the values are normalized, 
the clusters can be created using the KMeans function, also supplied by the same 
library.

 

The UK Bank holidays data is now loaded to set as an indicator.

 

A holiday indicator is now created in the weather energy data, and values of the 
series data are obtained from the data frame, as shown below.

 

The series of values need to be transformed into a supervised learning problem 
for passing into the deep learning model for prediction. This could be done by tak-
ing a group of samples from the rows and tabulating them into columns, and the 
value in the last column is set as the target to be predicted. The “convert_to_super-
vised” function is defined and applied to the dataset, and the first five rows of the 
supervised data are displayed.
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After reindexing the supervised data with weather cluster data and holiday index, 
the data frame is converted to a series of values.

 

The data is now split into train and test datasets using sklearn’s train_test_split 
function following the transformation of the data to a feature range between 0 and 1 
using the MinMaxScaler function.

 

The model architecture is defined in the following steps. The input is passed 
through GRU (gated recurrent units) layer after passing through the input layer and 
then finally through a dense layer. The loss function used here is MSE (mean 
squared error) and is popularly used for time series applications.
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Now the data is trained over the model for 50 epochs, with a batch size of 72. The 
training loss is calculated from the training set and plotted using the pyplot module 
of matplotlib. The result is shown in Fig. 15

 

The predictions are made as shown, and RMSE (root mean square error) is cal-
culated from the actual and predicted values.

 

The actual average energy and predicted values are plotted as shown in Fig. 16.
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Fig. 16 Actual vs. predicted energy in KwH

Fig. 15 Training loss curve

N. A. Hassan et al.



53

6  Deep Learning in Renewable Energy 
and Sustainable Development

6.1  Brief Introduction

As energy production is needed on a much larger scale, optimizing the usage and 
output of currently available energy sources is a big concern. Solar and wind energy, 
being the two primary sources of renewable energy, are variable. The challenges in 
forming an optimal renewable energy system are the instability and the limit in 
power output. Deep learning  these days  is extensively used  in the forecasting of 
production, usage, etc. in the energy system.

One of the widely solved problems in the renewable energy domain using deep 
learning is forecasting. The typical machine learning methods involved for forecast-
ing are done with the help of linear regression techniques and artificial neural net-
works (ANN). Such techniques include the usage of a lot of statistical aspects, 
including long short-term memory (LSTM), gated recurrent unit (GRU), 
AutoEncoder LSTM (Auto-LSTM), and a newly proposed technique known as 
Auto-GRU [3, 13]. The LSTM-based approach is a modification to RNNs (recurrent 
neural networks) to help resolve the vanishing gradient problem. LSTM has a mem-
ory cell that allows it to store information in memory for a long time, thus facilitat-
ing the learning process in the feedback loops.

While forecasting renewable energy, a wide variety of factors and approaches 
can be taken into consideration. Early work in forecasting the wind energy has been 
done by predicting the wind speed and mapping to wind power using given power 
curves [46]. This involves predicting the rate of different wind turbines situated on 
wind farms. While considering solar energy, forecasting can be done by using the 
knowledge of the Sun’s path, the atmospheric conditions, the scattering processes, 
and other properties of the photovoltaic cells used in the solar farm to capture energy 
[17]. The output is highly dependent on the climate, and summer seasons are likely 
to attract more solar energy. Also, the abundance of this resource is only during a 
few hours of the day.

6.2  Datasets

The California renewable energy production dataset (“California Renewable 
Production 2010-2018”, 2020) consists of hourly metering of the power production 
in California between 2010 and 2018. It consists of the power reports from various 
power sources on a megawatt-scale. Familiar sources include geothermal, small 
hydro, biomass, biogas, wind, solar PV (photovoltaics), and solar thermal. The 
source of the data is from the California ISO renewable and emission reports [4].

The International Energy Statistics (International Energy Statistics, 2020) pro-
vides energy statistics on various levels, and the data about the new and renewable 
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sources of energy, like wind and solar energy, can be extracted from it. This dataset 
was obtained by the UN Statistics Division [39].

6.3  Practical Example

In this section, a deep learning model is trained to predict the solar photovoltaic 
output. A univariate time series prediction is made using LSTM [47]. The model is 
trained using California Renewable Production 2010–2018 dataset. It consists of 
hourly metered power production details from various power sources in a CSV 
(comma-separated values) format. Among these, the solar photovoltaic data is con-
sidered. The data is converted to rows containing batches of the series, and the 
model learns to predict the next term in the series [48]. We use MSE (mean square 
error), which is the most common loss function used for regression problems. MSE 
calculates the sum of the square of the distance between the actual and target 
 values [49].

The necessary libraries are imported. Pandas is an open-source python library 
which is useful in data analysis and manipulation tasks. The sklearn library is used 
to do a feature transformation to normalize the data values in a range of 0–1 [50].

 

After importing the necessary libraries, the data is loaded using the read_csv 
function. The “usecols” parameter here takes an array of only the required columns 
to be taken into the data frame. The obtained data is now sorted according to time-
stamp and is filtered by notna() function to drop the rows containing NaN or null 
values. The first five rows of the data frame can be obtained using the head() 
function.
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The value property returns the values in the data frame. The column containing 
the univariate time series data is retrieved and ensured if all the data is of the same 
type float32, using the astype function. After this, the values are normalized into 
features ranging from 0 to 1.

 

Before training the model, preprocessing is done to the data to convert the series 
data to supervised data. This process is done by taking a particular group of samples 
and tabulating all of them in the same row so that the last column is the sample that 
needs to be predicted. The normalized data obtained is then passed on to this func-
tion to return a data frame in the form which enables supervised learning.
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Now that the data is prepared in the form desired, the train and test set splitting 
is done using train_test_split function. Both the train and test sets are reshaped for 
matching the size for training parameters.

 

The model architecture can now be defined. An LSTM layer followed with two 
dense layers is added. Mean square error is the preferred and most popular loss function 
for regression problems. The model is then run for 50 epochs with a batch size of 20.

 

At the end of 50 epochs, the training loss is in the range of 9.3 * 10−4. The history 
callback returned by the model.fit() function is used to plot the training loss curve. 
The callback values are plotted using the pyplot function of the matplotlib 
library. The resultant loss curve is shown in Fig. 17.

 

Fig. 17 Training loss curve
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The model can now predict the test set using the model.predict() function, and 
this returns a list containing all the predicted values. The predicted and actual values 
are passed on to the inverse transform function to convert them back from their 
normalized values to real-world data. The RMSE is calculated to analyze how well 
the model performed.

 

 

A plot between the predicted and actual power values is plotted using the pyplot 
function to visualize the results which is shown in Fig. 18.

 

7  Conclusion

The applications of deep learning extend to many aspects of daily life and are not 
confined to the domains of computer science alone. From face recognition to the 
smart grid domain, deep learning has proved itself to be an effective tool. In this 
chapter, we have discussed how the usage of a high-level language like Python and 
its compatibility with deep learning frameworks and its collection of utility libraries 
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facilitates practitioners in the development process. We also saw how deep learning 
has affected different applications and domains and walked through a complete 
Python implementation comprehensively covering the different steps in creating a 
solution in each subsection.
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Deep Learning for Character Recognition

B. R. Kavitha, Govindaraj Ramya, and P. Kumaresan

1  Character Recognition

Character recognition is a computer vision application which deals with how a 
machine interprets a text which is presented as an image. Machines understand text 
by their unicode formats. Every language has a set of characters which are identified 
by a computer by their unicode format. But what if the text is presented as an image? 
An image is represented by a collection of pixel values. All that a machine could get 
from the image is pixel values. We need algorithms to determine what is in the 
image, whether an animal or text or human face or car. Recognizing the text that is 
present in the image is one of the challenging computer vision tasks.

Text can be present in documents that are scanned or captured as photo or in 
natural images, name boards, number plates, postcards, and postal covers which 
may be printed, typed, or handwritten characters in Fig. 1.

The conversion of text images to machine-encoded text is referred as optical 
character recognition (OCR). OCR is classified into two categories: online and 
offline OCRs. Online OCRs generally refer to online recognition of handwritten 
characters. The online handwriting would be acquired through the strokes written 
on a digital surface using a special pen. Offline character recognition refers to any 
printed, typed, or handwritten text which is captured as image either by scanning or 
taking a photo. The size of online handwritten data would be less when compared to 
offline since offline data consist of pixel intensities.

Scene text recognition refers to identification of text present in natural images. 
Firstly, the text in the scene should be localized, and then the script of the language 
of the text should be determined. It may be a single language or multi-lingual. 
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English text and numerals are the mostly seen language in natural images. Secondly, 
the word or words should be segmented, or the individual characters should be seg-
mented. In case of words, the complete word itself should be recognized using dic-
tionary, and for characters, each character should be recognized. For character 
recognition, in case of natural images, it has to identify the text area, segment each 
character and recognize the characters, and present it in a machine understandable 
format. This chapter explains the recognition of isolated individual characters by 
implementing convolutional neural networks, one of the most prominent deep learn-
ing methods.

Applications Character recognition is an application which is widely used these 
days with the evolution of more and more gadgets. For example, Google Lens is a 
well-known application which captures the text as image and converts it into a 
machine-encoded format which can further be translated to any native language. As 
we are moving toward smart cities and more Internet-connected things, we need to 
automate the understanding of text in many scenarios at a faster pace. An automated 
vehicle should be able to read the name boards in addition to the sign boards and act 
accordingly. Or a person who does not know the native language of a particular 
place can just scan the text and translate it to a language which he/she under-
stands easily.

Fig. 1 Sample images containing text
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1.1  Challenges in Character Recognition

The common challenges are variations in viewpoint, scale, deformations, light 
intensities, background clutter, and occlusion.

In case of document recognition, data acquisition could have happened at differ-
ent conditions such as illuminance, captured devices, distance, angle, scale, etc.

The document images may be obtained from a high-quality scanner or from a 
mobile camera. The quality of both the images may vary as shown in Fig. 2. Earlier, 
to digitize a paper document, the document needs to be scanned by a scanner with 
high resolution. The present scenario is a document can be scanned using mobile 
devices such as smart phones or tablets. It can be directly taken as images or using 
some specialized mobile applications like Adobe scanner. The images obtained 
from high-quality scanners would have uniform lighting taken under a flat surface 
without any distortions.

The images from a smart phone or digital camera may vary in any of the follow-
ing conditions:

View Point The text image could have been captured from different angles and 
from varied distances. The image may be zoomed in or taken from a longer shot.

Size The size of the text may be smaller or bigger in real which when captured as 
image would result in text of different scaling.

Fig. 2 (a) Scanned document (b) Document taken as photo
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Warping In case of text documents, the paper may be crumpled leading to dis-
torted image.

Cluttered Background The background of the document images may have clutter 
or taken in an inconsistent nonplanar background as compared to a document 
scanned from a scanner.

Lighting Conditions The external lighting from direct sunlight, flashlights, and 
other lighting sources affects the image quality to an extent. Uneven lighting or poor 
lighting will result in low-quality images where the text may not be clear.

Font Type The same text in two different images could have different font types. In 
case of handwritten text, there would be variations in the handwriting of every 
individual.

2  Deep Learning Approach on Character Recognition

Deep learning has proved its effect on many computer vision applications success-
fully with almost or in some cases even better than human accuracy. Lots of work 
have happened till last decade using traditional machine learning approaches. The 
core component of any machine learning is feature extraction which is done by 
many algorithms such as edge detector, SIFT, SURF, and ORB. This feature extrac-
tion is automated in deep learning method. Deep learning is commonly referred as 
simulation of the learning pattern of the human brain. Given a set of examples, the 
features are automatically inferred from them in deep learning.

Though other deep learning models work fine for some of the computer vision 
applications, convolutional neural networks work the best for many of them and 
character recognition as well. LeNet5 which was developed by Yann LeCun was the 
earliest CNN for recognition of handwritten digits [1, 2]. In 2012, a multi-column 
deep neural network (MCDNN) was developed by Ciregan et al. [3] and was tested 
on numbers, Latin characters, and Chinese characters. But CNNs became popular 
only after its breakthrough results in ImageNet competition in 2012 [4]. Researchers 
started looking at CNN as the best solution and tried every computer vision applica-
tion with CNN.

2.1  Convolutional Neural Networks

CNNs comprise a stack of one or more of the following layers: convolution layer 
(conv layer), pooling layer (pool layer), and fully connected layer (fc layer). Every 
conv layer would be passed with a set of filters, i.e., the features, which are searched 
in every training data and saved as feature maps. The initial layers would look for 
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simple geometric shapes such as lines, curves, and edges. The consecutive layers 
would look for complex components such as circles and squares.

Pooling layer would decrease the number of computations by downsizing the 
number of pixels. This would take the summary of a part of the region which deter-
mines whether a feature is present in that region or not. In max pooling technique, 
the pixel which has a maximum value in the neighborhood of the n x n window is 
taken, whereas in average pooling technique, the average of all the pixels in the 
neighborhood of n x n window is taken.

FC layers are similar to hidden layers of normal neural networks which flattens 
the region-based values obtained from convolution and pooling layers as a single 
vector. These layers would look for the combinations of the features identified in 
initial layers. Suppose in English language two perpendicular lines represent the 
letter L. But T also has two perpendicular lines. Here, the position or location of 
these two lines would also help us to determine the character which is also a feature. 
When these features are present in an image, it is recognized as L or T.

A typical workflow of a character recognition system using a CNN model is 
shown in Fig. 3.

How Do CNNs Differ from Traditional Networks? A classic neural network 
would connect each of the neurons of one layer to each of the neurons in the follow-
ing layer. As a result of this, more number of parameters would be required to train 
a normal neural network. In case of CNN, the spatial information and the relation 
between the neighboring pixels in a small region are maintained. In normal neural 
networks, every pixel is an input to the nodes in input layer. Hence, the spatial infor-
mation is lost.

Activation Function In neural networks, neurons get activated if the input value is 
above a threshold value. The most widely adopted activation function since the 
CNN breakthrough is rectified linear units (ReLU) since it is simpler in computa-
tion yet yields faster convergence. This function takes the form z = (0,max) which 
would result in values less than zero becoming zero and all other values remaining 

Fig. 3 A character recognition workflow using CNN
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the same. Several types of ReLU have evolved such as Leaky ReLU (LReLU), 
Parameterized ReLU (PReLU), and Exponential linear unit (eLU).

Loss Function Loss functions determine the error while updating the weights. 
During training process, for every forward propagation, the weights are calculated, 
and the difference with the actual value is obtained. This error is minimized over a 
number of iterations by updating the weights during backward propagation.

Optimizer Optimization algorithms are required to minimize the loss function. 
While back propagating the network, these algorithms compute the gradients that 
would help in reaching the minimum cost function. Various optimization algorithms 
are available such as stochastic gradient descent (SGD), RMSprop, Adam, Adagrad, 
Adadelta, and many more. All the optimizers have other parameters such as learning 
rate and momentum which can be fine-tuned based upon the application for better 
results.

Batch Size Instead of computing the gradients for all the training data for every 
iteration which would require more memory for larger datasets, the data samples 
can be passed as batches, and the updation of parameters can happen for every 
batch. Based on the memory capacity the batch size can be fixed.

3  Review on Various Character Sets

There are many languages that originated from different parts of the world, and 
some of them had spread across the world. These languages are written using vari-
ous scripts. Most of the languages have their own script, while some scripts are 
shared by multiple languages. All these characters have their unique unicode format 
understandable by computers.

Numerals The numerals representing 0–9 are used to represent the numbers in 
Latin script derived from Hindu-Arabic numeral system which is the most widely 
used script for numbers across the world. The standard dataset used for numbers is 
Modified National Institute of Standards and Technology (MNIST) dataset [5]. This 
dataset is a collection of digit images (0–9) that were handwritten and is basically 
derived from a larger dataset, NIST database. The data was collected from a group 
of 250 members of different ages comprising of students and employees of Census 
Bureau organization. It comprises of 70,000 gray scale handwritten digit images 
(split as 60,000 images for training and 10,000 images for testing) of 28 × 28 dimen-
sions which have the digit centered in 20 × 20. This dataset had been the most tested 
dataset by many machine learning algorithms for computer vision applications. For 
researchers or developers of deep learning models, this dataset would be the ideal 
choice of their first test dataset (something like “Helloworld” of machine learning 
algorithms).
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English Characters Latin script is used to write English characters. The 26 upper-
case and lowercase alphabets contained in the Latin script were standardized by 
International Standards Organization (ISO) in the 1960s which was earlier stan-
dardized by the American Standard Code for Information Interchange (ASCII).

NIST Special Database 19 dataset [6] contains the collection of handwritten low-
ercase letters (a-z), uppercase letters (A-Z), and digits (0–9). A total of 7,31,668 
training data and 82,587 test data is available in this database. This dataset’s struc-
ture is slightly complicated, and hence the access to this dataset is not easier. A 
variant of NIST database is now available as Extended MNIST (EMNIST) [7] 
which has the similar structure of MNIST dataset.

Chinese Characters Chinese characters are used to write the Chinese language. It 
is also used to write many other Asian languages such as Japanese (known as kanji), 
Korean, and Vietnamese. Chinese characters are vast in number more than ten thou-
sand, but the most commonly used Chinese characters range from 3000 to 4000. 
They have evolved from traditional to simplified Chinese characters with reduced 
number of strokes. The Institute of Automation of the Chinese Academy of Sciences 
(CASIA) and National Laboratory of Pattern Recognition (NLPR) have developed 
datasets OLHWDB for online handwritten database and HWDB for offline hand-
written database which consists of nearly one million character samples of 3755 
classes with 300 samples per class [8]. Chinese character recognition has shown 
best results in spite of their highest number of characters. Some of their works are 
reported in [9–11].

Arabic Characters Very few scripts have the method of writing from right to left. 
One such script is Arabic script which consists of 28 characters in the first level, and 
each character can take different shapes based on its position in the word. OIHACDB 
and AHCD are some benchmarked datasets of Arabic characters. OIHACDB has 40 
classes with 30,000 images, and AHCD has 16,800 images for 28 classes [12]. 
Arabic character recognition also has shown best results with deep learning meth-
odologies [13, 14].

Bangla Characters Languages such as Bengali, Assamese, and Manipuri use 
Bangla script as their script. It basically consists of 50 characters and 10 numerals. 
Though there are several compound characters, not all of them are present in Bangla 
datasets. Several standard datasets are available for Bangla scripts [15–18]. In Indic 
scripts, for Bangla character recognition, various deep learning methodologies were 
explored [19, 20].

Scene Text Dataset Detection and recognition of text from natural images is a chal-
lenging task compared to scanned documents because of its non-uniform back-
ground. Several databases are available for scene text detection and individual 
character recognition. Robust Reading Competition conducted by ICDAR mainly 
focuses on detecting and recognizing the text on natural images [21]. Chars74K 
dataset [22] is a collection of 74,000 natural images which has English alphabets 
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uppercase (A-Z), lowercase (a-z), numbers (0–9), and Kannada characters. COCO- 
Text dataset [23] consists of 63,000 images of printed as well as handwritten text 
having natural image background with over 173k text annotations. Chinese natural 
scene text detection was presented in [24].

Various character datasets along with their number of training samples and num-
ber of classes are displayed in Table 1.

4  Implementation of Character Recognition Using Keras 
and TensorFlow

TensorFlow TensorFlow is a Python-based open-source platform developed by 
Google Brain team for implementing machine learning algorithms [25]. It can be 
used on a wide range of heterogeneous systems starting from a large number of 
distributed systems to mobile devices and embedded GPU devices. It can run on 
various computing platforms such as Linux, Windows, macOS, Android, and iOS.

TensorFlow is derived from two keywords: “tensor” which refers to multidimen-
sional data representation and “flow” which refers to the dataflow program-
ming model.

Keras Keras is an easy-to-use machine learning API developed mainly to build 
deep learning models using Python. It functions over the deep learning frameworks 
such as TensorFlow and Theano which use tensors, a multidimensional array for its 
computations. Keras with TensorFlow as backend is the widely used framework. 
This would be the right choice for beginners since it provides abstraction, is easy to 
learn, and has faster implementation. Without the knowledge of the underlying 
mathematical computations, the APIs could be used for building a model, and train-
ing can be done.

Model Model is the basic building block of Keras. A model can be defined, com-
piled, and fitted in order to predict new data. A neural network is represented by 
combining at least three layers, input, output, and hidden layers. Deep CNNs con-
sist of many hidden layers. Convolutional neural networks have a special kind of 

Table 1 Some of the character datasets of various scripts

Script (language) Dataset No. of classes No. of training samples

Numbers MNIST 10 60,000
Latin (English) NIST SD-19 62 7,31,668
Chinese CASIA (OLHWDB1.1) 3755 11,23,132
Tamil HP Labs 156 82,928
Arabic AHCD 28 16,800

OIHACDB 40 30,000
Bangla ISIHCD 50 37,858
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layers such as convolutional layer, pooling layer, and activation layer. Keras models 
are used to construct these neural network models by concatenating these layers.

Two ways of building these models are sequential model and functional API 
models. Sequential models are constructed by stacking layers one over another, 
while functional API takes the input to the layer and output from the layer as two 
parameters for defining each layer. Sequential models are simple and easier to con-
struct and provide a high level of abstraction which is mainly used for building 
simple models. Keras has many built-in pretrained models like VGG, ResNet, and 
Inception which can be used to train on new data.

Functional APIs are used for building complex models. They can be used to work 
on multi-inputs and multi-outputs or multi-inputs and single output. These APIs 
provide more flexibility to build models with shared layers such as in ResNet. 
Several methods are available in Keras for employing various functions of machine 
learning algorithms such as compile, train, fit, evaluate, and predict.

Steps for Developing a CNN Model for Character Recognition This section 
explains how to build a convolutional neural network for recognizing handwritten 
Tamil characters. The dataset for Tamil characters is available as Isolated 
Handwritten Tamil Character Dataset by HP Labs, India [26]. It is composed of 
nearly 82,000 training images comprising of 156 classes. For our example, we 
would take only 13 classes of this Tamil character dataset. Some example images of 
these 13 classes are displayed in Fig. 4. This subset contains approximately 500 
sample images for every class in train dataset and exactly 50 sample images for 
every class in test set. The images are of different sizes hence resized to a fixed size 
of (64,64). These resized images are recasted to binary form, inverted, and con-
verted to a numpy array.

The following steps are followed for developing a CNN model:

• Create model
• Compile model
• Train model
• Test model

Create Model Here, we will create a sequential model of a basic convolutional 
neural network.

Importing Libraries
Firstly, we will import the Keras libraries that are needed for the construction, com-
pilation, and training of a model.

 from tensorflow.keras import models, layers, losses
 from tensorflow.keras.layers import Conv2D,MaxPooling2D
 from tensorflow.keras.layers import Dense, Flatten, 
Activation, Dropout
 from tensorflow.keras.optimizers import Adam
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For creating a sequential model, the following method is used.

Adding Layers

Layers can be added using add() function. The type of the layer to be added is 
passed as a parameter to the function.

To add a convolutional layer, the following method is used,

where Conv2D is a function which represents two-dimensional convolutional layer 
and takes the following parameters:

nof – Number of filters.
(fw, fh) – Filter size as comma-separated values (width, height).
Padding – No zero padding, same-zero padding.
name – Name of the convolutional layer.
input_shape – For the first layer alone, the shape of the input is passed as another 

parameter. Shape of the input dimensions takes the format (width, height, 
channels).

model=models.Sequential()

 model.add(Conv2D(nof, (fw, fh), padding="same", name="Conv1",
 input_shape=(width,height,channels)))

Fig. 4 A subset of 13 characters of Tamil character dataset
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To add an activation layer,

where Activation function represents the activation function to be employed on the 

feature maps. The name of the activation function is passed as parameter. Some of 
the activation function values are relu, elu, lrelu, prelu, tanh, and many more.

To add a pooling layer, add() function is passed with a pooling function like,

where MaxPooling2D function represents max pooling function with the pooling 

window size as parameter. Other pooling functions such as AveragePooling2D and 
GlobalAveragePooling can also be used.

For any convolution neural network, these three layers would make the feature 
extraction part. Combinations of these three layers are stacked one over another. 
The number of layers is also a parameter in defining the model, and any number of 
such combinations can be made. In the example, there are three such combinations 
of layers.

The output of the last convolution layer is connected to one or more fully con-
nected layers. Before connecting to a fc layer, the output from conv layer must be 
converted to a one-dimensional vector using Flatten() function. This function 
should be passed to add() function without any parameter.

To add a fc layer, Dense() function is used. The flatten function and Dense func-
tion are added by,

The final layer is the output layer which has n number of neurons where n corre-
sponds to the number of classes. It is also added by Dense function, and it requires 

an activation function, which is generally a softmax function in case of multiclass 
classifier or sigmoid in case of binary classification.

model.add(Activation("relu"))

model.add(MaxPooling2D(pool_size=(2,2)))

 model.add(Flatten())
 model.add(Dense(No.of.neurons))

 model.add(Dense(number_of_classes))
 model.add(Activation(classifier))
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The above steps are composed together and displayed in Fig. 5.
The model is created, and the overall architecture of the model can be viewed by 

model.summary() as displayed in Fig. 6. This would give the detailed information 
about the total number of parameters used for training and layer-wise input and 
output parameter details.

Compile Model Now the model has been defined. This model should be compiled 
with specific values for parameters and trained with input set data. Keras has  model.
compile() function to perform this. It specifies the choice of optimizer and loss func-
tion. The following parameters are passed to this function.

optimizer – Optimizer values can be sgd, rmsprop, Adam, Ada, and Adagrad. The 
parameters of the optimizers such as learning rate and momentum can also be set.

Loss – Loss functions can be any of the following: mean squared error, mean abso-
lute error, categorical crossentropy, and binary crossentropy.

model.compile(optimizer, loss, metrics)

Fig. 5 Code for defining a model for character recognition
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Metrics – This parameter is used for the evaluation of the model performance. Some 
o f 
the values can be accuracy, binary_accuracy, and top_k_categorical_accuracy.

An example of setting the optimizer, loss function, and metrics is given below:

 optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999,
 epsilon=None, decay=0.0)
 loss="categorical_crossentropy"
 model.compile(loss=loss,optimizer= optimizer,
 metrics=['accuracy']) 

Fig. 6 Summary of the model
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Train Model Training the model is the learning part of the machine which would 
enable the machine to recognize a new character.

The segmented, cropped, isolated character images are fed to the model. These 
images form the training dataset. The training dataset would be used by the model 
to learn the features extracted from the character images. Updation of weights can 
happen based on the training dataset. The volume, variety, and quality of training 
data would result in a model with high accuracy.

In addition to the training set, there exists another dataset known as validation set 
which is split from training data. This validation dataset is required during training 
to evaluate the model’s performance. After one complete traversal of the entire 
training set in both the directions (forward and backward) over the model, the vali-
dation dataset is fed to the model, and accuracy is determined. The comparison 
between the training accuracy and validation accuracy would help in understanding 
the learning of the model. If the validation accuracy is far less than training accu-
racy, it is understood that the model is overfitting, which proves that the model is 
more specific to the training data. If the training accuracy and validation accuracy 
both are very less, then the model is underfitting such that the model did not learn 
any good features.

In Keras, the splitting of training set and validation set can be done beforehand 
or during runtime. The following code splits the training and validation set during 
runtime.

This test represents the validation set and not test set. (Note: Test data will be dis-
cussed in next subsection.) Values x and y| denote the training data and their labels 
respectively. The splitting of training data and validation data can be of any ratios 
such as 90:10, 80:20, or 60:40.

In the example, we have made the split as 80:20 by specifying the test_size 
parameter as 0.2. The function returns training images(X_trainset), validation 
images(X_testset), training labels(y_trainlbl), and validation labels(y_testlbl).

The model is trained using fit() method for a certain number of epochs with the 
complete training data. The validation data is tested after every epoch. Both the 
accuracies and losses are recorded.

 X_trainset, X_testset, y_trainlbl, y_testlbl
 =train_test_split(x, y,
 test_size=0.2, random_state=2)

 hist=model.fit(X_trainset,y_trainlbl, batch_size=64,
 epochs=30, verbose=1,
 validation_data=(X_testset, y_testlbl))
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The following parameters are passed as arguments:

X_trainset – Training images as numpy array
y_trainlbl – Training labels
batch_size – Number of training images fed to the model at a time
epochs – Number of epochs to train the model
verbose – Verbosity which can have values (0,1,2)
validation_data – Validation images as numpy array(X_testset), labels(y_testlbl)}

The training process is run with verbose 1 for 30 epochs which is displayed in 
Fig. 7. The first line in the screenshot shows the training and validation split of the 
samples. Then, for every epoch, the accuracy and loss measured for training and 
validation and accuracy are reported. It shows the time taken to train for every 
epoch. The training accuracy and validation accuracy of this model are 100% and 
95.12%, respectively. This means that the model is overfitting, and it is needed to 
add some regularization methods.

It returns a history object which gives the details of losses and accuracies at every 
epoch. The trained model can be saved and used for testing new data at any time. In 
Keras, the weights and model can be saved in .h5 extension.

Test Model Once the model is trained with known training images with better 
accuracy, it can be tested with unknown new test data. Ideally the testing dataset 
should not be from the same cohort of train dataset. Testing is done using predict() 
method which predicts the output for the test images. The predicted output labels 
are returned as numpy arrays.

Fig. 7 Training process for Tamil character subset for 30 epochs
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The test data should take the same format as training data (the preprocessing 
steps of training data should be applied for test data as well) and should be input 
with the same batch size as training data.

In order determine the accuracy of the test data, the predicted labels and actual 

labels are compared. The number of correctly predicted samples to the total number 
of predictions yields the accuracy of the test images. The code to determine the 
accuracy of the testing dataset is shown in Fig. 8. The test_data is a numpy array of 
preprocessed test images.

Tuning of CNN Model A CNN model can be modified to improve the perfor-
mance by varying some of the parameters. The parameters can be the number of 
convolutional layers, pooling methods, choice of activation functions, optimizers or 
initializers, increasing/decreasing the batch sizes or number of epochs, training and 
validation split ratios, etc. These are first-level hyperparameters. The second level of 
hyperparameters could be the learning rate or momentum of optimizers. The above 
model was tried with different combinations of convolutional and pooling layers 
and has arrived at this model. The count of convolutional layers was increased to 5, 
max pooling layers to 3, and fully connected layers to 2. The number of filters is 
changed in all the convolutional layers. With the above changes, the number of 
parameters required for training has decreased from 1,684,609 to 875,677 
parameters.

In addition to that, to avoid the overfitting of the model a popular technique 
called Dropout [27] is used, which drops some of the neurons to be inactive, thereby 
allowing the network to traverse through different architectures for every epoch. In 
Keras, we can specify the probability of number of neurons to be retained as param-
eter. The complete model with all the tuned parameters and dropout is shown 
in Fig. 9.

This model was compiled with Adam optimizer, and the learning rate was fixed 
as 0.001. The model was trained for 100 epochs, and the training time for 100 
epochs is 47 minutes in a CPU machine (Fig. 10). With overfitting the validation 
accuracy has increased to 97.33% with a small decrease in training accuracy. The 
training, validation loss and training, validation accuracy are shown in Fig. 11 and 
Fig. 12 respectively. The accuracy on test set was reported as 95.2%.

The code for plotting the graphs is shown in Fig. 13. Using the history object 
returned from model.fit() function, the loss and accuracy are plotted. For plotting 
graphs, we need to import matplotlib.pyplot library.

predictions = model.predict(test_data,batch_size=64)

import matplotlib.pyplot as plt
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Another metric that was used to measure the performance of the model was confu-
sion matrix which is shown in Fig. 14. In the confusion matrix, true labels are in y 
axis, and predicted labels are in x axis. The diagonal specifies how many characters 
are classified correctly. For Class 0(Aa), Class 2(Ee), Class 4(Uu), and Class 12(Ak), 
all the characters are predicted correctly. Few characters are predicted wrongly 
because of similarity between characters and writing ambiguity. The highest num-
ber of misclassification is for Class 9(O) and Class 10(Oo) which is 5.

Fig. 8 Code for recognition of test data

Fig. 9 Code for tuned CNN model with dropout
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Preprocessing In character recognition, the performance of the model during 
training may not be the same when a completely new character is tested. In case of 
handwritten characters, it will be even worse as the handwriting of every individual 
is different. It may not be possible to acquire all types of handwritten data. The 
training data could have been obtained from a cohort which belongs to a particular 
place or age. The data may not have larger variations. A model can exhibit the high-
est generalization only when the model is trained from a variety of data (all possible 
versions of the handwriting).

Hence it is better to modify the training data to a common representation before 
starting training. A lot of preprocessing is needed which would be followed by the 
new data as well so that it looks almost the training data.

Fig. 10 Training of CNN model with dropout for 100 epochs

Fig. 11 Training loss and validation loss
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In most of the cases, the characters that are segmented from the text image are 
converted to gray scale or binary image as the color of the text does not provide any 
useful information in most of the cases. Also, processing of binary or gray scale 
images is easier when compared to RGB images.

Some of the preprocessing methods used before training are discussed below. 
Practically, most of the preprocessing is done using opencv functions.

Size Normalization
The entire training images may not be of the same dimensions. Hence, all the images 
should be size normalized to a fixed dimension without losing the aspect ratio using 
any suitable interpolation method. Several interpolation methods are available, 
namely, bilinear interpolation, bicubic interpolation, etc.

Thresholding
This helps in separating the foreground image or object of interest from the remain-
ing part of the image. This is achieved by converting all the pixel values above a 
threshold value to certain value and the remaining pixels to another value. Another 
method is using adaptive thresholding method which takes the neighbor pixel’s 
value also into consideration so that different parts of the image can be tested with 
different threshold values [28–29].

Fig. 12 Training and validation accuracy
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Dilation and Erosion
These are useful in improving the clarity of the character images which are broken 
or very thin. Dilation would increase the thickness of the character that is in fore-
ground by assigning the value of a pixel to all the adjacent pixels of a fixed window 
size if the value is equal to 1. The reverse process of dilation is erosion which reduces 
the thickness of the character in foreground by discarding the pixels in neighborhood.

Centering
Whenever the text is segmented from a full document or from a scene text image, 
the spacing between characters may be very less. Hence, this process adds some 
blank borders on all the sides to center the character and ensure no information 
is lost.

Fig. 13 The code for plotting the graphs
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Binarization
The process is converting the gray scale images to binary images, background with 
values 0 and foreground with values 1.

Scaling
Scaling is another normalization method which brings down all the samples in the 
same scale. Images will have varying pixel values based on the content. This pro-
cess would scale down all the values between (0,1).

5  Summary

The notion of this chapter was to provide the basics of character recognition using 
deep learning method. CNNs have been the most used deep learning method for 
character recognition and have proved best results for many scripting languages 
such as Chinese, Arabic, Japanese, and many more. Various character datasets and 
their details were also presented. The implementation of character recognition in 
Keras and TensorFlow platform was explained with Tamil offline handwritten char-
acter recognition as example.

Fig. 14 Confusion matrix of the test data for 13 Tamil characters
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Keras and TensorFlow:  
A Hands-On Experience

Ferdin Joe John Joseph, Sarayut Nonsiri, and Annop Monsakul

Introduction
TensorFlow architecture is explained in such a way to make the reader understand 
why it is needed to learn as a prerequisite for Keras [1]. TensorFlow and its support-
ing libraries in Python are explained for this purpose. The understanding of interop-
erability of these libraries is required to understand TensorFlow. This chapter is 
organized as below:

 1. TensorFlow architecture
 2. Introduction to Keras
 3. Installation of TensorFlow and Keras in Jupyter Notebooks – hardware aspects
 4. Installation of TensorFlow and Keras in Jupyter Notebooks – software aspects
 5. Linear regression using Keras – case study
 6. Binary classification using Keras – case study
 7. Multiclass classification – case study

After obtaining prerequisite, Keras is presented. With TensorFlow as backend, 
Keras is explained. The theoretical aspects of Keras are explained. This is followed 
by the operational functionalities of the Keras library for deep learning applications. 
The operational functionalities of Keras are explained with the help of Python code 
snippets. These are the theoretical aspects of Keras.

To work with Keras in deep learning, a section on how to install and configure 
the library is needed. This includes both hardware and software aspects. Google 
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Colab uses TPUs in the cloud, but for standalone versions, GPUs are needed. The 
list of GPUs supported by TensorFlow and Keras are listed. This is added with other 
hardware requirements and drivers needed to be installed including NVIDIA soft-
ware. The installation of TensorFlow and Keras in Jupyter Notebooks’ hardware 
aspects provides enough information on how to prepare a PC or laptop in order to 
make it compatible enough to work with TensorFlow and Keras. This part of the 
chapter will give a step-by-step procedure on how to make the GPUs active in a PC 
or laptop and enable CUDA processing units.

Once the hardware of the system is made compatible for TensorFlow and Keras, 
the software has to be installed. The interoperability between GPU and Keras with 
TensorFlow is explained in this section. This includes a step-by-step process on how 
to install Keras in TensorFlow. The steps include the command prompt statements 
needed to create an environment in Anaconda Navigator and Jupyter Notebooks. 
After the environment is created, a step-by-step process on how to make the GPUs 
sync with the environment set with Anaconda Navigator is illustrated. After making 
all the synchronizations positive, the libraries of Keras in TensorFlow are explained 
in a step-by-step process and screenshots. After installing Keras, the validity of the 
environment and libraries is checked using some TensorFlow library functions.

After the installation of Keras is made successful, case studies are presented for 
explaining how to code using TensorFlow and Keras. Linear regression and binary 
and multiclass classification are explained with examples as case study. Jupyter 
Notebooks are shared, and the code snippets are explained. This includes importing 
data from external sources, including library data like MNIST dataset, etc. The data 
imported are subjected to preprocessing and setting up of CNN parameters like hid-
den, convolution, and max pooling layers. The output of these case studies are 
explained with the code and the epochs done in each training execution.

Linear regression is presented with diamond price prediction. This diamond 
price dataset is in CSV format. This dataset contains 54,000 diamond records. 
Pandas library is used to explain the usage of the dataset in CSV format. Artificial 
neural network (ANN) algorithm is used for creating a prediction model.

Binary classification is presented with cat or dog classification that involves pre-
dicting the images as containing either a dog or a cat. The experiment section is to 
demonstrate using deep learning convolutional neural networks with free Kaggle 
dataset. The training data contains 25,000 images, and the testing data contains 
12,500 images of dogs and cats. The accuracy is measured, and the confusion matrix 
is created and visualized using Seaborn library.

Multiclass classification is presented with the MNIST database of handwritten 
digits available from inbuilt Keras dataset, which is a standard dataset used in com-
puter vision. This database contains 28 × 28 gray scale images of the 10 digits. 
There are 70,000 images for training, whereas 10,000 images excluding the trained 
images are taken for testing. For the experiment section, multilayer perceptron 
(MLP) with convolutional neural network (CNN) algorithms are compared in terms 
of accuracy. All these applications are explained with domain knowledge and source 
code. The GitHub link for the source code files is shared in the link [2] below.

https://github.com/ferdinjoe/Chapter- 4- Working- with- Keras

F. J. John Joseph et al.

https://github.com/ferdinjoe/Chapter-4-Working-with-Keras


87

1  TensorFlow Architecture

Prior to exploring Keras, TensorFlow needs to be discussed in detail. TensorFlow is 
the most eminent libraries developed by Google for machine learning and deep 
learning applications. This library is built to run on CPUs, GPUs, IoT processors 
like Jetson Nano, neural network stick, etc. This library was first made public in 
2015. However, a stable version is made available since 2017 under the Apache 
Open Source License. Libraries in Apache Open Source License are allowed to be 
used, modified, and redistributed without any royalty to Google.

The architecture of TensorFlow consists of three parts as given in the diagram 
below (Fig. 1).

The input fed into TensorFlow is a multidimensional array, and these arrays are 
called tensors. Flow of a multidimensional array gave the name TensorFlow. These 
tensors go into the system as input in one end and go through various operations and 
finally produce output.

In Python TensorFlow is activated using the following import statements more 
prominently.

 

The notation “tf” is widely used by developers to mention the usage of TensorFlow 
in the code.

This has two phases:

 1. Development phase
 2. Run phase

Development phase is for training data and is performed in high-performance 
workstations, PCs, or laptops with the help of GPUs. Run phase is done on any kind 
of machine including desktop, cloud, or mobile devices.

The list of algorithms in TensorFlow 2.0 is given below.

 

After extensive usage of TensorFlow by researchers and data scientists, Keras 
was developed on top of TensorFlow.

Fig. 1 TensorFlow architecture
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2  Introduction to Keras

Keras is a Python-based neural network API which is used to run TensorFlow, 
CNTK, and Theano. It is used with TensorFlow 2.0 on top of which the latest ver-
sion of Keras and version – Keras 2.3.0 – is embedded for the source code listed in 
this chapter. In Python, Keras is used with the notation tf.keras. It has four working 
principles as follows:

 1. User friendliness
 2. Modularity
 3. Easy extensibility
 4. Work with Python

Models are the most important data structures in Keras. Sequential is a model 
which is widely used. The procedure to use the sequential model is given below:

 

Types of Keras Layers
There are 11 different types of Keras layers available to configure the deep learning 
neural network and are listed as below:

 1. Core Layers

Dense
It is used as a core layer in the densely connected NN layer.

 

The above code snippet gets nD tensor and gives nD tensor as output. The input 
takes nD batch size with its dimensions and batch size. This input after passing 
through this core layer produces an output of the same size as input.

Activation
This applies an activation function to the given input. The input and output are of 

the same size. The code snippet below shows the usage of this layer function.
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Dropout
The input layer is given with the transformation of dropout.

 

Dropout consists in randomly setting a fraction rate of input units to 0 at each 
update during training time, which helps prevent overfitting.

Flatten

 

It is used to flatten the input, and it does not affect the size of input and output. 
This layer is normally used in the layer corresponding to the model of the data 
trained and tested.

Reshape
Reshape is used as a layer to convert the shape of input tensor to the size of out-

put tensor.

 

Permute
This layer uses a permutation to change the dimension of the input. It is used in 

scenarios like connecting recurrent neural networks (RNN) and convolution net-
works (ConvNets).

 

RepeatVector
Repeats the input vector n number of times.

 

Lambda
Lambda is used to wrap arbitrary expression as layer object.

Keras and TensorFlow: A Hands-On Experience
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Activity Regularization
Activity regularization is used to apply an update to the cost function based on 

input activity.

 

Similarly, there are some other core layers like masking and spatial dropout 1D, 
2D, and 3D.

 2. Convolutional Layers

As same as TensorFlow, the convolutional layers in Keras consist of Conv 1D, 
Conv 2D, Separable Conv 1D, Separable Conv 2D, Depthwise Conv 1D, Depthwise 
Conv 2D, Conv 2D Transpose, and 3D of all the above.

 3. Pooling Layers

The pooling layers of Keras are as follows: max pooling, average pooling, aver-
age max pooling, global max pooling, etc.

 4. Locally Connected Layers

Locally connected 1D and locally connected 2D are layers present in locally con-
nected layers.

 5. Recurrent Layers

Recurrent layers consist of those functional exclusively with recurrent neural 
networks (RNN), gated recurrent unit (GRU), and long short-term memory 
(LSTM) layers.

 6. Embedding Layers
 7. Merge Layers
 8. Advanced Activation Layers

These are usual activation layers but developed for special cases. LeakyReLU is a 
rectified version of the rectified linear unit, whereas PReLU is a parametric varia-
tion of ReLU. In addition to ReLU and softmax, exponential linear unit (ELU) and 
threshold ReLU are also available with Keras.

 9. Normalization Layers

BatchNormalization is a normalization layer provided in Keras.
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 10. Noise Layers

Gaussian noise, Gaussian dropout, and alpha dropout are the noise layers which 
are used to reduce the noise in data provided.

 11. Layer Wrappers

Time distributed wrapper is used to apply to the time space of the input, whereas 
bidirectional wrapper is used with RNNs.

3  Installation of TensorFlow and Keras in Jupyter 
Notebooks: Hardware Aspects

The ideal configuration of Keras normally requires the following in a Windows 10 OS.

NVIDIA GeForce GTX 1060 6GB GDDR5 and above
Core i7–7700 HQ and above or i5 10th generation
16GB DDR4 RAM and above

Keras runs on top of TensorFlow. So the hardware dependencies are the same as 
TensorFlow. NVIDIA GPUs are normally recommended for Keras installation. 
Brands other than NVIDIA are yet to support Keras and TensorFlow. This is due to 
the interdependency of CUDA middleware between TensorFlow and NVIDIA GPU.

Install the required drivers for NVIDIA GeForce GTX or RTX to enable the 
GPU to sync with the operating system. A GPU version of TensorFlow has to be 
installed. Install the CUDA toolkit downloaded from https://developer.nvidia.com/
cuda- toolkit. Follow readme section in the GitHub link.

Once the environment variables are set, restart the machine. After restarting the 
machine, follow the steps in Sect. 4.4.

Fig. 2 Software needed to install Keras
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4  Installation of TensorFlow and Keras in Jupyter 
Notebooks: Software Aspects

The installation of Keras involves the following software (Fig. 2).
Anaconda Navigator has to be installed by downloading it from https://www.

anaconda.com/download. Jupyter Notebook with Python distribution is installed by 
default. There are two ways of installing TensorFlow and Keras:

 1. Pip from the source.
 2. Install in a virtual environment with Jupyter Notebook in Anaconda Navigator.

The tutorial in this chapter involves Jupyter Notebook in Anaconda Navigator.
On top of all the above installations, install Visual Studio 2015. Now restart the 

machine again. The installation of hardware and software support is now done.
After restarting the machine, follow the steps below to synchronize GPU with 

Keras and TensorFlow:

 1. Installation of environment for TensorFlow
Open Anaconda Prompt, enter the following command:

 

– clone root will inherit the libraries from default Python to TensorFlow 
environment.

 2. Installation of TensorFlow with GPU version
Enter the following commands:

 

 3. TensorFlow validation
Open Anaconda Prompt and type

 

Then open Anaconda Navigator and type
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The response for the above two statements must show the version of TensorFlow 
installed.

 4. Installation and validation of Keras
In Anaconda Prompt, open TensorFlow environment and type

 

Now enter

 

After installation of Keras is complete, the library functionality could be checked 
using the statements below.

 

2.1.6

 5. Check whether Keras and TensorFlow are running on GPU

 

The output for this statement will be something like the one below.
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In the absence of GPU or improper GPU synchronization, Keras and TensorFlow 
will activate in CPU mode, and it will run slower than GPU.

5  Linear Regression Using Keras: Case Study

In this section, we will explore how to create a linear regression model using Keras 
to determine the relationship between the independent input variables and the 
dependent output variable. The Boston housing dataset is used to demonstrate the 
training of a model in order to make predictions of a house price value in Boston, 
Massachusetts, area. This dataset [3] was collected by the US Census Service. It can 
be accessed from the StatLib archive (http://lib.stat.cmu.edu/datasets/boston), 
which is maintained by Carnegie Mellon University (CMU). There are 506 records, 
and each contains independently 13 features of houses and 1 target variable (MEDV).

 1. Load the Boston housing dataset using Keras

For loading the Boston housing dataset, Keras provides a load_data() method to 
download the dataset directly from the keras.dataset module. The method returns 
two tuples that contain training (x_train, y_train) and testing data (x_test, y_test). 
This method is beneficial for the users because they do not need to use a CSV file 
downloaded from other sources.

 

Pandas is an open-source Python library for data manipulation and analysis. In 
this example, it is used to explore the training samples in a tabular format. The first 
line of code is importing a pandas library called as pd. in order to refer to any pandas 
functions within a program. x_train variable is loaded into the pandas DataFrame 
object. Since there is no available column name from a built-in Keras dataset, this 
variable is loaded. The attributes_name variable contains a list of attribute names 
and assigned to DataFrame column names (df.columns). The y_train, as the target 
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variable, is added into a new DataFrame column. The df.head(10) method returns 
the first ten rows of the training data.

 

For the Boston housing dataset, there are 506 records. This information is split-
ting into two parts for training and testing purposes, as shown above. The training 
data (x_train) contains 404 records, and the testing data (x_test) contains 102 
records. The x_train.shape and x_test.shape commands return the number of train-
ing and testing data dimensions in (rows, columns) format. The result shows that the 
training data shape is (404, 13), and the testing data shape is (102, 13). It means that 
there are 404 rows and 13 columns for training data, and there are 102 rows and 13 
columns for testing data.

 

Training data: (404, 13)
Testing data: (102, 13)

The necessary modules are imported into the Python environment that contains 
the relevant functions, for example, Sequential and Dense modules.

 

From the following code block, it is a step of defining and compiling a model. A 
Sequential class allows us to build a neural network model by stacking the different 
layers using the add() method. A Sequential() constructor is instantiated to a model 
variable. A Dense class is a fully connected neural network layer in which every 
input is connected to every output.

For the first dense layer in a model, the input dimension needs to be specified by 
setting the input_dim parameter the same size as the number of columns of x_train 
and x_test variables [4]. In this example, there are 13 features. 16 is the number of 
neurons in this layer. ReLU (“relu”) is selected as an activation function. Hence, 
there are three parameters passed into this layer. The second layer is defined by 
passing two parameters: the six neurons and ReLU (“relu”) activation function. The 
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last layer is an output layer in which there is only one neuron, and the activation 
function is linear.

A compile() method is specifying the learning process. The mean squared error 
(“mean_squared_error”) is selected as a loss function, and the optimizer parameter 
is the “adam” algorithm. As a result, this simple architecture consists of three layers. 
A summary() method is to display the neural network architecture, such as the num-
ber of layers, the output shape, and the number of parameters.

 

The following results are returned:

 

A fit() method is used to train the regression model using the training data (x_
train) and target data (y_train). Additionally, an epochs parameter is the number of 
iterations that passed all training data through the neuron network model forward 
and backward in order to update the weights. In this example, the epochs parameter 
is set to 1000.

 

During the training process, the training statistics is displayed, as shown below:
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Evaluate() method is to access the trained model performance using testing data 
(x_test and y_test). The lower loss value is a better performance. As a result, the 
performance is approximately 29.27.

102/102 [==============================] - 0s 205us/step
29.270214753992416  

102/102 [==============================] - 0s 205us/step
29.270214753992416

From all preceding the code blocks, it is implementing a simple neuron network 
architecture. However, this trained model performance can be improved. In the fol-
lowing sections, there are several techniques introduced that minimize the loss func-
tion value, such as rescaling data, regularization, batch normalization, and dropout. 
These techniques can provide a better result.

Rescaling data is one of the techniques used to overcome that the dataset value 
has different ranges. This issue might cause some more significant range features to 
have a greater impact on more than a lesser range of features. Therefore, we need to 
rescale both training and testing data before training a model.

Scikit-learn is an open-source machine learning library in Python, but we will 
use it for preprocessing data purposes. A fit_transform() method from 
MinMaxScaler() class is used to transform each feature between 0 and 1 for both 
training (x_train) and testing (x_test) data.

 

From the code below, using the pandas library to explore the training samples 
after rescaling data in a tabular format, the following results are returned with all 
features rescaled between 0 and 1.

 

This neural network is designed to perform a regression analysis. The additional 
Keras modules are imported to prevent overfitting issues, such as regularizers, 
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Dropout, and BatchNormalization. Therefore, the loss value can significantly lower 
than the previous regression model.

kernel_regularizer parameter can be used to apply a penalty on the layer’s ker-
nel. We can add regularization to the Keras layers. The default is None. In this 
example, keras.regularizers.l2() method is added to the Dense layer. This method is 
a l2 regularization type with regularization strength between 0 and 1. In this exam-
ple, l is 0.1. A too high regularization strength value may cause the model to under-
fit. If l1 regularization is needed, just only replace keras.regularizers.l2() with keras.
regularizers.l1() method with desired strength value.

 

The dropout technique is randomly dropping out the neurons on input and hidden 
layers during training based on a fraction rate. This technique helps the model gen-
eralize enough to fit on unseen data. In this example, the dropout layer is added to 
the model, and the fraction rate is 0.01, as shown below:

 

BatchNormalization() method is a technique used to reduce a large output on the 
hidden layer and help speed up the training process. For adding batch normalization 
layer into the model, model.add() method is simply used as follows:

 

The new model is defined and compiled, and a model summary is as follows:

 

F. J. John Joseph et al.



99

 

 

The following code is to fit a model by splitting training data into two parts: 
training and validation data. The validation_split parameter is set to 0.1 meaning the 
number of records in training data is 90%, and validation data is 10%.

 

The following results are returned:

 

Matplotlib library is an open-source visualization tool in Python. To display the 
graph in Jupyter Notebook, a %matplotlib inline command allows us to embed an 
output graph in the notebook. The pyplot module is used for plotting the line graph 
by the given x and y variables. “import matplotlib.pyplot as plt” is importing a 
pyplot module from the Matplotlib library and naming it as plt. In this example, it is 
used to display a graph to compare between loss and validation loss values as 
follows:
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The preceding code returns the result, as shown in Fig. 3.
model.evaluate() method is used to evaluate the performance of the model using 

testing data.

 

model.predict() method is used to predict the testing dataset using the 
trained model.

Fig. 3 Training loss vs. validation loss
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6  Binary Classification Using Keras: Case Study

This section will explore how to build a deep neural network model to classify cat 
and dog images using Keras [5]. The dataset used in this section can be downloaded 
from the link: https://storage.googleapis.com/mledu- datasets/cats_and_dogs_fil-
tered.zip. The file size is about 66 MB. There are 2000 training images and 1000 
validation images.

In this first step, the libraries and modules are imported from Keras into the 
Python environment.

 

This step, a cats_and_dogs_filtered folder is set as a root path and contains the 
folders for training and validation image directories. Each folder contains cat and 
dog images subfolders for creating a model.

 

The below code is to define the cat and dog filenames in the training and valida-
tion directories. The result shows the first five filenames of each folder.

Keras and TensorFlow: A Hands-On Experience

https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip
https://storage.googleapis.com/mledu-datasets/cats_and_dogs_filtered.zip


102

 

Train filenames:
['dog.0.jpg', 'dog.1.jpg', 'dog.10.jpg', 'dog.100.jpg', 
'dog.101.jpg']

['cat.0.jpg', 'cat.1.jpg', 'cat.10.jpg', 'cat.100.jpg', 
'cat.101.jpg']

Validation filenames:
['dog.2000.jpg', 'dog.2001.jpg', 'dog.2002.jpg', 
'dog.2003.jpg', 'dog.2004.jpg']

['cat.2000.jpg', 'cat.2001.jpg', 'cat.2002.jpg', 
'cat.2003.jpg', 'cat.2004.jpg']

The preceding code is to check the number of cat and dog images.

 

training dog: 1000
training cat: 1000
validation dog: 500
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validation cat: 500

This is plotting the first three of cat and dog images using the Matplotlib module 
(Fig. 4).

 

 

Fig. 4 Cat and dog samples
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This preceding code is to perform the data augmentation and rescale for the 
training and validation images using ImageDataGenerator class.

 

This step is to define the training and validation folders using the flow_from_
directory() method. The batch size is set to 100, as it is the number of training 
images in a single batch. “binary” is assigned to class_mode parameter due to this 
being a binary classification problem. target_size parameter is to set the image 
height and width. In this setting, each image is 150 × 150 pixels.

 

Building a binary classifier by defining, compiling, and training the model.
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The validation accuracy is returned (82%) as shown in the following results:

 

After training the binary classifier model, we will test a new image unseen before 
[6] and then load and preprocess a new image (Fig. 5) for predicting using predict() 
function.

Fig. 5 Cat.jpg
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The preceding code returns the result

[0.]
This image is a Cat.

The train_generator.class_indices attribute returns a dictionary that contains 
class names and indices. For example, {“cats”: 0, “dogs”: 1}. It means that if pre-
dicted_result[0][0] is 0, then the predicted image is a cat. Otherwise, the image is a 
dog. As a result, its predicted_result[0][0] is [0.], and it prints “This image is a Cat.” 
Finally, the model can predict the image correctly.

7  Multiclass Classification: Case Study

In this section, we will introduce a multiclass classification on the MNIST (Modified 
National Institute of Standards and Technology) dataset using convolutional neural 
network (CNN) in Keras. The MNIST is a handwritten digits dataset [7]. There are 
60,000 training images and 10,000 testing images. Each image is gray scale 28 x 
28 pixels.

Importing the libraries, modules, and MNIST dataset.
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mnist.load_data() method is used to load the MNIST dataset from the Keras 
module. The result returns the training (x_train, y_train) and testing (x_test, y_
test) data.

 

The x_train.shape and x_test.shape commands return the number of training and 
testing data dimensions in the number of images and the number of pixels format. 
The result shows that the training data shape is (60,000, 28, 28), and the testing data 
shape is (10,000, 28, 28). It means that the training data (x_train) contains 60,000 
images, and the testing data (x_test) contains 10,000 records, and each image 
dimension is 28 x 28 pixels.

 

Train image: (60000, 28, 28)
Test image: (10000, 28, 28)

Seaborn and NumPy libraries are imported to explore the distribution of the 
handwritten digit number samples.

 

The preceding code returns the result, as shown in Fig. 6.
This code block is to plot an image using the Matplotlib library, as shown 

in Fig. 7.

Keras and TensorFlow: A Hands-On Experience



108

Fig. 6 Training data plot

Fig. 7 Handwritten digits samples
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The image result is returned as follows:
Building a simple neural network model by defining and compiling.

 

The training data is used to train the CNN model.

 

Evaluate the model performance using model.evaluate() method.

 

The following section discusses on how to build a convolutional neural network 
model. The relevant modules are imported.
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mnist.load_data() method is used to load the MNIST dataset from the Keras 
module. The result returns the training (x_train, y_train) and testing (x_test, y_
test) data.

 

Preprocessing the training and testing images.

 

Defined and compiled CNN model.

 

The training and validation data is used to train the CNN model.

 

 

 

CNN Model Accuracy: 0.9905999898910522
[0.048527146894724975, 0.9905999898910522]
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Deploying Deep Learning Models 
for Various Real-Time Applications Using 
Keras

D. Sumathi and Kumarraju Alluri

1  Keras

It is an enriched level API (Application Program Interface) of TensorFlow used for 
the construction of models, and it is found to be similar in stacking layers. At this 
point, Keras is also used to compile the developed models with several functions 
like loss and optimizer. Also, the training process is done with the fit function. The 
“backend engine” takes the responsibility of handling the low-level API. In this, the 
term “backend” refers to all low-level computations done through several libraries, 
namely Theano or TensorFlow. The default backend engine is the TensorFlow. 
Various other backend engines, such as Theano or the Microsoft Cognitive Toolkit 
or CNTK, also could be deployed based on the need. The features of Keras are:

• Easy to learn and use
• A multi backend which aids in the coding task to be rapid.
• Fast prototyping
• Integration with the low-level through deep learning libraries such as TensorFlow
• Processing of huge volumes of data and increase in speed for training the model

We can install Keras using the following steps:

 1. The “pip installKeras” command can be used to deploy Keras in your 
environment.

 2. We can confirm the installation of Keras with its version using “pip list | grep
 3. Keras”
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 4. CloningKeras can be completed with the git command “git clone https://github.
com/kerasteam/keras.git”

2  Keras Models

The core data structure of Keras is the model. The models could be categorized as 
sequential, functional, shared layers, standard network, and multiple input and mul-
tiple output models.

2.1  Sequential Model

Layers are arranged to construct a model in Keras. A model could be defined as a 
collection of layers. The sequential model is suitable when there is an ordinary heap 
of layers in which there must be one input and one output tensor in each layer. The 
sequential model can be created and it consists of a sequence of layer functions. 
Artificial neural networks have layers in a linear order in which the data is trans-
ferred from one layer to another layer in a specified order until the data reaches the 
output layer. Let us see the steps in the construction of a sequential model. The 
design of the sequential model could be represented as shown in Fig. 1.

Step 1:
Sequential API is used to create the model. The required Keras classes must be 

imported. In this case, the model is sequential. Layers required for the model con-
struction are dense and activation.

Step 2:
An instance for the sequential model could be created, and it is assigned to the 

variable model.
model = Sequential(layers)
Step 3:
We need to define the layers. There are various types of layers. Here we have 

used the dense layers. For example, consider the neural network that has been 
depicted in Fig. 2. Here, there are five neurons in the input layer. The hidden layer 
comprises four neurons in the hidden layer and two neurons in the output layer.

Input layer is the first layer, hidden layer acts as the second layer, and the output 
layer is the third layer. Hidden layer nodes are linked with the nodes in the output 
layer, and hence it is a densely connected layer:
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input_1: InputLayer

dense_1: Dense

dense_2: Dense

dense_3: Dense

dense_4: Dense

Fig. 1 Sequential model 
architecture

Fig. 2 Architecture of a sample ANN
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In the above example, the input in the input layer is 2 and it is represented by the 
argument input_shape. The activation functions that are used over here are softmax 
and rectified linear unit (ReLu).

Apart from the dense layers, other layers such as pooling, recurrent, and convo-
lutional could be utilized based on the application.

The convolutional layers could be used for the construction of the models that 
deal with the images, and the recurrent layers are used in the models that work with 
the time-series data.

Step 3:
The other way of creating the input layer and the hidden layers in the sequential 

model could be given as:

 

The arguments that are passed to the function are given as below:

Add function is used to deploy in all layers.
Dense() represents that the neural network is densely connected
input_shape and units are used to denote the number of nodes in the input layer and 

the hidden layer, respectively.
The activation function is applied to each node. Sigmoid, linear, and ReLu are vari-

ous activation functions.
Kernel_initializer is used to assign the preliminary random weights of the layer.

Step 4:
The hidden and output layers are constructed with the following functions, 

respectively:

 

The activation functions used over here could be classified as sigmoid, rectified 
linear unit, and softmax.

The ANN classifier has to be compiled. The syntax is:

 

Before training, the model has to be compiled with optimization and loss func-
tion. There are various optimization functions such as SGD, Nadam and Adam.

Based on the application, one can choose the optimizer. The loss function is used 
to compute the errors and losses. The nature of the application decides the loss func-
tion. The last argument ‘accuracy’ measures the accuracy of the model.

Step 5: The model has to fit with the training datasets. To fit the model, the period 
is set to 20 and the group size is set to 20 using the syntax model.fit().
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In this, the epochs refer to a single execution through all the data and the batch 
size denotes the number of samples that could be given for execution at a time.

Step 6: Evaluation of the model must be done on the test set with evaluate ().

2.2  Keras Functional Model

To solve complex models, functional API could be implemented. When the problem 
comprises of huge dimensions or complexities, then it is recommended to deploy 
the functional model. When there are multiple inputs and outputs, a model could be 
designed with the shared layers, which make use of the functional API. The first 
step is to import the models and layers through the import function.

For example, assume the shape of the data is a group of 6000-dimensional vector. 
In this case, only the shape of each sample is taken for the development of the model.

inputs = keras.Input(shape=(6000,)) 

The first phase is to specify the input. Here assume, the tensor shape of (32,32,3) 
is considered as the sample of the shape.

Therefore, the input layer has to be created with the following syntax:

input_layer = keras.Input(shape=(32, 32, 3)) 

The next layer is the connecting layer. Here, a pairwise connection is performed 
by denoting the origin of input while identifying each new layer.

To the dense layer function, units and activation functions are used. Here ‘ReLu’ 
activation function is used:

 

To add more layers, the dense function is called with 32 units and ReLu activa-
tion function is used:

 

In the output layer, 12 neurons are assigned, and the activation function assigned 
here is softmax. At last, the Keras model is constructed with the inputs and outputs. 
A model is created with the specified inputs and outputs with the following syntax:

Deploying Deep Learning Models for Various Real-Time Applications Using Keras



118

 

model.summary() provides the details of the functional model.
Model: "model"

________________________________________________________________

Layer (type)                 Output Shape              Param #   
==========================================================
input_24 (InputLayer)        [(None, 32, 32, 3)]       0    
_________________________________________________________________
dense_28 (Dense)             (None, 32, 32, 64)        256       
_________________________________________________________________
dense_29 (Dense)             (None, 32, 32, 32)     2080      
_________________________________________________________________
dense_30 (Dense)             (None, 32, 32, 12)        396        

Total params: 2,732
Trainable params: 2,732
Non-trainable params: 0

2.3  Standard Network Models

Few standard network models such as multilayer perceptron(MLP), convolutional 
neural network (CNN), and recurrent neural network(RNN) have been described 
in detail.

2.3.1  Multilayer Perceptron (MLP)

It is one of the conventional types of neural networks. An MLP is defined as a per-
ceptron in which groups with several perceptrons are arranged in layers to resolve 
complex issues. Figure 3 shows an MLP with three layers in which the first layer is 
the input layer, which transmits the signal to the second layer, known as the hidden 
layer, which in turn passes the signal to the final layer (output layer).

The main application of MLP is to predict the classifications based on the label 
or class. It is mainly appropriate for the real-valued numbers, which are considered 
as the input. Among the various inputs, the output is computed. A combination is 
done based on the input weights, and then it is given to the output with the help of 
some nonlinear activation function. It could be defined as in Eq. 1:
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In Eq. 1, w represents the weights of the neurons, x as the inputs, b refers to the 
bias function, and the activation function is denoted as φ.

Neurons that are deployed in this network are used to acquire knowledge about 
the non-linear representations. The activation function is used to familiarize the 
non-linearity into the output of a neuron. Several activations could be deployed 
based on the applications.

Sigmoid Function:
The sigmoid function is a special case of logistic function which is expressed as 

given in Eq. 2:
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It is mainly used to control the sum of data inputs once the weights are applied. 
The output after the application of the function lies in the interval of 0 to 1.

Tanh Function:
During the deployment of sigmoid functions, there is a likelihood of getting 

stuck in the mid of the function. The reason behind this struck is due to the presence 
of negative input. This drives the output to zero. Feedforward activations are used to 
compute the parameter gradients which leads to less frequency in updating the 
model attributes. Hence, the break in the function occurs. An alternate approach to 
sigmoid is the usage of the tanh function.

The tanh function could be defined as:
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This is also similar to the sigmoidal function but the value ranges from -1 to +1.
Softmax Function:

Perceptron Input And Output

Output Layer

Hidden Layer

Input Layer

Fig. 3 Architecture of 
MLP
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This function is used to identify the possibilities of multiple classes. The output 
of the function is deduced in terms of the probability. It is used in the output layer. 
The constraint in this function is that if the classes grow, then the cost of deploying 
the softmax function would be high:
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The output of this function will be between 0 and 1.
Rectified Linear Unit (ReLu) function:
This function generates the output if the input is positive, else it will give the 

output as zero. Many neural networks work based on this activation function, which 
is treated as a default due to the better performance of the model, and training the 
model is easier:

 
ReLu x ,x( ) = ( )max 0

 
(5)

2.3.2  Convolutional Neural Network (CNN)

CNN architecture comprises of three parts. They are described as given below:
Convolutional layer: The objective of this layer is to mine the features from the 

input source image. The spatial association among the pixels is maintained by 
acquiring the image features with the help of small squares of input data. Image size 
is reduced since it might be easy to process the data without dropping the features 
which are found to be perilous to get a good prediction. During this function, a ker-
nel or filter or feature detector is used. The feature map or activation map is obtained 
from this layer. When the values of filter are varied, then different feature maps or 
activation maps would be obtained for the same input image. Recognition of pat-
terns is done in a better way by running more number of filters, which in turn results 
in the extraction of more features. At the end of every convolution operation, non- 
linear functions must be applied.

Pooling layer: Downsampling of features is done in this layer. This is done so 
that the dimensionality is decreased. The functionalities of pooling layer are:

• Dimensions of the feature is reduced.
• The count of constraints and calculations in the network are decreased.
• There will be no change in the network for small alterations and transformations 

in the input image for maximum value in a local neighborhood.

Fully connected layer: Features determined in the previous layers are levelled 
into the vectors, and the likelihood of the image is done. The goal of this layer is to 
classify the input image based on the features into several classes. Classification 
depends on the training dataset. The architecture of CNN is depicted in Fig. 4.

In Keras, the following steps are adapted to build the model:

D. Sumathi and K. Alluri



121

 1. The input data has to be reshaped into the format which is appropriate for the 
convolutional layers with the help of reshape() function.

 2. One hot encoding is used to translate the classes by using to_categorical() func-
tion in class-based classification.

 3. The model has to be constructed with the help of sequential.add(). To construct 
a 2D convolutional layer,

 

 4. The pooling layer is added as the next phase.
 5. Flatten layers must be created to generate the vector for the fully connected 

layers.
 6. If required, add one or more fully connected layers.
 7. The model must be compiled.
 8. Train the model and then predict the class.

2.3.3  Recurrent Neural Networks (RNN)

It belongs to a category of neural network. It works well for the construction of the 
model which could deal with time-series data or in natural language processing 
(NLP). Several RNN architectures exist. Number of inputs and outputs is used for 
categorization. They are many to many, many to one and one to many. Many to 
many are used for translation purposes. Many to one are applied for sentiment anal-
ysis and one to many could be applied for the generation of sequence.

2.4  Shared Layers Model

From the name, it could be interpreted as there might be multiple layers that are 
utilized to infer the output from a feature extraction layer or several feature extrac-
tion layers from an input.

Fig. 4 Architecture of CNN
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In the shared input layer, several convolutional layers with various sizes of ker-
nels are used to deduce the input image. The output of a Long Short-Term Memory 
(LSTM) feature extractor for the sequence classification could be determined by 
applying submodels in a parallel manner.

2.5  Multiple Input and Output Models

The objective of these models is to build a complex model in which it takes more 
than one input and output.

In the case of multiple inputs, more than one input would be given. For example, 
the main input layer and the auxiliary input layer are provided as given below:

one_inputs =Input(shape= (32,1))
in_layer=Conv1D (16,5, activation=’ReLu’) (one_inputs)
in_layer=AveragePooling1D (3) (in_layer)
in_layer = Flatten () (in_layer)

The sequencing of data is done with the help of Conv1D. The output feature map 
is constructed through this Conv1D layer. The input is passed over the filter and the 
values are multiplied element-wise so that the output feature map is created. Next, 
the values are flattened into a single dimension:

a_input=Input(shape=(12,1))
in_layer=Concatenate ()([in_layer,a_input])

The auxiliary input is added in the middle as an additional input to the final dense 
layer. In this example, the input is one dimension. Then both the input layers are 
concatenated and processed through the dense layer:

Outputs=Dense(20,activation=’sigmoid’)(in_layer)
New_model = Model(inputs=[one_inputs,a_input], outputs=outputs)

In the same way, multiple output models could be developed.

3  Comparison of Frameworks

A comparison of TensorFlow, Keras, and PyTorch is given in Table 1.

4  An Illustration of the Sequential Model

For instance, sequential model construction is illustrated.
The following is an example for sequential model construction:
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Output:
303/303 [==============================] - 0s 36us/step
[0.7296317540379641, 0.5445544719696045]
From the output, the loss obtained is 72% and accuracy is 54%. From this, it is 

understood that the hyper parameters must be tuned to get the precision for 
the model.

Table 1 Keras vs TensorFlow vs PyTorch

Features Keras TensorFlow PyTorch

Supported 
languages

It supports Python language. It supports Go, Python, 
C++,and Javascript.

Supported by Java, 
C++, and Python.

API High-level API could be 
experienced.

Both high-level and 
low-level API could be 
provided.

Low-level API.

Architecture Simple. Not easy to use. Complex.
Datasets Used for small datasets and 

the performance of the 
model is slow.

Deployed for large datasets and the performance 
of the model is high.

Models Neural network models 
could be built.

Various computational 
methods are used.

Models make use of 
NLP and neural 
networks.
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5  Unstructured data and Structured Data

5.1  Unstructured Data

Unstructured data might be in terms of service logs, social media data, and com-
plaints. Extensive research is carried out in analyzing the impact on the kinds of 
data on business consequences. Apart from that, online reviews on services and 
products are also focussed. Most of the research works aim at determining the 
impact of reviews and providing mechanisms to include the factors in a predictive 
model. A detailed analysis of the usage of unstructured data by various researchers 
has been presented in Table 2.

The companies intend to improve the performance of sales. This could be done 
through various social media sites. Through these reviews, responses are recorded 
and a detailed analysis of the current datasets must be done with the help of several 
predictive models. This helps a company to attract more users, improve the prod-
ucts, and modify its service based on customer needs. A machine learning model 
could be developed to determine the value and relationships between the different 
kinds of data produced by the content.

Case Study 1:
Simplified text processing is to be done for textual data. A simple API could be 
provided to perform natural language processing (NLP) actions like sentiment anal-
ysis, translation, classification, extraction of a noun phrase, and part-of-speech tag-
ging. In this, the sentiments of tweets that are posted on twitter are analyzed for its 
polarity.

Table 2 Analysis of researchers’ work on unstructured data

Sl. 
no References Implementation.

1 Sun et al. [1] Forecasting of sales is done with the help of extreme learning methods 
(ELM).

2 [2] Thomassey 
and Happiette

Prediction of sales is done by the implementation of soft computing 
methods such as fuzzy inference systems and neural networks.

3 Teucke et al. 
[3]

Decision trees are applied to identify articles that need to be re-arranged. 
Then support vector machines are applied to determine the original 
forecasts to achieve accuracy.

4 [4], Yu et al An analysis of online movie reviews dataset is done in such a way that the 
sentiments are expressed. Detection of the sentiments is done through 
probabilistic latent semantic analysis (PLSA). Sales prediction is done 
through the deployment of an autoregressive sentiment-aware model.

5 [5–9] An extensive study has been done on blogs, news, and social network 
services (SNS) to perform the correlation analysis among the public 
emotions and stock prices.

6 [10] Support vector machine has been deployed to retrieve the information 
from news articles to forecast the intraday price movements of economic 
assets.
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Step 1:
TextBlob is a library used for the processing of the text. Import it. Take a tweet 

and assign it to the text.

Step 2: An object for the TextBlob is created.
Step 3: Tokenization could be done by retrieving the tokens by accessing the 

properties of blob objects such as sentences and words.

from textblob import TextBlob

text = '''

“‘Congratulations to Rob Jones in accounting for winning our #NFL football 
pool!’; with a picture of a victorious Rob.

‘#TGIF, we’ve been working like a dog!’; with a photo of a sleeping puppy.

Did you see Peyton Manning’s twisted ankle? Should’ve been wearing our 
#AcmeOrthotics; with a link to the product.

blob = TextBlob(text)

blob.tags

[('“', 'JJ'), ('‘', 'JJ'), ('Congratulations', 'NNS'), ('to', 
'TO'), ('Rob', 'NNP'), ('Jones', 'NNP'), ('in', 'IN'), 
('accounting', 'VBG'), ('for', 'IN'), ('winning', 'VBG'),

blob.noun_phrases

WordList(['“ ‘', 'congratulations', 'rob jones', 'nfl', 'foot-
ball pool', 'rob', '‘ #', 'tgif', '’ ve', 'peyton manning', 
'’ s', '’ ve', 'acmeorthotics'])

for sentence in blob.sentences:

print(sentence,sentence.sentiment.polarity)

“‘Congratulations to Rob Jones in accounting for winning our 
#NFL football pool!............. 0.625
‘#TGIF, we’ve been working like a dog!’………. 0.0
Did you see Peyton Manning’s twisted ankle? -0.5
Should’ve been wearing our #AcmeOrthotics; ………….. 0.0
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From the output, it is understood that the polarity of sentences are computed indi-
vidually and displayed.

5.2  Structured Data

Structured data is in the form of tables. Examples of structured data are in the for-
mat of CSV, XLS, and TXT files. In these files, a delimiter is used to separate the 
variables. The delimiter is either a variable or fixed width. Data must be analyzed 
and needs a clear understanding. For further analysis, it must be pre-processed, 
analyzed, examined, cleaned, and visualized. Data needs an extensive exploration 
so that a clear understanding could be gained. Moreover, one can determine evi-
dence from the data, do formulation of assumptions and hypothesis, and perform 
verification of the quality of data for further analysis.

Case Study: Keras on Structured Data
Classification of structured data could be done. Keras could be used to deploy the 
model. Let us see the behavior of the data. The dataset taken for analysis is: Real 
estate.csv

To start with,
Step 1: Import the required libraries such as pandas, TensorFlow, and NumPy. 

Pandas is used to read the data and store it in the data frame.
Step 2: Load the data.

Step 3: Explore the data.

dataset =pd.read_csv('Real estate.csv')

# for reading and importing the dataset

# data is sourced from Kaggle

dataset.columns

Index(['No', 'X1 transaction date', 'X2 house age',

'X3 distance to the nearest MRT station',

'X4 number of convenience stores', 'X5 latitude', 'X6 longitude',

'Y house price of unit area'],

dtype='object')
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Columns present in the datasets are transaction dates related to the house, age of 
the house, distance from the house to the nearest metro, the number of stores near 
to the house, geographical coordinates, and the house price.

Step 3: A deep learning model could be built by defining three layers, namely 
input, hidden, and the output layer.

The first layer is defined as the input layer with dimensions that have to be set for 
the independent variables. Here, the number of independent variables is six. The 
hidden layer and the output layer are defined with the neurons. In the output layer, 
the number of neurons is one to predict the price of the house.

Input layer neurons = 6. First hidden layer neurons =50. Second hidden layer 
neurons = 20. Output layer = 1 neuron.

Step 4: The model has to be compiled. The weights and biases could be changed 
with the optimizer. The performance of the model could be evaluated with the loss 
metric and mean squared error.

 

Step 5: The model has to fit on the training set. The training set and the test set 
are taken in the ratio of 80:20.

 

from keras.models import Sequential

from keras.layers import Dense

model = Sequential()

model.add(Dense(50, input_dim=6, activation= "ReLu"))

model.add(Dense(20, activation= "ReLu"))

model.add(Dense(1))

model.summary() #Print model Summary
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The number of epochs denotes the frequency of the model to run. There is an 
association between the performance of the model and the epochs. If more epochs 
are run, then there will be an improvement in the model.

If the mean squared error value is low, then the model performs better. From the 
output, it is inferred that the mean squared error value is less.

6  Deploying Deep Learning Workstation

The hardware requirements for building deep learning workstation vary based on 
the situation or scope of work under consideration. Irrespective of it, for the reason-
able performance of the system, the minimum requirements are RAM-32 GB, 

Epoch 1/10 331/331 [==============================]  - 0s 69us/
step - loss: 34.2135 - mean_squared_error: 34.2135

Epoch 2/10 331/331 [==============================]  - 0s 57us/
step - loss: 33.0375 - mean_squared_error: 33.0375

Epoch 3/10 331/331 [==============================]  - 0s 51us/
step - loss: 32.1954 - mean_squared_error: 32.1954

Epoch 4/10 331/331 [==============================]  - 0s 42us/
step - loss: 31.2572 - mean_squared_error: 31.2572

Epoch 5/10 331/331 [==============================]  - 0s 42us/
step - loss: 30.4676 - mean_squared_error: 30.4676

Epoch 6/10 331/331 [==============================]  - 0s 42us/
step - loss: 29.7005 - mean_squared_error: 29.7005

Epoch 7/10 331/331 [==============================]  - 0s 47us/
step - loss: 29.0260 - mean_squared_error: 29.0260

Epoch 8/10 331/331 [==============================]  - 0s 48us/
step - loss: 28.1258 - mean_squared_error: 28.1258

Epoch 9/10 331/331 [==============================]  - 0s 47us/
step - loss: 27.4899 - mean_squared_error: 27.4899

Epoch 10/10 331/331 [==============================] - 0s 63us/
step - loss: 26.4776 - mean_squared_error: 26.4776
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GPU- NVIDIA, and hard disk of 1 TB. The tricky phase is to select the right GPU, 
and it depends on several factors, such as: How many tensor cores are available? 
How many FLOPs are given in the GPU? Is memory bandwidth high? Does GPU 
have a minimum of 16-bit processing capabilities?

Before one chooses to build their deep learning workstation, one has to know the 
risks involved in doing that, such as the system can become obsolete after some time 
and there is a chance of additional cost incurred due to hardware failures/mainte-
nance. If your business requirements do not overload at a high pace and you are 
worried about the security, then it is a better option for personal deep learning 
workstation.

Once the GPU, RAM, and hard disk are assembled to the motherboard, then fol-
low the below steps:

 1. Install the operating system (OS): Any OS is okay, but an open source server 
version is highly preferred (here, we have chosen Ubuntu Server).

 2. Install Python and R libraries.
 3. Install drivers of your GPU (here, NVIDIA):

sudo apt-get install nvidia-367
 4. Create a virtual container to use the services dynamically:

 

• You can create a separate user for using Docker Engine and run its 
services.

 5. Integrate Docker services with GPU.
 6. Install DL libraries in the Docker:

• git clone https://github.com/saiprashanths/dl- docker.git
• cd dl-docker
• docker build -t floydhub/dl-docker:gpu -f Dockerfile.gpu

You are ready for running deep learning algorithms in your workstation.
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7  Binary Classification

Situation Description
Assume that you are the owner of an online music store and you release the music 
before they release into the market as a premium offer. On a few occasions, you 
observed some customers are using this service and some or not. As an owner, you 
are interested in the customers who return, based on which you can have target 
advertising and discounts. To solve this problem, you approached a local startup and 
they solved the problem in the following way:

Steps:

1. Load the dataset with the read_csv function. The dataset used here is songs_review_with_
column_names.csv

2. Understand the data
df.dtypes

ID                      int64

Album_length          float64

Price                 float64

Review_1                int64

Review_2              float64

Minutes_listened      float64

Completion            float64

Generated_requests      int64

Target                  int64

dtype: object

All the datatypes of the columns are correctly structured and there are no issues. Let me 
explain the attributes present in the dataset:
ID is the customer ID, Album_length indicates the length album in minutes, price tells the 
cost in dollars, and Review_1 is given by the user (0- not liked, 1-liked). Review_2 is given 
by the critique in the range of 1 to 10. Minutes_listened tells you the number of minutes 
actually the song/album was heard. Completion indicates whether the customer completed 
the listening of the album, Generated_requests indicates the number of times the customer 
took the help of customer service to use the site, and finally, ‘Target’ is the variable which 
indicates the likelihood of the customer to returning to the store, i.e. 1-return and 0-not 
returned.
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3. Shuffle the data as most of the initial rows belong to the customers who are likely to return, 
and this will create inefficiency during the testing phase.

df = df.sample(frac=1).reset_index(drop=True)

4 Checking for class imbalance.

df.Target.value_counts()

#O/P:
0    11847
1     2237
Name: Target, dtype: int64
Here, not likely to visit back are very high. This would lead the system to predict the 
majority class and ignore or consider the minor class as noise. To avoid these sorts of 
problems, we will balance it irrespective of data loss.
#Balancing the dataset.

import NumPy as np

indexNames = df[df['Target'] == 0].index

break_point = (df.shape[0]-int(np.sum(df.Target)))-int(np.sum(df.Target))

count = 0

for i in indexNames:

count = count + 1

df.drop(i,inplace=True)

if(count==break_point):        break

#confirming class balance
df.Target.value_counts()
1    2237
0    2237
Name: Target, dtype: int64
The dataset is perfectly balanced. In real-time, you no need to absolutely balance but we 
should make sure that class imbalance should not lead to misleading conclusions.

5. Dividing the data into training, validation, and testing.

from sklearn.model_selection import train_test_split

df_train, df_val, df_test = split_stratified_into_train_val_test(df, stratify_colname='Target', 

frac_train=0.80, frac_val=0.10, frac_test=0.10)

Of the actual data, 80 % is considered for the training, 10 % for validation and 10% for 
testing the model.
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We divide each subset of data (training, validation, and testing) into inputs and targets.

train_inputs = df_train.iloc[:,1:8]

train_targets = df_train.iloc[:,8]

val_inputs = df_val.iloc[:,1:8]

val_targets = df_val.iloc[:,8]

val_inputs = df_val.iloc[:,1:8]

val_targets = df_val.iloc[:,8]

6. Normalizing the inputs.

min-max = preprocessing.MinMaxScaler()

data_train= min-max.fit_transform(train_inputs)

changed_train_inputs = pd.DataFrame(data_train)
Here, we have normalized the inputs of the training set. We can follow the same process for 
validation and test datasets.

7. Saving the preprocessed dataset into .npz format.

np.savez(‘data_train’, inputs=changed_train_inputs, targets=train_targets)

np.savez(‘data_validation’, inputs=changed_val_inputs, targets=val_targets)

np.savez(‘data_test’, inputs=changed_test_inputs, targets=test_targets)

8. Load the processed datasets.

import NumPy as np

import tensorflow as tf

npz = np.load('data_train.npz')

train_inputs = npz['inputs'].astype(np.float)

train_targets = npz['targets'].astype(np.int)

npz = np.load('data_validation.npz')validation_inputs, validation_targets = 
npz['inputs'].astype(np.float), npz['targets'].astype(np.int)

npz = np.load('data_test.npz')

test_inputs, test_targets = npz['inputs'].astype(np.float), npz['targets'].astype(np.int)
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Import NumPy as np

import tensorflow as tf

input_size = 7

output_size = 2

hidden_layer_size = 100

Setting the parameters for the neural networks model. In our dataset, we have seven input 
variables (i.e., input_size=7) and a class label with two categories (i.e., output_size=2).
Building the model by specifying the required parameters. Keras layers have various 
properties regarding the customization of the neural network architectures. We have used 
Dense layers in which we have set the activation function and size of hidden layers. You 
can experiment by further changing the number of hidden layers, the size of the hidden 
layers, changing the activation function, etc.

model = tf.keras.Sequential([

tf.keras.layers.Dense(hidden_layer_size, activation='ReLu'), 

tf.keras.layers.Dense(hidden_layer_size, activation='ReLu'), 

tf.keras.layers.Dense(output_size, activation='softmax') ])

The most commonly used adam optimizer is to compile the Keras model with loss and 
accuracy being reported at each epoch.

Setting other relevant parameters to finally build the model. 

batch_size = 100

max_epochs = 100

early_stopping = tf.keras.callbacks.EarlyStopping(patience=3)

model.fit(train_inputs, 

train_targets, 

batch_size=batch_size, 

epochs=max_epochs,

callbacks=[early_stopping], 

validation_data=(validation_inputs,   

validation_targets), 

verbose = 2
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model.fit() function would facilitate the data analyst with various options. For example, to 
avoid overfitting of the model, we have used early stopping. This would help in 
automatically stopping the model building where your loss increased when compared with 
the previous iteration. Sometimes, loss increases would be very small, and this should not 
stop the model building. This is handled by setting another parameter called patience 
(allows the loss to increase till specified number of times).
Since verbose is set to true, we could see the results (accuracy vs loss) for every epoch, and 
the sample of the same is shown below:

10. Applying the model on the test data.

test_loss, test_accuracy = model.evaluate(test_inputs, test_targets)

O/P: 

14/14 [==============================] - 0s 1ms/step - loss: 0.4663 - accuracy: 
0.7634Overall accuracy of 76.34 is observed. 

Conclusion:
The owner of the music store could predict about customers visiting back or not with 77 % 
accuracy. The performance would vary based on the hyperparameters and the activation 
functions.

8  Multiclass Classification

Scenario Description
Handwritten digits’ classification is a classical problem of deep learning. In the lit-
erature, researchers around the world used this dataset to test their proposed solu-
tions. In this process, we have seen “DropConnect based regularization” achieve the 
highest accuracy, above 99.5 %, and one of the lowest accuracies of 85.47 % was 
observed with target coding of the deep neural networks. Other relevant works on 
the same dataset can be seen in [11–14] achieved good performance, but all of them 
customized the underlying deep neural network architectures. In this chapter, we 
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could achieve an accuracy of 98.5 % without using CNN and following the basic 
image-flattening process.

In the MNIST (Modified National Institute of Standards and Technology) site, 
following the traditional process, they achieved an accuracy of only 92 % and we 
aim to increase this without touching the advanced neural network architectures. 
This chapter aims to give a sense of accuracy improvement by fiddling the 
hyperparameters.

About the dataset: MNIST has 70,000 handwritten digits, and each time the neu-
ral network is fed with the handwritten image as input and predicts the digit among 
10 possibilities. Each image is a 28×28 pixel grey-scaled image. The pixels range 
from 0 to 255, where 0 indicates purely black and 255 refers to pure white. As our 
focus is not to use CNN for this, we will flatten each image by which we will have 
784×1 vector as input to the neural network. To add the non-linearity, we can add 
the hidden layers based on our requirement and the intermediate results are sent to 
the output layer with ten neurons.

The broad steps that we follow are:

 A. Load and preprocess.
 B. Build a model with appropriate activation functions, loss function, and 

optimizers.
 C. Run the model on the test data.

1. Libraries such as NumPy and tensorflow is imported.

The dataset comes with Tensorflow datasets and we are loading it as below:

digits_dataset, digits_info = tfds.load(name='digits', with_info=True, as_supervised=True)

as_supervised = TRUE would load the data in two separate entities, i.e. input and target, and 
with_info would give metadata about the dataset which we will use in the next few lines of 
the code.

2. Partition the data into training and testing.

digits_train, digits_test = digits_dataset['train'], digits_dataset['test']

From the training data, we extract the validation data. We have used 10 % of training as 
validation.

total_validation_samples = 0.1 * digits_info.splits['train'].total_examples

total_test_samples = tf.cast(total_test_samples, tf.int64)
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3. Normalization would help in stabilizing the results for which the following code is used:

Calling the function to apply to the training data.

changed_train_and_validation_data = digits_train.map(modify)

Similarly for testing data,

test_data = digits_test.map(modify)

4. Shuffling the training dataset.

BUFFER_SIZE = 10000

=atad_noitadilav_dna_niart_delffuhs

changed_train_and_validation_data.shuffle(BUFFER_SIZE)

We cannot shuffle the entire dataset and this is especially true with big datasets. To handle 
this, we specify the extent of shuffling in every instance.
Then, we divide the training data into validation data, and the remaining is treated as 
training instances.

validation_data = shuffled_train_and_validation_data.take(total_validation_samples)

train_data = shuffled_train_and_validation_data.skip(total_validation_samples)

5. Creating batches:

BATCH_SIZE = 150

train_data = train_data.batch(BATCH_SIZE)

Batches would help in stabilizing the results, and the size of the batch depends on the 
underlying dataset. We don’t need to create batches for the validation data as weights will 
not get updated from each batch to the other in the validation set. The same concept applies 
to the test data. But, it is required to denote the total number of samples in validation 
pertains to one batch and total instances in a test as one more batch.

validation_data = validation_data.batch(total_validation_samples)

test_data = test_data.batch(total_test_samples)

Dividing the validation data into inputs and targets. 

validation_inputs, validation_targets = next(iter(validation_data))
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6 Building the model.
Setting hyperparameters for the model, such as hidden layer size, number of hidden layers, 
activation functions, etc. We use Keras flatten function as we aim to achieve good 
performance without using CNNs. For each hidden layer, Keras dense() function would 
perform dot products of inputs and weights. This would also support various activation 
functions, and we currently used ReLu, and for output layer, softmax activation is used as 
classification should be made in the context of probabilities.

7. Choose the Optimizer and loss function.

model.compile(optimizer='adam', loss='sparse_categorical_crossentropy', 

metrics=['accuracy'])

We have chosen the most commonly used optimizer called “Adam,” and loss function is 
sparse_categorical_crossentropy as the outputs are treated as one-hot encoded variable by 
the model.
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8. Running the model.

TOTAL_EPOCHS = 10

model.fit(train_data, epochs=TOTAL_EPOCHS, 
validation_data=(validation_inputs, 
validation_targets), verbose =2)

The neural network is built with specified parameters, and a model is constructed from the 
training data, and its understanding is cross-checked with validation samples.
O/P (Fig. 5):

9. Test the model.
Note that, once the model is built and applied on the test data, we should not go back and 
change the hyperparameters, and this leads to overfitting.

test_loss, test_accuracy = model.evaluate(test_data)

O/P:
Loss=1.44, Accuracy=98.56 %
Note that, if testing accuracy is close to validation accuracy, then it is an indicator of a 
non-overfitting scenario.
Conclusion
Achieving accuracy greater than 98% is good, which is made possible without using CNN 
and flattening the images. Even though the application projected here is a classical one, we 
showed a situation of high accuracy improvement by just fiddling with the hyperparameters.

9  Linear Regression Using Keras

Keras library is found to be a high-level API that is used to construct deep learning 
models due to its simplicity and ease of deployment. Through Keras, a complex 
deep learning network could be developed with less code.

Problem Statement
Adult overweight and obesity is a common issue that occurs in day-to-day life, and 
especially during the lockdown period of the pandemic situation, it has occurred 
worldwide. Obesity is found to be a predominant issue, and the contribution of 
measurements of BMI alone is not sufficient to support the assessment done by 
clinicians and achieve obesity-associated health risk in patients [15]. The phenotype 
of obesity might change over time, which creates an impact in the intensification of 
abdominal adiposity, as stated in ref. [16]. In ref. [17], as part of categorical analy-
ses, the circumference of the waist is related to health outcomes [18]. Hence, the 
waist circumference measurement is considered to be a significant metric to aug-
ment the health of patients. To analyze it, linear regression could be deployed using 
Keras [19].
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Step 1: Importing the required libraries, necessary modules, and libraries specific 
to Keras.

 

Step 2: Source the data.

dataset =pd.read_csv('WC_AT.csv')

Fig. 5 Output
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Step 3: The target variable is identified, and the data values are normalized 
through scaling between 0 and 1.

Step 4: Fixing the dependent and independent variables in an array for splitting 
the dataset into a test set and training set in the ratio of 80:20.

Step 5:
The sequential model is defined with the linear heap of layers. The first layer is 

specified with the input dimension as 1, and the ReLu is the activation function. The 
same process is repeated for the hidden layers. Finally, the output layer is denoted 
with one node that is determined as the output.

 

Step 6:
The optimizer has to be defined along with the loss measure for the training. 

Here the optimizer used is “adam,” and the loss measure is “mean squared error.” 

target_column = ['AT']

predictors = list(set(list(dataset.columns))-set(target_column))

dataset[predictors] = dataset[predictors]/dataset[predictors]. max()

dataset.describe()

X = dataset[predictors].values

y = dataset[target_column].values

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, 
random_state=40)

print(X_train.shape); print(X_test.shape)
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There is no need of specifying the learning rate when an adam optimizer is used. 
The built model has to be fit on the training dataset. The number of epochs men-
tioned here is 1000 [20].

 

Output:

 

From the output, it has been inferred that the loss function decreases.
Step 7: Model prediction is to be done on the training dataset and test dataset. 

The root mean squared values are determined.

 

Output:

34.38092793923469
25.94993546799555

From the results, it has been inferred that the root mean squared error values for 
the training data and test data are 34.38 and 25.95, respectively. If the root mean 
squared error value is low, then the model’s performance is better [21].
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Conclusion
The model shows a stable performance since there is not much variance in the test 
and training set root mean squared error values. The model could be tested by vary-
ing the epochs, neurons in the layers, and adding more hidden layers.

10  Conclusion

This chapter focusses on high-level Python library that are used for deploying deep 
learning that are deployed on Keras. It provides deep insights into the models of 
Keras along with the comparison of various frameworks. The process of handling 
structured and unstructured data has also been explained. Various case studies in 
binary and multiclass classification have been discussed. Moreover, several models 
have been deployed with the help of Keras to solve various problems in day-to-day 
activities.
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1  ConvNets

1.1  Introduction to ConvNets

ConvNets is the short form of convolution neural networks that is remarkably simi-
lar to ordinary neural networks that you have studied in previous chapters. ConvNets 
are also made up of neurons with weights and biases as learning parameters. The 
additional layer(s) that we add to ConvNets is a convolution layer. Convolution is 
derived from a Latin terminology ‘to convolve’ which resembles the meaning for 
rolling together. Mathematically, it is the integral calculation of one function over-
lapping with another.

 
f g t t

t

∗( )( ) = −( )∫
0

sin cosτ τ τd
 

The network however still looks like it is taking an image from input layer and 
provides class scores from the output layer. ConvNet architectures assume that 
input is an image then proceeds forward to the network; in other words CNN (con-
volution neural networks) identifies the images by processing on the raw input 
image, passing through the layers to predict the class from the class scores.

In neural networks, CNN is extensively used for image identification, classifica-
tion of images, object detection and face detection. One of the real-time uses can be 
seen in OCR (optical character recognition); for starters OCR is the technique of 
identifying text from an image. One of the most important OCR is handwritten digit 
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recognition [1]. The banking industry make most use out of it for document valida-
tion and checking, check approval, credit card processing and many more. Anyone 
who starts with deep learning, computer vision or machine learning will go through 
this project at least once; in fact many AI practitioners think of this project as a hello 
world for deep learning [1].

1.2  Layers

Image is a formation of pixels. A grey scale image is two-dimensional with two 
channels in the image: a white and a black; for a colour image, there are three chan-
nels – red, green and blue – making it a three-dimensional image. In both cases, 
pixel value is ranged from 0 to 255.

ConvNets architecture can be divided into two stages: feature learning and clas-
sification. In general feature learning stage consists of three functions, a convolution 
function, activation function and a pooling function specifically in this order. They 
can be repeated multiple times as shown in Fig. 1 [2]. The input layer here is convo-
lution layer itself activated by an activation function. The main objective of this 
layer is feature extraction; it takes input in [width x height x depth] format where 
depth depends on type of the image. A grey scale image’s depth is 2, and for a 
colour image the depth is 3. But only a part of that image is considered for convolu-
tion, as network may become highly computational if all pixels get into the layer. 
Activation function determines which neuron can proceed to further layers and 
which cannot. One of the widely used activation functions is ReLU.

ReLU stands for rectified linear unit. It is computationally efficient as it activates 
neuron by neuron by converting negative inputs to zero; basically it does not con-
sider negative inputs. When convolution is applied on an image with 128 neurons, 
128 feature maps will be generated; each feature map is taken by an activation func-
tion to select highlighting features of the input image, but in rare cases, features at 
the negative region may get saturated and may not proceed further. In such cases we 
use leaky ReLU activation function. Once features are extracted, the image size is 

Fig. 1 Basic architecture of ConvNet. (Hidaka et al. [2])
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reduced by 1 pixel on each side which means a 28 × 28 input image gets reduced to 
26 × 26. This is because we omit bordered pixels while convoluting. Wherever we 
add a convolution layer, we have to mention four parameters:

 1. Number of convolutions
 2. Kernel map size
 3. Activation function
 4. Input shape (only if we consider convolution as input layer)

In Python with TensorFlow, an input convolution layer can be stated as (depend-
ing on the platform, the statement may change)

keras.layers.Conv2D(64,(3,3),activation='relu',input_shape= 
(28,28,1)),

A convolution layer with 64 convolution maps of 3 × 3 kernel is activated by 
ReLU activation function for 28 × 28 grey scale image input. Kernel will get mapped 
to every 3 × 3 submatrix of the input image such that the output is an enhanced ver-
sion of the input image as shown in Fig. 2. For each pixel in the input image, a new 
value is calculated with the help of neighbouring pixels.

 

value2 2 10 0 1 11 0 2 12 0 3 16 0 4 17 0 5
18 0 6 22 0 7

, . . . . .
. .

= ∗ + ∗ + ∗ + ∗ + ∗
+ ∗ + ∗ + 223 0 8 24 0 9 58 49∗ + ∗ =. . .  

Generalized formula can be given as
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Here, h is the kernel map, and y is the convoluted output of image x.
Features from the image are extracted as feature maps, but these are sensitive 

towards the location of the input image. Pooling layer will down sample the feature 

Fig. 2 Convolution operation using kernel
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map which in turn reduces the sensitivity. Popular pooling methods are average 
pooling and max pooling which epitomize the average pixel existence and the maxi-
mum pixel existence. Adding a pooling layer to the network after convolution layer 
is considered to be a common practice. Pooling is an operation like applying a filter 
on feature map using a pooling operation, and its size is much smaller than the origi-
nal image or feature map. A 2 × 2 pooling operator reduces feature maps in half as 
shown in Fig. 3 [3]. Every 2 × 2 submatrix is concise into their maximum equiva-
lent. Similarly, for average pooling, the average of submatrix is evaluated. This 
method helps in keeping the features while reducing the size of the image. All 64 
features with 26 × 26 size from convolution layer can be further reduced such that 
the resultant feature map can be 13 × 13. We can repeat convolution + pooling layers 
multiple times for better results.

In classification stage, the two-dimensional feature maps are flattened out into a 
one-dimensional array or vector to be fed into a classifier. Both training and testing 
data will go through feature extraction stage. In this way, ConvNets transform the 
original pixel values, layer by layer, into class scores. A simple ConvNet for hand-
written digit recognition is summarized below.

Fig. 3 Demonstration of convolution and pooling. (Verschoof-van der Vaart et al. [3])
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========================= modelSummary =======================
Model: "sequential"
______________________________________________________________
Layer (type)                 Output Shape              Param #
==============================================================
conv2d (Conv2D)              (None, 26, 26, 64)        640
______________________________________________________________
max_pooling2d (MaxPooling2D) (None, 13, 13, 64)        0
______________________________________________________________
flatten (Flatten)            (None, 10816)             0
______________________________________________________________
dense (Dense)                (None, 28)                302876
______________________________________________________________
dense_1 (Dense)              (None, 10)                290
==============================================================

 

In handwritten digit recognition system, the data consists of pixelated images of 
digits written in different handwriting styles [1]. For training, a subset of the whole 
data goes through feature extraction phase and classification phase. When a test 
sample enters the network, the model analyse its features and classifies it based on 
those features just like any classifier do. In many cases the output layer is activated 
by a softmax activation function in case of multi-classes and sigmoid activation in 
case of binary classification. Adding multiple convolution layers will increase the 
chance of improving prediction rate. The deeper the network is, the complex it 
becomes to deal with the features. Popular versions of ConvNets are ResNet, 
AlexNet, VGG16 and Inception Networks which are available in public platform.

Building a ConvNet in Python using Keras is straightforward and does not need 
any calculations. The first step is to obtain the data and preprocess it to the needs of 
our network.

import tensorflow as tf
from tensorflow import keras
import numpy as np

handwriting_mnist = keras.datasets.mnist
(train_images,train_labels),(test_images,test_labels) = handwrit-
ing_mnist.load_data()
train_images = train_images.reshape(len(train_images),28,28,1)
test_images = test_images.reshape(len(test_images),28,28,1)

The structure of ConvNet used here is a pair of convolution and max pooling 
layers as in the model representation above.
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model = keras.models.Sequential([                                keras.
layers.Conv2D(64,(3,3),activation='relu',input_shape=(28,28,1)),
keras.layers.MaxPool2D(2,2),
keras.layers.Flatten(),                                 keras.lay-
ers.Dense(28,activation='relu'),
keras.layers.Dense(10,activation='softmax')
])

m o d e l . c o m p i l e ( o p t i m i z e r = ' a d a m ' , m e t r i c s = 
['acc'],loss='sparse_categorical_crossentropy')

class handwriting_acc_callback(keras.callbacks.Callback):
  def on_epoch_end(self,epoch,logs={}):
    if(logs.get('acc')>=0.9):
       print("\n Model has reached 90% accuracy! Congratulations !!!!!")
       self.model.stop_training = True

handwriting_acc_callback = handwriting_acc_callback()

model.fit(train_images,train_labels,epochs=100,callbacks=[handwrit
ing_acc_callback])
model.evaluate(test_images,test_labels)

Callback here will restrict the train from overfitting; we will see more about this 
as a standalone topic.

1.3  Construction and Architecture

Convolution layer is the main building block of ConvNets that almost does all the 
extensive work. Every filter is spatially small but extends throughout the image. 
When dealing with high- dimensional resources such as images, we connect each 
neuron to a local region of input space. During the forward propagation, we cross 
each filter throughout the image to compute the dot product just like we have done 
previously, but when considering the neural connectivity there a hyper parameter 
dealing with special extent, i.e. receptive field of neuron which is nothing but the 
size of the filter. The approach of that filter is not just limited to width or height, it 
connects to the depth also; in fact the connectivity extends to the entire depth of 
the image.

For example, if an RGB CIFAR-10 image of size 32 × 32 × 3 is convoluted with 
5 × 5 filter, then each neuron in the layer has the same weight as 5 × 5 × 3 in the 
input region. Therefore, a total of 75 connections are made with the input volume.
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Connections from convolution layer to input layer is simply straightforward 
compared with the arrangement of neurons for output. There are three parameters 
responsible for controlling the dimensions of output:

 1. Depth: it resembles the number of filters used, and for each cycle, it feeds a dif-
ferent input. For example, if the first cycle of convolution inputs a raw image, 
then other neurons in the same space may be activated by any property of that 
image like edges or colours.

 2. Stride: this decides the jump ratio of filter across pixels. For stride = 1, the filter 
gets moved by one pixel at a time. The higher the stride, the lower the output 
special volume.

 3. Zero-padding: like we saw previously, convolution omits the bordering pixels. 
Zero-padding allows us to control the borders by filling them with zero; thus, the 
image size will not be reduced.

Using the function of input volume size (W), the convolution field size (F), the 
stride (S) and the zero-padding level (P), output space neuron fit can be given as 
(W − F + 2P)/S + 1. For example, a 7 × 7 input image and a 3 × 3 kernel/filter with 
1 and 0 as stride and padding, respectively, can produce a 5 × 5 output [4].

In a larger network, controlling these parameters is a troublesome and confusing 
task. So we use a parameter sharing scheme to control the number of parameters 
influencing the network in a whole. For example, the architecture that won the 
ImageNet Challenge in 2012 trained the network with 227 × 227 × 3 images. The 
first convolution layer used the neurons with F = 11, S = 4, P = 0, K = 96; therefore, 
output size can be calculated as (227 − 11)/4 + 1 = 55, 1 is added because of bias. 
The number of neurons in the first convolution layer can be 55 ∗ 55 ∗ 96 = 290, 400. 
The number of weights in each layer can be calculated as 11 ∗ 11 ∗ 3 = 363. Together 
they give 290400 ∗ 364 = 105, 705, 600 parameters for the first layer alone. To 
reduce the parameters, we can denote a two-dimensional depth slice, i.e. by consid-
ering 96 unique sets of value compositions like weights and biases, i.e. 
96 ∗ 11 ∗ 11 ∗ 3 = 34, 944 unique parameter weights and 96 unique biases [5].

Programmatically, for an input shape 11 × 11 × 4 with P = 0, F = 5, S = 3, the 
output volume is (11 − 5)/3 + 1 = 3, so the activation map V (output of particular 
convolution layer) can be formulated as

V[0,0,0] = np.sum(X[:5,:5,:] * W0) + b0
V[1,0,0] = np.sum(X[3:8,:5,:] * W0) + b0
V[2,0,0] = np.sum(X[5:10,:5,:] * W0) + b0
V[3,0,0] = np.sum(X[7:12,:5,:] * W0) + b0

Here the w0 is the weight vector of shape 5 × 5 × 4, and we are using the same 
weights and bias (parameter sharing). Multiple activation maps can be formed by 
going along other dimensions like
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V[0,0,1] = np.sum(X[:5,:5,:] * W1) + b1
V[1,0,1] = np.sum(X[3:8,:5,:] * W1) + b1
V[2,0,1] = np.sum(X[5:10,:5,:] * W1) + b1
V[3,0,1] = np.sum(X[7:12,:5,:] * W1) + b1

Play with this to see how they reflect the output. Try changing the limiting pixels 
of the image X by going along different axes and dimensions. For example, 
V[0,1,1] = np.sum(X[:5,3:8,:] * W1) + b1 (example of going along 
y), V[1–3] = np.sum(X[5:10,7:12,:] * W1) + b1 (going along both).

In short, the convolution layer accepts W1X H1X D1 volume size with four param-
eters (K, F, S, P) producing a W2 X H2 X D2 where W2 =  (W1 − F + 2P)/S + 1, 
H2 = (H1 − F + 2P)/S + 1 and D2 = K. The common hyperparameter values are F = 3, 
S = 1, P = 1.

As it is a common practice to include a pooling layer in between successive con-
volution layers, it also contains some characteristics. This layer operates on its own 
by resizing every depth slice in the input. The popular filter size for pooling is 2 × 2 
with stride size 2. Despite its down sampling methodology of discarding almost 
75% of the activation, the depth remains the same. Output from the convolution 
layer is treated as input here with W1X H1X D1volume size, accepting two parame-
ters F and S producing W2XH2XD2 where W2 = (W1 − F)/S + 1, H2 = (H1 − F)/S + 1 
and D2 = D1.

2  RNN, LSTM and GRU

The popularity of neural networks is being influenced by advancements in mobile 
technologies like Apple’s Siri, Amazon’s Alexa and Microsoft’s Cortana. These 
voice assistants can remember the input to process an upcoming query. For exam-
ple, a query ‘What food is famous in Italy?’ was asked by a user, and the assistant 
replied with an appropriate answer as the query is straightforward. If the user asks 
another query like ‘How is the weather there?’, this query is unclear as the keyword 
there is not relevant; here where RNN comes into picture. RNN stands for recurrent 
neural networks; this algorithm remembers its input because of an internal memory 
logic making it suitable for understanding and predicting sequential data structures. 
From the previous example, the assistant can now understand that the term ‘there’ 
is not relevant, but it is relative to the previous query where the subject refers to the 
term ‘Italy’. Therefore, the network updates the query to ‘How is the weather 
Italy?’. Because of this capability in RNN, it can also predict the next sequence of 
queries very precisely. This is why many AI practitioners prefer RNN for data like 
financial data, audio, video, time series, weather and much more over other 
algorithms.

In a feed-forward network like ConvNets, the information is unidirectional (from 
input, through hidden, to output) without visiting a neuron/node twice. Unlike them, 
RNN loops the information in cycles, and while taking a decision it considers the 
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present cycle which already experienced the previous knowledge or information as 
shown in Fig. 4 [6]. The one important note while understanding RNN is that they 
apply weights to current as well as previous input; also, the adjustment of weights 
is carried out through gradient descent and backpropagation. Unlike feed-forward 
network, RNN is capable of mapping transactions from one to many, many to one 
and many to many neurons. To get a clear understanding about RNN, you’ll need to 
understand how a normal feed-forward network and sequential data work. You have 
already seen the working of feed-forward network previously, so now let’s look into 
sequential data.

Sequential data is the data arranged in an ordered manner but not necessarily in 
a chronological order. Examples of sequential data are customer purchase data in a 
store, web history, career growth and many more. A time series data is also a 
sequential data having successive intervals of time. A best example for time series 
data is weather data. A typical RNN contains a short memory which is capable of 
remembering the immediate past, but for longer sequences it is necessary to access 
data from unknown duration; for such applications we use LSTM along with 
RNN. LSTM stands for long short-term memory, and they are designed especially 
to address long-term dependency problem in traditional RNN. All recurrent net-
works form a connection or chain of repeating modules; traditionally this repeating 
module is a single tanh layer, but in LSTM the repeating module consists of four 
interactive layers as show in Fig. 5 [7]. Mathematically, the gates in LSTM cell can 
be described as
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Fig. 4 Feed-forward network vs RNN. (Dana and Correll [6])
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where W is the recurrence between the current and previous nodes. U contains 
weights from input for hidden layers, C  is called candidate’s hidden state and C is 
the memory unit.

Backpropagation in RNN is called ‘Backpropagation Through Time’. While 
constructing a RNN using any framework, backpropagation is taken care automati-
cally, but understanding it is important to debug any issue while running the model. 
The weight transfer in RNN is usually referred in rolls; a forward roll is called a 
row, whereas the backward roll is called unroll. The change in the outputs of current 
roll to the next roll through a function is described as gradient. Mathematically a 
gradient is the partial derivative of the function with respect to its inputs. The higher 
the gradient, the better the performance of the model learning. Two key issues in 
standard RNN are exploding gradient problem and vanishing gradient problem. 
Exploding occurs when the algorithm assigns higher weights to insignificant details, 
which can be solved by squashing or omitting some gradients. When the gradients 
are too small to consider, then it is called vanishing gradient problem; this problem 
can be solved using LSTM as it keeps the steep to a threshold level to maintain the 
training minimal and accurate. The process of LSTM is interactive because of the 
inclusion of cell state. Cell state is like a flow of work where the activation 

Fig. 5 Structure of LSTM. (Yuan et al. [7])
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function’s output joins the main stream of the respective network knowing what 
state is current state and what state is previous state. Building a LSTM is so easy 
that it only involves a few tensor operations and one loop.

A smaller version of LSTM with almost the same functionality is GRU (gated 
recurrent unit). The main reason behind the development of GRU is to solve vanish-
ing gradient problem. GRU is an improved version of standard RNN; it contains 
only two gates, an update gate and a reset gate. These two gates will decide which 
information will get through the network and which information is irrelevant by 
using only four operations as shown in Fig. 6 [8]. The update gate (Zt) is responsible 
for passing past information. Update gate zt for time step t can be given as

 
z W x U ht

z
t

z
t= +( )( ) ( )
−σ 1  

where xt is the input where weights W(z) get multiplied to it when plugged to the 
network and ht is the candidate activation with respect to time. Like xt, the previous 
candidate’s activation when plugged into the network, it gets multiplied by its own 
weights U(z). Both results add up together and are given to a sigmoid activation 
function to sustain the resultant in between 0 and 1. This operation eliminates the 
risk of occurring vanishing gradient problem. The other gate is reset gate which is 
responsible for clearing the memory (decide how much past information to forget); 
the degree of forgetful can be calculated using

 
r W x U ht

r
t

r
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GRU’s output is influenced by both current memory content and current time 
step. The current memory output ht

′  can be achieved by restoring the information 
from the past using

Fig. 6 Structure of GRU. (Su and Kuo [8])
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The importance of current memory is linked with the effect of reset gate. 
Hadamard product (⊙) between reset gate and product of previous memory content 
and its weight Uht − 1 will determine what information should be removed. Finally, 
the sum of Hadamard product of update gate with previous memory content and 
Hadamard product of update gate’s zeroth portion (1  –  Zt) and current mem-
ory content
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′
 1 1

 

Since the model is not taking out the inputs every time a new information passes 
through out network. ConvNets are considered to be superior to recurrent networks. 
We have already seen ConvNets for image classification task; now let’s see how 
convolution helps in processing sequential data.

3  Sequence Processing Using ConvNets

Previously we have learned about convolution and how it helps in solving computer 
vision problems. The characteristics of convolution like feature extraction from 
input space of 2D image made ConvNets flourish in computer vision. These same 
properties can further be extended to sequence processing as time itself can be 
treated as a special dimension. Usually the one-dimensional convolutions are com-
putationally higher than recurrent networks, but recent research in the field of audio 
translation and generation used the dilated kernel which is prone to have a better 
result compared to RNN for simple tasks like forecasting and text classification. 
What we have seen previously is 2D convolution that extracts 2D feature maps by 
applying a 2D filter or kernel. In the same way we can extract 1D sequence using 
1D convolutions. The main idea is the same as 2D convolution; feature maps are 
obtained from a time patch in the input. The transformation applied on the patch (a 
part of the input) is the same throughout the sequence – thus, a pattern from one 
position can be recognized at another making; this is called translation invariance. 
For example, let’s say a 1D ConvNet is processing a sequence of symbols or char-
acters using a window size of 5; that means the network is able to learn a patch of 
the sequence of length 5 aka fragment. Whenever it came across this fragment 
again, the network will be able to recognize these words in the input sequence to 
build a context. This understanding of fragments and segments in the sequence for 
building a context is called word morphology.

Like 2D ConvNets, 1D ConvNets also have a pooling layer associated with con-
volution layer, and the operation of 1D pooling is equivalent to 2D pooling, output-
ting the maximum or average value from the patch (subsequence). In terms of 
sequences, pooling can also be referred as subsampling. Building a 1D ConvNet in 
Python using Keras is identical to 2D ConvNet. First we need to obtain the data and 
preprocess it
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from keras.datasets import imdb
from keras.preprocessing import sequence
max_features = 100
max_length = 5

print('Loading data...')
(x_train, y_train),(x_test, y_test) = imdb.load_data(num_words = 
max_features)
print(len(x_train), 'train sequences')
print(len(x_test), 'test sequences')

print('Pad sequences (samples x time)')
x_train = sequence.pad_sequences(x_train, maxlen=max_length)
x_test = sequence.pad_sequences(x_test, maxlen=max_length)
print('x_train shape:', x_train.shape)
print('x_test shape:', x_test.shape)

In 2D ConvNet we stacked a pair of convolution layers with max pooling 2D 
layer. Here that changes to max pooling 1D layer, and one major change is the ker-
nel size. In 2D network we mention the kernel size as 3 × 3 or 5 × 5 which results 
in 9 or 25 pixels, respectively, but here in 1D a 3-window size will only contain 3 
features which is considerably smaller so we can increase the size to our wish. 7 as 
window size is optimal for this program.

from keras.models import Sequential
from keras import layers
from keras.optimizers import RMSprop

model = Sequential()
model.add(layers.Embedding(max_features, 128,  
input_length=max_len))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.MaxPooling1D(5))
model.add(layers.Conv1D(32, 7, activation='relu'))
model.add(layers.GlobalMaxPooling1D())
model.add(layers.Dense(1))
model.summary()
model.compile(optimizer=RMSprop(lr=1e-4), loss='binary_crossen-
tropy',              metrics=['acc'])
history = model.fit(x_train, y_train, epochs=10, batch_size=128,                     
validation_split=0.2)

Comparing to LSTM, 1D ConvNet’s runtime is higher on both CPU and GPU. In 
the same way 2D convolution performs well on images, 1D convolution performs 
well on temporal data. Because RNN is computationally expensive for processing 
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long sequences, 1D CNN can be used as a preprocessing step to compress the 
sequence for feeding into RNN.

4  Keras Callbacks and TensorBoard

4.1  Callbacks

Building a model, whether it be a CNN or RNN, is only a quarter of the work done; 
the rest of it is debugging and troubleshooting the model. One of the greatest debug-
ging tools provided by Keras is callbacks. These help to understand the working of 
the code while it is running. In other words, we can retrieve the statistical and inter-
nal state information of the model during the training itself. Callback is not a layer 
or a separate model; it is a function that we call on fitting. We can write our very 
own callback if needed, but in most of the cases it is not necessary as Keras offers a 
variety of callback functions [19].

BaseLogger and History
This is a basic callback applied to the model by default. When fitting the model, the 
general statement is model.fit(); this does not assign results to anything, but 
when we assign the same statement to a variable, then that variable is assigned to an 
object keras.callbacks.history containing each epoch’s average accu-
racy and loss information as a dictionary.

Model Checkpoint
After successful epoch, this callback will save the model as a checkpoint in HDF5 
format with a name of our desire. This callback is helpful when we are running our 
model in cloud and that is taking more time.

CSVLogger
Like the name suggests, this callback writes the epoch information or logs about 
epoch, accuracy and loss into a CSV file. This helps in understanding the behaviour 
of the model while training, validating and testing. This will help when we are com-
paring different models for an application.

EarlyStopping
Overfitting is one of the major problems in machine learning; it is equivalent to 
overconfidence in human beings. EarlyStopping callback will terminate the training 
before it is completed. We can specify the learning metric to a value that helps this 
callback to understand the change in shift in the metric.

RemoteMonitoring
This callback’s main intention is to integrate machine learning models with web 
services. This callback uses HTTP POST to send status in JSON format that helps 
in monitoring and handling specific tasks remotely.
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LearningRateSchedular
Optimization in neural networks is crucial for minimizing the costs and maximizing 
the fitness. This callback helps in tweaking the learning rate of optimizers. One of 
such optimizers is gradient descent; this callback helps in emphasizing the step size 
needed to be taken during the process.

LambdaCallback
A custom callback, if you did not find a suitable callback for your requirement, then 
this is your option. This lets you create a basic callback that returns epoch, batch or 
training information. For a complex callback, you have to inherent keras.callbacks.
Callback class. This lets you have the control over execution of callback.

All the above callbacks help in building a model effectively and quickly. There is 
no restriction of using one callback per model; you can use any number of callbacks 
you want. There is one more callback which is a favourite of many AI practitioners 
or those who are familiar with TensorFlow: TensorBoard.

TensorBoard
A beloved callback where logs are written to a directory which further lets you use 
them in TensorFlow’s visualization tool is named TensorBoard. The highlighting 
factor is that it also works with TensorFlow alternatives like CNTK or Theano.

4.2  TensorBoard

TensorFlow is a great place to start building machine learning models with user- 
friendly Keras API. It was developed by Google as a framework that utilizes graphi-
cal representations for effective computation. A program in TensorFlow contains 
two phases: one being the addition of node, and the other is feeding nodes with 
inputs for graph execution. For example, addition of two numbers in TensorFlow 
looks like this:

x = tf.Variable(3, name = 'x')
y = tf.Variable(4, name= 'y')
sum = x + y
print(sum)

By running the above code, you may think we get 7 as output, but instead we will 
end up with this:

Tensor("add_1:0", shape=(), dtype=int32)

As mentioned earlier, we execute the graph by feeding inputs. TensorFlow will 
construct a graph from the nodes and the operations we want to compute. For the 
above code, the graph will look like this:
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This visualization can be seen in TensorBoard. TensorBoard provides tools for 
measurement and visualization during workflow. It is not different from what we 
have seen earlier. We just have to add a callback to the fitting statement that creates 
logs specifically for TensorBoard. In Python, we need to import the tensorboard 
library first:

from tensorflow.keras.callbacks import TensorBoard

Let’s build a model that can classify cats and dogs:

NAME = “cats-vs-dogs-cnn-64x2”.format(time.time)
tensorboard = TensorBoard(log_dir="logs/{}".format(NAME))

Now, the tensorboard variable is the model which is readable by TensorBoard, 
but it does not contain any information in it. We can pass our training information 
to it using the callback that we have seen earlier:

model.fit(X, y,
          batch_size=32,
          epochs=3,
          validation_split=0.3,
          callbacks=[tensorboard])

The callback provided here is a list. We can provide other callbacks in the list as 
well. Now let’s build our model:
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import tensorflow as tf
from tensorflow.keras.datasets import cifar10
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.keras.models import Sequential
from tensorflow.keras.layers import Dense, Dropout, 
Activation, Flatten
from tensorflow.keras.layers import Conv2D, MaxPooling2D
import pickle
import time
pickle_in = open("X.pickle","rb")
X = pickle.load(pickle_in)

pickle_in = open("y.pickle","rb")
y = pickle.load(pickle_in)

X = X/255.0

model = Sequential()

model.add(Conv2D(256, (3, 3), input_shape=X.shape[1:]))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Conv2D(256, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))

model.add(Flatten())  # this converts our 3D feature maps to 1D 
feature vectors
model.add(Dense(64))

model.add(Dense(1))
model.add(Activation('sigmoid'))
model.compile(loss='binary_crossentropy',
              optimizer='adam',
              metrics=['accuracy'],
              )

If you check your program directory, there will be a new folder created named logs; that 
folder consists of another directory with the name we have provided – in this case it is ‘cats-vs-
dogs’. To get a view of that log, we need to access command line from the main directory (the 
location where log folder exists), and then we need to trigger the TensorBoard with the follow-
ing command:
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tensorboard –logdir=’logs/’

After a successful execution of the above command, we get a URL that will take 
you to the TensorBoard visualization dashboard that looks like in Fig. 7.

Beginners usually visualize their epochs using matplotlib which is a powerful 
visualization tool without any doubt, but this TensorBoard provides many function-
alities like filtering graphs, regular expressions and running samples without re- 
running the model. Monitoring the model behaviour during training is a great way 
of troubleshooting the problem; with tensorboard we can do that too. Let’s say you 
want to monitor the distribution of weight units. We can add a tf.summary.histo-
gram to our desired output. This procedure is called custom logging. For example, 
if you want to visualize the gradient descent step change which is implemented 
using LearningRateScheduler callback, we can do that by attaching the tf.summary.
scalar to the scheduler function as shown in the code below:

Fig. 7 Cats vs dogs TensorBoard dashboard
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logdir = "logs/scalars/" + datetime.now().
strftime("%Y%m%d-%H%M%S")
file_writer = tf.summary.create_file_writer(logdir + "/metrics")
file_writer.set_as_default()

def lr_schedule(epoch):
  """
  Returns a custom learning rate that decreases as epochs progress.
  """
  learning_rate = 0.2
  if epoch > 10:
    learning_rate = 0.02
  if epoch > 20:
    learning_rate = 0.01
  if epoch > 50:
    learning_rate = 0.005

  tf.summary.scalar('learning rate', data=learning_rate, 
step=epoch)
  return learning_rate

lr_callback = keras.callbacks.LearningRateScheduler(lr_schedule)
tensorboard_callback = keras.callbacks.TensorBoard(log_dir=logdir)

model = keras.models.Sequential([
    keras.layers.Dense(16, input_dim=1),
    keras.layers.Dense(1),
])

model.compile(
    loss='mse', # keras.losses.mean_squared_error
    optimizer=keras.optimizers.SGD(),
)

training_history = model.fit(
    x_train, # input
    y_train, # output
    batch_size=train_size,
    verbose=0, # Suppress chatty output; use Tensorboard instead
    epochs=100,
    validation_data=(x_test, y_test),
    callbacks=[tensorboard_callback, lr_callback],
)

If we look into the board again (Fig. 8),
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When performing iterative models, TensorBoard comes handy. Many AI practi-
tioners use TensorBoard for understanding the data as well. The more you under-
stand your data, the better the model you build.

5  Deep Dream and Neural Style Transfer

Previously we have seen the working of CNN (ConvNets) for classifying an image. 
Image classification is a big problem because it is extremely hard for machines to 
differentiate between objects of different sorts. One platform where you can experi-
ence image classification is Google Image Search. Here anyone can upload an 
image to identify what it is, but as you can see, it is not perfect. Statistics says that 
humans take a little time detecting a different dog that we have not seen before, and 
even further when the dog is non-prototypical like shown in Fig.  9, it gets even 
harder to classify [9]. When classifying dogs and their breeds, humans can do that 
with a little hesitation, but machines fail as the geometric features are super similar 
making it hard to isolate as shown in Fig. 10. To solve this problem, researchers 

Fig. 8 Learning rate visualization in TensorBoard

Fig. 9 Non-prototypical dog vs sheep
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came up with a solution where they started looking into the output of each hidden 
layers of every image fed into the network and labelling them as training data to 
feed them back into the network. Basically, they are adding processed image at 
every layer and label them according to their original image into the training data-
set, thus forming millions of images for a single dog breed image. This experiment 
is called ‘deep dream’.

Features are the most important part in image classification. In Fig. 10 the fea-
tures of both dogs are fairly similar, thus fooling the network into false beliefs. With 
deep dream, we can use features as image to extract more features from them; this 
way we can obtain more isolate features from images.

Fig. 10 Golden retriever vs Labrador retriever

Fig. 11 Output from the first layer
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Each layer in a network deals with features of different abstraction, so the com-
plexity of features depends on the choose layer. An image went through the first 
layer that looks similar to Fig. 11. The first layer usually extracts hard stokes and 
simple patterns from the image as they are sensitive towards edges. Going further 
into the network, layers extract complex features to a minute detail. If the network 
went through a loop, applying its output to itself as input, an extreme stream of 
network knowledge can be obtained. When passing an image through the pretrained 
model of massive knowledge in feature extraction and applying its features to the 
passed image, we can observe a different styling applied to the image which is 
called neural style transfer technique, NST in short.

NST transfers the patterns of one image and applied it onto another. For example, 
let’s take an image of a bridge as a content image and The Starry Night by Vincent 
van Gogh as style image. The resultant image is a mixture of both the images as 
shown in Fig. 12 [10].

Regulating the measure of style is depended on optimizing the network. However, 
the basic idea is to take two images (style and content image) and figure out their 
speciality. Specifically for the content image, the details shouldn’t be removed with-
out changing the image’s geometry features. From the styling image, abstract fea-
tures are to be extracted like brush patterns, colour strokes, tone, etc. Once it’s done, 
we feed both of these into a network that combines these two images into one. But 
not all combination of images gives great results; some combinations make a mess 
out of it. The main use case of NST is changing the weather. For example, it can be 
able to make spring time images look like winter and summer images look like 
spring. It can even change day to night and vice versa.

Implementation of NST can be done in five simple steps:

 1. Visualizing the data
 2. Preprocessing
 3. Loss function
 4. Model creation
 5. Optimizing the loss function

Here we are using a pretrained VGG19 model. VGG19 model consists of a lot of 
layer which helps in a better style extraction. Before starting the actual process, let’s 
set up the environment first.

Fig. 12 An example of neural style transfer technique. (Chen et al. [10])
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Setup
The structure of this technique works better in TensorFlow’s imperative program-
ming environment (eager execution) that evaluated operations quicker.

tf.enable_eager_execution()
print("Eager execution: {}".format(tf.executing_eagerly()))

You can use any image of your wish. Here, I’m giving some sample images and 
a way to download them directly into the runtime environment in Google’s Colab:

import os
img_dir = '/tmp/nst'
if not os.path.exists(img_dir):
    os.makedirs(img_dir)
!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/d/d7/Green_Sea_Turtle_grazing_seagrass.jpg

!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/0/0a/The_Great_Wave_off_Kanagawa.jpg

!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/b/b4/Vassily_Kandinsky%2C_1913_-_Composition_7.jpg

!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/0/00/Tuebingen_Neckarfront.jpg

!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/6/68/Pillars_of_creation_2014_HST_WFC3-UVIS_full- res_
denoised.jpg

!wget --quiet -P /tmp/nst/ https://upload.wikimedia.org/wikipe-
dia/commons/thumb/e/ea/Van_Gogh_-_Starry_Night_- _Google_Art_
Project.jpg/1024px-Van_Gogh_-_Starry_Night_-_Google_ 
Art_Project.jpg

By now you should know that packages are necessary for Python, so let’s go 
ahead and import some necessary packages:
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import matplotlib.pyplot as plt
import matplotlib as mpl
mpl.rcParams['figure.figsize'] = (10,10)
mpl.rcParams['axes.grid'] = False

import numpy as np
from PIL import Image
import time
import functools

%tensorflow_version 1.x
import tensorflow as tf
from tensorflow.python.keras.preprocessing import image as 
kp_image
from tensorflow.python.keras import models
from tensorflow.python.keras import losses
from tensorflow.python.keras import layers
from tensorflow.python.keras import backend as K

Let’s complete the setup by specifying the content and style images. Here, I’m 
using the turtle image as content image and the great wave of kanagawa as 
style image:

content_path = '/tmp/nst/Green_Sea_Turtle_grazing_seagrass.jpg'
style_path = '/tmp/nst/The_Great_Wave_off_Kanagawa.jpg'

Now let’s get started by visualizing our image data. For that, let’s create two 
functions: load_img and imshow:

def load_img(path_to_img):
  max_dim = 512
  img = Image.open(path_to_img)
  long = max(img.size)
  scale = max_dim/long
  img = img.resize((round(img.size[0]*scale), round(img.
size[1]*scale)), Image.ANTIALIAS)
  img = kp_image.img_to_array(img)
  img = np.expand_dims(img, axis=0)
  return img

This function will preprocess the image and assign the scaled image to a variable:
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def imshow(img, title=None):
  out = np.squeeze(img, axis=0)
  out = out.astype('uint8')
  plt.imshow(out)
  if title is not None:
    plt.title(title)
  plt.imshow(out)

This function will plot the image passed to it. Now let us plot the images:

plt.figure(figsize=(10,10))
content = load_img(content_path).astype('uint8')
style = load_img(style_path).astype('uint8')
imshow(content, 'Content Image')
imshow(style, 'Style Image')
plt.show()

Output will be displayed in a graph style as in Fig. 13.
The next step is preprocessing the data. Like mentioned earlier we are using 

VGG19 model here. This model comes with its own preprocessing method:

def load_and_process_img(path_to_img):
  img = load_img(path_to_img)
  img = tf.keras.applications.vgg19.preprocess_input(img)
  return img

The content loss function determines the distance from output (x) and content (p) 
images and Cnn(X) be the network VGG19. The VGG19 model contains many layers 
for classification, but our target is not to classify images but to extract style in the 
image to apply to another image. So let’s pull out necessary layers from the model. 
Let F xij

l ( )  be the intermediate layer representing features of x and P pij
l ( )  be the 

Fig. 13 Visualizing the content and style image for neural style transfer
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intermediate layer representing features of p at layer l. Therefore, the loss function 
can be described as

 

L p x F x P pl
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def get_content_loss(base_content, target):
  return tf.reduce_mean(tf.square(base_content - target))

The total style loss can be given as
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def gram_matrix(input_tensor):
  channels = int(input_tensor.shape[-1])
  a = tf.reshape(input_tensor, [-1, channels])
  n = tf.shape(a)[0]
  gram = tf.matmul(a, a, transpose_a=True)
  return gram / tf.cast(n, tf.float32)

def get_style_loss(base_style, gram_target):
feature map and the number of filters
  height, width, channels = base_style.get_shape().as_list()
  gram_style = gram_matrix(base_style)

  return tf.reduce_mean(tf.square(gram_style - gram_target))# / 
(4. * (channels ** 2) * (width * height) ** 2)

content_layers = ['block5_conv2']
style_layers = ['block1_conv1',
                'block2_conv1',
                'block3_conv1',
                'block4_conv1',
                'block5_conv1'
               ]
num_content_layers = len(content_layers)
num_style_layers = len(style_layers)

With loss function being implemented, let us build a model with only intermedi-
ate layers from the VGG19 layers:

def get_model():
  vgg = tf.keras.applications.vgg19.VGG19(include_top=False, 
weights='imagenet')
  vgg.trainable = False
  style_outputs = [vgg.get_layer(name).output for name in 
style_layers]
  content_outputs = [vgg.get_layer(name).output for name in 
content_layers]
  model_outputs = style_outputs + content_outputs
  return models.Model(vgg.input, model_outputs)

The last part is to optimization:
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import IPython.display

def run_style_transfer(content_path,
                       style_path,
                       num_iterations=1000,
                       content_weight=1e3,
                       style_weight=1e-2):
  # We don't need to (or want to) train any layers of our model, 
so we set their
  # trainable to false.
  model = get_model()
  for layer in model.layers:
    layer.trainable = False

  # Get the style and content feature representations (from our 
specified intermediate layers)
  style_features, content_features = get_feature_
representations(model, content_path, style_path)
  gram_style_features = [gram_matrix(style_feature) for style_fea-
ture in style_features]

  # Set initial image
  init_image = load_and_process_img(content_path)
  init_image = tf.Variable(init_image, dtype=tf.float32)
  # Create our optimizer
  opt = tf.train.AdamOptimizer(learning_rate=5, beta1=0.99, 
epsilon=1e-1)

  # For displaying intermediate images
  iter_count = 1

  # Store our best result
  best_loss, best_img = float('inf'), None

  # Create a nice config
  loss_weights = (style_weight, content_weight)
  cfg = {
      'model': model,
      'loss_weights': loss_weights,
      'init_image': init_image,
      'gram_style_features': gram_style_features,
      'content_features': content_features
  }
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  # For displaying
  num_rows = 2
  num_cols = 5
  display_interval = num_iterations/(num_rows*num_cols)
  start_time = time.time()
  global_start = time.time()

  norm_means = np.array([103.939, 116.779, 123.68])
  min_vals = -norm_means
  max_vals = 255 - norm_means

  imgs = []
  for i in range(num_iterations):
    grads, all_loss = compute_grads(cfg)
    loss, style_score, content_score = all_loss
    opt.apply_gradients([(grads, init_image)])
    clipped = tf.clip_by_value(init_image, min_vals, max_vals)
    init_image.assign(clipped)
    end_time = time.time()

    if loss < best_loss:
      # Update best loss and best image from total loss.
      best_loss = loss
      best_img = deprocess_img(init_image.numpy())

    if i % display_interval== 0:
      start_time = time.time()

      # Use the .numpy() method to get the concrete numpy array
      plot_img = init_image.numpy()
      plot_img = deprocess_img(plot_img)
      imgs.append(plot_img)
      IPython.display.clear_output(wait=True)
      IPython.display.display_png(Image.fromarray(plot_img))
      print('Iteration: {}'.format(i))
      print('Total loss: {:.4e}, '
            'style loss: {:.4e}, '
            'content loss: {:.4e}, '
            'time: {:.4f}s'.format(loss, style_score, content_score, 
time.time() - start_time))
  print('Total time: {:.4f}s'.format(time.time() - global_start))
  IPython.display.clear_output(wait=True)
  plt.figure(figsize=(14,4))
  for i,img in enumerate(imgs):
      plt.subplot(num_rows,num_cols,i+1)
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      plt.imshow(img)
      plt.xticks([])
      plt.yticks([])

  return best_img, best_loss

The optimizer used in here is Adam optimizer. Adam optimizer is great to mini-
mize the loss. Here, we do not work on updating weights, instead we decrease the 
loss; for that loss and gradients should be calculated [11].

6  Variational Autoencoders

Neural networks are great for classification tasks, but that does not mean they can-
not do regression or clustering tasks. Any generative model needs some random 
numbers which looks similar to training data. But more extensively, models often 
require explorations on variation of data that we already have. Here, variational 
autoencoders works much better.

Generally, there is an encoder and a decoder in an autoencoder network that 
takes an input and splits them into small denser features which a decoder will com-
bine to the original input. Since you’re already familiar with convolution, you’ll 
learn autoencoders without a problem. Like a ConvNet takes up a large image and 
condense it to smaller yet denser representation that feeds into a fully connected 
network, encoder takes the input and reduces that into a smaller representation 
using an encoding function. Autoencoder uses this and implants a decoding func-
tion which ConvNets cannot do.

Standard autoencoders are limited in reconstruction. The space where the inputs 
are converted into encoding vectors is called latent space. In standard autoencoders 
this latent space is not continuous and easy to interpolate. For example, MNIST data 
visualization in 2D latent space forms distinct clusters when we use a standard auto-
encoder, and when we decode, we might loss some of the data but not in a huge 
scale. But when we try to build a generative model out of it, we need to generate 
variations from a continuous latent space. If the space is not continuous, then the 
decoder will generate some random unrelated unrealistic output; this is because the 
decoder does not know how the latent space works.

Variational autoencoders are unique from traditional autoencoders in latent space 
design; this allows them to be more useful in generative models allowing random 
interpolation and sampling easily (Fig. 14).

Unlike vanilla encoders, this autoencoder takes the input to give not one but two 
vectors of size n: one is a mean vector, and another is a standard deviation vector. 
With that mean and standard deviation, we can generate samples having normal 
distribution
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with μ and σ being mean and standard deviation for a random number Xi; the 
obtained encoding will then pass into the decoder. For example, let 
μ = [0.1, 1.2, 0.2, 0.8, ..] and σ = [0.2, 0.5, 0.8, 1.3]; random numbers can be gener-
ated from [X1~N(0.1, 0.22), X2  !  N(1.2, 0.52),  X3~N(0.2, 0.82),  X4~N(0.8, 1.32), …] 
resulting in a sample vector [0.28, 1.65, 0.95, 1.98, ..]. This resultant sample vector 
generation process is called stochastic generation. The mean and standard deviation 
are the same as that of the input for the stochastically generated samples.

The mean vector is the base for samples, and the standard deviation decides how 
much mean to be encoded; this space where mean and standard deviation control is 
called distribution. New samples added to the distribution will spread the space for 
more sample generation. The decoder on the other hand learns that samples are not 
generating from a single point, but they follow a distribution in the continuous latent 
space. The region of spread from a single point is local to that point only, and its 
exposure to the model varies for a certain degree, thus forming a smoothness in local 
space. This smooth local space of a set of samples is referred as a cluster.

To provide an intuition of variational autoencoders, let us consider an example 
with a huge dataset having different faces. Our aim here is to cluster similar images. 
Vanilla autoencoder will first encode each image in latent space as shown in Fig. 15.

As you can see, the image is described in single-valued latent attributes. Single- 
valued attributes are hard for detection purposes; instead it is preferable to have a 
range of values. For instance, let’s say a picture of Charles Babbage was encoded 
with a smile value of 0.12 which is very distinct from 0.99 but still comes under 
smiling cluster. Variational autoencoder will provide a probability distribution for 
each latent attribute as shown in Fig. 16.

When decoding, we will take samples from each latent attribute to generate a 
sample vector and then pass that to the decoder. In this way a slight variation in the 
input will result in accurate output (reconstruction) [12].

Fig. 14 Structure of variational autoencoder. (Reichstaller and Knapp [13]. Compressing Uniform 
Test Suites Using Variational Autoencoders. https://doi.org/10.1109/QRS- C.2017.128)
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Statistically, this method uses Bayesian theory. If z samples are to be generated 
from x observations, we will compute the probability of z with respect to x (p(z| x)):

 

p z x
p x z p z

p x
|

|
( ) = ( ) ( )

( )  

However, the value of p(x) can only be estimated as its distribution is intractable:

 
p x p x z p z dz( ) = ∫ ( ) ( )|

 

Fig. 15 Latent space representation of an image using vanilla autoencoders. (https://www.jeremy-
jordan.me/variational- autoencoders/)
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Fig. 16 Latent space representation of an image using variational autoencoders. (https://www.
jeremyjordan.me/variational- autoencoders/)
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Generally, p(x| z) is approximated to another tractable distribution q(x| z). To 
ensure that both p(x| z) and q(x| z) are similar, we must minimize the divergence 
between them. Here the divergence is measured to be KL divergence:

 
minKL q z x p z x| |( ) ( )( ) 

 

This can be derived to

 
E logp x z KL q z x z xq z x| | ( | || | )}( ) ( ) − ( ) ( )

 

Here, the first term refers to likelihood reconstruction, and the second one is 
distribution of q similar to distribution p. This extends to the loss function having 
two terms, one dealing with the likelihood reconstruction errors and the other being 
the supporting function for distribution q:

 
L x x j KL q j z x p z, |ˆ _ _( ) + ∑ ( ) ( )( ) 

 

The main advantage of variational encoders is the ability of learning smoothly. 
However, by generating samples from the latent space, we can produce a decoding 
network with the ability of generating new data identical to training data, thus mak-
ing it a key inspiration for generative models.

7  DCGAN

While explaining about variational autoencoders, a word appeared many times, that 
is, generative models. Generative models can be described as an automatic model 
for clustering that discovers patterns by patterns in the input data and generates new 
data from it. A network involved with training such models is called generative 
adversarial networks (GANs) [14]. DCGAN is a popular GAN framework. It stands 
for deep convolution generative adversarial network [15]. Like the name suggests, 
it deals with convolution.

The network consists of many convolution layers with two types of convolution 
implementation. One with stride and another is transposed convolution. A 
Transposed convolution helps in upscaling the image which many researchers refer 
as Deconvolution, which according to me is wrong. Let’s say a 5 × 5 image is con-
voluted with a 3 × 3 filter gives a 2 × 2 image and when we deconvolute that 2 × 2 
image to get a 5 × 5 image by inversing the mathematical process. Transposed con-
volution is not like that; it adds some padding around it and then performs the famil-
iar convolution function. A 2 × 2 image is padded in such a way that it forms a 3 × 3 
space for each pixel like shown in Fig. 17 [16].
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Basic structure of DCGAN is identical to any ConvNets, but every pooling layer 
is replaced with a convolution stride. A transposed convolution is added for upscal-
ing. Let’s see a GAN network in action:

def generator(img_shape, z_dim):
  model = Sequential()
  # Hidden layer
  model.add(Dense(128, input_dim = z_dim))
  # Leaky ReLU
  model.add(LeakyReLU(alpha=0.01))
  # Output layer with tanh activation
  model.add(Dense(28*28*1, activation='tanh'))
  model.add(Reshape(img_shape)
  z = Input(shape=(z_dim,))
  img = model(z)
  return Model(z, img)

A leakyReLU activation is used here for allowing a little gradient of negative 
values. As a result, it will allow small negative gradients during backpropagation. 
Now with reference from the above code, let’s build a code for DCGAN [17].

Fig. 17 Demonstration of transposed convolution. (Zhang et al. [16])
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def generator(img_shape, z_dim):
  model = Sequential()

  # Reshape input into 7x7x256 tensor via a fully connected layer
  model.add(Dense(256*7*7, input_dim = z_dim))
  model.add(Reshape((7,7,256))

  # Transposed convolution layer, from 7x7x256 into 14x14x128 tensor
  model.add(Conv2DTranspose(
               128, kernel_size = 3, strides = 2, padding='same'))

 #Batch normalization
  model.add(BatchNormalization())

  #Leaky ReLU
  model.add(LeakyReLU(alpha=0.01))

  # Transposed convolution layer, from 14x14x128 to 14x14x64 tensor
  model.add(Conv2DTranspose(
              64, kernel_size=3, strides=1, padding='same'))

  # Batch normalization
  model.add(BatchNormalization())

  # Leaky ReLU
  model.add(LeakyReLU(alpha=0.01))

  # Transposed convolution layer, from 14x14x64 to 28x28x1 tensor
  model.add(Conv2DTranspose(
               1, kernel_size = 3, strides = 2, padding='same'))

  # Tanh activation
  model.add(Activation('tanh'))
  z = Input(shape=(z_dim,))
  img = model(z)
  return Model(z, img)

The input for the above architecture is projected from a 100 × 1 generated sample 
that was upscaled to 1024 × 4 × 4 tensor which is then passed through convolution 
until we get 64 × 64 × 3 output as shown in Fig. 18 [18]. The simplicity of DCGAN 
is the main influence on its popularity. For starters DCGAN has been a great point 
[20, 21] towards generative models. Most of the GANs used these days are inspired 
by the DCGAN architecture [22–24].
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Potential Applications of Deep Learning 
in Bioinformatics Big Data Analysis

Jayakishan Meher

1  Introduction

The rate of growth of biological data in recent years seems to be doubled in every 
15 months. Substantial amounts of sequence, biomedical image and signal are being 
collected for use in medical and healthcare research. Such omics big data must be 
analysed for transformation into useful knowledge in bioinformatics research fields 
and thus remains as a key problem in computational biology.

Machine learning models have been used to find useful information from omics 
data. These algorithms utilize training data to reveal patterns and determine predic-
tions. Machine learning approaches deals with learning relationships from data 
which does not require to be predefined [1–3]. The traditional machine learning 
algorithms depend on feature data, and thus its performance is determined. The 
intensive prediction task in the field of genomics [4, 5] and proteomics [6] as well 
as metabolomics research [7] depends on these machine learning techniques.

Deep learning technique is the evolving generation of artificial intelligence and 
advancement of machine learning that has exhibited exceptional prediction perfor-
mance recently on big data analytics in image processing, signal processing and 
sequence analysis [8–10]. Deep learning has been inherited from artificial neural 
network with advanced features [11–17]. Deep learning neural networks (DNNs) 
are prominent for their fitness in analysing high-dimensional data. Since biological 
data appear to be high-dimensional and complex, hence DNN methods are suitable 
for bioinformatics research. DNNs can determine unknown abstract patterns and 
correlations to recognize the characteristics of data [18, 19]. The DNNs in bioinfor-
matics will help to code raw data and study features effectively. The goal of this 
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review is to summarize the vital concepts and the potential applications of deep 
learning in bioinformatics big data analysis.

2  Bioinformatics Big Datasets

The quantity and degree of growth of biological data is cumulative exponentially 
with the discovery of new and automated sequence methods. Bioinformatics has 
evolved with publicly available large databases along with a plenty number of bio-
informatics tools. The availability of DNA in GenBank [20] and protein structures 
in Protein Data Bank (PDB) [21] has motivated many data scientists and researchers 
to effectively perform biomolecule big data analysis. Substantial volumes of bio-
medical data, including omics in the form of images, sequences and other types of 
signals, enable potential applications in biomedical and healthcare research. 
Progression in computational platform like machine intelligence and signal pro-
cessing has motivated a new dimension for bimolecular data analysis.

The most widely used biological databases include genome and protein sequence 
databases which serve as repositories of primary source for experimental results. 
The most widely used biological databank resources on the WWW are the genomic, 
proteomic and microarray information [22, 23]. Sequence databases are applicable 
to both nucleic acid sequences like GenBank, EMBL-Bank and DDBJ and protein 
sequences like PDB, Gene3D, PIR etc.

The microarray databases consist of array of images representing genes that 
allow to perform analysis of thousands of genes simultaneously. These databases 
like GEO, Genset, ArrayExpress etc. contain data obtained from microarray-based 
experiments [24, 25]. Table 1 summarizes data repositories of several prominent 
databases in this field.

3  Concepts in Deep Neural Network

Deep learning has evolved as a branch of machine learning for analysing big data 
with advances of artificial intelligence (AI) [26]. Machine learning finds patterns 
from known datasets with a limitation in processing raw data. Deep learning has 
shown ability to learn complex features. The architecture of deep learning is com-
posed of artificial neural networks of multiple non-linear layers, and these hierarchi-
cal forms of data can be revealed by growing stages of abstraction [27].

In the elementary structure of DNN, there are three layers such as an input layer, 
the intermediate many hidden layers and finally an output layer as shown in Fig. 1. 
The sum of the product of weight vector for each unit in the current layer with the 
signal produces the output expression. The output values can be calculated by 
applying the weighted sum through a non-linear function such as a sigmoid, recti-
fied linear unit etc. [28].
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The error in the training is minimized through the backward pass using the chain 
rule to back propagate error signals. The gradients are computed for all weights in 
the network [29]. The optimization algorithms are used based on stochastic gradient 
descent (SGD) for updating the weight parameters [30]. In the training, regulariza-
tion performs strategies to eliminate overfitting and attain better generalization per-
formance [31–33].

Depending on the nature of datasets and objectives, there are numerous forms of 
deep learning used like deep neural networks (DNNs) [34–38], convolutional neural 
networks (CNNs) [39–41], recurrent neural networks (RNNs) [42–45] etc. The 
most important advancements have been in speech and image detection [46–52], 
natural language processing [53, 54] and language conversion [55, 56]. Currently 
deep learning is increasingly used in bioinformatics research applications.

Table 1 Summary of bioinformatics databases

Bioinformatics database Descriptive features

EMBL
(www.ebi.ac.uk/embl)

This maintains database for nucleotide sequences

GenBank
(www.ncbi.nlm.nih.gov)

This provides database for nucleic acid sequences

DDBJ
(www.ddbj.nig.acjp)

This is an archive of nucleotide sequence database

TAIR
(www.arabidopsis.org)

It maintains database of genomic information of Arabidopsis 
thaliana

dbEST
(www.ncbi.nlm.nih.gov/
dbEST)

It contains database of expressed sequence tag

PIR
(pir.georgetown.edu)

This site maintains database of sequences and the functional 
information of protein

Swiss-Prot
(www.expasy.org/sprot)

It is a source for protein sequences and functional information

UniProt
(www.pir.uniprot.org)

It is a repository for protein sequence and function

PDB
(www.rcsb.org/pdb)

It is an archive of 3D structures of protein structure and biological 
macromolecules

NDB
(ndbserver.rutgers.edu)

It maintains database of nucleic acid structural information

SMD
(genome-www5.stanford.
edu)

This site maintains database of microarray data

Yale Microarray Database
(www.med.yale.edu/
microarray)

It maintains database of microarray data

Potential Applications of Deep Learning in Bioinformatics Big Data Analysis

http://www.ebi.ac.uk/embl
http://www.ncbi.nlm.nih.gov
http://www.ddbj.nig.acjp
http://www.arabidopsis.org
http://www.ncbi.nlm.nih.gov/dbEST
http://www.ncbi.nlm.nih.gov/dbEST
http://pir.georgetown.edu
http://www.expasy.org/sprot
http://www.pir.uniprot.org
http://www.rcsb.org/pdb
http://ndbserver.rutgers.edu
http://www5.stanford.edu
http://www5.stanford.edu
http://www.med.yale.edu/microarray
http://www.med.yale.edu/microarray


186

4  Applications of DNN in Bioinformatics

Deep learning has several potential applications in bioinformatics research fields to 
analyse big data as shown in Fig. 2. The application of deep learning architectures 
such as DNN, CNN and RNN in bioinformatics domain such as omics research, 
biomedical image processing and biomedical signal processing are being pre-
sented here.

4.1  Deep Learning for Omics Research

Deep learning has been adopted extensively in omics study such as genome, pro-
teome and transcriptome data in bioinformatics and offers the most common raw 
biological sequence data such as strings of DNA, RNA and amino acids to be used 

Input Layer     Hidden Layers      Output Layer

Fig. 1 Basic structure of DNNs

Fig. 2 Deep learning in bioinformatics research objectives
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as inputs in deep learning. Besides this, physicochemical properties [57, 58], one- 
dimensional structural properties [59, 60] and position-specific scoring matrices 
(PSSM) [61] extracted features from sequences are used as inputs for deep learning 
algorithms for handling high-dimensional biological data. Protein contact maps rep-
resenting the distances of amino acid pairs in 3D structure of protein and microarray 
image gene expression are also utilized (Table 2). Xiong et al. [62] applied DNN 
effectively to predict splicing activity, and Alipanahi et al. [63] performed specifici-
ties of DNA- and RNA-binding proteins or epigenetic marks.

4.2  Deep Learning for Protein Structure

DNNs have been extensively applied in proteomic research [64–67] for protein sec-
ondary structure prediction as prediction in 3D space is complex. Heffernan et al. 
[65] used SAE to protein to predict successfully protein secondary structure and 
torsion angle. Similarly, Spencer et al. [66] predicted protein secondary structure by 
utilizing DBN to amino acid sequences with features like PSSM and Atchley fac-
tors. DNNs have also been used in gene expression regulation [67–73]. Lee et al. 
[68] applied DBN in splice junction prediction in understanding gene expression 
[74]. Asgari et al. [75] adopted the skip-gram model, a variant of MLP, to efficiently 
learn a distributed form of sequences in protein family classification.

Table 2 Deep learning applications in bioinformatics

Bioinformatics 
research fields Research problems Input datasets

Deep learning 
techniques

Genomics and 
proteomics

Protein secondary 
structure prediction
Protein functional 
classification
Anomaly classification
Gene expression data 
regulation

Sequencing data: DNA, 
RNA, amino acid seq)
Features: PSSM, 
physicochemical properties
One-dimensional structural 
property
Contact map
Microarray gene expression

DNN
CNN
RNN

Biomedical image 
processing

Anomaly classification
Segmentation
Recognition
Brain decoding

Radiographic image
Magnetic resonance image
Histopathology image
Retinal image
Positron emission 
tomography

DNN
CNN

Biomedical signal 
processing

Brain decoding
Anomaly classification

ECoG
ECG
EMG
EOG
EEG

DNN
CNN
RNN
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4.3  Deep Learning for Biomedical Image Processing

The applications of deep learning have been extended to biomedical image process-
ing field where biomedical images such as MRI, positron emission tomography 
(PET), radiographic imaging and histopathology imaging have been used for analy-
sis in anomaly classification [76–78], recognition [79, 80], segmentation [81] and 
brain decoding [82, 83]. Plis et al. [84] classified schizophrenia patients from brain 
MRIs using DBN, whereas Xu et al. [85] used SAE to detect cell nuclei from histo-
pathology images.

4.4  Biomedical Signal Processing

Another promising avenue of deep learning is the biomedical signal processing 
which uses signal from ECG, EEG, electrocorticography (ECoG), electrooculogra-
phy (EOG) and electromyography (EMG) for analysis. The recorded signals are 
generally found to be noisy; hence, these signals are preprocessed by decomposing 
into wavelet components for input to deep learning algorithms. An et al. [86] uti-
lized DBN to the frequency components of EEG signals to classify left- and right- 
hand motor imagery skills in brain decoding. Besides this Jia et al. [87] utilized 
DBN, and Jirayucharoensak et  al. [88] utilized SAE for effective emotion 
classification.

4.5  Multimodal Deep Learning

Multimodal deep learning is a promising way in the advancement of biological 
research which explores information from multiple resources to be integrated like in 
addition to omics data, images and signals; other forms such as X-ray, CT, MRI and 
PET are also obtainable. Suk et al. [89] analysed Alzheimer’s disease classification 
with the help of cerebrospinal fluid and brain images available in both MRI and PET 
scan. Soleymani et al. [90] led an emotion detection with the help of face image and 
EEG signal [91–93].

5  Conclusions

Deep learning techniques are the most promising machine learning tools for analy-
sis in bioinformatics to derive hidden knowledge from big data. An extensive review 
of bioinformatics research using deep learning techniques in terms of heteroge-
neous input data and domain research objectives has been presented. It is seen that 
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deep learning architectures such as DNN, CNN and RNN have been utilized exten-
sively for bioinformatics research domain such as omics, biomedical image pro-
cessing and biomedical signal processing to produce promising results. Applications 
of deep learning are key to success to advance bioinformatics in future research.
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1  Introduction

Dengue is a life-threatening disease that gets evolved from the human body exposed 
to a bite of female mosquito belonging to Aedes species [1]. Dengue fever can be 
observed on the human body when Aedes albopictus bite and spread the dengue 
virus. Dengue fever was declared as a vector-borne disease that have symptoms of 
the arthropod-borne virus [2]. This disease has become one of the major concerns 
for public health. As per the World Health Organization (WHO), dengue cases are 
unreported and misclassified for dengue fever. Looking at figures, about 390 million 
dengue cases are estimated per year from which 96 million are reported clinically 
[3]. In the late 1870s (1870–1873), the first case of dengue, which was later declared 
as “pandemic,” was reported from the coastal area of East Africa, Arabian Coast, 
and Port Said City [4–6].

Dengue-spreading mosquito belongs to the special breed of the Flaviviridae fam-
ily. Dengue spreading mosquitoes are named as Aedes aegypti and Aedes 
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albopictus, among which female mosquito is the dengue virus carries which is 
Aedes albopictus, as shown in Fig. 1.

The occurrence of dengue depends on some factors, but the major parameter is 
climate conditions such as rainfall, temperature, wind, and humidity. Among the 
mentioned variables, rainfall is considered as the most important factor for the 
spread of dengue virus. It has been noted that with high rainfall, with a time lag of 
5–7 days, dengue fever cases are reported more. As after the rain, the rain water get 
collected to some junk places and get stored in unused containers such as old tires, 
tank, broken plastic containers, broken tanks [8, 9].

Mostly female mosquitoes of Aedes aegypti specie lay eggs in the inner surface 
of containers, on the upper layer of stored water. It had been recorded that a female 
mosquito can lay up to 100–250 eggs at each fertility time. Once the eggs are 
produced on the water surface of containers, it will take 7–9 days for them to develop 
and become a larva which is the first stage of development of the dengue virus 
carrier. Another four predevelopment stages are required to reach the second stage; 
this stage needs 25 °C for the larva to evolve. Another 2–3 days are required at the 
second stage to develop as a pupa, which can also be considered as a semi-developed 
stage of the mosquito. 2  more days are required to become a complete adult 
mosquito. Aedes aegypti wait to dry up their wings, and once it’s done, they are 
ready to fly and spread dengue virus [10].

Once a mosquito is ready to bite the human body, the human becomes the source 
of infection and carries the virus with multipliers in spreading cases. After the first 
symptoms have appeared in an infected human, he/she can transmit infector for 
4–5 days, with a maximum limit of 12 days. DENV has four different serotypes: 
DENV1, DENV2, DENV3, and DENV4. Dengue fever (DF) is confirmed if the 
patient is having fever and one of the following activities is present in them: 
headache, myalgia, hemorrhagic manifestations, rash, and leukopenia (Fig. 2) [11].

Approximately 5% of people diagnosed with dengue have more severe illness, 
and 1% has severe life-threatening infection [12]. Research in Malaysia has revealed 

Fig. 1 Flaviviridae family mos. (a) Aedes aegypti female mosquito, (b) Aedes albopictus male 
mosquito [7]
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an extensive jungle dengue transmission cycle involving canopy-feeding monkeys 
and Aedes niveus, a species that feeds on both monkey and humans [13]. Dengue 
infection is transmitted by the urban vectors Aedes aegypti and Aedes albopictus 
[14]. Aedes aegypti is predominantly a coastal species on large continents and is 
usually found in tropical regions. The presence of the virus is also found in coun-
tries such as Australia, the United States, and Brazil [15].

In 1902, the first outbreak of dengue virus was notified in Penang in November–
December 1901 [16]. After the first outbreak, many other cases were recorded in 
urban developing areas of Penang and Kuala Lumpur [17–20]. By the 1960s, dengue 
was declared as endemic in Malaysia, and later in 1962, the first laboratory- 
confirmed dengue fever was reported in Penang [17]. Many research had been 
performed and still being performed in the present time. A research was conducted 
in which microclimate was the main parameter of the study, impacting dengue by 
varying associated latitude greater by 13 degrees in the north and south of the 
equator [21–23]. A study was found in which weather was a major parameter to 
explore the dengue incidences in Malaysia by calculating the density of occurred 
dengue cases [24]. Few other studies discussess the influence of temperature and 
another climate parameter such as the speed of the wind will help to find the lag 
time between the dengue outbreak and rainfall [25, 26]. In spite of all the conducted 
research, a visualization factor was still missing, and also a real-time mapping for 
predicted incidences was not found.

The main motivation of this research is to develop a spatial mapping for dengue 
incidences on real-time location using GIS. This study also predicts the vulnerability 

1.Egg

2.Larva

3.Pupa

4.Adult 
mosquito

Fig. 2 Aedes aegypti female mosquito life cycle
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mapping for dengue incidences in the state of Malaysia. This research article is 
structured in the following sections:

Section 2: This section will discuss the overview of the related work done and other 
achievements acquired for dengue spread. This section will also talk about 
dengue virus spread in Malaysia and how climatic conditions are making it 
possible. Also, all predicting models will be summarized to understand the aspect 
from the predicting point of view and what tools can be used to develop the 
dengue spatial mapping that will be mentioned.

Section 3: This section will give a detailed introduction to the methodology used in 
this research. The mapping technique and machine learning predictive models 
will be discussed. This section will also explain the clustering technique such as 
the use of k-means to predict dengue cases and optimization techniques such as 
K-NN, and to validate the results expectation-maximization (EM) algorithm will 
be discussed.

Section 4: This section will demonstrate the results based on prediction and classi-
fication for spatial-temporal mapping of dengue incidences. The dynamic map-
ping will be represented to understand the trend and behavior of dengue 
incidences, which will help us to understand the most vulnerable area for dengue 
incidences.

Section 5: Last but not least, this section will summarize the results based on the 
proposed methodology. Here, a detailed discussion will be done by the author to 
explain the work proposed and the useful findings and future work 
recommendations.

2  Background

2.1  Dengue in Malaysia

Dengue fever (DF) has already become a global disease, which is spreading in all 
corners of the world. The spread can be seen in Fig. 3, where most of the developed 
countries are suffering from dengue virus.

As per WHO overall amount spend on dengue epidemics has been increasing in 
every interval; in some countries such as in Asia and America, they normally spend 
US $828 million and still counting [27]. As per the data, the total of cases recorded 
from 2008 to 2010 is about 136,992, which is the highest recorded over the century 
[28]. Malaysia was second highest in recording dengue incidences after Lao 
People’s Democratic Republic, as shown in Table 1.

Malaysia was reported with 91.6% of dengue seropositive on the high cohort age 
of 35–74  years among the nation [29]. From 2010 to 2013, dengue incidences 
increase randomly from 16% to 0.62% [30, 31]. In 2010, a study was conducted at 
Negeri Sembilan, which recorded 1,466 dengue incidences; the youngest age 
affected was 8 months old, and the oldest age recorded was 89 years old, since the 
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study concluded that the mean age of dengue occurrence in Malaysia was between 
32.2 and 15.8 years [32]. This research also discussed about the ethnic groups of 
Malaysia, in which Malays were in the majority to have dengue incidences followed 
by Chinese and lest were Indian, ratio was about 4.1:1.5:1 and also this research tell 
about the gender to be more vulnerable to dengue cases were recorded as 1.4:1.0 
where males are more affected than females [9].

As per WHO the vaccination of dengue virus is under clinical trials, and hence it 
was instructed to control this endemic by using vector control method. Malaysia is 
also practicing vector control methods such as environmental management, 
adulticiding, larviciding, and integrating control. Malaysia is also practicing fogging 
of chemicals to kill dengue mosquitoes in the area of registered cases [33]. 
Communication for behavioral impact (COMBI) is also a good initiative from 
Malaysia to control dengue spread, by searching and destroying dengue virus [34].

To control this endemic panic, the Malaysian Government had designed some 
strategic plans which were implemented in 2009–2013, as shown in Fig. 4.

These plans were divided into seven stages as follows: stage 1 is to conduct the 
surveillance and design the system which can update on the dengue incidences. In 
stage 2 an integrated vector management system will be performed. In stage 3 a 
dengue management will be involved to confirm the case for dengue. Once the 
confirmation is done for dengue cases, stage 4 will be active to do all the necessary 
communication and to perform social mobilization. In stage 5 the dengue outbreak 
team will be involved to give their response and to observe the control of spread. 
Once a case is understood by the outbreak team, all required data will be supplied 
to research team where a dengue research will be performed on the mentioned 
parameters. The last stage will be to implement the plan for a particular area.

Fig. 3 Risk of dengue spread globally. (Source: Harvard T.H. Chan School of Public Health)
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As per the Ministry of Health of Malaysia, it was surveyed that in 2012 DHF was 
only 3% in comparison with DF which was recorded with 97%. In another survey it 
was recorded that 77% of people from urban areas were suffering from dengue virus 
in comparison with rural area which was 23% only. Since it is an alarming situation 
to get over dengue virus, many researchers have contributed to understand dengue 
virus in terms of medical sciences; many research were conducted to understand the 
behavior of dengue virus. Some research were conducted to evaluate the spatial risk 
factor of dengue fever. Researchers also look into remote sensing and GIS parameters 
to create mapping for dengue incidences. Many statistical research also took place 

Table 1 Number of dengue incidences registered in Asia and Pacific subregion

Countries/territories† Cases
Notification (per 
100 000) Deaths

Case fatality 
rate (%)

Population 
(×1000)

Asia subregion
Brunei Darussalam 25 6.16 0 0 406
Cambodia 15,980 119.29 73 0.46 13,396
China 124 001 0 0 1 370 537
Hong Kong (China) 30 0.42 0 0 7068
Japan 104 0.08 0 0 128,056
Republic of Korea 72 0.15 0 0 48,875
Lao People’s 
Democratic Republic

3905 63.72 7 0.18 6128

Macao (China) 3 0.54 0 0 552
Malaysia 19,884 70.38 36 0.18 28,251
Mongolia 0 0.00 0 0 2780
Philippines 125,975 134.00 654 0.52 94,013
Singapore 5330 102.82 6 0.11 5184
Viet Nam 69,680 81.00 61 0.09 86,025
Total for subregion 241,112 13.46 837 0.35 1,791,271
Pacific subregion
Australia 820 3.67 0 0 22,342
Cook Islands 0 0.00 0 0 23
Fiji 245 28.69 0 0 854
French Polynesia 12 4.46 0 0 269
Marshall Islands 1257 2327.78 0 0 54
Federated States of 
Micronesia

1024 994.17 2 0.20 103

New Caledonia 1 0.41 0 0 246
New Zealand 42 1.01 0 0 4143
Palau 334 1590.48 0 0 21
Vanuatu 33 14.10 0 0 234
Total for subregion 3768 13.32 2 0.05 28,289
TOTAL 244,880 13.46 839 0.34 1,819,560

Source: WHO
† denotes the territories which are used in table
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and scored 70.3% significance in predicting dengue cases [35]. As per research, 
Malaysia have strong suggest dengue cases in area of forest based on serological 
results, data say 2.300 wild and domestic animals are representing over 55 species 
of more than 28 genera, over 25,000 adult mosquitoes are collected from urban for-
est [36].

Table 2 shows the comparison table based on different techniques used for den-
gue prediction. Different research have focused on different concepts to understand 
the behavior of dengue virus. Since, from the applied methodes from existing 
research, Malaysia still do record many cases; hence, the proposed research is used 
to understand the aspect of dengue in Malaysia. A spatial mapping will be devel-
oped to predict and visualize the dengue incidences. Based on the map, information 
will be passed to the fogging team for them to focus on particular areas instead of 
spotting blindly.

3  Area of Study

This research is conducted for Malaysia, as vector control fails to control the 
endemic disease.

As shown in Fig. 5, Selangor had reported the maximum number of cases. 40% 
of the total cases of the whole country is recorded from Selangor from 2010 to 
2012 [38].

Fig. 4 Malaysian Government strategic plans for dengue [30]
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As per the Statistical Department of Malaysia, Selangor is one of the major cities 
in Malaysia situated in Peninsular Malaysia. Malaysia has a total of 13 states. 
Selangor is toward the west side, surrounded by three other states, namely, Negeri 
Sembilan from the south, Perak from the north, and Pahang from the east, and an 

Table 2 Dengue outbreak prediction methods and other techniques proposed by other researchers
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ocean named Straits of Malacca from the west. The demographic map can be 
visualized in Fig. 6. Selangor’s total area is 8104 km2 with population of 5,411,324 
and population density of 670/km2. Selangor is subdivided into nine districts, 
namely, Hulu Langat, Hulu Selangor, Gombak, Klang, Kuala Selangor, Kuala 
Langat, Sabak Bernam, Petaling Jaya, and Sepang.

For this research weather data was also collected from different auxiliary weather 
stations (AWS) which are situated around or in Selangor. From the weather data, it 
was estimated that Selangor has 80% relative humidity (RH) throughout the year, 
and mean rainfall was 2500 mm [41]. After looking deeper into the data, it was clear 
to say that Petaling Jaya had the maximum number of dengue cases with respect to 
other districts in Selangor. Whereas the total area of Petaling Jaya is comparatively 
small, i.e., 97.2 km2 and total population of 638,516. As per the Meteorological 
Department of Petaling Jaya, the overall temperature is warm (with some hot day) 
with sunny day and relatively cool in the evening. The average temperature can be 
seen between 23 °C and 33 °C.

As per the statistics, it is clear that from 2009 to 2013, an exponential growth of 
dengue cases has been reported. Ninety-three (about 90%) hotspots have been found 
in Petaling District of Selangor [37]. A survey was conducted on 10 July 2014, 
which stated 4007 cases reported for dengue in Kula Lumpur and Putrajaya with 7 
deaths, and in compression with Selangor total cases were 16,441 and 36 were 
reported death.

Fig. 5 Malaysia dengue cases reported for 2011–2012 [40]
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4  Data Collection

Data plays a very important role in data prediction. Hence, a collection of data was 
performed for this research from many sources.

Firstly data was collected from the Ministry of Health (MoH) of Malaysia. Data 
include all the information about patients including notification ID, year (epid 
tahun), epid miggu, coordinates (latitude and longitudes), area (daerah), zone 
(mukim), and type of diagnosis performed.

Once data is collected from the sources, it is required to do data filtering based 
on the data structure. For example in our cases, received data is mixed with latitude 
and longitude since filling is required to get original location. Once the filtering is 
done, it is time to perform the predictive algorithms to get future prediction.

4.1  Mathematical Modelling Using Machine Learning

In the latest trend, machine learning has taken place for all processes and computa-
tions. Learning can be performed either supervised or unsupervised based on data 
set and requirement. This works well when it gets blended with mathematical mod-
eling. The mathematical model is widely used in all fields of science, engineering, 
commerce, business, and many more places. Mathematical model helps to devlop 

Fig. 6 Malaysia boundary map with all 13 states; highlighted is Selangor State and its subcities. 
(Source: Map is developed in R software using GIS tool and shape file (GADM))
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and design the dynamic systems, of dynamics systems, statistical models or game 
theory, and many more. This research also focuses on probabilistic modelling to 
predict dengue cases by using unsupervised learning [42].

4.2  Gaussian Mixed Modelling

Mixing models are a type of density model that includes a number of component 
functions. Gaussian mixture model (GMM) is a parametric probability density 
function (PDF) that is represented as a weighted sum of Gaussian component 
densities. GMM parameters are estimated using training data estimated from a well- 
trained prior-model iterative expectancy maximization (EM) or maximum a poste-
riori (MAP) algorithm [43]. Gaussian mixture models can also be seen as a form of 
a generalized radial base function network in which each Gaussian component is a 
base function or a “hidden” unit.

Mathematically we define the GMM as
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where Σi is the d x d symmetric positive definite covariance matrix that corresponds 
the ith values. The collection of αi s

′  is known as the model’s mixture proportions, 
i.e., here, all αi represents the probability that a randomly selected. The probability 
density function (pdf) can be denoted as follows [44]:
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To start the Gaussian mixture model, we need to define a likelihood estimate as 
follows: suppose us that we have an n-tuple of random X = (X1, X2, …, Xn) vectors 
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that have been generated separately and equally distributed (iid). We assume also 
that the distribution of X depends on the unknown fixed parameters, i.e., θ = (θ1,…, 
θk) which take its values into the parameter space  𝞗. Since Xi ∈ X the individual 
probability density function (pdf) for Xi is denoted as

 X f xi i~ |θ( ) 
for i = 1, …, n. So the joint pdf can be denoted as

 
f x f x

n
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1  
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Here, x = (x1, …xn) denotes the observation values of X1, …, Xn. Now we can 
compute maximum likelihood estimation (MLE) for the given Gaussian model. Let 
f(x| θ) denote the pdf of random samples X = (X1, …Xn) as defined in Eq. 3.

The likelihood function is defined as
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To understand the likelihood function, we must know the difference between L(θ| 
x) and f(x| θ). If we talk about f(x| θ), here θ is assumed as the unknown fixed 
quantities, whereas x is allowed to vary overall possible values in our sample space. 
Whereas in likelihood function L(θ| x), we treat x as known quantities, and θ is 
allowed to vary over the parameter space 𝞗. Now, after finding the likelihood of 
GMM, we compute the maximum likelihood, compute the maximum likelihood 
from observed samples x,

 
ˆ |Θ Θx x( )∈ ( )θ θ

argmaxL  (5)

Here, Θ̂ x( ) is a maximum likelihood estimation for θ based on x, and arg-
max L(θ| x) denotes the set of all θΘ which maximize L(θ| x) over the parameter 
space Θ. After looking at the basic Gaussian model, now we will move to another 
step where we will do maximum likelihood estimation and produce some cluster to 
locate the estimation, since clustering method is discussed in following part.

The clustering of data, also referred to as cluster analysis, segment analysis, tax-
onomy analysis, or non-supervised classification, is a way of creating groups of 
items or clusters in a way that allows for very specific objects and objects [45]. 
Since then, various data representative methods have created an extensive and 
sometimes confusing range of clustering methods, which have been able to measure 
proximity (similarity) between elements [46]. It is important to understand the dif-
ference between clustering and discriminant analysis. In clustering analysis mostly 
unsupervised classification technique is used, where the problem is to group a given 
collection of unlabeled patterns into meaningful cluster, and in discriminate analy-
sis, we have supervised classifications which have collection of labeled patterns 
where problem is to label a newly encountered, yet unlabeled pattern. Clustering 
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can be performed by several tasks such as gene expression data, clustering in health 
psychology and biomedical research, clustering in market research, and clustering 
in image segmentation. The data clustering problem has been addressed extensively, 
although there is no uniform definition for data clustering, and there may be on 
[47–49].

Data clustering process can be designed by following the clustering process, 
which has the following four stages: data representation, modeling, optimization, 
and validation [50]. This is shown in Fig. 7. In the first process, i.e., data representa-
tion predetermines what kind of cluster structure can be discovered in the data, since 
the modelling phase defines the notations of clusters and the criteria that separate 
the desired group structures from unfavorable ones [45]. After the best selection of 
data representation, the modeling process is done which proves what kind of clus-
tering modeling can be used.

The clustering problem modelling can be divided into different clustering mod-
els, and these can be divided into other several submodels as shown in Fig. 8. After 
the selection of model, the next process comes for the optimization of model, after 
the optimization the validation of the followed model is validated. Clustering is 
used in mining data, in pattern recognition, and in other biological applications. A 
general approach to clustering is to view the density estimation problem. In density 
estimation-based clustering, pdf is estimated for given data set to search the regions 
that are densely populated. There are several algorithms to solve this problem; some 

Fig. 7 Basic data cluster flow chart
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widely used algorithms are EM algorithm and k-means clustering algorithm which 
are mentioned in following chapters [51].

Clustering problem can be solved in many different ways such as by hard cluster-
ing, fuzzy clustering, center-based clustering, search-based clustering, and many 
other clustering processes. In this research we have used center-based clustering, 
since compared with other type of clustering method, center-based clustering is 
very efficient for clustering large database and high-dimension database. Since, in 
this section k-means algorithm is described which is one of the most used clustering 
algorithm, which was first described by Macqueen [52].

4.3  The k-means Algorithm

The k-means algorithm is classified as a partitioned or nonhierarchical clustering 
method [53]. In this algorithm, the number of clusters k is assumed to be fixed, and 
there is an error function in this algorithm which proceeds for a given initial k 
clusters, by allocating the remaining data to the nearest cluster and then repeatedly 
changing the membership of the cluster according to the error function until the 
error function does not change significantly or the membership of the cluster no 
longer changes. The conventional k-means algorithm can be described as follows 
[54, 55]:

 
= ∑ ∑ ( )( )

=

∈k

i

x c
i

i

d x c
1

,µ
 

(6)

Fig. 8 Flow chart of clustering algorithm
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In Eq. 1, let D be the data set with n instances, and let c1, c2, c3…. , ck be the k 
disjoint cluster of D. Here, μ(ci) is the centroid of cluster ci, and d(x, μ(ci)) denotes 
the distance between x and μ(ci).

The algorithm can be divided into two parts: the initialization phase and the itera-
tion phase. At the time of initialization phase, the algorithm randomly assigns the 
cases into k cluster, and in iteration phase, the algorithm computes the distances 
between each case and each cluster and assigns the case to the nearest cluster. The 
objective function can be defined as shown in Eq. 2:
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where Q = {ql, l = 1, 2…, k} is a set of objectives, deuc(., ..) is the Euclidean distances, 
and W is an n X k matrix that satisfies the following conditions:

 1. wil ∈ {0, 1} for i = 1,2…,, l = 1,2…,k,

 2. ∑ =
=

k

l
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1 for i = 1, 2,…,n.

5  k-means Algorithm

Require: Data set D, Number of cluster k, Dimensions d:

 1. Initialization Phase

 1: (C1, C2, …. Ck) = Initial partition of D.
 2: (2. Iteration Phase)
 3: repeat
 4: dij = distance between case i and cluster j;
 5: ni =  arg min1 ≤ j ≤ kdij;
 6: Assign case i to cluster ni;
 7: Recomputed the cluster means of any changed cluster above;
 8: until no further changes of cluster membership occurs in a complete iteration
 9: Output results.

5.1  k-means Clustering Algorithm to Create Initial 
Vulnerability Map

k-means clustering is an unsupervised learning algorithm well known for clustering 
problem. It focuses on the K centroid of each cluster; all centroids are placed at dif-
ferent locations. Then each point belonging to data is associated to the nearest cen-
troid; if no point is pending, then group age is done. Then we recalculate K new 
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centroid as barycentre of each clusters. Finally the loops will be created, and we can 
notice the centroids are moving step by step until no more changes are done.
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( ) − 2 is distance measure between data point xi

j( ) and cluster centre cj .
To implement the abovementioned formula in our data set, the first step we took 

is as follows: Randomly initialize the K cluster centers in the input data set. After 
that we randomly pick up the data point π_i from the input data set, and for 
j  =  1,2,3…k, calculate the class membership function I(x_i,j). Every point is 
assigned to the cluster whose centroid is the closest to that point. After that for all K 
cluster centers, set ci to be the center of mass of all points in cluster Ci.
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 Repeat this process until all cluster centers remain unchanged or

until they change to some threshold value. The stopping threshold value is usually 
selected as being very small, or set an upper number of iterations to certain thresh-
old values, since the center of the cluster will be known.

5.2  K-Nearest Neighbors’ Algorithm (K-NN)

K-NN is a machine learning algorithm that is based on the Euclidian distance 
between test samples and the specified training samples. K-NN is used as clasifica-
tion technique for the data set which is splited in to testing set and training set, vec-
tor are found and the classification is done via the maximum of summed kernel 
densities.

In K-NN algorithm, the neighbors are the closest samples in the feature space. 
The number of neighbor samples is defined as k which depends on the characteris-
tics of data. Larger values of k reduce the effect of noise but also make boundaries 
between classes less distinct. The output is a class membership. An object is classi-
fied by a majority vote of its neighbors, with the object being assigned to the class 
most common among its k nearest neighbors (k is a positive integer, typically small). 
If k = 1, then the object is simply assigned to the class of that single nearest neighbor.

In this study, k = 3, 5, 8, and 10 were chosen using Euclidian distance for the 
classification based on the performance of the previous study.

5.3  Expectation Maximization (EM) Algorithm

EM algorithm is a broadly applicable approach to the iterative computation of maxi-
mum likelihood (ML) estimations, useful in a variety of incomplete data problems 
[56]. Data that have missing values are known as censored data. These data might 
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obtain some incomplete information but have useful other information. The EM 
algorithm has the ability to deal with missing data and unidentified variables, so it 
is becoming useful in a variety of incomplete-data problems. The EM algorithm can 
be applied not only to incomplete -data set, but aslo work perfectly where data is 
missing, truncated distribution, or censored or grouped observation, but also a 
whole variety of situations where the incompleteness of the data is not all that natu-
ral or evident. On each iteration of the EM algorithm, there are two steps: Expectation 
step or E-step and the Maximization step or M -step.

The basic idea of EM algorithm is to associate with the given incomplete-data 
problems, a complete-data problems for which ML estimation is computationally 
more tractable. Now we formulate the general EM algorithm; let say we have 
random incomplete data set X which have some probability distribution and Y which 
is unobserved observations, so the final data set can be defined by Z = (X, Y) which 
is a complete data set. Now, to drive this further, we make some notations as follows: 
let f(z| Φ) = f(x, y| Φ) represent the joint pdf of random variable X and Y; we also 
took marginal pdf of X which is denoted by g(x| Φ). We also let conditional 
probability distribution of Y which is denoted as k(y| x, Φ). The main aim of EM is 
to maximize the incomplete data log likelihood, which is denoted as

 log | log |L X g xΦ Φ( )  = ( )  (9)

over Φ ∈ Ω, by using relationship between f(x, y| Φ) and g(x| Φ). Now, basic 
equation can be developed as

 f z f x y k y x g x X y Y| ,| ,| |, |, | ,Φ Φ Φ Φ( ) = ( ) = ( ) ( ) ∈ ∈x  (10)

Equation number 9 can be used for EM algortihm for classification process, by 
finding the first step called E- step which refer to find the expected values of com-
plete data log likelihood, which can be defined as log[L(Φ| X)] =  log [g(x| Φ)] and 
relating some current parameters for estimation Φc ∈ Ω.

Thus,

 Q logf x y x x X y Yc c cΦ Φ Φ Φ Φ Ω| ,| ,| |, |, , ,( ) = ( )  ∈ ∈ ∈  (11)

where Q represents the expectation of log likelihood and E .[ ] denotes expectation 
operator. Now moving on to the second step which is M-step which seeks the 
maximization of E-step, i.e., we chose Φ+ ∈ Ω such that,

 Φ Φ ΦΘ
+ ∈ ( )θ

argmax cQ |  (12)

The general EM iteration is given as follows:

 (1) E-step: Calculate Q(Φ| Φc.).
 (2) M-step: Choose Φ Φ ΦΘ

+ ∈ ( )θ
argmax cQ | .

 (3) Let Φc = Φ+.
 (4) Repeat (1)–(3) as necessary.
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5.4  Model Selection for EM Algorithm

To use the EM algorithm, it is necessary to select the perfect model which can best 
fit to available data set. There are many model criteria for selection of the best 
model. In this research we have used Bayesian information criterion (BIC) as the 
model selection among the finite set of models. The selection is done on the basis of 
the calculated values of BIC; if the model has the lowest BIC value, it is considered 
to be the best fitting model.

Formally BIC can be defined by the following equation:

 BIC L k n= − + ( )( )2 ln ln


 (13)

and

 
ˆ ˆ| .L p x M= ( )θ

 
(14)

where,

θ̂ = parameter values that maximize the likelihood function
x= the observed data
θ= the parameters of the model
n= the number of data points in x
k= the number of free parameters to be estimated
L̂ = the maximized value of the likelihood function

5.5  Results and Discussion

This section will visualize the results generated from all the abovementioned meth-
ods. The data was break into weekly data, and clusters were assumed initially by 
assigning process say (k-3, 5, 8, 10).

Table 3 shows the values computed for k-means for different k values. In this 
table data set is divided into 3-month category. The first is January, July, and 
December.

5.6  K-Nearest Neighbor (K-NN) Classification Results

To validate the k-means values, K-NN classifier is used to estimate the best fit of the 
algorithm. In Table 4 all different data set have been used to calculate the K-NN 
values based on different k numbers. This table also shows the mean squared error 
values and best kernel shape used to fit data.
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Estimation maximization algorithm was computed by using R software in which 
Mclust package was used to generate results. As shown in Figs. 9, 10, and 11 all 
visualize the dynamic mapping based on EM clusters. Based on the cluster density 
and cluster radius, some can be marked as hotspot for future prediction. The coordi-
nates 101.5 to 101.7 and 3.1 to 3.29 are highly dense and clustered.

5.7  Density Plot

As shown in Figs. 12, 13, 14, 15 and 16, all plots are used to visualize the density 
function based on coordinates and dengue incidences. In the density plot for the 
January 2014 data set, it is noted that some clusters have high peak point which can 

Table 3 k-means result based on sum of square for different k values with the months of January, 
July, and December

Data set Algorithm K = 3 K = 5 K = 8 K = 10

January (2014 Week 1 N = 219 Sum of square % 63.1% 84.2% 89.1% 91.4%
January (2014) Week 2 N = 428 Sum of square % 61.1% 77.7% 86.4% 88.3%
January (2014) Week 3 N = 595 Sum of square % 54.7% 69.3% 87.7% 89.7%
January (2014) Week 4 N = 636 Sum of square % 61.0% 81.3% 85.9% 88.5%
July (2014) Week 1N = 509 Sum of square % 61.9% 73.0% 86.0% 88.5%
July (2014) Week 2 N = 661 Sum of square % 59.4% 81.6% 87.7% 90.8%
July (2014) Week 3 N = 526 Sum of square % 66.9% 77.7% 90.0% 92.7%
December (2014) Week 1 N = 520 Sum of square % 64.8% 80.7% 87.9% 90.8%
December (2014) Week 2 N = 663 Sum of square % 66.4% 82.0% 88.1% 91.3%
December (2014) Week 3 N = 868 Sum of square % 64.8% 81.6% 88.8% 90.8%
December (2014) Week 4 N = 1085 Sum of square % 64.3% 80.7% 86.9% 89.8%

Table 4 K-NN values calculated with best kernel fit

Data set Algorithm Best kernel
Mean squared 
error

Number of 
k

January (2014) Week 1 N = 219 K-NN Rectangular 0.002864456 10
January (2014) Week 2 N = 428 K-NN Triangular 0.002699823 10
January (2014) Week 3 N = 595 K-NN Optimal 0.002977822 10
January (2014) Week 4 N = 636 K-NN Rectangular 0.002257728 9
July (2014) Week 1 N = 509 K-NN Optimal 0.00245263 10
July (2014) Week 2 N = 661 K-NN Optimal 0.002359995 8
July (2014) Week 3 N = 526 K-NN Triangular 0001981571 10
December (2014) Week 1 N = 520 K-NN Triangular 0.002353327 10
December (2014) Week 2 N = 663 K-NN Triangular 0.0023470.37 10
December (2014) Week 3 N = 868 K-NN Triangular 0.002521785 10
December (2014) Week 4 
N = 1085

K-NN Triangular 0.002572776 10
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be mapped as hotspot point to correlate the hotspot; the cluster plot is mentioned 
just above the density plot to locate the correct location. From the data set, first 
week of January 2014 has some dense cluster, among them the highest peak density 
is noted from 101.45 to 101.55 and from 3.00 to 3.15, and for the second week, from 
101.6 to 101.7 and 3.0 to 3.2 are the most dense areas. Moving further with the third 

Fig. 9 (a) shows that the dengue incidences occurred in January 2014 and the circled areas are 
highly infected areas; as from figure (b) dengue incidences are clustered using EM, which 
represents areas from 101.55 3.10 3.11 to 101.655 3.20 are highly infected
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week notice that the coordinates were from 101.45 to 101.60 and 3.00 to 3.20 and 
for the fourth week 101.50 to 101.65 and 3.05 to 3.10.

From Fig. 17 we can visualize the time series movement and correlate it with 
human activities, in Fig. 17a it shows the dengue incidences lies in the month of 
January 2014 since it has the big number of reported dengue incidences which is 

Fig. 10 (a) shows that dengue incidences occurred in July 2014 and the circled areas are highly 
infected areas; as from figure (b) dengue incidences are clustered using EM, which represents 
areas from 101.59 3.10 3.00 to 101.700 3.15 are highly infected
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followed by the monsoon season also have Chines new year as shown in figure (d) 
is in same month since we can visualizes the movement of incidences from one 
point to other, in figure (b) shows the June 2014 incidences which were also highly 
reported incidences, since at time Hari raya as shown in figure (e) also celebrated 
since the lot of movement can be notice from one point to another due to public 

Fig. 11 (a) shows that dengue incidences occurred in December 2014 and the circled areas are 
highly infected areas; as from figure (b) dengue incidences are clustered using EM, which 
represents areas from 101.58 2.90 to 101.65 3.30 are highly infected
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holidays (c) shows the dengue incidences occurred in December 2014, which also 
have many public holidays. It is visualized that places from coordinates 2.95 101.3 
to 3.69 101.65 have the maximum number of dengue incidences; few colleges and 
schools lie in this area, since the movement of incidences can be noticed from men-
tioned areas.

(a) (b)

(c)
(d)

Fig. 12 (a) shows the cluster based on EM for January 2014 first week; the density of incidences 
is shown in (b) which shows the high dense area is 3.05 101.50 (Kampung Padang Jawa); (c) 
shows the cluster plot for the second week of January 2014 in correlation with density in (d) for 
area 3.1 101.59 (Kelang Jaya)
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(a) (b)

(c) (d)

Fig. 13 (a) shows the cluster based on EM for January 2014 third week; the density of incidences 
are shown in (c) which shows the high dense area is 3.00 101.51 (Taman Sepakat), 3.10 
101.55(Ilham apartment), and 3.05 101.58 (Persian Perpaduan); (b) shows the cluster plot for the 
fourth week of January 2014 in correlation with density in (d) for area 3.09 101.59 to 3.0 101.49 
(U1 shah alam)
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(a) (b)

(c) (d)

Fig. 14 (a) shows the cluster based on EM for July 2014 first week; the density of incidences are 
shown in (b) which shows the high dense area is 3.09 101.63 (seksyen 51); (c) shows the cluster 
plot for the second week of July 2014 in correlation with density in (d) for area 3.06 101.53 to 3.07 
101.63 (Seksyen 15)
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(a) (b)

(c) (d)

Fig. 15 (a) shows the cluster based on EM for December 2014 first week; the density of inci-
dences are shown in (b) which shows the high dense area is 3.06 101.52 to 3.15 101.63 (seksyen 
2); (c) shows the cluster plot for the second week of December 2014 in correlation with density 
in (d) for area 2.98 101.67 to 3.13 101.70 (Taman lestari permai, Taman kota perdana, Taman 
pinggiran putra)
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(a) (b)

(c) (d)

Fig. 16 (a) shows the cluster based on EM for December 2014 third week; the density of 
incidences are shown in (b) which shows the high dense area is 3.07 101.58 to 3.06 101.61 
(Bandar sunway;) (c) shows the cluster plot for the fourth week of December 2014 in correla-
tion with density in (d) for area 3.00 101.59 to 3.11 101.63 (Taman Paramount, Wilayah 
Persekutuan, KL)
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Fig. 17 (a) shows the dengue incidences for January 2014; (b) shows the dengue incidences that 
occurred in the month of February 2014; (c) dengue incidences occurred in June 2014; (d) 
incidences occurred in July 2014; (e) number of incidences reported in October 2014; (f) dengue 
incidences in December 2014
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6  Conclusion and Discussion

This study proposes the visualization of dengue reported cases in Malaysia in the 
province of Selangor State and its districts. In 2014, the highest dengue outbreaks 
were recorded as the rise of incidences was incited from the month of May till June; 
the maximum number of incidences can be localized for the particular coordinates. 
These results support the finding for the spatial mapping for Petaling District and its 
sub-districts named as Bukit Raja, Sungai Buloh, Damansara, and Petaling, as per 
the provided and collected data from MoH, Malaysia clarifies the maximum number 
of dengue incidences for particular time period. On the basis of the mapping and the 
clustering algorithms, we can see a baseline on which we can justify the dengue 
occurrence. Hence, the identified clusters at sub-district and district of Petaling may 
be driven by the human mobility rather than the spatial action on vector part [57, 
58]. After one week of rainfall, the maximum number of dengue cases are notified. 
To control the dengue incidences, we have focused on the prediction mapping tech-
niques to improve the risk management for dengue outbreak [59].

The surveillance and data with accuracy is the back bone for any mapping model, 
in this research we focused on the state Selangor, and perfromed sureillance for this 
area and collected data for the area. The suggested model for the predictions pro-
vides strong evidence to state and map the dengue incidences. The number of clus-
ter for the mentioned area was high, and other depending variables such as log 
likelihood and other mentioned algorithms were computed for better results [60]. 
The coordinate range from 3.00 to 3.15 latitude and longitude from 101.45 to 101.70 
were found in most of the clustered area. Hince, the visualization of the vulnerabil-
ity mapping can help to generate early warning for dengue incidences with the help 
of mapping techniques using k-means for predicting k values to validate the cen-
troid k-means we proposed the classifier function which is very widely used named 
as K-NN. After analyzing the results of k-means, we extend to EM algorithm from 
where we were able to locate the classes of each cluster, and for the best selection 
to fit the model, we used BIC model selection. Hence, the EM algorithm was able 
to locate the correct location for dengue incidences as these coordinates will be 
proposed to vector control unit for the fogging and to control the dengue virus [61].
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Vector-Borne Disease Outbreak Prediction 
Using Machine Learning Techniques

Sandali Raizada, Shuchi Mala, and Achyut Shankar

1  Introduction

The World Health Organisation recognises that more than 17% of all infectious 
diseases is accounted for by vector-borne diseases. Around the world, in 97 countries 
malaria transmission occurs which places about 3.4  billion people at risk. The 
world’s population of over 40% is at risk of dengue. In 2006, the outbreak spread of 
chikungunya was in several countries, including India, where 1,400,000 cases were 
reported. Countries like the United States of America reported 51,258 vector-borne 
disease cases in 2013. The Global Vector Control Response recognises vector 
control as the elementary approach to prevent vector-borne diseases and as a 
response in order to control outbreak. The Indian Government announced US$ 
9.87 billion outlay for the health sector and aimed to increase healthcare funds to 
3% of the gross domestic product (GDP) by 2022. It is the need of the hour to 
approximate the outbreak of a vector-borne disease.

With evolution in data mining, [1] was early to use data mining techniques and 
neural network approach to analyse heart disease dataset. Shraddha Shivhare et al. 
[2] explored if the nucleus alone is sufficient for classification of white blood cells 
using neural networks with fivefold cross-validation. Md. Osman Goni Nayeem 
et al. [3] proposed a neural network that has been used to first classify a patient as 
infectious or not using neural network, and later by using two hidden layers, the 
type of disease was predicted. The diseases considered were liver disorder, heart 
disease and lung cancer. A work implemented a prediction system to predict cardiac 
disease [4]. Marios Anthimopoulos et  al. [5] put forward and evaluated a CNN 
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(convolutional neural network) which could be used for lung disease pattern clas-
sification, and another CNN for the diagnosis of chest diseases was proposed [6].

A dengue fever surveillance system was created by Agus Qomaruddin Munir 
et al. [7] which could be used for forecasting dengue fever spread in a particular 
area. His system was designed to contain the spread of dengue fever, and it was 
achieved by using three algorithms which helped in predicting the spread of dengue 
in a year. Juan M. Scavuzzo et al. [8] considered three diseases which had mosquito 
as its vector. The study depended on remote sensing and included temporal 
modelling of the oviposition activity based on time series of data extracted using 
satellite images. In addition to linear models, other machine learning techniques 
were also used to provide better results. B. Mahalakshmi et al. [9] focused on the 
prediction of Zika virus. The problem statement was to find the existence of Zika 
virus in a person with priority given to pregnant women. The data used was created 
through collecting the symptoms of the virus over the Internet, stored in the cloud, 
and then an artificial neural network (ANN) was used as a classifier. The purpose 
was to construct network with the ideal nodes which would provide a good-quality 
solution. An analysis with comparison of various other classification algorithms that 
purposed to work for the prediction of other diseases in the future was also 
performed.

V. Janani et al. [10] studied dengue prediction using data mining techniques and 
machine learning. A sequential minimal optimisation framework was proposed that 
suggested a network classification technique where the first latent affiliations of 
actors were captured by extracting disease prediction, and then extant data mining 
techniques were applied for classification. For symptom dataset of dengue disease, 
Weka tool was also used, and tests of different algorithms were done. Thus, it has 
been established that an ANN is one of the most powerful classifiers for tasks of 
medical diagnosis. However, annually, malaria kills over 1.2 million people, and the 
fastest-growing disease due to a vector is dengue fever.

Developments in machine learning technology has caused an increased amount 
of awareness onto using networks to either predict the type of disease in a person or 
classify them as an infectious or noninfectious. Most works focused on the history 
of the patient with no attention to climatic conditions of regions and living habits 
that go around in a region. The spread of disease can be correlated with vector 
population which depends upon biotic and abiotic environmental factors and can be 
used to predict an outbreak. A model suggested to predict for female mosquito 
population based on environmental data and also applied various validation methods 
[11]. Another found a relation between environmental factors and outbreak of the 
disease and supported a model that used classification algorithms. It was found that 
the second model support vector machine (SVM) was accurate and could be used 
for malaria outbreak prediction [12]. However, the minimal sets of characteristics 
that preserve a class were automatically selected. To the finest of our understanding, 
none of the existing works have worked on state-wise Indian subcontinent data 
spread over a period of 5 years by ANN. Furthermore, a wide contrasting range of 
features govern the outbreak.
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In an attempt to restrict the spread of vector-borne diseases and to solve these 
problems, we explore contrasting characteristics comprising of environmental and 
social factors. First, for structured data, we seek advice and suggestions from experts 
to extract meaningful characteristics. Second, we predict the severity of outbreak in 
various regions of the country. Third, we use statistical analysis to determine the 
major vector-borne diseases. Finally, we propose an ANN multimodal disease 
outbreak prediction (ANN-MDOP) algorithm.

The rest of this study is arranged as follows: The data and description of model 
are outlined in Sect. 2. Then, the introduction of methods is provided in Sect. 3. The 
performance evaluation of ANN-MDOP algorithm is done in Sect. 4. The overall 
results are traced in Sect. 5. Section 6 is the final section which contains the 
conclusion of the work.

2  Dataset and Description of Model

The data used in this work are described. Furthermore, disease outbreak prediction 
model and methods for evaluation are also provided in this section.

2.1  Demographical Data

The demographic data used in this work is comprised of the positive cases of three 
diseases: chikungunya, malaria and dengue. The data is stored in the data centre. 
The data included the number of positive cases in the country arranged state-wise 
for every year. We used 5-year dataset from 2013 to 2017. Our data focused on 
5,415,958 positive cases.

2.2  Meteorological Data

The meteorological data used contains real-life weather data which is stored in the 
data centre. The data provided by the weather department include temperature, 
humidity and rainfall over a span of 5 years from 2013 to 2017. Our focus is on 
state-wise dataset which includes 28 states and 8 union territories across the Indian 
subcontinent. The data contains two types of data, structured numerical data and 
some textual data.

Table 1 contains data collected from India. The data is classified and separated 
into two categories, namely, demographical data and meteorological data. With an 
objective to find out the prominent disease which affects the region of India, we 
have compiled a statistical analysis on the number of affected patients, average 
humidity, average temperature, average precipitation and the cases of major disease 
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every year from the data. From Table 2, we can acquire the number of positive cases 
in a year and infer that the maximum number of patients was reported in 2015. 
Moreover, the meteorological data obtained by the weather department suggest that 
the weather of a region cannot be the only characteristic which determines vector 
population. In this work, we mainly focus on both abiotic and biotic features to 
predict the outbreak.

2.3  Disease Outbreak Prediction

The outbreak of the main vector-borne disease in the region can be acquired From 
Table 2. The purpose of this analysis is to envisage which areas of the region are in 
high risk, which are in moderate risk and which can be called in low-risk region. 
This model presents an excellent case of machine learning which uses supervised 
learning technique. The value provided as input is the feature value consisting of 
both biotic and abiotic factors, X = (x1, x2, …, xn). This includes positive cases of 
three major vector diseases that prevail in the region, annual rainfall of the region 
and temperature and humidity of the region.

The visualisation or classification of an area in the low-, moderate- or high-risk 
region is dependent on the output value Y. Y = {Y0, Y1, Y2} where Y0 indicates that the 
region is at low risk, Y1 indicates that the region is at moderate risk and Y2 indicates 
that the region is at high risk. We will next outline the spread of the dataset, 
characteristics of the dataset, setting of the experiment and learning algorithms 
briefly.

For dataset, with thorough conversation with experts, we focused on the follow-
ing dataset to reach a closure:

Table 1 Item taxonomy in India demographical and meteorological data

Data category Item Description

Demographical data Positive cases Number of positive cases in a state
Meteorological data Temperature Annual temperature of a state

Humidity Annual humidity of a state
Rainfall Annual precipitation of a state

Table 2 Initial statistics data obtained in India

Statistics 2013 2014 2015 2016 2017

Number of positive cases 958,958 1,144,041 1,271,865 1,198,999 842,095
Average rainfall 65028.2 56416.3 59816.3 58912.1 66181.4
Average temperature 864.375 872.9028 884.5 887.2083 886.7639
Average humidity 2217.917 2118.74 2134.167 2136.083 2124.875
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• Positive and weather data (P&W-data): the positive case and weather data were 
multi-dimensionally fused to predict whether a region is at low risk, moderate 
risk or high risk.

In this experiment, we selected all the 28 states and 8 union territories of the 
Indian subcontinent and divided them into 60% training, 20% test set and 20% 
cross-validation. Hence, the ratio of train, cross-validation and test set is 6:2:2. 
Next, we use Python with TensorFlow to recognise the deep learning and machine 
learning techniques. In this work, for P-data, according to the statistics obtained, we 
extracted around 5,415,958 positive cases. Then, we divided these cases into cases 
of chikungunya, malaria and dengue to obtain three characteristics. For W-data, we 
first extracted weather data of 52 major cities in India and averaged it out to obtain 
the weather conditions of the state.

We next trace machine learning and deep learning techniques used in this work. 
We use three machine learning algorithms used widely for neural networks, i.e. 
feed-forward (FF), backpropagation (BP) and gradient descent (GD) algorithms, to 
predict the outbreak.

The network has a cost function and works by following the basic feed-forward, 
backpropagation and gradient descent ML algorithms to calculate and update the 
value of weights. The cost function and the algorithms are discussed below.

2.3.1  Cost Function

Every algorithm owns a cost function to analyse its performance. It is differentiable 
function used to quantify the error between predicted values and expected values. It 
is either minimised (returns error) or maximised (returns reward).

The cost function for neural network based on logistic cost function is given in (1)

 

J
m

y h x

y h x

m

t

K

k

k
t t

k

k
t t

ρ ρ

ρ

( ) = ∑ ∑ ( )( )
+ −( ) −

= = ( ) ( )

( ) ( )

1

1 1

0 0

[ log

log (( )( ) + ∑ ∑ ∑ ( )
−

= = =
( )

+k L

l

a

i

a

j

j i
l

m l l

µ
ρ

2 1

1 1 1 2

1
,

 

(1)

where L =  total layers, al = unit number except the bias unit, K = number of 
output classes and hρ (x)k  = hypothesis that results in the kth output.

We add nested ∑ to hold them accountable for output nodes that are multiple. 
Part one of the equation talks about a nested ∑ that loops through the amount of 
output nodes. In the next part which is regularisation, we hold them accountable for 
multiple rho matrices. We then square every term.
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2.3.2  Feed-Forward

Feed-forward algorithm works with the aim of calculating the value of the output 
neurons. It works by calculating the value of each neuron, at each layer (expect the 
input layer). The initial weights assigned to the network help the algorithm to 
determine the values
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where n = activation node, ρ = weight matrix and x0,x1,…,xn = inputs.
The activation nodes for layer 2 with three neurons and n outputs from previous 

layer can be determined using (2), (3) and (4), and the final output containing one 
neuron taking output from layer 2 could be calculated using (5).

2.3.3  Backpropagation

The backpropagation algorithm works with an aim to minimise the error between 
the actual and predicted values. In order to achieve this, it calculates the error at 
each activation unit and updates the values of the weights. It thus minimises the cost 
function by calculating its partial derivative.

The steps are as under:

Given training set {(x1, y1)…. . (xm, ym)}
Set ∆i j

l
,
( ) = 0 for all (l,i,j), create an all-zero matrix

For example in training t = 1 to m:

 1. Start with setting n(1) = x(t)

 2. Next, use feed-forward to compute n(l) for l starting from 2 to L

 Using computey n yt L L t( ) ( ) ( ) ( )= −, δ  (6)

where L is our total layers and n(L) is the vector of outputs of the active perceptron 
units for the final output layer.
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A function called g-prime is then multiplied using element-wise multiplication. The 
function is the derivative of the activation function g evaluated with the input values 
given by z(l):
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Hence we update our new ∆ matrix:
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2.3.4  Gradient Descent

The algorithms let an assurance that the backpropagation is working as intended 
through gradient checking. Once we recognise that the backpropagation algorithm 
works fine, we need to turn it off as it may slow down our work.

With multiple weight matrices, we may represent our derivative of cost function 
with respect to θj:
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The pseudo codes for training a network using the above algorithms are:

 1. Initialise the weights randomly.
 2. Feed-forward propagation to hρ(x(i)) for any x(i).

 3. Introduce cost function.
 4. To compute partial derivatives, use backpropagation.
 5. Next use gradient checking that checks if your backpropagation works. Then 

disable it.
 6. Finally, use gradient descent to minimise the cost function with the weights in ρ.

Ultimately for P&W-data, the prediction of the outbreak and classification of the 
region by use of ANN-MDOP algorithm are done. In the next section, the particulars 
about ANN-MDOP are given.
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2.4  Methods for Evaluation

For the purpose of evaluating performance, we denote true positive, true negative, 
false positive and false negative. Then, we obtain the measurement of accuracy, 
recall, precision and F1 scores
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where accuracy is the fraction of right predictions and precision and recall attempt 
to answer the correct proportion of positive identifications and identify the correct 
proportion of actual positives, respectively. The F1-score is calculated as the 
weighted harmonic mean of the recall and precision. For a multiclass classification, 
the average micro and average macro for the above values could be calculated.

We may regularise bias and variance and use learning curves to diagnose and 
gain better insights in addition to evaluation criteria.

Further we can also calculate the loss penalty for bad prediction. Formally, it 
indicates how bad the prediction was on an example. For classification we calculate 
the cross-entropy loss as follows:
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For multiclass classification, this loss is softmax activation plus a cross-entropy 
loss as follows:
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Get more training examples, try on smaller set of features and increase learning 
rate to fix high variance. Add features and polynomial features, and decrease 
learning rate to fix high bias. We focus on achieving low variance and low bias. 
Moreover, a neural network may be prone to underfitting or overfitting. A model 
with fewer parameters is prone to underfitting and is computationally cheaper. An 
algorithm with more parameters is prone to overfitting and is computationally 
expensive. Regularisation can be used in this case.
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3  Methods

We have outlined the data imputation and normalisation and ANN multimodal out-
break prediction (ANN-MDOP) algorithm in this section.

3.1  Data Imputation and Normalisation

The positive case data contains some missing data values. Thus, we need to fill the 
data. In the very first step, we need to identify uncertain data and then alter them to 
improve the quality of the data. Then, we integrate data and execute pre-processing of 
data. For data imputation, we identify the null values and replace them with the mean 
of respective attributes. We, thus, fill in missing data and prepare the data for the model.

3.2  ANN-Based Multimodal Disease Outbreak Prediction 
(ANN-MDOP) Algorithm

For the purpose of data processing, we make use of ANN multimodal disease out-
break prediction (ANN-MDOP) algorithm. This can be broken down into six steps.

3.2.1  Text Data Representation

For each text word in the data, we convert it to a categorical variable, i.e. the text is 
represented in categories where each entry belongs to one or more categories 
(Fig. 1).

Fig. 1 The architecture of suggested deep learning network
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In this work, each text word will be converted to a dummy variable. Thus, a text 
is represented as a numeric variable that represents a category.

3.2.2  Input Layer of ANN

This layer is used to feed in the input to the neural network. The data containing 42 
input features is fed into the network using this. The perceptrons or nodes in the 
layer should ideally be equal to the features in use. The layer also consists of a bias 
unit ‘xo’ which has the value of 1. ReLU is used as the activation function

 ReLu R z ,= ( ) = ( )max 0 z  (16)

where z = 0,1,2…0.42

3.2.3  Hidden Layer of ANN

The layer between the first layer (input) and last layer (output) and is responsible to 
process the input with the help of the activation function. Most problems can be 
solved by using only one layer of this type. The layer may also consist of bias unit. 
We have used 1 layer as a hidden layer, and the number of neurons is 23 to take 
output of the previous layer and using ReLU activation function to determine output

 ReLu R z ,= ( ) = ( )max 0 z  (17)

where z = 0,1,2…0.23

3.2.4  Output Layer of ANN

The output layer provides the output determined by the network. Every network has 
at least one neuron in the output layer. Three neurons are used in this layer each for 
low-, moderate- or high-risk region. The layer uses softmax as the activation 
function
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where j = 0,1,2.
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3.2.5  Activation Function

The function is used to map the values between 0 and 1 or − 1 and 1.The activation 
function can be of two types:

 1. Linear – A function that is not confined within a range, such as f(x) = x
 2. Nonlinear – A function which is confined within a range, such as sigmoid or tanh 

function

We have used ReLU (rectified linear unit) and softmax activation function 
explained in (16), (17) and (18).

3.2.6  Data Normalisation

Data normalisation requires a defined scale; the more accurate the chosen scale, the 
better it is. In this work, we withdraw the data of outbreak from the data centre. 
After data processing this data, we divide them as train set, cross-validation set and 
test set. Using scale function, the training dataset is first fitted by calculating the 
parameters to a given range and then transformed. The cross-validation set and test 
set are just transformed.

3.2.7  Training the Parameters for ANN-MDOP

In ANN-MDOP algorithm, the training parameters are defined as X (characteristic 
input) and Y (characteristic output). We use rmsprop method to train parameters and 
reach closure whether the region is at low, moderate or high risk. The updating rule 
of rmsprop is as follows
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where E[w] = moving average of squared gradients, dC/dg = gradient of the cost 
function w.r.t the weight, n = rate of learning and beta = moving average parameter.

4  Results Obtained from Experiments

The performance of ANN-MDOP algorithm from several aspects is discussed in 
this section.
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4.1  Effect of Neurons and Hidden Layer

In case of artificial neural network, first we need to confirm the number of neurons 
and also the number of layers that would stay hidden in the network. In this 
experiment, the selected neurons in each layer are 42 neurons in the first layer (input 
layer). These neurons are equal to the characteristics in the data, and three in the last 
layer (output layer) which is equal to classes in which the data needs to be classified. 
For the hidden layer, we first choose the number as three, and we halve the number 
of neurons in each layer with early stopping and dropout. Figure 2a, b illustrates the 
performance, where the number of neurons is 23 in the first hidden layer, 12 in the 
second hidden layer and 6 in the third hidden layer. For number of hidden layer as 
1 with 23 neurons, the performance is illustrated in Fig. 2c, d with early stopping 
and dropout. The accuracy in Fig. 2d which contains the chosen number of neurons 
and layer, the loss and accuracy are 0.3073 and 0.8889 on training set and 0.5532 
loss and 0.7500 accuracy on cross-validation set at 163th epoch. On the test set, the 
loss is 0.4135 and accuracy is 0.8611.

Fig. 2 (a) Performance when hidden layers are 3 with dropout rate of 0.5. (b) Performance when 
hidden layers are 3 with dropout rate of 0.2. (c) Performance when hidden layer is 1 with dropout 
rate of 0.2. (d) Performance when hidden layer is 1 with dropout rate of 0.5
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4.2  Comparison of Dropout Rate

We compare the performance of ANN-MDOP algorithm using dropout rates of 0.2 
and 0.5. Here, we set the same ANN iterations as 250 and train using early stopping 
and dropout to prevent overfitting. The dropout rates of 0.2 and 0.5 are compared in 
Fig. 2. The figure also shows the effect of different dropout rates on model perfor-
mance [13]. The algorithm attains the precision of 0.5 on the chosen 
specifications.

4.3  Iteration Effect

We illustrate the training loss and accuracy with the iterations. As given in Fig. 2, 
the increase in neurons, hidden layer and dropout rate has a great impact on the 
number of iterations on which the model converges; the loss of the ANN-MDOP 
algorithm decreases, while accuracy increases. In Fig. 2a the number of iterations is 
250 when the number of hidden layer is 3 with dropout rate of 0.5. Similarly, Fig. 2b 
shows the iterations are 87, when hidden layers are 3 with dropout rate of 0.2. In 
Figure 2c, d the iterations are 108 and 163 when the number of hidden layer is 1 
with 23 neurons, and dropout rates are 0.2 and 0.5, respectively [14]. Thus the train-
ing with specifications in Fig. 2d is computationally cheaper with desired target of 
obtaining less loss and more accuracy.

5  Analysis of Results

Here, we provide the analysis of overall results about P&W-data.

5.1  Positive Case and Weather Data (P&W-Data)

As discussed above, we provide the loss, accuracy, precision measure and learning 
curve plotted under ANN-MDOP (P&W-data) algorithm. In this work, the selected 
number of neurons is 42 in input layer and 3 in output layer. Also, 1 hidden layer is 
considered with 23 neurons. The number of iterations is 250. However, the algorithm 
runs 163 times and converges due to early stopping and dropout. Figure 2d shows 
the chosen number of neurons and layer and the loss and accuracy as 0.3073 and 
0.8889 on training set and 0.5532 loss and 0.7500 accuracy on cross-validation set 
at 163th epoch. On the test set, the loss is 0.4135 and accuracy is 0.8611. Thus, we 
can draw the conclusion that the performance of ANN-MDOP (P&W-data) is best 
at chosen specifications to predict the outbreak. In conclusion, the accuracy of out-
break prediction depends on the contrasting features, i.e. the lower the correlation 
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[15] between the features, the higher is the chance of accurate predictions. For some 
diseases at low risk, only a few characteristics can get a good prediction of the out-
break. But for a complex disease, such as chikungunya, malaria and dengue, only 
few features of highly correlated data are incorrect way to predict the outbreak. As 
identified from Fig.  2d, the algorithm is moderately accurate, which is approxi-
mately 80%. Therefore, in this work, we grasp not only the positive case statistical 
data but the weather condition data of regions also. Hence, we infer that by combin-
ing these two datasets with more features, the rate of accuracy can further be 
improved, for better evaluation of the prediction of outbreak of disease due to a 
vector [16].

6  Conclusion

In this work, a new artificial neural network-based multimodal outbreak prediction 
(ANN-MDOP) algorithm is proposed with the use of contrasting data. To the finest 
of our understanding, none of the existing works have focused on contrasting data 
in the area of analysis of medical data. The prediction accuracy of our suggested 
ANN algorithm is 86%.

References

 1. K.  Usha Rani: Analysis Of Heart Diseases Dataset Using Neural Network Approach.
International Journal of Data Mining & Knowledge Management Process (IJDKP) Vol.1, 
No.5, September 2011 

 2. Shraddha Shivhare and Rajesh Shrivastava: Automatic Bone Marrow White Blood Cell 
Classification using Morphological Granulometric Feature of Nucleus. Oriental Journal Of 
Computer Science & Technology ISSN: 0974-6471 No. (1) Vol. 5 June 2012 

 3. Md. Osman Goni Nayeem, Maung Ning Wan, et  al.: Prediction of Disease Level Using 
Multilayer Perceptron of Artificial Neural Network for Patient Monitoring International 
Journal of Soft Computing and Engineering (IJSCE) ISSN: 2231-2307, Volume-5 Issue-4, 
September 2015 

 4. Sivaranjani.R: Artificial Intelligence Model for Earlier Prediction of Cardiac Functionalities 
Using Multilayer Perceptron. International Conference on Physics and Photonics Processes in 
Nano Sciences Journal of Physics: Conference Series 1362 (2019)

 5. Marios Anthimopoulos, Stergios Christodoulidis, et  al.: Lung Pattern Classification for 
Interstitial Lung Diseases Using a Deep Convolutional Neural Network. IEEE Transactions 
On Medical Imaging, VOL. 35, NO. 5, MAY 2016 

 6. Rahib H.  Abiyev and Mohammad Khaleel Sallam Ma’aitah: Deep Convolutional Neural 
Networks for Chest Diseases Detection. Journal of Healthcare Engineering Volume 2018

 7. Agus Qomaruddin Munir and Edi Winarko: Classification Model Disease Risk Areas 
Endemicity Dengue Fever Outbreak Based Prediction Of Patients, Death, IR and CFR Using 
Forecasting Techniques. International Journal of Computer Applications, 2015

 8. Juan M. Scavuzzoa, Francisco Truccoa et al.: Modeling Dengue Vector Population Using 
Remotely Sensed Data and Machine Learning (Preprint submitted to Acta Tropica, 2018)

S. Raizada et al.



241

 9. B. Mahalakshmi and G. Suseendran: Prediction of Zika Virus by Multilayer Perceptron Neural 
Network (MLPNN) Using Cloud. International Journal of Recent Technology and Engineering 
(IJRTE), Volume-8, September 2019

 10. V. Janani, N. Maadhuryaa, D. Pavithra and S. Ramya Sree: Dengue Prediction Using 
Multilayer Perceptron – A Machine Learning Approach. International Journal of Research in 
Engineering, Science and Management Volume-3, Issue-3, March-2020

 11. Oladimeji Mudele, Fábio M. Bayer et al.: Modeling The Temporal Population Distribution Of 
Ae. Aegypti Mosquito Using Big Earth Observation Data (pre-print) 2019

 12. Vijeta Sharma, Ajai Kumar et al.: Malaria Outbreak Prediction Model Using Machine 
Learning. International Journal of Advanced Research in Computer Engineering & Technology 
(IJARCET) Volume 4 Issue 12, December 2015

 13. Prakash, K.B., Ruwali, A., Kanagachidambaresan, G.R.: Introduction to tensor flow, pro-
gramming with tensor flow, EIA/Springer innovations in communication and computing. 
https://doi.org/10.1007/978-3-030-57077-4_1

 14. Prakash, K.B., Ruwali, A., Kanagachidambaresan, G.R.: Introduction to tensor flow, pro-
gramming with tensor Flow, EIA/Springer innovations in communication and computing. 
https://doi.org/10.1007/978-3-030-57077-4_1

 15. Kanagachidambaresan, G.R., Manohar Vinoothna, G., Prakash, K.B.: Visualizations, pro-
gramming with tensor flow, EIA/Springer innovations in communication and computing. 
https://doi.org/10.1007/978-3-030-57077-4_3

 16. Prakash, K.B., Ruwali, A., Kanagachidambaresan, G.R.: Regression, programming with 
tensor flow, EIA/Springer innovations in communication and computing. https://doi.
org/10.1007/978-3-030-57077-4_4

Vector-Borne Disease Outbreak Prediction Using Machine Learning Techniques

https://doi.org/10.1007/978-3-030-57077-4_1
https://doi.org/10.1007/978-3-030-57077-4_1
https://doi.org/10.1007/978-3-030-57077-4_3
https://doi.org/10.1007/978-3-030-57077-4_4
https://doi.org/10.1007/978-3-030-57077-4_4


243© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
K. B. Prakash et al. (eds.), Advanced Deep Learning for Engineers and  
Scientists, EAI/Springer Innovations in Communication and Computing, 
https://doi.org/10.1007/978-3-030-66519-7_10

Eukaryotic Plasma Cholesterol Prediction 
from Human GPCRs Using K-Means 
with Support Vector Machine

Ramamani Tripathy  and Rudra Kalyan Nayak 

1  Introduction

1.1  Definition of Cell Membrane

All living organisms like human being for instance basically includes trillions of 
countable cells. In living things different cells have diversified functionalities. They 
are the basic building block of all organisms. The important types of cells are gener-
ally utilized in human body such as nerve cells, muscle cells, smooth cells, red 
blood cells, stem cells, etc. Cell membrane is treated as the structure of all cells 
which is also known as wall, and it creates a boundary between external leaflets and 
internal leaflets. Cell membrane is responsible for controlling the movement of 
every substance within and outside the cell. The alternative name of cell membrane 
is plasma membrane. It is a phospholipid bilayer structure, and its main work is to 
environ the cell. Plasma membrane has many responsibilities such as selectively 
giving permission to some substances into the cell and maintaining the barrier 
between the external and internal environment. Another major role is its cell signal-
ing and communication among different cells [1–5].
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1.2  Components of Cell Membrane

Generally plasma membranes are categorized into four different fractions: phospho-
lipid bilayer, cholesterol, carbohydrates, and proteins.

1.2.1  Phospholipid Bilayer

We know that all plasma membranes are composed of phospholipid bilayer. This 
bilayer is made up of two fatty acid tails which are hydrophobic in nature and one 
phosphate group head which is hydrophilic in nature. This implies that the group 
head is attracted to water, whereas the fatty acid tail is repelled by water (Fig. 1).

1.2.2  Carbohydrates

Carbohydrate is another component of cell membrane, and it is basically found on 
the external leaflet of cells. These carbohydrate chains may consist of 2–60 mono-
saccharide units and can be either straight or branched. The structure of carbohy-
drate is composed of sugar molecules, and it includes both glucose and fructose, 
which are monosaccharaides. Complex carbohydrates are starches found in foods 
like wheat, potato, and beans and are often made up of a large number of sugar 
molecules bound together [2–6].

Phospholipid

Hydrophilic head

Hydrophobic tail

Glycolipid

Polar

Polar

Integral protein

Protein channel
(transport protein)

Cholesterol Peripheral
protein

Hydrophobic
alpha helix protein

Inside of cell membrane
(cytoplasm)

Nonpolar

Carbohydrate chain Globular protein Glycoprotein

Phospholipid
bilayer

Outside of cell membrane

Fig. 1 Structure of cell membrane and its components. (https://biologydictionary.net/
cell- membrane)
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1.2.3  Proteins

Another most important component of cell membrane is protein. Two types of pro-
teins are there in cell membrane; one is peripheral protein, and another is integral 
protein. On both inside and outside leaflet of the membrane, peripheral proteins are 
found which are loosely present with the hydrophilic surfaces of the lipid bilayer. It 
is a temporary protein and can be detached from the membrane without disrupting 
it through application of polar reagents. But integral membranes are found within 
the membrane and it resides without water region. The most important integral pro-
tein is transmembrane protein which has multi-pass property from inside to outside 
of the membrane. Transmembrane protein is a long amino acid chain, so it is multi- 
passes in nature [1–6].

1.2.4  Cholesterol

In addition with other components, the human body has another important compo-
nent, that is, cholesterol. Cholesterol is waxy fatlike substances. It is not uniformly 
distributed among cell membranes and is hydrophobic in nature. It decreases the 
permeability of lipid membranes which means it restricts the molecules from enter-
ing into the cell membrane. The main function of cholesterol is vitamin D produc-
tion, bile secretion, and biosynthesis of steroid hormones (Fig. 2).

The structure of cholesterol is made up of four fused rings which are named as 
A, B, C, and D and is attached with carbon numbered in the sequences in addition 
to an eight-numbered and branched hydrocarbon chain attached to the D ring.

1.3  G-Protein-Coupled Receptor

G-protein-coupled receptor (GPCR) is the largest receptor family of plasma mem-
brane. Generally, different numbers of receptors are located in mammalian cells, 
and these receptors are known as proteins which have the capability to bind specific 
molecules. The binding molecules are treated as ligand, and it may be counted as 
any molecules from inorganic minerals to organism-created proteins, hormones, 

Fig. 2 Structure of cholesterol. (https://themedicalbiochemistrypage.org/cholesterol.php)
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and neurotransmitters. As GPCR proteins have long strain of amino acids, it passes 
seven times within cell membrane. Probably, above 820 genes are available in 
GPCR family. Here, there exist so many subfamilies. All proteins have different 
sequences and functionalities. GPCR protein family has numerous subfamilies, 
such as Class A rhodopsin-like, Class B secretin-like, Class C metabotropic gluta-
mate/pheromone, Class F frizzled (FZD), taste receptors (TAS1R, TAS2R), vom-
eronasal receptors (VN1R, VN2R), and 7TM orphan receptors [1–10].

We know that GPCR receptor is included under integral membrane proteins that 
possess seven transmembrane helices. These structures indicate how ligand binding 
at the extracellular side of a receptor leads to conformational changes in the cyto-
plasmic side of the receptor. In Fig. 3 seven helices are present. Each time, a helix 
enters into the membrane and exits from them. Each helix has dissimilar amino acid 
sequences in their transmembrane region. The total span of helix is starting from 
N-terminus to C-terminus. GPCRs play a precise job in the case of human drug 
discovery. According to cell biology, all components of plasma membrane are 
important, but cholesterol has extra key feature on the membrane. All types of 
detection can be done by cholesterol in the human body; in addition it has a modula-
tory role and ligand-binding property of GPCRs. Cholesterol is a key constituent of 
human cell membranes and in addition a proven modulatory role on the function 
and ligand-binding properties of GPCRs [5–18] (Fig. 4).

As days go by, so many researchers have their studies on cellular cholesterol 
target on membrane receptor like GPCR. Numerous approaches were used for pre-
diction purpose. Most probably the techniques are on machine learning, soft com-
puting, data mining, etc. Clustering is nothing but grouping of similar objects in one 
cluster point. There are numerous algorithms that have been utilized for clustering 
the same data points. Among all K-means is an important algorithm which is used 

Fig. 3 Structure of GPCR receptor. (https://upload.wikimedia.org/wikipedia/commons/1/12/
GPCR_structure_and_receptor.svg)
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when you have unlabeled data. Support vector machine (SVM) plays a significant 
role for prediction and classification among dissimilar objects. For that purpose we 
have developed a hybrid approach K-means with support vector machine for predic-
tion of membrane protein GPCR with membrane cholesterol [17–20]. Here we have 
explored a hybrid approach based on K-means and support vector machine. From 
analysis we show how plasma membrane cholesterol targets on helical sites of 
membrane GPCR receptor and finds out the valid domain sites. We will discuss our 
manuscript through proposed methods in addition with experimental analysis and 
conclusion.

2  Flow of Work Elaboration (Fig. 5)

Step 1: All data sets of receptor protein was collected from UniProt [21] database. 
Generally the helical data has different sequences according with their trans-
membrane span. Totally seven helices are present in membrane receptor of 
GPCR. Each file has included above 900 proteins.

Step 2: Next to cholesterol, dictionary is created using sliding window concept.

  = { }d d d d d d d d d5 6 7 8 9 10 11 12 13, , , , , , ,,  

Using (L/V-X(1–5)-Y-X(1–5)-R/K) forward (CRAC) and (R/K-X(1–5)-Y-X(1–5)-L/V) 
backward (CARC) algorithms, we set the cellular membrane lipid dictionary.

Step 3: After setting all data set, we separated them according with motif types such 
as 11,12 13,14,15,21,22,23,24,25,31,32,33,34,35,41,42,43,44,45,51,52,53,54,5
5 in addition with forward and backward motif sequences.

Step 4: Moving to next we found so many cluster points using K-means algorithm. 
Then we classify the cluster points applying support vector machine approach.

Fig. 4 Cholesterol with seven helices of GPCR protein target sites
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Step 5: In the final step, we found valid motif sequences with their weight and 
amino acid priority which have biological relevance for all drug designers.

From Tables 1 and 2, we found the total mapping motif sequences for both CRAC 
and CARC. In Table 1 total forward motif is 3955, and for reverse part total motif 
was found to be 1726 which is mentioned in Table 2.

Fig. 5 Flow of our 
proposed work

Table 1 Forward cholesterol motif sequences observed from GPCR proteins

Motif- 
Length

L-X(1-5)-Y-X(1-5)-R and 
L-X(1-5)-Y-X(1-5)-K

V-X(1-5)-Y-X(1-5)-R and 
V-X(1-5)-Y-X(1-5)-K Sum

5 69 60 129
6 420 220 640
7 103 124 227
8 470 322 792
9 717 240 957
10 240 128 368
11 161 320 481
12 104 162 266
13 30 65 95
Total 2314 1641 3955
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3  Methodology Discussion

In recent days, clustering technique is considered as one of the most frequent inves-
tigative data analysis approaches which has been used to obtain the proper data set 
structure. Also it has the responsibility to recognize groups having similarity and 
dissimilarity among the data points. So many cluster algorithms are there. Among 
all, k-means algorithm is one by employing which all data sets are divided into K 
predefined dissimilar subparts without overlie  whereas each data point fits in to 
single group [22–25].

3.1  K-Means Clustering

Step 1. Identify cluster point K.
Step 2. Select centroids according with the data points, and after that arbitrarily 

choose K data points for the centroids with no substitute.
Step 3. Maintain iterating till no modifications arise to the centroids.
Step 4. Calculate the sum of the squared distances among data points with every 

centroid.
Step 5. Then put every data part to the cluster to which one is closest to.
Step 6. By calculating the centroid for each cluster of all data parts final valid motif 

sequences are found.

The objective function is
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(1)

Anywhere xik = 1 for each data part yi if it belongs to cluster k; or else, xik = 0. As 
well, μk is treated as centroid of yi’s cluster.

Table 2 Backward cholesterol motif sequences observed from GPCR proteins

Motif- 
Length

R-X(1-5)-Y-X(1-5)-L and 
R-X(1-5)-Y-X(1-5)-V

K-X(1-5)-Y-X(1-5)-L and 
K-X(1-5)-Y-X(1-5)-V Sum

5 43 28 71
6 77 58 135
7 101 71 172
8 125 75 200
9 225 193 418
10 210 205 415
11 96 90 186
12 47 48 95
13 120 94 214
Total 1044 862 1726
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This minimization dilemma has two fractions. Here first we minimize W w.r.t. xik 
with μk permanent. Next, we minimize W w.r.t. μk with treat xik permanent. Finally, 
we differentiate W w.r.t. xik first plus bring up-to-date cluster assignments (E-step). 
After that, we differentiate W w.r.t. μk plus recalculate the centroids following the 
cluster assignments from the earlier step (M-step). As a result, E-step is
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Another way allocates the computed data parts yi to the nearby cluster judged 
with its summation of squared distance from the cluster’s centroid.

Also M-step is
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whichever converts to recalculate the centroid of each one cluster to mirror the new 
assignments.

3.2  Support Vector Machine

Support vector machine was introduced in COLT-92 by Boser, Guyon, and Vapnik. 
It is now a very well-accepted algorithm which has been proposed from statistical 
learning theory. As this algorithm has been used for decades and also performs well, 
many researchers applied this in many new emerging fields like image recognition, 
data classification, micro-array gene expression, and bioinformatics. SVM is a 
supervised learning algorithm, and its resultant depends on training with testing 
data set. Basically SVM approach uses kernel trick technique to transform the given 
data, and after that it obtains an optimal boundary amid the possible outputs on the 
basis of transformations [26–30].

A training set that includes label pairs (ji, vi), i = 1, …, n everywhere wi
n∈ℜ  and 

v ∈ {class label}i, the results of SVM approach are obtained using optimization 
problem as given below:
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(4)

R. Tripathy and R. K. Nayak



251

 
Subject to : ( , .v z j yi

M
i iΦ( ) + ≥ − ≥1 0ξ ξ

 (5)

In Eq. (6) decision function is denoted:
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Training vector ji is mapped into higher-dimensional space with the help of ker-
nel function ϕ. In case of error, D > 0 is also treated as penalty structure. Accordingto 
SVM theory, every time with the help of hyperplanes, data points are computed, 
though it is not suitable for finding linear solution in 2D spaces. Therefore, we solve 
it through kernel function k(ui, uy) ≡ Φ(ui)NΦ(uy) for multidimensional data. Utilizing 
divergent kernel functions, in below Eqs. (7) and (8) as well as in (9) equation all 
steps of SVM approach are elaborated.

 
Linear kernel : ,u u u ui y i
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Radial basis kernel RBF ,( ) ( ) = − −( ): exp ,u u u ui y i yγ γ 

2

 (9)

On the basis of training data size, all kernel parameters are pretentious.

4  Experimental and Result Analysis

The paper is computed based on Intel i5 processor with 8GB hard disk plus Windows 
10 operating system for concluding the test, and the whole resultant instruction is 
written by Python 3. To calculate our experimental analysis, we explored hybrid 
algorithm and many more concepts. Here we have depicted intricately our whole 
work flow using the following phases:

Phase 1: In the beginning phase, we have retrieved all protein data sets from UniProt 
database according with helical name and in addition with computed cholesterol 
dictionary.

Phase 2: Once filtration process is over amid both data sets we separate the sequence 
residue which  starts from L/V or R/K for forward motif and R/K or L/V for 
backward sequences.

Phase 3: After gathering both data set motif sequences, we put sliding window con-
cept on both CRAC and CARC, and window size may vary from 5, 6, 7, 8, 9, 10, 
11, 12, to 13. This cholesterol dictionary can be calculated using CRAC (L/V-X 
(1–5)-Y-X (1–5)-R/K) and CARC (R/K-X (1–5)-Y/F-X (1–5)-L/V).
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Phase 4: After completion of phase 3 work, we go for next step where we have 
implemented our planned algorithm K-means and support vector machine for 
prediction of membrane cholesterol with membrane receptor GPCR.

K-means algorithm  is one by applying which all data sets are divided into K 
predefined dissimilar subparts without overlie whereas each one data point fits in to 
single group [31].

In this algorithm the centroids are recomputed in recurring manner using all data 
points assigned to that centroid’s cluster. Each centroid defines one of the clusters. 
In this step, each data point is assigned to its nearest centroid, based on the squared 
Euclidean distance. More formally, if ci is the collection of centroids in set C, then 
each data point x is assigned to a cluster based on
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Also we used another algorithm which is required for prediction purpose. SVM 
is a supervised learning algorithm, and its resultant depends on training with testing 
data set. Basically SVM approach uses kernel trick technique to transform the given 
data, and after that it obtains an optimal boundary amid the possible outputs on the 
basis of transformations.

SVM approach is obtained using optimization problem as given below:
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Table 3 shows prediction output of plasma membrane cholesterol from mem-
brane receptor for forward region, and Table 4 shows prediction output of plasma 
membrane cholesterol from membrane receptor for backward region. From our 
experiment we conclude that CARC motif has more target region than CRAC motif. 
Both CARC and CRAC targeted all helical sites and gave well prediction results 
which have biological importance. The higher the motif type, the greater the target 
sites found in CARC region in plasma membrane of mammalian cells [32, 33].

5  Conclusion

Day by day research on mammalian biology has been a challenging factor for all 
scientists. Due to changing environment, several unknown diseases are visible in the 
human body. To solve these new problems, different techniques are adopted in cur-
rent scenario. In the human body, plasma membrane cholesterol takes a major role. 
From literature it is revealed that automatically cholesterol is formed in the body, 
but sometimes that amount is not sufficient. Another way is there through which 
body can get cholesterol from outsource things. Generally there are two types of 
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cholesterols found in the human body, namely, bad cholesterol and good choles-
terol. We also know that membrane cholesterols are modulated by membrane pro-
teins. Here we focus on transmembrane sites of GPCR proteins, and in addition 
cholesterol targets on those helical sites within the cell membrane. All the time 
membrane cholesterol targets on each helix inside the cell membrane which causes 
many target sequences generation. Likewise target sites are generated, and then we 
applied our approach K-means with support vector machine for prediction. From 
this analysis we found that some subfamilies have a preference for forward motif, 
some for reverse motif, and some for both. Among forward and backward sequences, 
here more number of reverse motifs are observed which have biological relevance. 
Hence, we wind up the projected hybrid algorithm is also proficient to forecast the 
CRAC/CARC motif sequences with high reliability, and it gave immense implica-
tions in medicine and molecular targeting domains.

Table 3 Prediction output of 
plasma membrane cholesterol 
from membrane receptor for 
forward region

Helix Sequence and motif type Name of ID

Helix 5 LIVGFCYVRIWTK (55) Q13585
Helix 5 LAIISIYYYHIAK (55) P28336
Helix 5 LVILLSYVRVSVK (55) P49683
Helix 5 LVICLCYLLIVVK (55) P32745
Helix 5 LAMSFCYLVIIR (54) P32248
Helix 5 LIMLFCYGFTLR (54) P25025
Helix 5 LCLSILYGLIGR (54) O43193
Helix 5 LVISVCYSLMIR (54) P41146
Helix 5 LLTLAAYGALGR (54) Q96G91
Helix 5 LLMLVLYGRIFR (54) P08908
Helix 5 LIMGVCYFITAR (54) Q9NPB9
Helix 5 VLGLTYARTLR (44) O43603
Helix 5 VMAVAYGLISR (44) P32239
Helix 5 VTCTVYAIKTR (44) Q14833
Helix 7 VVNPIIYSYK (52) Q9UBY5
Helix 7 VLNPIVYSVK (52) Q8NH63
Helix 7 VSLGMLYMPK (52) Q14833
Helix 7 VSLGMLYVPK (52) O15303
Helix 7 VALGMLYMPK (52) Q14831
Helix 7 VSLGMLYMPK (52) O00222
Helix 7 VVNPIVYAYR (52) P29275
Helix 7 LDPVLYFLAGQR (45) P41231
Helix 7 LNPLVYVIVGKR (45) P30411
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Table 4 Prediction output of 
plasma membrane cholesterol 
from membrane receptor for 
backward region

Helix Sequence and motif types Name of ID

Helix 2 KSVTDIYLLNLAL (55) P49238
Helix 2 KTATNIYIFNLAL (55) P41143
Helix 2 KTATNIYIFNLAL (55) P41145
Helix 2 KTATNIYIFNLAL(55) P41146
Helix 2 KHPAVIYMANLAL(55) P55085
Helix 2 KFHNRMYFFIGNL(55) Q99500
Helix 2 KRVENIYLLNLAV(55) O00421
Helix 2 KSAFQVYMINLAV(55) Q9Y271
Helix 2 KTVPDIYICNLAV(55) Q969V1
Helix 2 KTPTNYYLFSLAV(55) Q9GZQ4
Helix 2 KTATNIYLLNLAV(55) P31391
Helix 2 KKVSSIYIFNLAV(55) P50052
Helix 2 RTTTNLYLGSMAV(55) O43193
Helix 2 RTPTNYYLFSLAV(55) Q9HB89
Helix 2 KLTVPRFLMCNL (54) P23945
Helix 2 KLTVPRFLMCNL(54) P22888
Helix 2 KLNVPRFLMCNL(54) P16473
Helix 2 KKSRMTFFVTQL(54) Q6W5P4
Helix 2 KHSRLFFFMKHL(54) P30559
Helix 2 KLSTIGFILTGL(54) Q9NYW0
Helix 2 RPMYYFIGNLAL (45) P21453
Helix 2 RALSVFIKDAAL (45) P43220
Helix 2 RQPSNYLIV (42) P34969
Helix 2 RTVTNYFLV (42) P29371
Helix 2 RTVTNYFIV (42) O43613
Helix 2 RTVTNYFIV (42) O43614
Helix 2 RRWVYYCLV (42) O95977
Helix 2 RTVTNYFIV (42) P21452
Helix 2 RTVTNYFLV (42) P25103
Helix 2 RTPTNYFIV (42) P35368
Helix 2 RQPLNYILV (42) P03999
Helix 3 RHHWVFGVL (42) Q86VZ1
Helix 3 RYLSIFWVL (42) Q9NYW4
Helix 3 KMSFFSGMLLL (35) P32248
Helix 3 KEVNFYSGILL (35) P25024
Helix 3 KLQRFIFHVNL (35) P47900
Helix 3 KLVRFLFYTNL (35) P41231
Helix 3 KFVRFLFYWNL (35) P51582
Helix 3 KIANFSNYIFL (35) Q9NYW0
Helix 6 RTVKLIFAIV (52) P46094
Helix 6 RAMRVIFAVV (52) P25024
Helix 6 RAMRVIFAVV (52) P25025
Helix 6 RTVKMTFIIV (52) P30559
Helix 6 RTVKMTFVIV (52) P37288
Helix 6 RTVKMTFVIV (52) P47901
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A Survey on Techniques for Early 
Detection of Diabetic Retinopathy

D. Vanusha, B. Amutha, Siddhartha Dhar Choudhury, and Aayush Agarwal

1  Introduction

Diabetic retinopathy is an eye-related ailment, which causes damage to the blood 
vessels of the retina, thereby causing blurred vision and also making it difficult for 
the person with the issue to spot colors. Retina is an important portion of the eye, 
which covers the posterior portion of the eye, which is an area sensitive to light. The 
main task of the retina is to convert the light that hits the eye and transforms it as 
signals to the brain. On progression it can lead to vision loss. This can be prevented 
by manual tests and manual screening. There are retinal surgeries that can treat this. 
Controlling the severity of diabetes and managing the symptoms, which show at 
early stages, can help the patient, who reached a stage where vision loss could hap-
pen. Fluorescein angiography and optical coherence tomography are two ways to 
diagnose DR. The former is which a fluorescein dye is injected in the eye (vein) and 
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pictures are taken which clearly shows the leaking blood vessels, while the latter is 
an image scan of the retina.

The idea behind this survey paper is to analyze the various trends that existed in 
early detection of diabetic retinopathy from traditional machine learning algorithms 
to current deep learning techniques. Advancement in recent technology has made it 
possible to overcome the overhead of manual screening and complications like 
applying dye in the eye, which can cause irritation or stinging to the patient. Machine 
learning algorithms have made it possible to classify the different classes of DR, 
due to the availability of large publicly available dataset in Kaggle, MESSIDOR, 
and DIABETRET. The main drawback with ML algorithm is feature extraction, 
which takes more time to extract the features. Deep learning model which tries to 
replicate the human brain in analyzing the objects came as a solution to fill this void 
created by ML algorithms, by state-of-the-art CNN models like Inception v3, 
ResNet50, VGG16, etc. These models have given the results in par with human 
grading.

Traditional computer vision algorithms are prior to deep learning algorithms. 
Though deep learning has more attracting features these days, traditional computer 
vision algorithms cannot be taken in a lighter sense, since they gave the significant 
results even when features had to be manually extracted and when the time taken 
was more to extract the features. Deep learning has a peer to peer processing, which 
is not the case with computer vision algorithms. To achieve the aim of prediction or 
classification in computer vision algorithm, the main objectives are detecting col-
ors, edges, and corners. The human-engineered features have great significance 
directly on the accuracy of the prediction or classification task. So the reliability of 
the model is based on the human-engineered features. The traditional vision algo-
rithms like “SURF (speeded-up robust features), SIFT (scale-invariant feature 
transform),” and BRIEF (binary robust independent elementary features) have sig-
nificant role in extracting the features from the raw and unprocessed image. The 
main problem with such algorithms is difficulty in choosing feature while classify-
ing, from the actual image. When the number of classes increases during classifica-

Fig. 1 Traditional computer vision workflow and deep learning algorithm workflow. Enabling the 
Deep Learning Revolution. https://www.kdnuggets.com/2019/12/enabling-deep-learning-revolu-
tion.html

D. Vanusha et al.

https://www.kdnuggets.com/2019/12/enabling-deep-learning-revolution.html
https://www.kdnuggets.com/2019/12/enabling-deep-learning-revolution.html


261

tion task or when the clarity of the image is compromised, then traditional vision 
algorithms will got give convincing output. Figure 1 depicts the workflow of tradi-
tional algorithm and deep learning algorithm.

Diabetic retinopathy has four different stages:

 1. Mild non-proliferative retinopathy: Formation of balloon-like, micro-aneurysms 
occur at this stage in the blood vessels of retina.

 2. Moderate non-proliferative retinopathy: At this stage few blood vessels that con-
nect to the retina are blocked.

 3. Severe non-proliferative retinopathy: At this stage, many more blood vessels are 
blocked, which completely deprive several areas of the retina with their blood 
supply.

 4. Proliferative retinopathy: This is considered to be the advanced stage and critical 
stage of DR, in which formation of new tissues occurs along the retina. They are 
fragile and when they start leaking, it may lead to vision loss.

Figure 2 represents the different stages of DR, micro-aneurysms (MA), exudates, 
and cotton wool spots.

Figure 3 shows the difference between the normal retina and DR-affected retina. 
Onset of MA indicates the primary stage of onset of the disease, which is a small 
balloon-like pouch that can leak and cause hemorrhages while the disease pro-
gresses. To analyze the image in a pixel level, segmentation is involved, which sim-
plifies the image to a greater extent. Segmentation includes methods such as 

Fig. 2 Different stages of diabetic retinopathy. How to treat Diabetic Retinopathy. https://www.
wikihow.com/Treat-Diabetic-Retinopathy

A Survey on Techniques for Early Detection of Diabetic Retinopathy

https://www.wikihow.com/Treat-Diabetic-Retinopathy
https://www.wikihow.com/Treat-Diabetic-Retinopathy


262

thresholding, edge detection, watershed technique, partial differential equation, and 
clustering-based method. Any of these segmentation techniques can be applied in 
medical image diagnosis like DR in pixel level to get significant results.

“The workflow of this paper is structured in the later section as follows:

• The traditional computer vision algorithms for detection of DR
• Deep learning approaches for classification of DR
• Deep learning approaches for detecting lesions in DR using CNN-based object 

detection models
• Deep learning approaches for DR detection using segmentation”

Fig. 3 Normal retina and affected retina. Investigation of machine learning  
methodologies in micro-aneurysm discernment. (https://www.researchgate.net/
publication/338418132_Investigation_of_Machine_Learning_Methodologies_in_
Microaneurysms_Discernment)
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2  Literature Review

2.1  The Traditional Computer Vision Algorithms for Detection 
of DR

The paper by Hann C et al. [1] proposes computer vision methods are “developed to 
isolate and detect two of the most common DR dysfunctions—dot hemorrhages 
(DH) and exudates. The algorithms use specific color channels and segmentation 
methods to separate these DR manifestations from physiological features in digital 
fundus images. Information from color, morphology, and intensity gradients of the 
fundus photograph provides the means to detect the number of exudates and DHs, 
thus determining the presence of DR. The algorithms are tested on the first 100 
images from a published database. The diagnostic outcome and the resulting posi-
tive and negative prediction values (PPV and NPV) are reported. The first 50 images 
are marked with specialist determined ground truth for each individual exudate and/
or DH, which are also compared to algorithm identification. Exudate identification 
had 96.7% sensitivity and 94.9% specificity for diagnosis (PPV = 97%, NPV = 
95%). Dot hemorrhage identification had 98.7% sensitivity and 100% specificity 
(PPV = 100%, NPV = 96%). Greater than 95% of ground truth identified exudates, 
and dot hemorrhages were found by the algorithm in the marked first 50 images, 
with less than 0.5% false positives. The improvement in this paper with the already 
existing methods is the use of color channels to identify DR lesions which directly 
allows clinical expertise and observation to be incorporated directly into the algo-
rithm, providing a potentially far superior result.

Exudates can be found only through its high gray level variation, and the mor-
phological reconstruction techniques help in extracting contours. Detecting the 
optic disc is a challenging task. The paper [2] by Walter et al. “detects the optic disc 
by using morphological filtering techniques and another unique technique popularly 
known as the watershed transformation. The algorithm is tested on a small image 
database, and a mean sensitivity of 92.8% and a mean predictive value of 92.4%. are 
achieved. The robustness feature is ensured with respect to changes of the parame-
ters. The presence of exudates is verified by both the algorithm and the human grader.

There are four categories in this algorithm, first being image enhancement pro-
cess, followed by correcting shade, normalizing image. The second step being 
detecting patterns, which corresponds to MA’s which is made possible through the 
diameter closing and “automatic threshold scheme. The third step being feature 
extraction which finally leads to the fourth step which is automatic classification of 
MA, which” is possible through kernel density estimation.

In the paper [3] by Yun W.L et al., using 124 retinal pictures, the different stages 
of diabetic retinopathy are studied and classified under four groups, namely, “nor-
mal retina, moderate non-proliferative diabetic retinopathy, severe non-proliferative 
diabetic retinopathy, and proliferative diabetic retinopathy. Classification among 
these four classes is achieved through a fully connected three-layer neural network. 
“Using image processing techniques, the features are extracted from the” raw input, 
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and it is fed as input to the classifier. Sensitivity achieved in this is more than 90% 
and specificity is 100%.

This work [4] by Hann et al. presents a work in which hard exudates and dot 
hemorrhages are graded using computer vision techniques. It takes 100 digital fun-
dus images. In this case the specificity and sensitivity are from 95% to 100%. The 
reason behind achieving such good sensitivity is due to contour-finding method 
which combines red and green channels. This also uses the image gradient tech-
nique after applying median filter.

2.2  Deep Learning Approaches for Detection of DR

The paper [5] by Tymchenko et al. briefs the automatic detection in diabetic reti-
nopathy, applying deep learning with a single fundus image. It also insists the 
involvement of transfer learning approach, which gives standard weights and bias 
for the network, which gives significant results in the past. Sensitivity and specific-
ity achieved is 0.99, and this method scores a rank of 54 among 2943 methods. On 
APTOS 2019 dataset, it has achieved 0.925466 kappa score, which comprises of 
13,000 images. To reduce the correlations between the meta features and image, 
data augmentation techniques are used. Three CNN architectures EfficientNet-B5, 
SEResNeXt50, and EfficientNet-B4, were ensembled to get QWK score 
0.818462/0.924746. The enhancement of this work to the previous work is that it 
increases generalization and diminished the variance by using an ensemble of net-
works, which is pertained on a large dataset.

Generally, the process of CNN is considered as a black box. Hence this work [6] 
by Wang et al. proposes an interpretable DR detection, hence mitigates the black 
box effect of CNN. Interpretability is achieved by the user with the inclusion of 
regression activation map. This method helps to locate the region of interest. 
Activation maps are the visual representation of the activation numbers at various 
layers of a neural network, as the given image progresses through different layers as 
a result of various linear algebraic operations. In this paper, the CNN built is 
designed in such a way there is absence of fully connected layer; it has the convolu-
tion layer and pooling layer only. Regression activation map (RAM) provides the 
contribution score of each pixel in the input image. This RAM score mitigates the 
interpretability of CNN and makes it transparent for the one who tries to track the 
cause of the disease. The main idea of this method is:

 1. Resampling is applied to all the classes so that classes are represented equally.
 2. To initialize weights and biases, orthogonal initialization is used. It trains the 

smaller network on 128 pixel images and then initializes medium networks on 
256 pixel images and large networks on 512 pixel images.

 3. Data augmentation is used to get the input image in different angles.
 4. Feature blending. The networks achieved kappa score of 0.70 with 256 pixel 

images and kappa score of 0.80 for 512 pixel images, and for 768 pixel images, 
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the kappa score achieved is 0.81. Contribution score of individual pixel by RAM 
is the key advantage of the proposed network in detecting DR task.

The paper [7] by Birajdar et al. proposes a pretrained DenseNet121 network with 
a few changes and trained on APTOS 2019 dataset. The image data generator was 
utilized to play out an irregular zoom of 0.15, even a vertical flip for all pictures in 
the dataset. It uses the benefits of DenseNets to mitigate the vanishing gradient 
problem, reinforce feature propagation, empower feature reuse, and diminish the 
quantity of parameters. The macro-average and the weighted average for precision, 
recall, and f1-score were assessed for five classes. The macro-average of 0.75, 0.67, 
and 0.70 and the weighted average of 0.86, 0.87, and 0.86 were recorded for preci-
sion, recall, and f1-score, separately. The quadratic weighted kappa files for a multi-
label classification technique were assessed over validation data and found to be 
91.96%. The training accuracy and validation accuracy for the single-label tech-
nique was seen as 95.98% and 94.44%, individually. However, the training accuracy 
and validation accuracy for the multi-label technique was seen as 97.54% and 
96.40%, individually. This method has the highest accuracy among conventional 
CNN architectures and second highest recall.

iv. The proposed framework [8] by Birajdar et al. “works on convolutional neural 
networks and utilizes the AlexNet where a database of human eyes affected with 
diabetic retinopathy is utilized for training. The database considered is Kaggle data-
base which comprises of more than 2000 pictures which are utilized for training the 
model. The trained model recognizes the presence of diabetic retinopathy and fur-
ther characterizes it dependent on severity. The final model gives accuracy of up to 
88%. The entire picture of the eye is broken into smaller bits of 227 × 227. This 
transforms one entire picture into numerous smaller pictures. The network is trained 
uniquely of two classes that are a clean eye having no ailment and an infected eye 
containing lesions. This causes the system to distinguish whether a given bit of 
picture of an eye contains disease or not. Each piece of the picture is “distinguished, 
“and each part is given a particular weight. The more the weight, the higher the 
priority if the lesion is distinguished in that particular part of the eye. Higher weights 
are given to the territory close to the optic disk and the center of the eye, and the 
weights are diminished as we move away from this part. This method achieves a 
high accuracy by using transfer learning.

2.3  Deep Learning Approaches for Detecting Lesions in DR 
Using CNN-Based Object Detection Models

The paper [9] by Y. Huang et al. proposes a novel way to detect hemorrhage using 
diabetic retinopathy images. A laudable aspect of this paper is it uses coarsely anno-
tated fundus images which can mostly confuse neural network models. The model 
proposed uses a pipeline of traditional computer vision models and neural network-
based object detectors to improve on the current state of the art which was held by 
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RetinaNet-based object detection trained on coarsely annotated fundus images. The 
model consists of three steps: preprocessing of image, refining coarsely annotated 
data using neural network, and finally using a convolutional neural network-based 
object detector along with a label smoothing procedure. The image preprocessing 
step improves the image quality and also enhances the illumination of the image. 
The next step is refining the coarsely annotated dataset using a novel neural network 
architecture called bounding box refining network (BBR-net); this helps in provid-
ing more accurate bounding box predictions in the dataset. Finally RetinaNet is 
trained for object detection which detects lesions in improved fundus images. They 
managed to achieve a better performance than pure RetinaNet-based model and 
achieved an exceptional IoU (Intersection over Union) score of 0.875. Pure 
RetinaNet-based model resulted in a top 3% mAP score of 60.9, whereas the pro-
posed pipeline achieves 67.4 improving 6.5 mAP score points. There is a significant 
improvement of 11.1 on top 4% mAP and 22.9 on top 5% mAP score. Exceptional 
performance in detecting hemorrhage in coarsely annotated diabetic retinopathy 
fundus images is observed in this work.

The paper [10] by Zhang L et al. aims to detect micro-aneurysms in diabetic reti-
nopathy fundus images. Micro-aneurysms are the earliest detectable diabetic reti-
nopathy lesions. This paper aims at detecting these lesions using a neural 
network-based object detector with attention mechanism. The introduction of atten-
tion mechanism has shown significant improvement in the micro-aneurysm detec-
tion results due to the ability of attention to focus on important features in a feature 
map during detection. This technique first improves the quality of image using tra-
ditional image processing techniques like equalization operations. Then attention is 
applied to various feature maps so that important features which lead to correct 
prediction are extracted and fused together; these are then passed on to the micro-
aneurysm detection neural network which is responsible for creating bounding 
boxes around the lesions. They trained their model on IDRiD_VOC dataset and 
achieved a sensitivity score of 0.868; this is quite important as sensitivity defines the 
number of true positives (a person has diabetic retinopathy and is detected to have 
DR) and can be used in production systems for initial screening of diabetic retinopa-
thy before the fundus image goes to an actual human ophthalmologist. They also 
presented with a precision of 0.874 with 0.4 confidence, 0.885 with 0.6 confidence, 
and 0.895 with 0.8 confidence. They could achieve this using attention, by focusing 
on different parts of the feature maps while predicting the best bounding box value. 
Exceptional performance in detection of micro-aneurysm thus helps in early detec-
tion of DR.

The paper [11] by Chen Q et al. uses neural network-based object detector for 
detection of lesions in fundus images to predict diabetic retinopathy. The research-
ers state that the primary obstacle in detection of lesions is that the ratio of size of 
lesions to that of the image is extremely small which makes it tough for some com-
mon object detection algorithms like YOLO and SSD and perform poorly on this 
type of dataset. They propose an improved version of feature pyramid networks 
(FPNs) which are the backbone of models like Faster R-CNN and RetinaNet (these 
algorithms are specialized in detecting small objects in an image). They state that 
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their improved technique called large-size feature pyramid network (LFPN) pro-
duces significant improvement over existing FPNs (feature pyramid networks). This 
model is basically a deeper FPN which allows the model to discover more feature 
maps and focus on smaller portions of the image. They managed to achieve 93.01% 
accuracy when center focus proposal strategy was used with their proposed LFPN 
which is the current state of the art in blot hemorrhage detection. They also dis-
played state-of-the-art results in micro-aneurysm detection (91.96% with LFPN and 
no CF proposals), hard exudate (93.79% with LFPN and CF proposals), and cotton 
wool spot detection (79.73% with LFPN with CF proposals). Thus with their model 
they set new state-of-the-art results in four of the most important techniques for 
early detection of diabetic retinopathy which can help ophthalmologist to check 
large amounts of data faster and improving chances of people getting cured of this 
disease. New state of the art in blot hemorrhage, micro-aneurysms, hard exudate, 
and cotton wool spot detection tasks for predicting diabetic retinopathy.

The paper [12] by Chen Q et al. aims to detect lesions in fundus images for pre-
dicting diabetic retinopathy. The dataset used here is not fully labelled and is thus 
referred to as a pseudo-labelled dataset, thus making the problem a semi-supervised 
learning task. The paper describes two major obstacles: (1) the dataset is not com-
pletely labelled, and (2) the ratio of size of image to the entire fundus image is very 
small. In this work feature proposal networks (FPNs) have been used to detect these 
small-sized lesions in a fundus image. The first step in this pipeline is to provide 
labels for the unlabeled data points using unsupervised techniques such as cluster-
ing which finds similarities between data points and clusters them accordingly to 
their corresponding predicted class. The whole supervised dataset which is now 
obtained is passed on to the FPN for detecting of lesions. With a deep feature pro-
posal network (DFPN) and multi-round (MR) training, they achieved state of the art 
results of 93.04% accuracy with a confidence threshold of 0.1 in detection of lesions 
in the fundus images. Improvement in this work is training on pseudo-labelled and 
unlabeled images.

2.4  Deep Learning Approaches for DR Detection Using 
Segmentation

The paper [13] by Saha et  al. describes an automated segmentation of fundus 
images, retina, and optic disk using CNN. The “trainable segmentation framework 
consists of an encoder and a decoder which is further followed by the process of 
pixel-wise classification, which encourages to segment” the different lesions such 
as exudates (both hard and soft), hemorrhages, and micro-aneurysms. Furthermore, 
the network in this paper is trained using binary cross-entropy, and it has utilized 
sigmoid activation in the last layer. Also to boost the response by a single class, 
softMax layer is used. The performance metrics used are sensitivity, accuracy, and 
positive prediction value (ppv). The optic disk’s position is located using segmented 
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output map. The previous experiments couldn’t distinguish between optic disk and 
exudates due to lack of global view. The main objective of this work is to capture 
the global features of the image since the brightness level of the optic disk and hard 
exudates is the same, which makes it difficult to recognize them when just the local 
features are considered.

The paper [14] by Nayak C et al. uses two unique techniques such as multilay-
ered thresholding technique and curvelet transform for vessel segmentation. 
Curvelets being a technique for multi-scale representation of object has features 
such as anisotropy scaling law and another important feature which is directionality. 
Due to these two features, edges are represented in a more efficient way than the 
traditional wavelets. Being a non-adaptive technique, curvelets gain its importance 
over traditional wavelets in fields like image processing and scientific computing. 
Morphological operation is applied for vessel segmentation. Additionally different 
threshold values are applied, and the successive layer tracking of blood vessels iter-
atively is done. Sensitivity and specificity are the metrics used to evaluate with clini-
cal results. Image resolution is higher than traditional wavelet transform in this work.

Automatic segmentation can speed up the diagnosis and helps the ophthalmolo-
gist by defining a region of interest and makes the grading process easier. The paper 
[15] by Sambyal N et al. briefs the modified UNet architecture, which is based on 
residual network, which shuffles the sub-pixels periodically which are convoluted to 
the neighbor which is nearby. Validation and training “for micro-aneurysm and hard 
exudate segmentation for IDRiD dataset gives accuracy of 99.88%, sensitivity of 
99.85%, specificity of 99.95%, and dice score of 0.998%. When trained on e-ophtha 
dataset, the model shows accuracy of 99.98%, sensitivity of 99.88%, specificity of 
99.89%, and dice score of 0.9998 for micro-aneurysm segmentation. ResNet34, a 
pretrained model, is used as the encoder. “The residual network minimizes the deg-
radation problem. Also, a new up-sampling technique shuffles the sub-pixel convo-
lution which is initialized to convolution nearest neighbor resize. The proposed 
work obtains state-of-the-art results for the semantic segmentation of DR lesions 
when compared to existing work, which” is ResNet18 model.

The success of the deep learning models such as CNN is based on the large data-
set. When the size of the dataset becomes small, these models are prone to large 
domain shift. To address this problem, the paper [16] by Bahdanau D et al. uses an 
end-to-end medical image segmentation model, progressive adversarial semantic 
segmentation (PASS), which helps to improve segmentation predictions even with-
out requiring any domain-specific data during the training time. Domain shift prob-
lem is a serious issue which is prone to error while predicting. Domain shift problem 
occurs when the data from one source fails to segment properly, due to lack of 
generalization. In both in-domain and cross-domain evaluations, even with smaller 
sample size and larger domain shift, PASS performs well.

The paper [17] by Luong M.T et al. uses transformers along with convolutional 
neural networks for object detection tasks, and they achieve state-of-the-art results 
in object detection. This model has two different neural networks in it—a convolu-
tional neural network and a transformer (encoder/decoder). Instead of fully convo-
lutional network or adding fully connected layers at the end for object detection, 
they decided to use transformers which are based on the concept of multi-headed 
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Table 1 A comparative analysis on all categories: algorithm used, dataset, and results under 
different category

S. 
no Algorithm used Dataset

Category 
(computer 
vision, object 
detection, 
segmentation) Results

[1] Direct computer vision 
approach

Diaret dbO_v_1_1 
database

Traditional 
computer vision

96.7% sensitivity and 
94.9% specificity for 
diagnosis (PPV = 97%, 
NPV = 95%)

[2] Morphological 
filtering techniques

30 images 640,480 
digital images taken 
with a SONY color 
video 3CCD 
camera on a Topcon 
TRC 50 IA 
retinograph (there 
is no dataset used)

Traditional 
computer vision

Sensitivity of 92.8% and 
a mean predictive value 
of 92.4%

[3] Classification 
algorithm

124 retinal images Traditional 
computer vision

Sensitivity achieved in 
this is more than 90% 
and specificity is 100%

[4] Contour-finding 
method and image 
gradient technique

100 retinal images Traditional 
computer vision

Specificity and sensitivity 
are from 95% to 100%

[5] Three CNN 
architectures 
EfficientNet-B5, 
SEResNeXt50, 
EfficientNet-B4

Kaggle diabetic 
retinopathy 
detection challenge 
2015, IDRiD, 
MESSIDOR, 
evaluation on 
APTOS2019

Classification of 
DR

Sensitivity and specificity 
achieved is 0.99, kappa 
score of 0.925466

[6] Regression activation 
map (RAM)

Kaggle diabetic 
retinopathy 
detection data

Classification of 
DR

For 256 pixel images, 
kappa score is 0.70, 0.80 
kappa score for 512 pixel 
images, and 0.81 score is 
achieved for 768 pixel 
images

[7] Pretrained 
DenseNet121 network

APTOS 2019 Classification of 
DR

The training accuracy 
and validation accuracy 
for the multi-label 
technique was seen as 
97.54% and 96.40%, and 
training accuracy and 
validation accuracy for 
the single-label technique 
was seen as 95.98% and 
94.44%, individually

(continued)
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Table 1 (continued)

S. 
no Algorithm used Dataset

Category 
(computer 
vision, object 
detection, 
segmentation) Results

[8] AlexNet Kaggle diabetic 
retinopathy data

Classification of 
DR

Final model gives 
accuracy of up to 88%. 
For more than 2000 
images

[9] Uses a pipeline of 
traditional computer 
vision models and 
neural network-based 
object detectors rather 
than pure RetinaNet 
for object detection

IDRiD, private 
dataset not released 
for public usage

Detection of DR Pure RetinaNet-based 
model resulted in a top 
3% mAP score of 60.9, 
whereas the proposed 
pipeline achieves 67.4 
improving 6.5 mAP score 
points

[10] Introduction of 
attention mechanism 
has shown significant 
improvement in the 
micro-aneurysm 
detection results

IDRiD_VOC Detection of DR A sensitivity score of 
0.868, also precision of 
0.874 with 0.4 
confidence, 0.885 with 
0.6 confidence, and 0.895 
with 0.8 confidence

[11] Large-size feature 
pyramid network 
(LFPN) produces 
significant 
improvement over 
existing FPNs (feature 
pyramid networks)

Private dataset not 
released for public 
usage

Detection of DR 93.01% accuracy

[12] Feature proposal 
networks (FPNs) have 
been used

Private dataset not 
released for public 
usage

Detection of DR 93.04% accuracy with a 
confidence threshold of 
0.1 in detection of lesions 
in the fundus images

[13] Segmentation 
framework consists of 
an encoder and a 
decoder followed by 
the process of 
pixel-wise 
classification

IDRiD, Drishti-GS Segmentation in 
DR

Sensitivity, accuracy, 
positive prediction value 
(ppv)

[14] Multilayered 
thresholding technique 
and curvelet transform 
for vessel 
segmentation

DRIVE and STARE 
database

Segmentation in 
DR

Nil

(continued)
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attention which allows the object to focus on parts of image while creating bound-
ing boxes around the lesions. First the image is passed through a convolutional 
neural network with a series of convolution and pooling layers at the end of which 
the feature maps are flattened and passed into an encoder decoder transformer. 
Since transformers allow high parallelization, this model can be used for real-time 
object detection which is extremely important for a problem like diabetic retinopa-
thy (Table 1).

2.5  Inference

After conducting the survey on various methods for early detection of diabetic reti-
nopathy, we could infer that these three works provided the best model for this task: 
[7] Birajdar et al. achieved the highest accuracy in both multi-label and single-label 
settings, [11] Chen Q et al. produced promising results though on a private dataset, 
and [10] Zhang, L et al. not only provided accuracy metric which might be mislead-
ing in certain cases but also provided metrics like sensitivity and specificity which 
clearly shows the superiority of their model [20]; this is in part due to the usage of 
attention mechanism. In our future work, we would be focusing on capsule net-
works and transformer-based models to solve this problem [21–23].

Table 1 (continued)

S. 
no Algorithm used Dataset

Category 
(computer 
vision, object 
detection, 
segmentation) Results

[15] ResNet34, a pretrained 
model, is used as the 
encoder

e-ophtha and 
IDRiD dataset

Segmentation in 
DR

“For IDRiD dataset, the 
network obtains 99.88% 
accuracy, 99.85% 
sensitivity, 99.95% 
specificity, and dice score 
of 0.9998 for both 
micro-aneurysm and 
exudate segmentation
When trained on 
e-ophtha and validated on 
IDRiD dataset, the 
network shows 99.98% 
accuracy, 99.88% 
sensitivity, 99.89% 
specificity, and dice score 
of 0.9998 for micro-
aneurysm segmentation”

[16] Progressive adversarial 
semantic segmentation 
(PASS)

ARIA and CHASE 
datasets

Segmentation in 
DR

Unsupervised 
classification on SVHN 
(55%) and MNIST 
(98.7%)”
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3  Conclusion and Future Work

In this section we will discuss about some of the techniques that we believe can be 
useful in our own work in coming up with a solution for diabetic retinopathy detec-
tion. We discuss mainly about two recent advancements to the field of deep learning 
which are found to provide state-of-the-art results in computer vision and other 
artificial intelligence problems in general. The first of the two algorithms is called 
“transformers.” Since the remaining technique depends in some way on transform-
ers, this would be the first technique to be familiarized with. Transformers were first 
introduced in 2017 in the paper “Attention is all you need” by researchers at Google. 
Transformers are a way of solving problems that deal with temporal relationships in 
the dataset, which was until then accomplished using “recurrent neural networks 
(RNNs) or variants of it like” long short-term memory (LTSM) and gated recurrent 
units. This work solved a major shortcoming of RNN family of neural networks 
which is their inability to process these data with temporal dependencies in parallel. 
Transformers use a technique called attention along with multilayered perceptrons 
(MLPs) to solve these problems in parallel. Since most of the recent advances in 
computer vision use transformer model in their architecture, we believe that it is 
worth exploring in the context of diabetic retinopathy. With the help of attention 
mechanism (which is part of the transformer model), a model can learn an efficient 
way for detecting or segmenting lesions in fundus images by taking into context the 
neighboring pixels which can help the neural network to perform well in real-world 
datasets for diabetic retinopathy. The second method that we believe would be use-
ful and worth exploring in context of early detection of diabetic retinopathy is “cap-
sule networks.” Capsule networks are a recent development in the field of computer 
vision which proposes that image features be represented as capsules—an entity 
proposed in the paper Stacked Capsule Autoencoders. This primary idea was taken 
from computer graphics: along with the features of an object in the capsule, it should 
also take into account the direction vector of that object in the image—doing this 
can help the system to be spatially invariant unlike the current option (convolutional 
neural networks). Thus capsules provide a better representation of an image and is 
much less susceptible to errors due to change in viewpoint. In an area (medical 
imaging) where accuracy is of utmost importance, introducing capsules will lead to 
major breakthrough in the system, thus producing and minimizing the misclassifica-
tions caused due to human errors. These use a technique called set transformers 
which is an improvement over the vanilla transformer model in context of computer 
vision. To conclude, our work will mostly focus on capsule network-based classifi-
cation, detection, and segmentation of lesions in fundus images; we will also be 
focusing on coming up with newer transformer-based architectures for solving this 
particular problem and for computer vision problems in general. This will help us 
focus on attention-based neural networks for solving this particular problem which 
have shown promising results in the past.
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Backpropagation (BP) (cont.)
LMS, 6
modes, 7
multilayer perceptron networks, 6
neural network training, 6
supervised learning method, 6

Backpropagation Through Time, 154
Bad cholesterol, 253
Bangla characters, 67
Banking industry, 146
BatchNormalization, 90
Bayesian information criterion (BIC), 
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Binary classification using Keras
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dataset, 101
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Matplotlib module, 103
preceding code, 106
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scene text dataset, 67, 68
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Clustering problem, 207, 208
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CNN-based object detection  
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CNN parameters, 86
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size normalization, 79
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tuning, 76, 77
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D
Data augmentation, 264
Data clustering process, 207
Data mining techniques, 227
DataVec, 17
Decision trees (DT), 39
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