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Abstract. An overbooking supposes that a booking of some product or
service exceed given possibilities. It takes into consideration that a part
of the booking will be cancelled. This situation is considered following to
example of aviation ticket booking. It is supposed that an external ran-
dom environment exists. The environment is described as a continuous-
time finite irreducible Markov chain. A demand on the booking depends
on the state of the random environment. An using of economical crite-
rion supposes a consideration of such indices as costs of engaged seats of
the aircraft and the penalty for the refusal of passenger with sold tickets.
This criterion is optimized by means of dynamic programming method.
A numerical example is considered.

Keywords: Continuous-time Markov chain · Dynamic programming ·
Overbooking’s problem

1 Introduction

An overbooking policy assumes that a sale and a booking of some product or
service exceed given possibilities. It takes into consideration that a part of the
sale or the booking will be cancelled. The overbooking is used in different spheres
of a transport, hotel’s businesses etc. Numerous publications are devoted to this
problem [1–8].

In this paper we consider the problem of the overbooking in the case of an
external random environment existence. Airline overbooking will be considered
for concreteness. Notably we use one word “to buy” both as for “to buy” and
for “to book”.

At the beginning the following positing of the problem will be considered
following to the text [8].

It is considered one aircraft trip, having the capacity n∗ passengers. The
preddeparture time, when passengers buy tickets, is a random variable with the
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density f(x), x ≥ 0. The passengers buy tickets independently of each other.
There is the probability q that the passenger with the ticket, doesn’t come for
the trip.

Then an external random environment exists, having k states with numbers
1, . . . , k. The environment is described as a continuous-time finite irreducible
Markov chain J(t) with the matrix λ = (λi,j)k×k of transition probabilities
between states.

An average demand for a considered trip depends on the state of the random
environment and equals di for the i-state, i = 1, . . . , k. Therefore the intensity of
customer’s arrivals at time t till a departure, if the i-th state occurs, is calculated
as follows:

d̃i(t) = dif(t), t ≥ 0.

At every moment of time t, the number of the sold tickets n and the state
i of the environment J are known. A decision on overbooking is adopted with
intervals Δ, at the instants sΔ, s = 1, 2, . . ., until departure. The i-th stage is
called the time interval (sΔ, (s − 1)Δ). The average number of the passengers,
whose buy tickets on the s-th stage, if J((s∗ − s)Δ) = i, is

αi(s) =
∫ Δs

t=Δ(s−1)

d̃i(t)dt, s = s∗, s∗ − 1, . . . , 1. (1)

Additionally we are guided by the maximal value of the overbooking. Let it
be mn,i(s): the maximal value of overbooking at instant t = sΔ, if n place are
busy and J(t) = i. Here mn,i(Δ) ≤ m∗, where m∗ is given.

From the beginning we suppose that the values mn,i(s) are given. Then
we look for the following functions mn,i(s), that optimizes some effectiveness
criteria. For example, the average aircraft load. The application of economical
criteria implies considering of indices such as the costs of engaged seats of the
aircraft and the penalty for refusing a passenger with sold tickets. Let c and r
be the cost of one engaged seat and the penalty for one refusal respectively.

At the beginning we consider the first case, then the second case.

2 Main Results

We will consider the described process with the step Δ > 0. Let τ be the time,
when all seats are occupied, s∗ = τ/Δ be an integer, so the step number s of
the step belongs to the set {s∗, s∗ − 1, . . . , 0}. The s-th step corresponds to the
time interval (Δs,Δ(s − 1)).

The random environment is represented by means of the continuous-time
irreducible finite Markov chain J(t) with k states and matrix λ(t) = (λi,j(t))
of transition intensities between states. Let Pi,j(t) be the probability that chain
J(t) will be in state j at instant t if the initial state is i, P (t) = (Pi,j(t)) be the
corresponding matrix. This matrix is calculated as follows [9,10].

Let
(
1 . . . 1

)T

k×1
be the column-vector from the units, Λ = λ

(
1 . . . 1

)T

k×1
be

the column-vector, diag(Λ) be the diagonal matrix with vector Λ on the main
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diagonal. The k × k-matrix A = λ − diag(Λ) is called generator of the Markov
chain. We denote eigenvalues and eigenvectors of this matrix by χ1, χ2, . . . , χk

and β1, β2, . . . , βk correspondingly. It is supposed that all values χ1, χ2, . . . , χk

are different.
Let B = (β1, . . . , βk) be the matrix, whose columns are eigenvectors

β1, . . . , βk of the generator A, β̃1, . . . , β̃k be rows of the inverse matrix B−1,
so that B−1 = (β̃T

1 , . . . , β̃T
k )T , diag(exp (tχ)) be the diagonal matrix with the

vector exp (tχ) = (exp (tχ1), . . . , exp (tχk)) on the main diagonal. Then

P (t) =
k∑

i=1

exp (χit)βiβ̃i = Bdiag(exp (tχ))B−1, t ≥ 0. (2)

Now we can calculate the average value ETi,ν,j(Δ) of sojourn time in the
state ν on interval (0,Δ) jointly with probability P{J(Δ) = j}, if J(0) = i:

ETi,ν,j(Δ) =
∫ Δ

0

Pi,ν(u)Pν,j(Δ − u)du, i, ν, j ∈ {1, . . . , k}. (3)

Further let us calculating the probability P̃ rη,i,j(s), that η new requests on
tickets are received during stage s and the final state J(Δ(s − 1)) equals j, if
the i–th state take place at instant Δs. With respect to the paper [8] we use the
following formula:

P̃ rη,i,j(s) =
1

n!

( k∑
ν=1

αν(s)ETi,ν,j(Δ)

)η

exp

(
−

k∑
ν=1

αν(s)ETi,ν,j(Δ)

)
, η = 0, 1, . . . .

(4)
Let Prn,i(s) be the probability that at beginning of the s–th stage the following
situation occurs: n claims are gotten, the state of MC J(Δs) equals i. We will
consider the following values of n: n ∈ {0, 1, . . . , n∗ + m∗ + 1}. If values n ≤ n∗

then Prn,i(s) means the probability that n places are busy. If value n belong to
interval [n∗ + 1, n∗ + m∗] then Prn,i(s) means the probability of corresponding
overbooking. The probability Prn∗+m∗+1,i(s) means the probability that the
number of claims exceeds n∗ + m∗.

We know values of n = n∗ and i = i0 for the initial stage with number s∗,
therefore

Prn,i(s∗) =

{
1 if n = n∗, i = i0,

0 otherwise.
(5)

Further for s = s∗ − 1, s∗ − 2, . . . , 0, n ≥ n∗,

Prn,j(s) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

k∑
i=1

n∑
η=n∗

Prη,i(s + 1)P̃ rn−η,i,j(s + 1), if n∗ ≤ n ≤ n∗ + m∗(s + 1);

Pi0,j((s
∗ − s)Δ) −

n∗+m∗(s+1)∑
n=n∗

Prn,j(s), if n = n∗ + m∗(s + 1) + 1.

(6)
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The part of the last formula, corresponding to the case n = n∗ + m∗(s + 1),
follows from the equality

Pi0,j((s∗ − s)Δ) =
∞∑

n=n∗
Prn,j(s).

The zero stage s = 0 corresponds to the instant of the trip beginning. Now
n means the number of all booked or sold tickets. Each of the corresponding
passengers can not arrive to the trip with probability q, independently on the
other passengers. Therefore, the probability that n passengers are in front of the
take off

PPn =
n∗+m∗∑

η=n

η!
n!(η − n)!

(1 − q)nqη−n
k∑

j=1

Prη,j(0), n ≤ n∗ + m∗. (7)

Finally the probability that n passengers have flown away is as follows:

PFAn =

⎧⎪⎪⎨
⎪⎪⎩

PPn, if n < n∗,
n∗+m∗∑
n=n∗

PPn, if n = n∗.
(8)

The represented formulas allow to calculate various efficiency indices. Firstly,
the average number of engaged seats:

Avr =
n∗∑

n=1

n × PFAn. (9)

Secondly, the probability that n passengers with bought or booked tickets
meet with refusal equals Pn+n∗ , n = 1, . . . ,m∗. Average number of those passen-
gers AvrR is calculated as follows:

AvrR =
m∗∑
n=1

nPn+n∗ . (10)

Finally, the probability that a customer encounters a refusal to purchase the
ticket equals

∑k
i=1

∑s∗

s=1 Prn∗+m∗+1,i(s).

3 Numerical Example

Our example has the following input data. The Markov chain has three states
(k = 3) and the transition intensities matrix

λ =

⎛
⎝ 0 0.3 0.4

0.5 0 0.4
0.5 0.6 0

⎞
⎠ .
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The initial state of Markov chain is known and fixed: J(0) = i0 = 1. The
capacity of the aircraft n∗ equals 20. A time before departure, when passengers
buy tickets, has Erlang distribution with parameters μ = 0.5 and θ = 3, and the
density

f(x) =
1
4
(0.5x)2 exp (−0.5x), x ≥ 0. (11)

Further we assume, that the average demand for given trip depends on the
state of the random environment and equals d1 = 22.5, d2 = 18, d3 = 13.5 for
the first, second and third states. Now the arrivals intensity of passengers at
time t until departure, if the i-th state occurs, is calculated by formula (1).

Let τ = 3 be the time, when all 20 seats are occupied. We consider the selling
and the booking process with the step Δ = 1. Therefore we have s∗ = τ/Δ = 3
stages. At last we suppose that the probability q, that a passenger doesn’t come
to a trip, equals 0.15.

The results for these initial data are given below. Firstly, the case mn,i(s) =
m∗ = 3 for all n and s is considered, when the maximal number of additional
overbooking equals 3 and doesn’t depend on the number s of the step and the
number n of booked and sold tickets. Figure 1 contains graph of density (11).

Fig. 1. Graph of density (11)

The expression (2) for the transition probabilities between states J(t) has
the following form:

P (t) =

⎛
⎝−0.704 0.577 −0.323

0.503 0.577 −0.323
0.503 0.577 0.889

⎞
⎠

⎛
⎝e−1.2t 0 0

0 1 0
0 0 e−1.5t

⎞
⎠

⎛
⎝−0.829 0.829 0

0.722 0.549 0.462
0 −0.825 0.825

⎞
⎠ .

Tables 1, 2 and 3 contain the conditional average times ẼT i,ν,j(Δ) =
ETi,ν,j(Δ)/Pi,j(Δ) of the sojourn of process J(t) in the state ν on interval (0,Δ),
if J(0) = i, J(t) = j. The columns of the tables correspond to the final states
j = 0, 1, 2, the rows correspond to the intermediate states ν. Note that for each
column the sum of all its elements equals 1.
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Table 1. Conditional average sojourn times ET0,ν,j(Δ)

ν j

1 2 3

1 0.944 0.466 0.500

2 0.026 0.440 0.056

3 0.030 0.094 0.444

Table 2. Conditional average sojourn times ET1,ν,j(Δ)

ν j

1 2 3

1 0.484 0.031 0.086

2 0.455 0.931 0.470

3 0.061 0.038 0.444

Table 3. Conditional average sojourn times ET2,ν,j(Δ)

ν j

1 2 3

1 0.484 0.055 0.042

2 0.086 0.487 0.044

3 0.430 0.458 0.914

Tables 4, 5, 6 and 7 show the calculation results according to formulas (5)–
(6). The probabilities {Prn,j(s)} are given for s = 3, 2, 1, 0, j = 0, 1, 2 and
n = 20, . . . , 24. Let us remind, that: 1) the value for n = 24 means the probability,
that the number of claims exceeds n∗ + m∗ = 23; 2) the initial state J(s∗) =
i0 = 1.

Table 4. Probabilities Prn,j(3)

j n

20 21 22 23 24

1 1 0 0 0 0

2 0 0 0 0 0

3 0 0 0 0 0
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Table 5. Probabilities Prn,j(2)

j n

20 21 22 23 24

1 0.051 0.125 0.153 0.125 0.015

2 0.023 0.049 0.954 0.039 0.112

3 0.027 0.055 0.056 0.038 0.077

Table 6. Probabilities Prn,j(1)

j n

20 21 22 23 24

1 0.011 0.041 0.077 0.096 0.207

2 0.009 0.030 0.052 0.060 0.153

3 0.009 0.031 0.050 0.055 0.119

Table 7. Probabilities Prn,j(0)

j n

20 21 22 23 24

1 0.009 0.034 0.066 0.085 0.228

2 0.007 0.027 0.049 0.062 0.168

3 0.007 0.024 0.044 0.054 0.138

The probabilities (7), that n passengers are in front of the take-off, are pre-
sented in Table 8.

Table 8. Probabilities PPn

n 12 13 14 15 16 17 18 19 20 21 22 23

PPn 0.001 0.002 0.006 0.019 0.047 0.095 0.158 0.209 0.213 0.158 0.075 0.017
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The probabilities (8) that n passengers have flown away are presented in
Table 9.

Table 9. Probabilities PFAn

n 13 14 15 16 17 18 19 20

PFAn 0.002 0.006 0.019 0.047 0.095 0.158 0.209 0.464

These tables allow the calculating of various efficiency indices. The average
number of engaged seats Avr, calculated by the formula (9), equals 18.853. The
probability PP20+n that n passengers with bought or booked tickets encounter
a refusal equals 0.158, 0.075, and 0.017 for n = 1, 2, and 3. There the average
number of such passengers

1 × 0.158 + 2 × 0.075 + 3 × 0.017 = 0.359.

It is noteworthy to compare these results with those whose will be without
overbooking, when mn,i(s) = m∗ = 0. Instead of Table 9, Table 10 takes place.

Table 10. Probabilities PFAn for the case mn,i(s) = m∗ = 0

n 11 12 13 14 15 16 17 18 19 20

PFAn 0.001 0.005 0.016 0.045 0.103 0.182 0.243 0.229 0.137 0.039

The average number of engaged places Avr equals 17 instead of 18.853. We
see that the difference is significant.

4 Optimization of an Economical Criterion

We need to determine values mn,i(s) ∈ (0, . . . , m∗) for each stage s =
s∗, s∗ − 1, . . . , 1, and values n and i so, that to maximize the average reward
of engaged seats without penalty for refusal of the passenger with sold or
booked tickets. Let m(s) = (mn,i(s))(m∗+1)×k be the corresponding matrix,
m = (m(s),m(s), . . . ,m(s))T be the block-matrix.

Let c be the cost of one ticket, r is the penalty for one refusal. We take
into account an additional index: a company derives income from earlier selling
or booking of tickets. So we introduce the function of the treble ε(s): it is the
additional income for one given ticket per one day. The function ε(s) has the
following properties: 1) it is non-negative and decreasing; 2) ε(0) = 0.

The average number of the of engaged seats Avr(m) is calculated by formula
(9). The average number the refusals AvrR(m) is calculated by formula (10).
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Let Σε be the total additional income owing to the treble. Therefore average
reward is calculated as follows:

AvReward(m) = c × Avr(m) − r × AvrR(m) + Σε. (12)

We have the typical problem of the dynamic programming [11,12]. In our case
the decision variable on stage s for fixed n and i is mn,i(s), s = s∗, s∗ − 1, . . . , 1.

Let c̃n,i(s) be the maximal average reward of the best overall policy for the
remaining stages s, s − 1, . . . , 1, given that n tickets are sold and the random
environment has state i. Given n and i, let m̃n,i(s) denote any value of the
decision variable mn,i(s) that maximizes c̃n,i(s).

We begin with zero stage s = 0 and end by the last stage s∗. The zero stage
gives the number n of the passengers, whose have bought or booked tickets.
As before each of corresponding passengers could come not come to the trip
with probability q, independently of the other passengers. The probability that
η passengers from n are in front of the take-off is calculated with respect to the
binomial distribution analogously to formula (7). Therefore

c̃n(0) =
n∑

η=0

n!
η!(n − η)!

(1 − q)ηqn−η(c × min(η, n∗) − r × max(η − n∗, 0))

0 ≤ n ≤ n∗ + m∗,∀i. (13)

Values c̃n,i(s) for the other stages s are calculated recurrently for s =
1, 2, . . . , s∗; 0 ≤ n ≤ n∗ + m∗; ∀i:

c̃n,i(s) = ε(s)n + max
0≤mn,i(s)≤m∗

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n∗+
mn,i(s)−n∑

η=0

k∑
j=1

P̃ rη,i,j(s)c̃n+η,j(s − 1)

+

k∑
j=1

( ∞∑
η=n∗+
mn,i(s)−
n+1

P̃ rη,i,j(s)
)
c̃n∗+mn,i(s),j

(s − 1).

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(14)

The ultimate solution is reached at the end of stage s∗ as c̃0,i(s∗), i = 1, . . . , k.
We see that dynamic programming finds it by successively calculating c̃n(0),

c̃n,i(1), . . ., c̃n,i(s∗ − 1), c̃n,i(s∗) for all 0 ≤ n ≤ n∗ + m∗, ∀i. Because this
procedure involves moving backward stage by stage, some authors also call s the
number of remaining stages to the problem’s solution.

The described procedure supposes using matrices (c̃n,i(s)) for every stage s.
Analogous matrices are necessary to keep up optimal decisions values m̃n,i(s).
It is possible to act otherwise, using so called forward procedure. Namely, the
optimal values m̃n,i(s) are found after the computing of all c̃n,i(η), η = s∗, s∗ −
1, . . . , 0.
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5 Numerical Example (Continue)

Additionally to previous conditions we set m∗ = 6, c = 100, r = 200. At begin-
ning we set ε(s) = 0 for all s: Table 11 shows results of calculations by formula
(13).

Table 11. Values of c̃n(0)

n 1 2 3 4 5 6 7 8 9 10 11 12 13

c̃n(0) 85 170 255 340 425 510 595 680 765 850 935 1020 1105

n 14 15 16 17 18 19 20 21 22 23 24 25 26

c̃n(0) 1190 1275 1360 1445 1530 1615 1700 1775 1821 1819 1767 1670 1543

Tables 12, 13 and 14 contain the calculation results according to formula (14)
for s = 1, 2, 3.

Table 12. Values of c̃n,i(1)

i n

20 21 22 23 24 25 26

1 1721 1787 1821 1819 1767 1670 1541

2 1719 1786 1821 1819 1767 1670 1541

3 1716 1784 1821 1819 1767 1670 1541

Table 13. Values of c̃n,i(2)

i n

20 21 22 23 24 25 26

1 1783 1812 1821 1819 1767 1670 1541

2 1777 1810 1821 1819 1767 1670 1541

3 1772 1808 1821 1819 1767 1670 1541

Table 14. Values of c̃n,i(3)

i n

20 21 22 23 24 25 26

1 1814 1820 1821 1819 1767 1670 1541

2 1812 1819 1821 1819 1767 1670 1541

3 1809 1819 1821 1819 1767 1670 1541
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We see that the state of the random environment influences on the results
weakly. The optimal values of the decision are the same for various states. More-
over, they are equally at different stages in our case. Theses optimal decisions
are presented in the Table 15.

Table 15. Optimal decisions mn,·(·)

n 20 21 22 23 24 25 26

mn,·(·) 2 1 0 0 0 0 0

From the given tables it follows that optimal value of the overbooking mn,i(s)
for all stages s and states i is 2 or 1. This corresponds to n = 20 + 2 = 22, and
from given tables we see, that the optimal value of the rewards equals 1821.

Now compare this result with the previous case, where it is supposed, that
mn,i(s) = m∗ = 3 for all n < 21, i and s. In this case the average number
of engaged seats Avr = 18.853, the average number of passengers with bought
and booked tickets, whose meet with refusal equals 0.359. It gives the following
reward, with respect to formula (12):

AvReward(m) = c × Avr(m)− r × AvrR(m) = 100× 18.853− 200× 0.359 = 1813.5.

We see that the increment is less.
Now we take into account the function of the treble ε(s). Let it be the fol-

lowing form:
ε(s) = δ(exp (α(s∗ − s)), s ≥ 0, (15)

where δ, α ≥ 0.
Graph of this function for δ = 15 and α = 2 is presented on Fig. 2. Now the

Tables 12, 13 and 14 look as follows (see Tables 16, 17 and 18).

Table 16. Values of c̃n,i(1) for the expression (15)

i n

20 21 22 23 24 25

1 1727 1793 1827 1826 1773 1548

2 1724 1791 1182 1826 1773 1677

3 1722 1790 1827 1826 1773 1677
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Fig. 2. Graph of the function (15)

Table 17. Values of c̃n,i(2) for the expression (15)

i n

20 21 22 23 24 25 26

1 1815 1852 1865 1866 1815 1721 1594

2 1808 1849 1865 1866 1815 1721 1594

3 1802 1847 1865 1866 1815 1721 1594

Table 18. Values of c̃n,i(3) for the expression (15)

i n

20 21 22 23 24 25 26

1 2108 2138 2157 2171 2133 2052 1938

2 2103 2137 2157 2171 2133 2052 1938

3 2098 2135 2157 2171 2133 2052 1938

As earlier the random environment influences on the results weakly, but now
the optimal values of the decision depends on different stages. These optimal
decisions are presented in the Table 19.

Table 19. Optimal decisions mn,·(s) for the expression (15)

n 20 21 22 23 24 25 26

mn,·(1) 2 1 0 0 0 0 0

mn,·(2) 3 2 1 0 0 0 0

mn,·(3) 3 2 1 0 0 0 0
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6 Conclusion

The considered model can be generalized in many ways. Firstly to discriminate
between sold and booked tickets. Secondly it takes into account a possibility of
a cancellation of booked tickets during a period of our consideration. Our future
researches will be connected with the realization of these possibilities.
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