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Abstract. With the rapid development and spread of computer net-
works and information technologies, researchers are faced with new com-
plex challenges of both applied and theoretical nature in investigating the
reliability and availability of communication networks and data transmis-
sion systems. In the current paper, we perform the system-level reliability
analysis for a redundant system with arbitrary distributions of uptime
and repair time of its elements using a simulation approach. Also, we
obtained the values of the relative recovery speed at which the desired
level of reliability is achieved, presented dependency plots of the proba-
bility of system uptime and plots of the uniform difference of the obtained
simulation results against the relative speed of recovery; also plots of the
empirical distribution function F*(x) and reliability function R*(z) rela-
tive to the reliability assessment. Software implementation of simulation
algorithms was carried out on the basis of the R language.

Keywords: Simulation - Stochastic modeling - Reliability of
redundant systems - Redundant communications - Relative repair
rate - Probability of the failure-free operation - Sensitivity analysis

1 Introduction

With the rapid development of computer networks and information technolo-
gies, researchers are faced with new complex applied and theoretical problems
on studying the reliability and availability of networks and data transmission
systems [1].

Currently, simulation is effectively utilized in modeling of info-communication
network systems, validating mathematical methods, testing information tech-
nologies, elaborating new computational models for analysis of functioning of
computer networks, modeling teletraffic, etc. Previously in [2], it was shown
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that explicit analytical expressions for the stationary distribution of the system
under consideration cannot always be obtained. The simulation model devel-
oped in this work allowed to investigate the reliability of the system, defined as
the stationary probability of its failure-free operation, as well as to assess the
reliability measures of the system; also numerical research and graphical analy-
sis have shown that this dependence becomes vanishingly small under a “fast”
recovery, that is, with the growth of the relative repair rate p.

Recently, the functioning of various aspects of modern society has become
critically dependent on communication networks [3,4]. With the migration of
critical communications tools, it has become vital to ensure the reliability and
accessibility of data networks and systems.

A number of previous studies [5-9] have focused on analyzing the reliability
of various complex telecommunications systems. In particular, a study was con-
ducted on the reliability of cold-standby data transmission systems. Paper [10]
focused on reliability analysis of a combined power plant running on a gas turbine
engine. In a series of works by Enrico Zio et al. [11-13] the Monte Carlo simula~
tion method was applied to reliability assessment and risk analysis of multi-state
physics systems. The aim of [14] was to develop a model for studying system reli-
ability and analyzing the sensitivity of system availability. In stochastic systems
stability often means insensitivity or low sensitivity of their output characteris-
tics to the shapes of some input distributions. The proof of the insensitivity can
significantly simplify the model of the system under study by using more conve-
nient distributions (from the exponential family). This urges the importance of
the sensitivity analysis. Actually, the term “sensitivity analysis” can be under-
stood differently in civil engineering than in basic sciences [15]. In operations
research, sensitivity analysis is developed as a method of critical assessment of
decisional variables, and is capable to identify those sensitive variables that influ-
ence the final desired result [16]. Another suitable complement to probabilistic
reliability analysis is structural sensitivity analysis [17,18].

In [19], a simulation method was considered to simulate the reliability of a
task by a complex system by modeling a task cyclogram, modeling a run-time
profile and a method of dynamic reliability modeling. In [20], modeling and
estimation methods were presented that allow temperature optimization of the
reliability of a multiprocessor system on a chip for specific applications.

The current paper summarizes the results of previous studies of the authors in
the case of cold standby of the system (GIy/GI/1) with an arbitrary distribution
function (DF) of uptime and an arbitrary DF of repair time of its elements. The
aim of the work is to conduct simulation to find the value of the coefficient p
(relative repair rate), at which a given level of reliability is achieved and to graph
the dependence of the probability of failure-free operation of the system on the
relative repair rate. The results of calculating the reliability estimate for different
input distributions are presented.
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2 Problem Statement and Model Description

As a simulation model of a redundant data transmission system consisting of
N different types of data transmission channels, we consider a repairable multi-
ple cold standby system (GIy/GI/1) with one repair device, with an arbitrary
distribution function (DF) of uptime and an arbitrary DF of repair time of its
elements.

In this paper, we consider the dependence of the probability of failure-free
operation of the system (GIn/GI/1) on the relative repair rate. The task is to
develop a simulation model for calculating the steady-state probabilities of the
system, to find the stationary probability of failure-free operation of the system
for some special cases of distributions and assess the reliability of the system,
for N = 3.

2.1 Simulation Model for Calculating Steady-State Probabilities
of (GIn/GI/1) System

Let’s define the following states of the simulated system:

e State 0: One (main) element works, N — 1 are in a cold standby;

e State 1: One element failed and is being repaired, one — works, N — 2 are in
a cold standby;

e State 2: Two elements have failed, one is being repaired, the other is waiting
for its turn for repair, one — works, N — 3 are in a cold standby;

e State N: All the items have failed, one is being repaired, the rest are waiting
their turn for repair.

To describe the reliability modeling algorithm for the (GIy/GI/1) system
we introduce the following variables:

e double ¢ - simulation clock; changes in case of failure or repair of the system’s
elements;

e int 4, j - system state variables; when an event occurs, the transition from 4
to j takes place;

e double t,cq¢ rai1 — service variable, which stores the time until the next element
failure;

o double tyeatrepair — service variable, which stores the time until the next repair
of the failed element;

e int k - counter of iterations of the main loop.

For clarity, the simulation model is presented graphically in Fig. 1 in the form of
a flowchart. The criterion for stopping the main cycle of the simulation model
is to achieve the maximum model execution time T'.

For a better understanding and reproducibility of the simulation model, in
addition to the flowchart, the algorithm of the discrete-event process of sim-
ulation modeling is also provided in the form of pseudo-code with comments
(Algorithm 1).
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Initial data:

A — Random variable of the failure time
B — Random variable of the recovery time
i — Number of failed elements
N — Number of elements in the system
& — Time of failure element
X — Moment of failure element in system
7 — Repair Time of failure element
Y-M of repair pletion of failure el in system
tcur — Current time
T — Maximum model run time
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Fig. 1. Flowchart of the simulation model for estimating stationary probabilities.

Algorithm 1. Pseudocode of the simulation process of the system
(GIN/GI/1).
Input: al, bl, N, T, NG, GI.

al - Average time between element failures,

bl - Average repair time,

N - Number of elements in the system,

T - Maximum model run time,

NG - Number of Trajectory (Path) Graphs,

“GI” - Arbitrary Distribution function.
Output: steady-state probabilities Py, P, Ps, ..., Py.
Begin

array r[] :=[0,0,0]; // multi-dimensional array containing results, k-step of
the main cycle (loop)

double ¢ := 0.0; // time clock initialization

int ¢ :=0; j :=0; // system state variables
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double tpeqifair = 0.0; // variable in which time until the next element
failure
double theztrepair = 0.0; // variable in which time is stored until the next
repair is completed
int k :=1; // count of iterations of the main loop
s = rf.GI(\;); // generation of an arbitrary random variable s— time to
the first event (failure)
ss == rf GI(6(x)); // generation of an arbitrary random variable ss— time
of repair of the failed element)
tnextfail =t+s;
tnewtrepair =1+ ss;
while ¢ < co do
if ¢ =0 then
tnextrepair =00 ] = .7 + 1; t= tnextfail;
else
for(vinl: (N —1))
if i = v then
Sy =rf GI(N);S2 = rfGI("é6(x)");
tnertfail =t+ Sl; tncxtrcpair =1+ 52;
if tneztfail < tnextrepair then
J=ij+1Lt= tnea:tfail;

else
j=7—-Lt= tnextrepair;
end
else
1= N; tne:z:tfail = 0Q; ] :.7 -1 t= tnea:trepair )
end
if t > Tthen
t=T
end
r[,, k] = [t,i,4]; i = j; k =k +1;

end do
Calculate the duration of stay in each state 4,4 = 0,1,2,... N. The
formula for calculating stationary probabilities is:

NG
EN 1
P, = NG Zl(duration of stay in state ¢/T);
J:
end
Table1 shows the values of the coefficient p = Z—i — the relative repair

rate (i.e. the ratio of the average uptime of the main element to the average
repair time of the failed element), at which the specified level of stationary
reliability 1 — w3 = 0.9;0.99;0.999. To analyze and compare the results, the
following distributions were chosen: Exponential (M), Weibull-Gnedenko (WB),
Lognormal (LN).
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We consider particular cases of the model at p = 25; N = 3; NG = 100;
T = 1000; where b; = 1; T} - system uptime; T5 - repair time of a failed element.

Table 1. Values of the relative repair rate, at which a given level of the system’s
stationary reliability is achieved.

Th Ts

M(1/b1) WB(W) LN (sig)
0.910.990.9990.9/0.99/0.999|0.9|0.99 | 0.999
M(1/a1) 1.6] 4291 15| 47 113 |16 44 9.7
WB(W) 3.2]12.2|25 291116 |25 3.311.9|25
LN(sig) |1.6| 3.9|7.6 1.6 4.59.7 164 7.2

A sufficiently high level of system reliability is achieved with a relatively small
excess of the average values of the uptime by the repair time, except when the
uptime of the system elements is distributed according to the Weibull-Gnedenko
distribution.

Figure 2 presents graphs of the probability of system uptime; and Fig. 3 shows
the uniform difference of the results of the simulation model between the expo-
nential and the non-exponential cases.

The obtained results demonstrate a high asymptotic insensitivity of the sta-
tionary reliability of the system. It can be seen that the differences between the
curves during “fast” recovery become vanishingly small for all the considered
distributions of the repair time of the system elements. For example, already
starting from the value p = 10, all the curves are almost indistinguishable.

Graphical results from Fig.3 show that the uniform difference between the
models (Ms/M/1) and (LN3/M/1); (Ms/M/1) and (LN3/LN/1) tends to zero
with a small increase in p.

2.2 Simulation Model for Assessment of the (GIn/GI/1) System
Reliability

In this case, the system stops functioning after all N elements have failed, and
the maximum model run time 7" is equal to co. For clarity, the simulation model
is presented graphically in Fig. 4.

For a better understanding and reproducibility of the simulation model, in
addition to the flowchart, the algorithm of the discrete-event process of sim-
ulation modeling is also provided in the form of pseudo-code with comments
(Algorithm 1).

Algorithm 2. Pseudocode of the simulation process of the system
(GIn/GI/1).

Input: al, bl, N, NG, GIL.
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Fig. 2. Graphs of the probability of system uptime versus relative recovery rate for the
systems (Ms3/GI/1), (WBs/GI/1) and (LNs/GI/1).

Output: Reliability assessment ET.
Begin

array r|] == [0,0,0]; // multi-dimensional array containing results, k-step of
the main cycle (loop)

double ¢ := 0.0; // time clock initialization

int ¢ := 0; j := 0; // system state variables

double tpegtfair = 0.0; // variable in which time until the next element
failure

double tpegpirepair = 0.0; // variable in which time is stored until the next
repair is completed

int k :=1; // count of iterations of the main loop

s = rf GI(\;); // generation of an arbitrary random variable s— time to
the first event (failure)

ss == rf GI(6(x)); // generation of an arbitrary random variable ss— time
of repair of the failed element)
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Fig. 3. Graphs of the uniform difference in the results of the simulation model as a
function of p.

tneactfail =t+s;
tnemtrepair =1+ ss;
while ¢ < co do
if i = 0 then
tneztrepair = 003 .7 = j +1;t= tneztfail;
else
for(vin1l: (N —1))
if i+ = v then
Sy =rf GI(X\);Se =rfGI("6(x)");
tnemtfail =t+ Sl; tnewtrepair =t+ 52;
if tnextfail < tnea:t'repair then
J=j+1t= tneztfail;

else
7 =7 =1t = tneatrepair;
end
else
i = N; then break ;
end

end
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Initial data:

A — Random variable of the failure time
B — Random variable of the recovery time
i — Number of failed elements
N — Number of elements in the system
& — Time of failure element
X — Moment of failure element in system
1 — Repair Time of failure element
Y -M of repair pletion of failure el in system
tcur — Current time
T = o0 — Maximum model run time
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Fig. 4. Flowchart of the simulation model for evaluating system reliability.

r[,, k] = [t,i,4]; i = j; k =k +1;
end do

Calculate the duration of stay in state N. The formula for calculating
the reliability measure is:

NG

— 1
Z(duration of stay in state N);
i=1

ET= 3G

end

Table 2 shows the values of the reliability estimates of the system (estimates
of the mean time to failure of the system) with the time spent on modeling. The
same distributions were chosen: Exponential, Weibull-Gnedenko, Lognormal.
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We consider particular cases of the model at p = 25; N = 3; NG = 10000;
where by = 1; T3 - system uptime; 75 - repair time of a failed element.

Table 2. Values of the estimates of the mean time to failure of the (GI3/GI /1) system.

T T
M(1/by) | WB(W) | LN (sig)
M(1/ay) | 16530.34 | 19566.77 | 25.18033
WB(W) | 28.57675 | 927.8087 | 564.099
LN (sig) | 249458.5 | 71212.42 | 190780.8

As it can be seen from Table 2, the most reliable model is a model with a
lognormal distribution of uptime and an exponential distribution of the repair
time of a failed element.

Figure 5 presents graphs of the empirical distribution function F*(¢) and the
empirical reliability function R*(t).

The results also show the high asymptotic insensitivity of the empirical dis-
tribution function and the corresponding empirical reliability function of the
system to the shapes of the uptime and repair time distributions of the system’s
elements.

Empirical distribution function F*(t) and reliability function R*(t)
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Fig. 5. Graphs of the empirical distribution function F'*(t) and the empirical reliability
function R*(t)
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3 Conclusion

In practice, redundancy is a common approach to enhance the reliability of com-
munication systems, which may be designed to avoid communication failure by
including redundant components that are active upon the failure of a primary
component. To address these practical issues, in the current work we consid-
ered a repairable multiple cold standby system (GIy/GI/1) with one repair
device, with an arbitrary distribution function of uptime and an arbitrary dis-
tribution function of repair time of its elements. This paper is a continuation of
the previous studies in this area that were focused on analytical models. For the
considered system we applied the discrete-event simulation approach to perform
the assessment of the system-level reliability and obtained the values of the rel-
ative repair rate at which the given level of the system’s stationary reliability
is achieved. Graphic and numerical results show a high asymptotic insensitivity
of the stationary system reliability to the input distributions. The differences
between the curves under “fast” recovery become vanishingly small for all the
studied special cases of distributions. It was shown that the most reliable case is
the model with a lognormal distribution of uptime and an exponential distribu-
tion of the repair time of a failed element. The graphic results also show a high
asymptotic insensitivity of the empirical distribution function and the empirical
reliability function of the system.
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