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Abstract. In this paper, we consider the multiclass M/M/1/1 retrial
queueing system. Customers of each class arrive from outside the sys-
tem according to a Poisson process. The service times of customers are
assumed to be exponentially distributed with the parameter correspond-
ing to the type of the customer. If the server is busy incoming customers
join the orbit according to their type and make a delay for an exponen-
tially distributed time. Equations for the characteristic function of the
multi-dimensional probability distribution of the numbers of customers
in the orbits are obtained. These equations are investigated by method
of asymptotic analysis under the long delay condition of customers in the
orbits. It is shown that the probability distribution can be approximated
by a multi-dimensional Gaussian distribution. Equations are obtained
for finding the parameters of this probability distribution.

Keywords: Retrial queueing system · A multiclass system ·
Asymptotic analysis

1 Introduction

Retrial queues have become popular in the queueing research due to the chal-
lenging in the analysis as well as the needs of modelling retrial phenomenon
in real world systems, e.g., telecommunication systems [10,15], call center and
other service systems [6]. Retrial queues reflect the situations that customers who
arrive at a service system when the system is fully occupied, do not wait but
retry to access the system in a later time. For example, customers of a call center
may make a phone call again if all the operators are busy [6]. Retrial queues with
single class of customers have been extensively studied in the literature [1,2]. For
a survey on advances of retrial queues, we refer to [14]. The main difficulty in
the analysis of retrial queues arises from the fact that customers retry indepen-
dently leading to inhomogeneous transition structures of the underlying Markov
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chains. As a result, even for the pure Markovian model (i.e. Poisson arrivals
and exponential service times), explicit results are found in only some special
cases only. Single server model with pure Markovian assumptions is explicitly
analyzed [2]. For the case of more than one server, generating functions for the
number of customers in the orbit is represented in terms of hypergeometric func-
tions for the case of two servers [2,4], while the distribution of the number of
customers in the orbit is expressed in terms of continued fraction for the case
of three and four servers [11,12] and matrix continued fraction for the case of
arbitrary number of servers [5,13]. The main difficulty of the analysis is that
the generating functions of the joint queue length distribution are solutions of a
system of differential equations whose solution cannot be explicitly obtained in
general.

For multiclass retrial queues, the analysis is even more difficult and analytical
solution for the joint stationary distribution has not been obtained even for single
server case. To the best of our knowledge, only the stability conditions [7,9] and
moments of the number of customers in the orbit have been obtained [2,8].
The difficulty is the fact that the joint generating functions of the numbers
of customers in the orbits are the solution of a system of partial differential
equations. In this paper, we consider the system under an asymptotic regime of
slow retrials. First, we consider obtain the first order asymptotic result that the
scaled numbers of customers in the orbits converge to the constants having clear
physical meaning. Next, we obtain the second order asymptotic result which
states that the joint distribution of the centered numbers of customers in the
orbits converges to a Gaussian distribution with explicit mean and covariance
matrix.

The rest of our paper is organized as follows. Section 2 presents the model
and problem formulation. Section 3 show the detailed analysis of the first and
second order asymptotics. Section 4 presents some numerical examples while
concluding remarks are presented in Sect. 5.

2 Model Description and Problem Statement

We consider a multiclass retrial queueing system. Let N be the number of classes
of incoming customers. Customers of each class arrive from outside the system
according to a Poisson process with a rates λn, n = 1, N . If an arriving customer
finds the server free, the customer occupies the server and gets a service. The
service times for each class of customers are assumed to be exponentially dis-
tributed with service rates μn, n = 1, N depending on the class. If the server is
busy incoming customers join the orbit according to their type and make a delay
for an exponentially distributed time with rate σn, n = 1, N then repeat their
request for service.

Let in(t), n = 1, N be the random processes of the numbers of customers in
the orbits. We denote in vector notation as i(t) = [i1(t) . . . iN (t)]. The aim of
the current research is to derive the stationary probability distribution of this
vector process. Let k(t) be the random process that defines the server states: 0
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if the server is free, n if the server is busy serving an incoming call of n-th type,
n = 1, N .

The process i(t) is not Markovian, therefore we consider the (N + 1)-
dimensional continuous time Markov chain {k(t), i(t)}.

Denoting Pk(i, t) = P{k(t) = k, i1(t) = i1, . . . , iN (t) = iN}, k = 0, N it is
possible to write down the following equalities

P0(i, t + Δt) = P0(i, t)
N∏

m=1

(1 − λmΔt)(1 − imσmΔt) +
N∑

m=1

Pm(i, t)μmΔt + o(Δt),

Pn(i, t + Δt) = Pn(i, t)(1 − μnΔt)
N∏

m=1

(1 − λmΔt) + P0(i, t)λnΔt

+P0(i + en, t)(in + 1)σnΔt +
N∑

ν=1

Pn(i − eν , t)λνΔt + o(Δt), n = 1, N.

Here en is the vector whose n-th component is equal to unity, and the rest
are zero.

We will consider the system in a steady state regime under the stability
condition [9]:

N∑

m=1

λm

μm
< 1.

We denote Pk(i) = lim
t→∞ Pk(i, t) the stationary probability distribution of the

system states {k(t), i(t)}.
Let us write the system of equations for the probability distribution

{P0(i), P1(i), . . . , PN (i)} , i ≥ 0,

using equalities the above:

P0(i)
N∑

m=1

(−λm − imσm) +
N∑

m=1

Pm(i)μm = 0,

−Pn(i)

(
μn +

N∑

m=1

λm

)
+ P0(i)λn + P0(i + en)(in + 1)σn

+
N∑

ν=1

Pn(i − eν)λν = 0, n = 1, N.

(1)

Here it is assumed that Pk(i) = 0, k = 0, N , if at least one component of the
vector i is negative.

Let us introduce the multidimensional partial characteristic functions

Hk(u) =
∞∑

i1=0

. . .
∞∑

iN=0

Pk(i1, . . . , iN ) exp
{

j
N∑

m=1
umim

}

=
∞∑
i=0

ejuT iPk(i), k = 0, N, (2)
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where j =
√−1 is an imaginary unit, u – vector with components un, n = 1, N .

Substituting functions (2) into (1), the following system of equations is
obtained.

−H0(u)
N∑

m=1

λm + j

N∑

m=1

∂H0(u)
∂um

σm +
N∑

m=1

Hm(u)μm = 0,

−Hn(u)

(
μn +

N∑

m=1

λm

)
+ H0(u)λn − jσne−jun

∂H0(u)
∂un

+
N∑

m=1

Hn(u)λmejum = 0, n = 1, N.

(3)

3 Asymptotic Analysis Under the Long Delay Condition

Denote
σn = σγn, n = 1, N.

The main idea of this paper is to find the solution of system (3) by using an
asymptotic analysis method under the limit condition of the long delay customers
in the orbits, i.e., when σ → 0.

3.1 Asymptotic of the First-Order

We make the following substitutions in the system (3):

σ = ε,u = εw,Hk(u) = Fk(w, ε), k = 0, N.

As the result, we get the following equations:

−F0(w, ε)
N∑

m=1

λm + j

N∑

m=1

∂F0(w, ε)
∂wm

γm +
N∑

m=1

Fm(w, ε)μm = 0,

−Fn(w, ε)

(
μn +

N∑

m=1

λm

)
+ F0(w, ε)λn − jγne−jεwn

∂F0(w, ε)
∂wn

+
N∑

m=1

Fn(w, ε)λmejεwm = 0, n = 1, N.

(4)

Denoting the asymptotic solution of the system of Eqs. (4) in the form
Fk(w) = lim

ε→0
Fk(w, ε), k = 0, N , we obtain solution named as “first-order asymp-

totic”. We prove the following theorem.

Theorem 1. The first-order asymptotic characteristic function of the probabil-
ity distribution of the numbers of customers in the orbits has the form:

Fk(w) = Rk exp

{
N∑

m=1

jwmxm

}
, k = 0, N,
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where parameter

Rn =
λn

μn
, n = 1, N,R0 = 1 −

N∑

m=1

λm

μm
(5)

is the stationary probability distribution of the state server (R = {Rk}, k = 0, N
in matrix form),

xn =
λn

γn

1 − R0

R0
, n = 1, N. (6)

Proof. In system (4), we take the limit as ε → 0. Then, we get the system of
equations:

−F0(w)
N∑

m=1

λm + j

N∑

m=1

∂F0(w)
∂wm

γm +
N∑

m=1

Fm(w)μm = 0,

−Fn(w)μn + F0(w)λn − jγn
∂F0(w)

∂wn
= 0, n = 1, N.

(7)

We will look for a solution the above system of equations in the following form

Fk(w) = RkΦ(w), k = 0, N. (8)

Substituting (8) into (7) and multiplying the equations of the system by
1

Φ(w)
, we derive equations:

−R0

N∑

m=1

λm + jR0

N∑

m=1

∂Φ(w)/∂wm

Φ(w)
γm +

N∑

m=1

Rmμm = 0,

−Rnμn + R0λn − jγnR0
∂Φ(w)/∂wn

Φ(w)
= 0, n = 1, N.

(9)

The solution of Eq. (9) is as follows:

Φ(w) = exp

{
N∑

m=1

jwmxm

}
. (10)

Substituting this expression into the system (9) yields

−R0

N∑

m=1

λm − R0

N∑

m=1

γmxm +
N∑

m=1

Rmμm = 0,

−Rnμn + R0λn + γnxnR0 = 0, n = 1, N.

We express Rn from the second equation of system and get relation

Rn =
λn + γnxn

μn
R0. (11)
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We sum the equations of the system (4) in order to get the equation

N∑

m=1

λm(ejεwm − 1)
N∑

m=1

Fm(w, ε) + j
N∑

m=1

∂F0(w, ε)
∂wm

(1 − e−jεwm)γm = 0. (12)

Let us use expansion

ejεwm = 1 + jεwm + o(ε)

where o(ε) is an infinitesimal of the order greater than ε, in Eq. (12). Dividing
these equations by jε and making the transition ε → 0, one obtains the following
equation:

N∑

m=1

λmwm

N∑

m=1

Fm(w) + j

N∑

m=1

∂F0(w)
∂wm

wmγm = 0. (13)

Substituting (8) and (10) to (13), we have

N∑

m=1

λmwm

N∑

m=1

Rm − R0

N∑

m=1

wmγmxm = 0.

Using condition of standardization
N∑

m=0
Rm = 1, we obtain

N∑

m=1

λmwm − R0

N∑

m=1

(λm + γmxm)wm = 0. (14)

After some transformations, one obtains the following equation:

λm − R0(λm + γmxm) = 0.

We obtain an expressions for xn, n = 1, N , which coincide with (6).
Using this expression, we can write

R0 =
λm

λm + γmxm
.

Substituting this expression in formula (11), one obtains expression (5).
The values xn represent the average values of the numbers of customers in

the orbits normalized by the value σ.

3.2 Asymptotic of the Second-Order

In the system (3) let us denote

Hk(u) = H
(2)
k (u) exp

{
N∑

m=1

j
um

σm
γmxm

}
, k = 0, N. (15)
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The functions H
(2)
k (u) are the partial characteristic functions of the values

of centered random processes im(t) − xm√
σ

. Substituting

σn = σγn, σ = ε2,u = εw,H
(2)
k (u) = F

(2)
k (w, ε), k = 0, N. (16)

and expression (15) into the system (3) we get:

−F
(2)
0 (w, ε)

N∑

m=1

(λm + γmxm) + jε
N∑

m=1

∂F
(2)
0 (w, ε)
∂wm

γm +
N∑

m=1

F (2)
m (w, ε)μm = 0,

−F (2)
n (w, ε)

(
μn +

N∑

m=1

λm(1 − ejεwm)

)
+ F

(2)
0 (w, ε)(λn + γnxne−jεwn)

−jεγne−jεwn
∂F

(2)
0 (w, ε)
∂wn

= 0, n = 1, N.

(17)
Denoting the asymptotic solution of the system of Eqs. (17) in the form

F
(2)
k (w) = lim

ε→0
F

(2)
k (w, ε), k = 0, N , we obtain this solution, named as “second-

order asymptotic”. We prove the following theorem.

Theorem 2. The second-order asymptotic characteristic function of the proba-
bility distribution of the number of customers in the orbits has the form:

F
(2)
k (w) = Rk exp

{
−1

2

N∑

ν=1

N∑

m=1

wνKνmwm

}
, k = 0, N, (18)

where parameters Kνm are the solution of the following system:

γmR0Kmm − λmR0

N∑

l=1

γl

μl
Klm = λm(1 − R0)(1 − Rm) + λ2

m

N∑

l=1

Rl

μl
, ν = m,

γmR0Kmν + γνR0Kνm − λmR0

N∑

l=1

γl

μl
Klν − λνR0

N∑

l=1

γl

μl
Klm

= 2λmλν

N∑

l=1

Rl

μl
− (Rmλν + Rνλm)(1 − R0), ν �= m.

(19)

Proof. We will look for a solution of (17) in the following form:

F
(2)
k (w, ε) = Φ2(w)

(
Rk +

N∑

m=1

jεwmfkm + o(ε)

)
. (20)
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Substituting (20) and the expansion ejεwm = 1+jεwm+o(ε) into (17), we obtain

−Φ2(w)

(
R0 +

N∑

m=1

jεwmf0m

)
N∑

m=1

(λm + γmxm) + Φ2(w)
N∑

m=1

μm

N∑

ν=1

jεwνfmν

+Φ2(w)
N∑

m=1

μmRm + jε

N∑

m=1

γm(R0 + jε

N∑

ν=1

wνf0ν)
∂Φ2(w)
∂wm

+ o(ε) = 0,

Φ2(w)

(
Rn +

N∑

ν=1

jεwνfnν

) (
jε

N∑

m=1

λmwm − μn

)
+ Φ2(w)R0(λn + γnxn)

− jεΦ2(w)R0wnγnxn + Φ2(w)(λn + γnxn)
N∑

ν=1

wνf0ν

− jεγnR0
∂Φ2(w)

∂wn
+ o(ε) = 0, n = 1, N.

Using equality (11) and multiplying the above equation by
1

jεΦ2(w)
, we obtain

−
N∑

m=1

(λm + γmxm)
N∑

ν=1

wνf0ν +
N∑

m=1

μm

N∑

ν=1

wνfmν +
N∑

m=1

γmR0
∂Φ2(w)/∂wn

Φ2(w)
= 0,

Rn

N∑

ν=1

λνwν − μn

N∑

ν=1

wνfnν − R0γnxnwn

+ (λn + γnxn)
N∑

ν=1

wνf0ν − γnR0
∂Φ2(w)/∂wn

Φ2(w)
= 0, n = 1, N.

(21)

The solution of Eq. (21) is as follows:

Φ2(w) = exp

{
−1

2

N∑

m=1

N∑

ν=1

wmKmνwν

}
, (22)

where the quantities Kmν are elements of the covariance matrix K = {Kmν}.
Substituting (22) into (21), we rewrite (21) as follows:

N∑

m=1

(λm + γmxm)
N∑

ν=1

wνf0ν −
N∑

m=1

μm

N∑

ν=1

wνfmν +
N∑

m=1

γmR0

N∑

ν=1

wνKmν = 0,

Rn

N∑

ν=1

λνwν − μn

N∑

ν=1

wνfnν − R0γnxnwn + (λn + γnxn)
N∑

ν=1

wνf0ν

+ γnR0

N∑

ν=1

wνKnν = 0, n = 1, N.

(23)
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From the system (23) it follows that we can write the following equalities:

Rnλn − R0γnxn + R0γnKnn − μnfnn + (λn + γnxn)f0n = 0, ν = n,

Rnλν + R0γnKnν − μnfnν + (λn + γnxn)f0ν = 0, ν �= n.
(24)

We then rewrite (24) as:

fnn = R2
n − Rn(1 − R0) +

γnR0

μn
Knn +

Rn

R0
f0n, ν = n,

fnν = Rn
λν

μn
+

γnR0

μn
Knν +

Rn

R0
f0ν , ν �= n.

(25)

Summing equations of the system (17) and using expansion ejεwm = 1+ jεwm +
(jεwm)2

2
+ o(ε2), we get the relation

jε

N∑

m=1

λm

(
wm +

jεw2
m

2

) N∑

m=1

Fm(w, ε) + (jε)2
N∑

m=1

γmwm
∂F0(w, ε)

∂wm

− jε
N∑

m=1

γmxm

(
wm − jεw2

m

2

)
F0(w, ε) + o(ε2) = 0.

Substituting in the above equation expansion (20) and dividing each part of
this equation by jε, we obtain the following equation for the function Φ2(w)

N∑

m=1

λm

(
wm +

jεw2
m

2

) N∑

m=1

(
Rm + jε

N∑

ν=1

wνfmν

)
−

N∑

m=1

γmxm

(
wm − jεw2

m

2

)
R0

−
N∑

m=1

γmxm

(
wm − jεw2

m

2

)
jε

N∑

ν=1

wνf0ν

+ jε
N∑

m=1

γmwmR0
∂Φ2(w)/∂wm

Φ2(w)
+ o(ε) = 0.

Using Eq. (14), we divide both sides of it by jε and take the limit ε → 0. We
then have:

N∑

m=1

λm(1 − R0)w2
m +

N∑

m=1

γmR0wm
∂Φ2(w)/∂wm

Φ2(w)

=
N∑

m=1

γmxmwm

N∑

ν=1

wνf0ν −
N∑

m=1

λmwm

N∑

l=1

N∑

ν=1

wνflν .
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Substituting (22), we have

N∑

m=1

λm(1 − R0)w2
m −

N∑

m=1

γmR0wm

N∑

ν=1

Kmνwν

=
N∑

m=1

γmxmwm

N∑

ν=1

wνf0ν −
N∑

m=1

λmwm

N∑

l=1

N∑

ν=1

wνflν .

We get the system of equations for Kmν ,m = 1, N, ν = 1, N . Considering
the above equation

λm(1 − R0) − γmR0Kmm = γmxmf0m − λm

N∑

l=1

flm, ν = m,

−R0(γmKmν + γνKνm) = −λm

N∑

l=1

flν − λν

N∑

l=1

flm + γmxmf0ν + γνxνf0m, ν �= m

and then, substituting (25), it can be rewritten as

γmR0Kmm − λmR0

N∑

l=1

γl

μl
Klm = λm(1 − R0)(1 − Rm) + λ2

m

N∑

l=1

Rl

μl
, ν = m,

γmR0Kmν + γνR0Kνm − λmR0

N∑

l=1

γl

μl
Klν − λνR0

N∑

l=1

γl

μl
Klm

= 2λmλν

N∑

l=1

Rl

μl
− (Rmλν + Rνλm)(1 − R0), ν �= m.

Thus, the proof is completed.

Replacing (18) to (16) and (15), we can write expression for approximation
the partial characteristic function at small values of σ:

Hk(u) ≈ Rk exp

{
j

N∑

m=1

um

σ
xm − 1

2

N∑

m=1

N∑

ν=1

um√
σ

Kmν
uν√
σ

}
, k = 0, N.

Summing up all values k = 0, N , we obtain an approximation of the characteristic
function of probability distribution of number customers in the orbits

H(u) ≈ exp

{
j

N∑

m=1

um

σ
xm − 1

2

N∑

m=1

N∑

ν=1

um√
σ

Kmν
uν√
σ

}
.

Thus, the number of customers in the orbits in the multiclass retrial queueing
system is asymptotically Gaussian.
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Table 1. The model of parameters

The rate of arrival flow,λn The service rate, μn The rate of a delay in the
orbit, σn = σγn

λ1 = 0.7 μ1 = 2 σ1 = 0.01

λ2 = 0.6 μ2 = 3 σ2 = 0.02

λ3 = 0.5 μ3 = 4 σ3 = 0.03

4 Example

We consider particular: n = 3 (Table 1).
Given these values row-vector

x =
[
x1 x2 x3

]

and row-vector
R =

[
R0 R1 R2 R3

]

are defined as:

x =
[
1.454 0.623 0.346

]
, R =

[
0.325 0.35 0.2 0.125

]
.

Finally, we specify the matrix covariance

K =

⎡

⎣
2.963 0.739 0.428
0.739 1.018 0.241
0.428 0.241 0.497

⎤

⎦ .

Using these parameters, we find mean κ1 and variance κ2 of total number of
customers in the orbits:

κ1 =
x1 + x2 + x3

σ
, κ2 =

K11 + K22 + K33 + 2K12 + 2K13 + 2K23

σ

for σ = 0.01. Let us denote normal distribution function with moments κ1 and κ2

by F (x), P (i) be discrete distribution of nonnegative quantity which is defined
by

P (i) = (F (i + 0.5) − F (i − 0.5))(1 − F (−0.5))−1, i ≥ 0.

The graph of asymptotic probability distribution P (i) of total number of cus-
tomers in the orbits is given in Fig. 1.
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Fig. 1. Graph of distribution P (i)

5 Conclusion

In this paper, we considered a multiclass retrial queueing system. Equations
for characteristic functions of the multi-dimensional probability distribution of
the numbers of customers in the orbits are obtained. We then used the method
of asymptotic analysis under condition of a long delay customers in the orbits
to find the limiting probability distribution of the number of the customers in
the orbits. This probability distribution turned out to be Gaussian. We as well
derived the expressions for mean and stationary probability distribution of state
server. Equations are obtained for finding the elements of the covariance matrix.
In particular, we considered case n = 3. We obtained the values of mean and
variance of total number of customers in the orbits. Graph for the probability
distribution of the total number of customers in the orbits is given.

In the future it is planned to research a multiclass retrial queueing system in
which service times of customers in a class follow an arbitrary distribution.
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