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Abstract. The paper is devoted to the statistical analysis of the end-
to-end (E2E) delay of packet transfers between source and destination
nodes in a peer-to-peer (P2P) overlay network. We focus on the iden-
tification of the E2E delay and the longest per-hop delay distributions
and the stochastic dependence of the associated random process. The
E2E delay is determined by the sum of a random number of dependent
per-hop (p-h) delays along the links of a considered overlay path and the
longest per-hop delay by their maximum. We propose to use the sum of
the p-h delays to get a distribution of the maximum which is motivated
by the available statistical data of the E2E delays. Based on recent ana-
lytic results derived from extreme-value theory we show that such sums
and maxima corresponding to different paths may have the same tail
and extremal indexes. These indexes determine the heaviness of the dis-
tribution tail and the dependence of extremes. Using the extremal index
we identify limit distributions of the maxima of the E2E delays and the
maxima of the p-h delays at a path among all source-destination paths.
Considering real-time applications with stringent E2E-delay constraints,
the distributions are used to identify quality-of-service (QoS) metrics of
a P2P model like the packet missing probability and the corresponding
playback delay as well as the equivalent capacity of a transport channel.

Keywords: P2P network · End-to-end delay · Per-hop delay · Tail
index · Extremal index · Quality-of-service · Packet missing
probability · Playback delay · Equivalent capacity

1 Introduction

We consider the delay performance of the packet transfer in a peer-to-peer (P2P)
overlay network. The identification of the distribution of the end-to-end (E2E)
delays arising between source and destination nodes in a P2P network consti-
tutes an important problem of telecommunication due to live TV and video-on-
demand applications. The delay of information transmission through the P2P
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network and, hence, the playback delay that is the lag between the generation of
a packet and its playout deadline have a big impact on the quality of service and
experience. As the E2E delay can be represented as a sum of a random num-
ber of the per-hop (p-h) delays, its distribution depends on the distributions of
the random length of the overlay path between the source and destination and
the p-h delays. The latter are determined by the structure of the P2P overlay
network.

In [5], [15] the relation between the distribution of the packet delay and the
packet missing probability in a P2P network has been considered. The distribu-
tion of the E2E delay of the ith path Di(D) =

∑Li(D)
j=1 Xi,j is required. Here,

{Xi,j : 1 ≤ j ≤ Li(D)} are the p-h delays of this overlay path i from the source
S to the destination node D with a random length Li(D). The paths between
S and D are schematically shown in Fig. 1. Their randomness is caused by the
random number of nodes and links of the paths due to the dynamics of the P2P
network over the time. The exceedance of the packet delay over the playback
deadline b is considered as one of the main reasons to miss a packet. Then this
part of the missing probability is the following: Pm(b) = P{Di(D) > b}. Con-
sidering the E2E delays, we deal here with the sums of a random number of
terms which can be heavy-tailed distributed and dependent. These issues consti-
tute a complicated mathematical problem. In [15] the exceedance of the realized
packet transmission rate over the equivalent capacity of the transport channel
is considered as the second reason to loose packets.

It is one of the objectives of our paper to identify the missing probability
under more general assumptions than in [5], [15] in view of the last statistical
results obtained in [18]. It was assumed in [5], [15] as well as in [26] that {Xi,j}
are independent and identically distributed (i.i.d.) random variables (r.v.s) with
light or heavy tails depending on the P2P overlay structure, and that the number
of nodes N in the network and Li(D) are stationary distributed. The mutual
dependence or independence of Xi,j and Li(D) and the assumption which tail
of these r.v.s is heavier are essential in order to identify the distribution of the
sum, see for instance [8]. Here we assume that the p-h delays {Xi,j} are now not
necessarily i.i.d.. This assumption is realistic since paths may be overlapping as
in Fig. 1. We assume that {Xi,j} are stationary distributed at links located at
the same distance with regard to the number of links from S. The random path
length Li(D) is assumed to be stationary distributed, but its mutual indepen-
dence on the p-h delay is omitted.

Another objective is to find the relation between the local dependence (i.e.
cluster) structure and the distributions of the E2E delay and the maximal p-h
delay at a path. This allows us to generalize the probability Pm(b) uniformly to
all paths of lengths {Li} and to obtain P{maxi Di(D) > b}. Our achievements
are based on the results of extreme-value theory obtained in [18].

In [18] it is derived that the tail index (TI) and extremal index (EI) of the
asymptotic distributions of sums and maxima of random length sequences are
the same subject to some not very restrictive assumptions. One may conclude
that the sums and maxima of p-h delays at the paths have the same heaviness
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Fig. 1. Paths of random length between source node S and destination node D with
the per-hop time delays {Xi,j} of packet transmissions on the ith path between these
nodes; the nodes in black between S and D indicate those ones with a distance of one
link from S.

of the distribution tail and the same dependence structure. This feature implies
that the distribution of the E2E delay may be approximated asymptotically by
the distribution of the maximum of the p-h delays at a source-destination path.
As the E2E delays can be made available in practice easier than the p-h delays,
this allows us to approximate the distribution of the p-h delays at the most
heavy-tailed link using the E2E delay statistics. Then the common TI value
and the common EI value can be estimated by a sample of the observed E2E
delays. The EI allows us to obtain the common limiting distribution of both the
maxima of the E2E delays and the longest p-h delays among all paths. Moreover,
one can use the distribution of the maximum to determine the packet missing
probability.

The paper is organized as follows. Section 2 contains a survey of related
results. In Sect. 3 our main results related to the stochastic model, its nonpara-
metric estimation using a basic statistical algorithm, as well as an illustrative
computational example are presented. The exposition is finalized with some con-
clusions and the discussion of open problems.

2 Related Work

Let the links of a path in the P2P network be enumerated from the source node
S (see Fig. 1). We assume that the p-h delay Xi,j , i, j ≥ 1, at the link j of path i
is regularly varying distributed in a uniform way. This assumption implies that

P{Xi,j > x} = �j(x)x−kj (1)

holds with the TI kj and a slowly varying function �j(x), i.e. limx→∞ �j(tx)/
�j(x) = 1 for any t > 0. Positive constants and logarithms provide examples of
slowly varying functions �j(x). The links with the same number j are assumed
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to be stationary distributed and their distributions may be different from the
distribution of the links with another number.

The EI θ is sometimes called the local dependence measure having in mind
that extremes or consecutive exceedances over a high threshold u occur usually in
clusters. Such clusters of exceedances are caused by the dependence in stochastic
sequences. The clustering can be intensified by heavy distribution tails.

Definition 1. [13] The stationary sequence of r.v.s {Xn}n≥1 with cumulative
distribution function (cdf) F (x) and Mn = max{X1, ...,Xn} is said to have the
EI θ ∈ [0, 1] if for each 0 < τ < ∞ there is a sequence of real numbers un = un(τ)
such that it holds

lim
n→∞ n(1 − F (un)) = τ, lim

n→∞ P{Mn ≤ un} = e−τθ. (2)

The inverse 1/θ approximates asymptotically the mean cluster size, i.e. the mean
number of exceedances per cluster [13]. The cluster structure of a simulated
Moving Maxima process [1], for instance, is shown in Fig. 2. The details regarding
this process are recalled in Sect. 3.3. A smaller θ corresponds to wider clusters.
In this example the values θ = 0.3 and θ = 0.8 imply that the mean cluster may
contain approximately 3 and 1 exceedances, respectively.

Fig. 2. The Moving Maxima process with larger and smaller clusters of exceedances
for the EIs θ = 0.3 (left) and θ = 0.8 (right).

The EI has the following relation to the distribution of the maximum:

P{Mn ≤ un} = P
nθ{X1 ≤ un} + o(1) = Fnθ(un) + o(1), n → ∞. (3)

It holds θ = 1 if the r.v.s {Xn} are i.i.d.. The converse is incorrect. An EI that
is close to zero implies a kind of a strong dependence. Stochastic processes with
a strong local dependence and θ = 0 exist. A Lindley process that models the
waiting times in a G/GI/1 queueing system may provide such an example in case
of a sub-exponentially distributed noise term, [2]. Relation (3) implies in the case
θ = 0 that the maximum will likely not exceed a sufficiently high threshold un,
i.e. P{Mn ≤ un} → 1 holds whenever un satisfies the first limit in (2).

In order to use results in [18], we assume that the p-h delays {Xi,j : i ≥ 1}
at links with the number 1 ≤ j ≤ Li of paths with numbers i ≥ 1 are stationary
distributed as in (1) and have their TI kj > 0 and EI θj ∈ [0, 1], and that among
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all sets of the links there exists a unique set with the minimal TI. Without loss
of generality, this can be the set {Xi,1 : i ≥ 1} of first links from the source
node S with a TI equal to k1. Such set of links is in a strong-sense stationary
distributed with the heaviest distribution tail. Other sets have TIs larger than k1
and, hence, according to (1) they are not so heavy-tailed distributed. Although
some of such {kj}j≥2 may be equal, the corresponding distributions of the link
sets may not be the same if the slowly varying functions �j(x), j ≥ 2 in (1) are
different. An arbitrary dependence between {Xi,j} and Li is allowed therein.

In [18] the EI and the TI of sums and maxima of random sequences of random
lengths {Ln} were considered. One can model the distribution tail of Ln as
P{Ln > x} = �̃n(x)x−α with the TI α > 0. Indeed, the lengths are integer-
valued r.v.s. The relevance of such modeling is pointed out in several papers,
see [7], [8], [30] among those. Assuming that both the slowly varying functions
{�j(x)} in (1) and {�̃n(x)} are bounded uniformly by polynomial functions for
sufficiently large x over all sets of links and all path lengths, and that Ln has
a lighter tail than the most heavy-tailed distributed p-h delay Xn,1, i.e. α > k1
holds, it is proved in [18] that the sequences of sums and maxima

Xn(z, Ln) = z1Xn,1 + z2Xn,2 + ... + zLn
Xn,Ln

,

X∗
n(z, Ln) = max(z1Xn,1, z2Xn,2, ..., zLn

Xn,Ln
)

with positive constants z1, ..., zLn
follow a distribution (1) with the same k1

and θ1. As the E2E delays constitute random sums of a random number of
terms, the mentioned result relates to our problem. According to [15, Theorem
1], Ln is geometrically distributed irrespective of the distributions of the packet
transmission rates and E2E delays and depending only on the levels of their
quantiles. It is assumed that the per-hop transmission rates of the packets are
i.i.d. and independent of the E2E transfer delay. Hence, the geometric model
meets the result in [18], but Ln is assumed to be regularly varying distributed
with a positive TI. The latter assumption is not restrictive since the class of
distributions with regularly varying tails is rather wide.

In case that some paths include a node with light-tailed distributed p-h delay
and(/or) the distribution of the p-h delays at some link from the source contains
a mixture of light- and heavy- tailed distributions, the basic statistical result
developed in [18] is still valid. This property follows from the proofs of Theorem
3 and 4 in [18].

3 Statistical Analysis of the End-to-End Delay

3.1 Asymptotic Distribution of the E2E and Maximal P-h Delays

Let us consider a path of random length Li(D) between the source and destina-
tion nodes (S,D). Li(D) is equal to the number of links between the source S
and destination D. Let n ≥ 1 be the number of possible paths constructed by
the nodes of the P2P overlay network. Since the P2P network may be changed
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dynamically in time, the number of nodes available for the packet transmission
is changing and n is random. We can neglect its randomness considering the
approach as a conditional one, since n is proportional to the number of nodes N
in the network and the latter can be large. The theoretical result in [18] assumes
that n is deterministic and tends to infinity.

Let us consider the double-indexed array of the p-h delays X = (Xi,j : i, j ≥
1). The “row index” i corresponds to the p-h delays belonging to the same path i
between the source S and destination D, and the “column index” j corresponds
to the p-h delays arising at the jth link enumerated from the source node. All
p-h delays relate to the same source-destination pair (S,D). We consider the
corresponding matrix

X =

⎛

⎜
⎜
⎝

X1,1 X1,2 0 ...0 X1,L1

X2,1 X2,2 X2,3 ...0 X2,L2

... ... ... ... ...
Xn,1 Xn,2 Xn,3 ...Xn,Ln−1 Xn,Ln

⎞

⎟
⎟
⎠ (4)

(
k1, k2, k3, ..., kLn−1, kLn

θ1, θ2, θ3, ..., θLn−1, θLn

)

where the first and last columns corresponding to the one-hop links to the source
and destination nodes are full and the internal columns are completed by zeros
up to the maximal dimension Lmax = max{L1, ..., Ln}, let’s say Ln = Lmax.
We assume the most general case: the columns can be dependent, and each
column may consist of dependent p-h delays, and the distribution of each column
is stationary with the positive TI value kj . Its local dependence structure is
described by the EI value θj .

For any location of zeros in the matrix X , the minimal TI (and the cor-
responding EI) of the internal columns taken together is determined by the
distribution of the most heavy-tailed distributed element. This property follows
from the proof of Theorem 3 in [18]. The sum Di =

∑Li

j=1 zjXi,j and maximum
Mi = maxj=1,...,Li

{zjXi,j} of weighted elements of the ith string set determine
the weighted E2E delay between the source and destination nodes of the ith path
and the longest weighted p-h delay at the ith path, respectively. The weights
{zi} may reflect a priority which can be proportional to the capacities of links
or impact on the scheduling of the peer selection process determining the path.
In the simplest case, {zi} are all equal to one.

We suppose, without loss of generality, that the minimal TI value k1 belongs
to the first column and k1 < k, with k = limn→∞ inf2≤j≤ln kj , ln = �nχ�,
0 < χ < (k − k1)/(k1(k + 1)) holds. The value k1 corresponds to the heaviest
distribution tail among the columns. According to Theorem 4 in [18] it follows

P{Mi > x} = P{Di > x}(1 + o(1)) = �1(x)x−k1(1 + o(1)) (5)

as x → ∞. This result means that the most heavy-tailed distributed column of
the p-h delays determines the distributions of the E2E delay and the maximal p-h
delay at the ith path. Instead of the E2E delays, one can consider the maximal
p-h delays at each path (or vice versa) since they have the same heaviness of
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tail, i.e. the same distribution up to the slowly varying functions. This allows us
to model the distribution of the p-h delays since the E2E delays can be easily
gathered as statistics in practice, rather than the p-h delays.

By Theorem 4 in [18] the EI of Mi and Di is equal to the value θ1 corre-
sponding to k1. Then the maxima of the sequences {Di} and {Mi}, i = 1, ..., n,
have the same limiting distributions. More exactly, it holds

lim
n→∞P{Ms

n ≤ un} = lim
n→∞P{Mm

n ≤ un} = e−τθ1 (6)

by (2) with
lim

n→∞ nP{Mn > un} = lim
n→∞ nP{Dn > un} = τ, (7)

where we denote

Ms
n = max{D1, ...,Dn}, Mm

n = max{M1, ...,Mn},

and {un} is an increasing sequence of thresholds. In [18] un is selected by (5)
and (7) in such a way that τ = (z1/y)k1 with a constant y > 0 holds, namely,
un = yn1/k1��

1(n), where ��
1(n) is a slowly varying function.

Regarding the transmission rates of the packet flows we can argue in the same
way. Following [15], each node is a bottleneck and it may upload an own super-
imposed flow coming from other nodes. Then a transported packet is associated
with the sequence of transmission rates {Ri,1, Ri,2, ..., Ri,Li

} corresponding to
the links of the ith path. We approximate these transmission rates as ratios
Ri,j = Yi/Zi,j , where Yi is the packet length and Zi,j is the inter-arrival time
between the considered packet and the previous (or next) one arriving at the
jth node. Clearly, the rates {Ri,j}, j = 1, 2, . . . are all dependent for a fixed i.

Considering the matrix X in (4) one can substitute Xi,j by Ri,j assuming
that the columns of the transmission rates have the TIs {k∗

i } and EIs {θ∗
i } and

that a unique minimal TI k∗
1 exists as for the p-h delays:

R =

⎛

⎜
⎜
⎝

R1,1 R1,2 0 ...0 R1,L1

R2,1 R2,2 R2,3 ...0 R2,L2

... ... ... ... ...
Rn,1 Rn,2 Rn,3 ...Rn,Ln−1 Rn,Ln

⎞

⎟
⎟
⎠ (8)

(
k∗
1 , k∗

2 , k∗
3 , ..., k∗

Ln−1, k∗
Ln

θ∗
1 , θ∗

2 , θ∗
3 , ..., θ∗

Ln−1, θ∗
Ln

)

.

Then we obtain (6) with corresponding replacements. As the result stated in [18]
concerns weighted sums and maxima, one can think that some links may have
a priority which can be proportional to their capacities or that the weights {zi}
can impact on the scheduling of the peer selection process determining the path.

The probability of the successful transmission Pst of n packets over their n
paths is determined by

Pst = P{Mm∗
n ≤ u∗

n} + P{Mm
n ≤ bn}, (9)
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where

Mm∗
n = max{M∗

1 , ...,M∗
n}, M∗

i = max
j=1,...,Li

{zjRi,j}

are the maximal transmission rates of the packets over n paths and over the path
i, respectively. The excess of the rate over the equivalent channel capacity u∗

n

may cause the miss of packets [15]. In (9) P{Mm
n ≤ bn} is the probability that

the longest (weighted) p-h delay Mn over n paths is less than the playback delay
bn. The sequences {u∗

n} and {bn} are determined to be increasing as n → ∞ in
the same way as {un} in [18], i.e.

u∗
n = yn1/k∗

1 , bn = yn1/k1 (10)

omitting the slowly varying functions for simplicity. Such sequences correspond
to high quantiles of the rates and p-h delays. Then it holds

Pst(y) ≈ e−τ∗θ∗
1 + e−τθ1 = e−(z1/y)k

∗
1 θ∗

1 + e−(z1/y)k1θ1 , y > 0 (11)

for sufficiently large n, where y is selected in such a way to keep Pst(y) <
1. Hence, the approximate probability to loose at least one packet during the
transmission over n paths is given by

Pm(y) = 1 − Pst(y). (12)

Taking Pm(y) = η, where η ∈ (0, 1) is small, one can find a corresponding
y. In Fig. 3 an example is shown where y = 0.755 provides the solution to
Pm(y) = 0.05.

Fig. 3. Pm against y for α1 = 1.2, α∗
1 = 2, θ1 = 0.3, θ∗

1 = 0.7 and z1 = 1 (thick solid
line), η = 0.05 (thin solid line).

One may also consider a simple example of such calculation. Let us suppose
that e−τ∗θ∗

1 = e−θ1 holds. Then we get τ∗ = θ1/θ∗
1 , 1 − e−θ1 − e−τθ1 = η > 0

and η < 1 − e−θ1 . Taking τ = (z1/y)α1 , we obtain

y = z1 exp
(

− 1
α1

ln
(

− 1
θ1

ln(1 − e−θ1 − η)
))

. (13)
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For example, if z1 = 1, θ1 = 0.3, θ∗
1 = 0.7 holds, we may take η < 0.259,

τ∗ = 0.429. Given α1 = 1.2 and η = 0.01, we get y = 0.221. However, such y
does not depend on the TI and EI of the transmission rates.

To prepare our further statistical estimation techniques, let us finally sum-
marize our general assumptions about the proposed statistical model of the E2E
and p-h delays regarding the packet transfer in a P2P network. We assume that

(i) the P2P overlay network may be dynamic;
(ii) the p-h packet delays at the different links of the same path may be arbitrary

dependent;
(iii) the p-h packet delays at the different links located on the same distance

from the source node and belonging to different source-destination paths are
stationary distributed, but not necessarily independent;

(iv) the length of a path and the p-h delays at its links may be dependent;
(v) the distribution of the path length has a lighter tail than the p-h delays with

the heaviest tail;
(vi) there exists a unique set of links located on the same distance from the source

that has the heaviest distribution tail compared to other sets of links among
the overlay paths.

We recall that the E2E delays are regularly varying (heavy-tailed) distributed
which follows from (5). The assumption (v) is fulfilled since the normalized
path length is geometrically distributed irrespective of the distributions of the
transmission rates and E2E delays and depending only on the levels of their
quantiles [15].

3.2 Nonparametric Statistical Estimation

In the previous section we have considered asymptotic statistical results when
the number of paths in a P2P network tends to infinity. Now we consider the
case of finite samples.

The important step of the approach is to detect whether the unique column
of the matrix X in (4) or R in (8) with the smallest TI exists or not. For this
purpose the discrimination tests of close distribution tails built by only higher
order statistics can be used, [23,24]. The application of such a test to each pair of
columns of X or R to discriminate the heaviest tail consistently may constitute
a calculation problem that is out of scope of this paper. Here, this problem can
be solved from another perspective.

Many proposed network architectures place nodes with large upload capac-
ities close to the source [5]. Thus, one may expect the smallest capacities and
transmission rates at the last link before the destination node. This property
may lead to the heaviest distribution tail of the p-h delays or the transmission
rates and the smallest TI at the last link. Thus, one can estimate and com-
pare the TIs and EIs of the p-h delays or the rates at the internal part and the
last column of the matrix X or R, respectively, and find the minimal k1 or k∗

1 ,
respectively.
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Estimation of the TI. Let Xn = {X1, ...,Xn} be a sample of r.v.s with cumu-
lative distribution function (cdf) F (x). These r.v.s could be the transmission
rates Ri,j or the p-h delays Xi,j .

The Hill’s estimator is well known and the simplest one to estimate the TI,
but it requires an i.i.d. sample, [9], [14], [20], [29]. Regarding dependent data one
can recommend estimators based on sums and maxima of non-intersecting data
blocks, [19], [22]. The reduced bias estimator of the extreme value index that is
the reciprocal of the TI is proposed in [4].

Several nonparametric estimators of the TI can be written by means of the
statistic proposed in [21]

Gn(k, r, v) =
1
k

k−1∑

i=0

gr,v

(
Xn−i,n

Xn−k,n

)

, gr,v(x) := xr lnv(x),

where r ∈ R, v > −1. For instance, this estimator includes the Hill’s estimator

γ(H)
n (k) = Gn(k, 0, 1) =

1
k

k−1∑

i=0

ln
(

Xn−i,n

Xn−k,n

)

, (14)

or the moment-ratio estimator

γ̂(mr)
n (k) = Gn(k, 0, 2) (2Gn(k, 0, 1))−1 (15)

proposed in [6] to estimate the extreme value index γ = 1/α which is the recip-
rocal of the TI α. Here, 1 ≤ k ≤ n − 1 is the number of the largest order
statistics

Xn−k,n ≤ Xn−k+1,n ≤ · · · ≤ Xn,n

of the sample {X1, . . . , Xn} used for the estimation, and r is a tuning parameter.
The statistics Gn(k, r, v) are special cases of the statistics introduced in [25].

The choice of k constitutes another problem. The simplest visual method is
given by the Hill plot {(k, γ

(H)
n (k)) : k = 1, . . . , n − 1}. Then the estimate of

k is selected from the interval [k−, k+] of stability of the function γ
(H)
n (k), [14].

Alternatives could be the exceedance plot or a bootstrap method as well as an
exact calculation of k and r as in [20].

Estimation of the EI. Among the nonparametric estimators of the EI, the
blocks, runs and intervals estimator are the most popular ones, [3]. As the recip-
rocal of the EI approximates the mean cluster size, the estimators differ by the
definition of the cluster of exceedances. Particularly, the cluster of the blocks esti-
mator is a data block with at least one exceedance over a threshold u. The blocks
and runs estimators require a tuning parameter and the threshold u whereas the
intervals estimator needs only u, [11].
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The intervals estimator is calculated by a specific sample {T1(u)}L
i=1 of the

length L = L(u) < n generated by the initial sample Xn = {X1, ...,Xn}.
Namely,

T1(u) = min{j ≥ 1 : M1,j ≤ u,Xj+1 > u|X1 > u}

denotes the number of consecutive non-exceedances between two consecutive
clusters of exceedances, where M1,j = max{X2, ...,Xj}, M1,1 = −∞ holds. Here
the cluster of exceedances determines a set of consecutive exceedances of the
underlying stochastic sequence over the threshold u between two consecutive
non-exceedances. Then the intervals estimator is defined as

θ̂n(u) =
{min(1, θ̂1n(u)), if max{(T1(u))i : 1 ≤ i ≤ L − 1} ≤ 2,

min(1, θ̂2n(u)), if max{(T1(u))i : 1 ≤ i ≤ L − 1} > 2,
(16)

where

θ̂1n(u) =
2(

∑L−1
i=1 (T1(u))i)2

(L − 1)
∑L−1

i=1 (T1(u))2i
, (17)

θ̂2n(u) =
2(

∑L−1
i=1 ((T1(u))i − 1))2

(L − 1)
∑L−1

i=1 ((T1(u))i − 1)((T1(u))i − 2)
(18)

holds. Among the last achievements, one can mention the K-gaps estimator that
improves the intervals estimator, [28]. In [12] one can find the IMT method to
calculate an optimal pair (u,K) for the K-gaps estimator.

Usually, u is chosen among those quantiles that are higher than 95% of an
underlying sequence. u can be selected visually as corresponding to the stability
interval of the plot {(u, θ̂(u))} in the same way as the Hill plot. One can apply a
bootstrap method [17] or the discrepancy method [16] for its automatic selection.

Then we can determine the basic nonparametric estimation algorithm by
these statistical means.

Estimation Algorithm. Let us consider the last columns of the matrices X
in (4) and R in (8), namely, {Xi,Li

} and {Ri,Li
}, i = 1, 2, ..., n, as initial data.

Here n is the number of possible paths between the source and destination nodes
(S,D) of the P2P overlay network.

1. Estimate the TIs αLn
and α∗

Ln
by {Xi,Li

} and {Ri,Li
} using one of the

nonparametric estimators, e.g. (14) or (15).
2. Estimate the EIs θLn

and θ∗
Ln

by {Xi,Li
} and {Ri,Li

} using one of the non-
parametric estimators, e.g. (16)–(18).

3. Calculate y as y = arg{t : Pm(t) = η} or by (13) for a predefined 0 < η < 1.
4. Calculate the probabilities Pst(y) and Pm(y) by (11) and (12).
5. Calculate the equivalent capacity u∗

n and the playback delay bn by (10).
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3.3 An Illustrative Example

In this section our aim is to demonstrate the sketched methodology using simu-
lated examples of sequences that are arising from regularly varying distributed
r.v.s. We simulate samples of the transmission rates {Ri,Li

, i ∈ {1, 2, . . . , n}} as
Moving Maxima (MM) process and of the p-h delays {Xi,Li

, i ∈ {1, 2, . . . , n}}
as MA(2) process. Considering a P2P network in practice, indeed, the real pro-
cesses could be different. However, our methodology is a pure nonparametric
approach and can be applied to any process model.

The mth order MM process is determined by

Xt = max
i=0,...,m

{βiZt−i}, t ∈ Z,

where {βi} are constants with βi ≥ 0,
∑m

i=0 βi = 1, and Zt are i.i.d. standard
Fréchet distributed r.v.s with the cdf F (x) = exp (−1/x) for x > 0. The EI of the
process is equal to θ = maxi{βi} [1]. The distribution of {Xt}t≥1 is standard
Fréchet. Its TI is equal to one. In our study the values m = 3 and θ = 0.5
corresponding to β ∈ {0.5, 0.3, 0.15, 0.05} are selected.

The MA(2) process is determined by

Xi = pZi−2 + qZi−1 + Zi, i ≥ 1, (19)

with p > 0, q < 1, and i.i.d. Pareto random variables Z−1, Z0, Z1, . . . with
P{Z0 > x} = 1 if x < 1, and P{Z0 > x} = x−α if x ≥ 1 hold for some α > 0
[27]. The EI of the process is given by θ = (1 + pα + qα)−1. The case α = 2,
(p, q) = (1/

√
2, 1/

√
2) with a corresponding value θ = 0.5 is considered. Since

the distribution of the sum of weighted i.i.d. Pareto r.v.s behaves like a Pareto
distribution in the tail, namely,

P{
n∑

i=1

Zi > x} ∼ n(1 + x/β)−α · L(x), x → ∞, (20)

where L(x) is a slowly varying function at infinity, β > 0 is a scale parameter,
and α > 0 is the TI, (see [10, Ch. 8, pp. 268–272]), then Xi is also Pareto
distributed with the TI α.

Fig. 4. The Hill’s estimate of the p-h delays modeled as MA(2) process with the TI
α = 2 (and the EVI γ = 0.5) (lhs) and the transmission rates modeled as MM process
with the TI α = 1 (and γ = 1) (rhs); the sample size is given by n = 1000.
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Fig. 5. The intervals estimate of the p-h delays modeled as MA(2) process with the EI
θ = 0.5 (lhs) and the transmission rates modeled as MM process with the EI θ = 0.5
(rhs); the sample size is given by n = 20000.

Our objective is to estimate the parameters and to calculate all relevant
metrics according to the proposed estimation algorithm using these simulated
samples.

The Hill’s estimator is very sensitive to the presence of a slowly varying
function in the distribution tail. Thus, the estimate on the left-hand side of Fig.
4 corresponding to (19) and (20) is rather biased. In practice it is therefore
reasonable to use several estimators of the TI.

Now we consider the EI estimation by the intervals estimator (16)–(18) that
is applied to the same processes MA(2) and MM, see Fig. 5. Here we have to
generate larger samples with n = 20000. The intervals estimator requires a
large sample size of {Xn} to get a better estimation since it is based on the
sample of the inter-exceedance times {T1(u)}i, i = 1, 2, ..., L(u), generated from
the underlying sample Xn. The size of {T1(u)}i can be much smaller than n
depending on the threshold u, the higher u the smaller L(u).

We can obtain y ∈ {0.768, 0.732} for a given η ∈ {0.05, 0.1}, respectively, and
for given α∗

1 = 1, α1 = 2, θ∗
1 = θ1 = 0.5 in the same way as in Fig. 3. By formulae

(10) we then obtain for n = 1000 u∗
n ∈ {768, 732} and bn ∈ {24.286, 23.148},

respectively. Regarding such y the probabilities Pst(y) and Pm(y) calculated by
(11) and (12) are equal to {0.95, 0.898} and {0.05, 0.102}, respectively. We note
that the maximal values of the generated random sequences max1≤i≤n Xi are
equal to 26.946 w.r.t. the p-h delays and 743.439 w.r.t. the transmission rates.
It implies that u∗

n and bn exceed these maxima, and Pst = 0.95 is not realistic
for these models. A calculation of y by (13) provides u∗

n = 522 and bn = 16.507.
Such low thresholds immediately reflect on Pst and Pm providing Pst = 0.543
and Pm = 0.457, respectively.

4 Conclusions and Open Problems

We have considered the performance analysis of the data transfer along transport
paths of random lengths in a P2P overlay network subject to QoS constraints.
First, the distribution of the end-to-end (E2E) transfer delay of the packet flows
between the source and destination nodes is modeled. The E2E transfer delay is
determined by the sum of a random number of p-h delays along the links of an
overlay path. Based on recent statistical results in [18] and assuming that the per
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hop (p-h) delays and the lengths of the paths are regularly varying distributed, it
is shown that the sums and maxima of the p-h delays corresponding to different
paths of random lengths may have the same tail and extremal indexes TI and EI,
respectively. These indexes determine the heaviness of the tail of the delay dis-
tribution and the dependence indicator that measures the cluster tendency (i.e.,
how extreme values arise by groups of observations). Using the EI, then the limit
distributions of the maxima of the E2E and p-h delays over all source-destination
paths are identified. Considering real-time applications with stringent E2E delay
constraints, the latter distributions are used to identify important QoS metrics
of a P2P-model like the packet missing probability, the corresponding playback
delay, and the required equivalent capacity to transfer the packet flows of the
data.

The proposed approach requires the verification and comparison of the TIs
of the p-h delays to find the set of links whose delays have the heaviest tail.
Regarding modern network architectures one can expect that the last link before
the destination node has the heaviest distribution tail. Then known statistical
tests allow us to compare pairs of samples in the columns of the matrix X (or
R) regarding the similarity of their distributions. We note that the lengths of
the overlay paths of packet flows in a P2P network can be observed if the packet
header is providing a counter of the visited nodes along the path. Then the TI
of the lengths can be estimated by these means.

The described asymptotic results are valid for sufficiently high thresholds that
are in our context the playback delay and the equivalent capacity of the transport
channel. Our statistical results provide the basis for an improved control scheme
regarding the optimal selection of transport paths in a P2P overlay network
subject to QoS constraints on the E2E delay and packet loss metrics.

Regarding the application of a P2P overlay concept in 5G networks, we may
look at the deployment of a blockchain functionality on top of an underlying
network of mining peers that are validating transactions of IoT data processing
or the use of P2P video streaming as important examples. In the case of such
real-time applications, we are looking for short playback delays, but they may
lead to a large packet missing probability. In this respect the derived asymp-
totic performance analysis models of the E2E transfer delay provide a tendency
with an increasing probability of successful packet transmission as both the play-
back delay and the equivalent capacity increase. But these performance analysis
models require an adjustment for short playback delays and not high, realistic
capacities.

Our future studies will focus on these analysis and design issues of modern
teletraffic theory.
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