
Queueing System with Two Unreliable
Servers and Backup Server as a Model

of Hybrid Communication System

Valentina Klimenok1, Alexander Dudin1(B), and Vladimir Vishnevsky2

1 Department of Applied Mathematics and Computer Science,
Belarusian State University, 220030 Minsk, Belarus

{klimenok,dudin}@bsu.by
2 Institute of Control Sciences of Russian Academy of Sciences and Closed
Corporation “Information and Networking Technologies”, Moscow, Russia

vishn@inbox.ru

Abstract. In this paper, we analyze a queueing system with two main
unreliable servers and backup reliable server. The input flow is defined by
the BMAP (Batch Markovian Arrival Process). Heterogeneous break-
downs arrive to the main servers according to a MMAP (Marked Marko-
vian Arrival Process). Service times and repair times have PH (Phase
type) distribution. The queueing system under consideration is an ade-
quate model of operation of hybrid communication systems which com-
bine the use of Free Space Optics and radio technologies. We derive a
condition for the stable operation of the system, compute its stationary
distribution and the key performance measures. Illustrative numerical
examples give some insight into the behavior of the system.

Keywords: Unreliable queueing system · Heterogeneous servers ·
Backup server · Stationary distribution · Stationary performance
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1 Introduction

The rapid and continuous increase in the number of users on the Internet, the
increase in the volume and quality of information transmitted in broadband
wireless networks requires a dramatic increase in the performance of multimedia
communication channels. In this regard, in recent years, within the frame of the
development of next generation networks, intensive research is being carried out
to improve wireless performance. One of the directions for creating ultra-high-
speed (up to 10 Gbit/s) and reliable wireless communications is the development
of hybrid systems based on laser and radio technologies.

The FSO (Free Space Optics) technology has been widely used in recent
times. This technology is based on the transmission of data by modulated radi-
ation in the infrared (or visible) part of the spectrum through the atmosphere
and their subsequent detection by an optical photo-detector device. The main
advantages of atmospheric optical communication lines are as follows.
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• High bandwidth and quality of digital communication. Modern FSO-solutions
can provide a transmission speed of digital flows up to 10 Gbit/s with a bit
error rate of 10−12, which is currently impossible to achieve with any other
wireless technologies;

• High security of the channel from unauthorized access and stealth. No wireless
transmission technology can offer such confidentiality of communication as
laser. Absence of pronounced external signs (basically, this electromagnetic
radiation) allows to hide not only the transmitted information, but also the
very fact of information exchange. Therefore, laser systems are often used for
a variety of applications where high confidentiality of data transmission is
required, including financial, medical and military organizations;

• High level of noise immunity and noninterference. FSO-equipment is immune
to radio interference and does not create an interference itself;

• Speed and easiness of deployment of the FSO network.

Along with these advantages of wireless optical systems, their main disadvan-
tages are also known: the dependence of the accessibility of the communication
channel on weather conditions and the need to provide direct visibility between
the optical transmitter and the receiver. Unfavorable weather conditions, such as
snow, fog, can significantly reduce the effective range of operation of laser atmo-
spheric communication lines. Thus, the attenuation of a signal in an optical
channel in a strong fog can reach a critical value of 50–100 dB/km. Therefore, in
order to achieve operator reliability values of the FSO communication channel,
it is necessary to resort to the use of hybrid solutions.

Hybrid radio-optical equipment is based on the use of redundant radio chan-
nels (centimeter and/or millimeter range of radio waves) together with an optical
channel. Note that the operation of the radio channel of the centimeter range
of radio waves is practically independent of the weather. The performance of
a millimeter-wave wireless channel is not affected by fog. At the same time,
the signal/noise ratio, which determines the quality of channel’s operation, is
greatly reduced with heavy rain. This complementary behavior of optical and
broadband radio channels has made it possible to put forward the concept of
hybrid carrier-class systems that function reliably in all weather conditions.

Due to the high need for high-speed and reliable communication channels,
the following architectures of hybrid systems are currently being used to solve
the “last mile” problem (see [1–6]): a high-speed laser channel is reserved by
a broadband radio channel operating under the IEEE 802.11n protocol in the
centimeter band of radio waves (“cold” or “hot” reserve); The FSO channel is
reserved by the radio channel of the millimeter-wave E-band of radio waves (71–
76 GHz, 81–86 GHz); The FSO channel and the radio channel of the millimeter
band operate in parallel and are reserved by the channel IEEE 802.11n, which is
in the cold reserve. In [7] the authors consider a hybrid communication system
consisting of FSO links supported by terrestrial optical fiber connections.

Practical needs stimulated theoretical studies on the performance evaluation
and the selection of optimal modes for the operation of hybrid systems using
queueing theory models with unreliable service channels. Initially, these papers,
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see, e.g. [8–11] used simplified assumptions about the Poisson character of the
input flow, flow of breakdowns, the exponential distribution of packet service
time and repair time of communication channels.

Papers from [8] are mainly focused on the study of stationary reliability
characteristics, methods and algorithms for optimal channel switching in hybrid
communication systems by means of simulation. In the paper [10] the authors
consider the hybrid communication system with so called hot redundancy where
the FSO channel and backup IEEE 802.11n channel transmit data in parallel. In
the paper [9], the hybrid communication system with cold redundancy is inves-
tigated. Here the radio-wave link is assumed to be absolutely reliable and backs
up the FSO channel in cases when the latter interrupts its functioning because
of the unfavorable weather conditions. In the paper a statistical analysis of mete-
orological data for duration of the periods of favorable and unfavorable weather
conditions is also carried out. The paper [11] deals with hybrid communication
system consisting of the FSO channel and millimeter-wave radio channel. It is
assumed that periods of favorable weather conditions for both channels alternate
with periods of unfavorable weather conditions for one of the channels. To model
this system, the authors consider two-channel queueing system with unreliable
heterogeneous servers which fail alternately.

In further works [12–14], more complicated models of unreliable single-server
queues are considered. They generalize models of [9–11] to the case of much
more adequate processes describing the operation of corresponding hybrid com-
munication systems. The input flow and the flow of breakdowns are described
by Markovian Arrival Processes (BMAP and MAP ), see [15], and packet trans-
mission time via communication channels and repair time are assumed to have
Phase type (PH)-distributions, see [16]. Although these assumptions complicate
the study of models that adequately describe the operation of hybrid systems,
but they allow to take into account the non-stationary, correlated nature of
information flows in modern and future 5G networks.

Almost in all previous papers, the subject for study were hybrid commu-
nication systems consisting of the main FSO channel and backup low speed
radio channel. Such systems were modeled by single-server queues with a backup
server. One way to increase the reliability and speed of information transmission
is to create hybrid system consisting of two main unreliable but high-speed chan-
nels (FSO channel and a radio channel of millimeter-wave) which are reserved by
reliable but low-speed radio channel IEEE 802.11n which is in the cold reserve.
The unreliability of the main channels is due to the lack of favorable weather
conditions: the FSO channel can not transmit information in poor visibility
conditions and the millimeter-wave channel can not transmit information when
precipitation occurs. Such a hybrid system can be modeled by unreliable two-
server queueing system with a backup server. In the present paper, we consider
such a queueing system. We assume that customers arrive into the system in
batch correlated flow BMAP , heterogeneous breakdowns arrive to the main
servers in MMAP (Marked Markovian Arrival Process, see [17]), service and
repair times have PH distribution. We investigate the operation of the system
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in steady state, derive a stability condition, compute the stationary distribution
and performance measures of the system. We also present illustrative numerical
examples which give some insight into the behavior of the system.

2 Mathematical Model

We consider a queueing system with infinite waiting room and two unreliable
heterogeneous servers, which model FSO and millimeter-wave channels, and
backup reliable server which models radio-wave IEEE802 channel. In the fol-
lowing, FSO channel will be called as server 1, millimeter-wave channel as server
2 and radio-wave IEEE802 channel as server 3. Customers arrive into the sys-
tem in accordance with a BMAP . The BMAP is a very general arrival process
which is able to capture correlation and burstiness that are commonly seen in
the traffic of modern communication networks. The BMAP is defined by the
underlying process νt, t ≥ 0, which is an irreducible continuous-time Markov
chain with finite state space {0, . . . ,W}, and the matrix generating function

D(z) =
∞∑

k=0

Dkz
k, |z| ≤ 1. The batches of customers enter the system only at

the epochs of the chain νt, t ≥ 0, transitions. The (W + 1) × (W + 1) matrices
Dk, k ≥ 1, and non-diagonal entries of the matrix D0 define the rates of the
process νt, t ≥ 0, transitions which are accompanied by generating the k-size
batch of customers, k ≥ 0. The intensity (fundamental rate) of the BMAP is
defined as λ = θD′(1)e where the vector θ is the unique solution of the system
θD(1) = 0, θe = 1. Hereinafter e is a column vector of 1’s and 0 is a row vector
of 0’s. For more information about the BMAP see, e.g. [15].

If the arriving customer meets both servers 1 and 2 idle, it starts service
at server 1. If the arriving customer meets one of the servers 1 or 2 idle, it
starts service at the idle server. If both servers are busy at the customers arrival
moment, the customer moves to the buffer.

The service time of a customer by the jth server, j = 1, 2, 3, has PH type
distribution with irreducible representation (βj , Sj). Such a service time can

be interpreted as the time until the continuous-time Markov chain m
(j)
t , t ≥ 0,

reaches the single absorbing state Mj +1 if it has the state space {1, ..,Mj ,Mj +
1}, initial state is selected according to the vector βj , transitions within non-
absorbing states are governed by the sub-generator S and the rates of transitions
into the absorbing state are given by the vector S(j)

0 = −Sje. The mean service
time is calculated as b

(j)
1 = βj(−Sj)−1e and the service rate is equal to μj =

b
(j)
1

−1
. More detailed description of the PH type process can be found in [16].

Breakdowns of two types arrive to the servers 1, 2 according to a MMAP
which is defined by the underlying process ηt, t ≥ 0, with state space {0, . . . , V }
and by the matrices H0,H1,H2. The matrix H0 defines the rates of the process
ηt, t ≥ 0, transitions which do not lead to generation of a breakdown. The
matrix Hj defines the rates of the ηt, t ≥ 0, transitions which are accompanied
by generating a breakdown which is directed to the server j, for j = 1, 2. The
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rate of breakdowns directed to the jth server is calculated as hj = ϑHje where
the vector ϑ is the unique solution of the system θ(H0 + H1 + H2) = 0, ϑe = 1.

When a breakdown breaks one of the main servers, the repair period at this
server starts immediately and the other main server, if it is available, begins
the service of the interrupted customer as a new. If the latter server is busy or
under repair, the customer goes to the server 3 and starts its service as a new.
However, if during the service time of the customer at the server 3 one of the
main servers becomes fault-free, the customer restarts its service on this server.
Service at the server 3 is terminated. This server can provide service only when
both main servers are broken.

The repair period at the jth main server, j = 1, 2, has PH type distribution
with an irreducible representation (τ j , Tj). The repair process at the jth server
is directed by the Markov chain r

(j)
t , t ≥ 0, with state space {1, . . . , Rj , Rj + 1}

where Rj + 1 is an absorbing state. The rates of transitions into the absorbing
state are given by the vector T(j)

0 = −Tje. The repair rate is calculated as
τj = (βj(−Tj)−1e)−1. Breakdowns arriving to a server are ignored it the server
is under repair at the moment of the breakdown arrival.

3 Process of the System States

Let, at the moment t,
it be the number of customers in the system, it ≥ 0,
nt = 0, if both main servers are fault-free (both ones are busy or idle);

nt = 0j , if both main servers are fault-free, the jth server is busy and the other
one is idle, j = 1, 2; nt = 1, if the server 1 is under repair; nt = 2, if the
server 2 is under repair; nt = 3, if both servers are under repair;

m
(j)
t be the state of the directing process of the service at the jth busy server,

j = 1, 2, 3,m
(j)
t = 1,Mj ;

r
(j)
t be the state of the directing process of the repair time at the jth server,

j = 1, 2, r
(j)
t = 1, Rj ;

νt and ηt be the states of the directing processes of the BMAP and the
MMAP , respectively, νt = 0,W , ηt = 0, V .

The process of the system states is described by the regular irreducible con-
tinuous time Markov chain, ξt, t ≥ 0, with state space

X = {(0, n, ν, η), i = 0, n = 0, 3, ν = 0,W , η = 0, V }
⋃

{(i, 0j , ν, η,m(j)), i = 1, j = 1, 2, n = 0j , ν = 0,W , η = 0, V , m(j) = 1,Mj}
⋃

{(i, 0, ν, η,m(1),m(2)), i > 1, ν = 0,W , η = 0, V ,m(k) = 1,Mk, k = 1, 2}
⋃

{(i, 1, ν, η,m(2), r(1)), i ≥ 1, ν = 0,W , η = 0, V ,m(2) = 1,M2, r
(1) = 1, R1}

⋃

{(i, 2, ν, η,m(1), r(2)), i ≥ 1, ν = 0,W , η = 0, V ,m(1) = 1,M1, r
(1) = 1, R2}

⋃
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{(i, 3, ν, η,m(3), r(1), r(2)), i > 0, ν = 0,W , η = 0, V ,m(3) = 1,M3,

r(j) = 1, Rj , j = 1, 2}.

Let Qi,j , i, j ≥ 0, be the matrices formed by the rates of the chain transitions
from the states corresponding to the value i of the component it to the states
corresponding to the value j of this component. The following statement is true.

Lemma 1. Infinitesimal generator of the Markov chain ξt, t ≥ 0, has the fol-
lowing block structure

Q =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Q0,0 Q0,1 Q0,2 Q0,3 Q0,4 · · ·
Q1,0 Q1,1 Q1,2 Q1,3 Q1,4 · · ·
O Q2,1 Q1 Q2 Q3 · · ·
O O Q0 Q1 Q2 · · ·
...

...
...

...
...

. . .

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

where non-zero blocks are of the following form:

Q0,0 =

⎛
⎜⎜⎜⎝

D0 ⊕ H0 IW̄ ⊗ H1 ⊗ τ 1 IW̄ ⊗ H2 ⊗ τ 2 O

Ia ⊗ T
(1)
0 D0 ⊕ (H0 + H1) ⊕ T (1) O IW̄ ⊗ H2 ⊗ IR1 ⊗ τ 2

Ia ⊗ T
(2)
0 O D0 ⊕ (H0 + H2) ⊕ T (2) IW̄ ⊗ H1 ⊗ IR2 ⊗ τ 1

O IaR1 ⊗ T
(2)
0 Ia ⊗ T

(1)
0 ⊗ IR2 D0 ⊕ H ⊕ T (1) ⊕ T (2)

⎞
⎟⎟⎟⎠ ,

Q0,1 =

⎛
⎜⎜⎝

D1 ⊗ IV̄ ⊗ β1 Oa×aM2 O O O

O O D1 ⊗ IV̄ ⊗ β2 ⊗ IR1 O O

O O O D1 ⊗ IV̄ ⊗ β1 ⊗ IR2 O

O O O O D1 ⊗ IV̄ ⊗ β3 ⊗ IR1R2

⎞
⎟⎟⎠ ,

Q0,k = diag{Dk ⊗ IV̄ ⊗ β1 ⊗ β2, Dk ⊗ IV̄ ⊗ β2 ⊗ IR1 ,

Dk ⊗ IV̄ ⊗ β1 ⊗ IR2 , Dk ⊗ IV̄ ⊗ β3 ⊗ IR1R2},

Q1,0 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

Ia ⊗ S
(1)
0 O O O

Ia ⊗ S
(2)
0 O O O

O Ia ⊗ S
(2)
0 ⊗ IR1 O O

O O Ia ⊗ S
(1)
0 ⊗ IR2 O

O O O Ia ⊗ S
(3)
0 ⊗ IR1 ⊗ IR2

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

Q1,1 =
(

Q
(1)
1,1 Q

(2)
1,1

)
,

Q
(1)
1,1 =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

D0 ⊕ H0 ⊕ S1 O IW̄ ⊗ H1 ⊗ eM1 ⊗ β2 ⊗ τ 1

O D0 ⊕ H0 ⊕ S2 IW̄ ⊗ H1 ⊗ IM2 ⊗ τ 1

O Ia ⊗ IM2 ⊗ T
(1)
0 D0 ⊕ (H0 + H1) ⊕ S2 ⊕ T1

Ia ⊗ IM1 ⊗ T
(2)
0 O O

O O Ia ⊗ β2 ⊗ eM3 ⊗ IR1 ⊗ T
(2)
0

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,
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Q
(2)
1,1 =

⎛

⎜
⎜
⎜
⎜
⎝

IW̄ ⊗ H2 ⊗ IM1 ⊗ τ 2 O
IW̄ ⊗ H2 ⊗ eM2 ⊗ β1 ⊗ τ 2 O

O IW̄ ⊗ H2 ⊗ eM2 ⊗ β3 ⊗ IR1 ⊗ τ 2

D0 ⊕ (H0 + H2) ⊕ S1 ⊕ T2 IW̄ ⊗ H1 ⊗ eM1 ⊗ β3 ⊗ τ 1 ⊗ IR2

Ia ⊗ β1 ⊗ eM3 ⊗ T
(1)
0 ⊗ IR2 D0 ⊕ H ⊕ S3 ⊕ T1 ⊕ T2

⎞

⎟
⎟
⎟
⎟
⎠

,

Q1,k =

⎛

⎜
⎜
⎜
⎜
⎝

Dk−1 ⊗ IV̄ M1
⊗ β2 O O O

Dk−1 ⊗ IV̄ ⊗ β1 ⊗ IM2 O O O
O Dk−1 ⊗ IV̄ M2R1

O O
O O Dk−1 ⊗ IV̄ M1R2

O
O O O Dk−1 ⊗ IV̄ M3R1R2

⎞

⎟
⎟
⎟
⎟
⎠

,

Q2,1 =
(

Ia ⊗ IM1 ⊗ S
(2)
0 O

O O

)

+
(

O | diag{Ia ⊗ S
(1)
0 ⊗ IM2 ,

Ia ⊗ S
(2)
0 β2 ⊗ IR1 , Ia ⊗ S

(1)
0 β1 ⊗ IR2 , Ia ⊗ S

(3)
0 β3 ⊗ IR1R2}

)

,

Q0 = diag{Ia ⊗ (S(1)
0 β1 ⊕ S

(2)
0 β2), Ia ⊗ S

(2)
0 β2 ⊗ IR1 ,

Ia ⊗ S
(1)
0 β1 ⊗ IR2 , Ia ⊗ S

(3)
0 β3 ⊗ IR1R2},

Q1 =

(
Q

(1,1)
1 Q

(1,2)
1

Q
(2,1)
1 Q

(2,2)
1

)

,

Q
(1,1)
1 =

(
D0 ⊕ H0 ⊕ S1 ⊕ S2 IW̄ ⊗ H1 ⊗ eM1 ⊗ IM2 ⊗ τ 1

Ia ⊗ β1 ⊗ IM2 ⊗ T
(1)
0 D0 ⊕ (H0 + H1) ⊕ S2 ⊕ T1

)

,

Q
(1,2)
1 =

(
IW̄ ⊗ H2 ⊗ IM1 ⊗ eM2 ⊗ τ 2 O

O IW̄ ⊗ H2 ⊗ eM2 ⊗ β3 ⊗ IR1 ⊗ τ 2

)

,

Q
(2,1)
1 =

(
Ia ⊗ IM1 ⊗ β2 ⊗ T

(2)
0 O

O Ia ⊗ β2 ⊗ eM3 ⊗ IR1 ⊗ T
(2)
0

)

,

Q
(2,2)
1 =

(
D0 ⊕ (H0 + H2) ⊕ S1 ⊕ T2 IW̄ ⊗ H1 ⊗ eM1 ⊗ β3 ⊗ IR2 ⊗ τ 1

Ia ⊗ β1 ⊗ eM3 ⊗ T
(1)
0 ⊗ IR2 D0 ⊕ H ⊕ S3 ⊕ T1 ⊕ T2

)

,

Qk+1 = diag{Dk⊗IV̄ M1M2
, Dk⊗IV̄ M2R1

, Dk⊗IV̄ M1R2
, Dk⊗IV̄ M3R1R2

}, k ≥ 1,

where H = H0 + H1, ⊗, ⊕ are the symbols of Kronecker’s product and sum of
matrices, diag{. . . } denotes the block diagonal matrix with the diagonal blocks
listed in the brackets, W̄ = W + 1, V̄ = V + 1, a = W̄ V̄ , en is a column vector
of size n, consisting of 1’s, I (O) is an identity (zero) matrix.

Corollary 1. The Markov chain ξt, t ≥ 0, belongs to the class of continuous
time quasi-Toeplitz Markov chains, see [18].
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Proof. The generator Q of the chain ξt, t ≥ 0, has a block upper-Hessenberg
structure and, starting from i = 3, the blocks Qi,j depend on i, j only through
the difference j−i. Then, according the definition given in [18] the chain ξt, t ≥ 0,
is a quasi-Toeplitz Markov chain.

In what follows we need expressions for the matrix generating functions

Q(n)(z) =
∞∑

k=2

Qn,kz
k, n = 0, 1, and Q(z) =

∞∑

k=0

Qkz
k, |z| ≤ 1. These expres-

sions are given by the following

Corollary 2. The matrix generation functions Q(z), Q(n)(z), n = 0, 1, have the
following form:

Q(0)(z) = diag{D(z) − D0 − D1z) ⊗ IV̄ ⊗ β1 ⊗ β2, (D(z) − D0 − D1z) ⊗ IV̄ ⊗ β2 ⊗ IR1 ,

(D(z) − D0 − D1z) ⊗ IV̄ ⊗ β1 ⊗ IR2 , (D(z) − D0 − D1z) ⊗ IV̄ ⊗ β3 ⊗ IR1R2}, (1)

Q(1)(z) = (2)

z

⎛
⎜⎜⎜⎜⎝

D̄(z) ⊗ IV̄ M1
⊗ β2 O O O

D̄(z) ⊗ IV̄ ⊗ β1 ⊗ IM2 O O O
O D̄(z) ⊗ IV̄ M2R1

O O

O O D̄(z) ⊗ IV̄ M1R2
O

O O O D̄(z) ⊗ IV̄ M3R1R2

⎞
⎟⎟⎟⎟⎠

,

where D̄(z) = D(z) − D0,

Q(z) = Q0 + Qz + zdiag{D(z) ⊗ IV̄ M1M2
,

D(z) ⊗ IV̄ M2M3R1
, D(z) ⊗ IV̄ M1M3R2

, D(z) ⊗ IV̄ M3R1R2
}, (3)

where the matrix Q is of the form

Q =
(Q(1,1) Q(1,2)

Q(2,1) Q(2,2)

)

, (4)

Q(1,1) =
(

IW̄ ⊗ H0 ⊕ S1 ⊕ S2 IW̄ ⊗ H1 ⊗ eM1 ⊗ IM2 ⊗ τ 1

IW̄ V̄ ⊗ β1 ⊗ IM2 ⊗ T
(1)
0 IW̄ ⊗ (H0 + H1) ⊕ S2 ⊕ T1

)

,

Q(1,2) =
(

IW̄ ⊗ H2 ⊗ IM1 ⊗ eM2 ⊗ τ 2 O
O IW̄ ⊗ H2 ⊗ eM2 ⊗ β3 ⊗ IR1 ⊗ τ 2

)

,

Q(2,1) =

(
IW̄ ⊗ IV̄ M1

⊗ β2 ⊗ T
(2)
0 O

O IW̄ V̄ ⊗ β2 ⊗ eM3 ⊗ IR1 ⊗ T
(2)
0

)

,

Q(2,2) =
(

IW̄ ⊗ (H0 + H2) ⊕ S1 ⊕ T2 IW̄ ⊗ H1 ⊗ eM1 ⊗ β3 ⊗ IR2 ⊗ τ 1

IW̄ V̄ ⊗ β1 ⊗ eM3 ⊗ T
(1)
0 ⊗ IR2 IW̄ ⊗ H ⊕ S3 ⊕ T1 ⊕ T2

)

.
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4 Stationary Distribution

Let Q− be a matrix obtained from the matrix Q given by (4) by formally deleting
in its blocks the Kronecker cofactor IW̄ and Q−

0 be a matrix obtained from the
matrix Q0 by formally replacement in its blocks the cofactor Ia by the cofactor
IW̄ . Let also

Ψ = Q−
0 + Q−.

Theorem 1. The necessary and sufficient condition for ergodicity of the Markov
chain ξt, t ≥ 0, is the fulfillment of the inequality

λ < −π0(S1 ⊕ S2)e + π1S
(2)
0 + π2S

(1)
0 + π3S

(3)
0 (5)

where π0 = x0(eV+1 ⊗ IM1M2), π1 = x1(eV+1 ⊗ IM2 ⊗ eR1), π2 = x2(eV+1 ⊗
IM1 ⊗ eR2), π3 = x3(eV+1 ⊗ IM3 ⊗ eR1R2) and the vectors x0, x1, x2, x3 are
sub-vectors of the vector x = (x1, x2, x3, x4), which is the unique solution of
the system of linear algebraic equations

xΨ = 0, xe = 1. (6)

Remark 1. Note that the ratio of the left part of inequality (5) and the right
part of this inequality is the system load factor ρ, i.e.

ρ =
λ

−π0(S1 ⊕ S2)e + π1S
(2)
0 + π2S

(1)
0 + π3S

(3)
0

.

Proof. It can be verified that the matrix
∞∑

k=0

Qk is irreducible. Hence, from

[18], the necessary and sufficient condition for ergodicity of the chain ξt is the
fulfillment of the inequality

yQ′(z)|z=1e < 0 (7)

where the vector y is the unique solution of the system

yQ(1) = y, ye = 1. (8)

The theorem will be proven if we show that inequality (7) is equivalent to inequal-
ity (5). Let the vector y be of the form

y = (θ ⊗ x0,θ ⊗ x1,θ ⊗ x2,θ ⊗ x3). (9)

Substituting the vector y in the form (9) into (8) and using relation θD(1) = 0,
we reduce system (8) to the form (6).

Now we substitute into the inequality (7) the vector y in the form (9) and
the expression for Q

′
(1) calculated by formula (3). Taking into account that

θD′(1)e = λ, we transform inequality (7) to the form

λ + xQ−e < 0. (10)
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Using the known relations He = (H0 + H1 + H2)e = 0, Sne + S
(n)
0 = 0, Tne +

T
(n)
0 = 0, n = 1, 2, we reduce inequality (10) to the following form:

λ < x0(eV̄ ⊗ IM1M2)(S
(1)
0 ⊕ S(2)

0 )e + x1(eV̄ ⊗ IM2 ⊗ eR1)S
(2)
0 e

+x2(eV̄ ⊗ IM1 ⊗ eR2)S
(1)
0 e + x3(eV̄ ⊗ IM3 ⊗ eR1R2)S

(3)
0 e.

After using the notation introduced in the statement of the theorem, this inequal-
ity takes the form (5). �
Remark 2. In the physical interpretation of the inequality (5), we take into
account that this inequality is derived under the system overload condition. Let
us consider the physical meaning of the first term in the right-hand side of
(5). The component π0(m(1),m(2)) of the row vector π0 is the probability that
servers 1 and 2 are fault-free and serve customers on the phases m(1) and m(2),
respectively. The corresponding component of the column vector (S(1)

0 ⊕S(2)
0 )e is

the total service rate by servers 1 and 2 provided that the service on these servers
is in the phases m(1) and m(2), respectively. Then the product π0(S

(1)
0 ⊕ S(2)

0 )e
represents the rate of the output flow in periods when customers are served
by servers 1 and 2. The other summands of the sum on the right-hand side of
inequality (5) are interpreted similarly: the second term is the rate of the output
flow when customers are only served by server 2 (server 1 is under repair), the
third term is the rate of the output flow when customers are only served by server
1 (server 2 is under repair), the fourth term is the rate of the output flow when
customers are only served by server 3 (servers 1 and 2 are under repair). Then
the right-hand side of inequality (5) expresses the total rate of the output flow
under overload condition. Obviously, for the existence of a steady-state regime
in the system, it is necessary and sufficient that the input rate λ be less than
the rate of the output flow.

Corollary 3. In the case of stationary Poisson flow of breakdowns and exponen-
tial distribution of service and repair times, ergodicity condition (5) is reduced
to the following inequality:

λ < π0(μ1 + μ2) + π1μ2 + π2μ1 + π3μ3, (11)

where the vector π = (π0, π1, π2, π3) is the unique solution to the system of linear
algebraic equation

π

⎛

⎜
⎜
⎝

−(h1 + h2) h1 h2 0
τ1 −(h2 + τ1) 0 h2

τ2 0 −(h1 + τ2) h1

0 τ2 τ1 −(τ1 + τ2)

⎞

⎟
⎟
⎠ = 0, πe = 1.

In what follows we assume that the ergodicity condition given by Theorem
1 is satisfied, which ensures that there exist the stationary probabilities of the
system states

p
(n)
0 (ν, η) = lim

t→∞ P{it = 0, nt = n, νt = ν, ηt = η}, n = 0, 3, ν = 0,W , η = 0, V ;
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p
(0n)
1 {(ν, η,m(k))} = lim

t→∞ P{it = i, nt = 0n, νt = ν, ηt = η,m
(n)
t = m(n)},

n = 1, 2, ν = 0,W , η = 0, V , m(n) = 1,M (n);

p
(0)
i (ν, η,m(1),m(2)) = lim

t→∞ P{it = i, nt = 0, νt = ν, ηt = η,m
(1)
t = m(1),

m
(2)
t = m(2)}, i > 1, ν = 0,W , η = 0, V , m(n) = 1,M (n).

p
(1)
i (ν, η,m(2), r(1)) = lim

t→∞ P{it = i, nt = 1, νt = ν, ηt = η, m
(2)
t = m(2),

r
(1)
t = r(1)}, i ≥ 1, ν = 0,W , η = 0, V , m(2) = 1,M (2), r(1) = 1, R(1);

p
(2)
i (ν, η,m(1), r(2)) = lim

t→∞ P{it = i, nt = 2, νt = ν, ηt = η, m
(1)
t = m(1),

r
(2)
t = r(2)}, i ≥ 1, ν = 0,W , η = 0, V , m(1) = 1,M (1), r(2) = 1, R(2);

p
(3)
i (ν, η,m(3), r(1), r(2)) = lim

t→∞ P{it = i, nt = 3, νt = ν, ηt = η, m
(3)
t = m(3),

r
(1)
t = r(1), r

(2)
t = r(2)}, i ≥ 1, ν = 0,W , η = 0, V , m(3) = 1,M (3),

r(1) = 1, R(1), r(2) = 1, R(2).

Within each selected group, we order the probabilities in the lexicographic order
of the components and form the vectors of these probabilities

p(n)
0 , n = 0, 3; p(01)

1 , p(02)
1 , p(n)

i , n = 0, 3, i ≥ 1.

Next, we form the vectors pi of stationary probabilities corresponding to the
values i of the denumerable component as follows:

p0 = (p(0)
0 , p(1)

0 , p(2)
0 , p(3)

0 ), p1 = (p(01)
1 , p(02)

1 , p(1)
1 , p(2)

1 , p(3)
1 ),

pi = (p(0)
i , p(1)

i , p(2)
i , p(3)

i ), i ≥ 2.

These vectors are calculated using algorithm for calculating the stationary dis-
tribution of quasi-Toeplitz Markov chains, see [18].

5 Vector Generating Function of the Stationary
Distribution. System Performance Characteristics

Calculating the stationary probability vectors pi, i ≥ 0, we can also calculate
various characteristics of the system performance. In the calculation process, the
following result will be useful.

Lemma 2. Vector generating function P (z) =
∞∑

i=0

piz
i, |z| ≤ 1, satisfies the

following equation:

P (z)Q(z) = B(z) (12)

where

B(z) = p0Q(z) + z[p1Q(z) − p0Q
(0)(z) − p1Q

(1)(z)] + z2p2Q0. (13)
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Formula (12) can be used to calculate the values of the function P (z) and its
derivatives at the point z = 1 without calculating infinite sums. The obtained
values allow to find the moments of the number of customers in the system and
some other characteristics of the system. Note that it is not possible to calculate
directly the value of P (z) and its derivatives at the point z = 1 from Eq. (12)
since the matrix Q(1) is singular. This difficulty can be overcome by using the
recursion formulas given below in Corollary 4.

Let us denote f (m)(z) the mth derivative of the function f(z), m ≥ 1, and
f (0)(z) = f(z).

Corollary 4. The mth, m ≥ 0, derivatives of the vector generating function
P (z) at the point z = 1 are recursively calculated from the following system of
linear algebraic equations:

⎛

⎜
⎜
⎝

P (m)(1)Q(1) = B(m)(1) −
m−1∑

l=0

Cl
mP (l)(1)Q(m−l)(1),

P (m)(1)Q′(1)e = 1
m+1 [B(m+1)(1) −

m−1∑

l=0

Cl
m+1P

(l)(1)Q(m+1−l)(1)]e,

where the derivatives B(m)(1) are calculated using formula (13) and expressions
(1)–(3) for the vector generator functions Q(z), Q(0)(z), Q(1)(z).

The proof of the corollary is parallel to the one outlined in [19] and is omitted
here.

Having the stationary distribution pi, i ≥ 0, been calculated we find a num-
ber of important stationary performance measures of the system and examine
their behavior through the numerical experiments.

• Throughput of the system (the maximum rate of the flow that can be pro-
cessed by the system)


 = −π0(S1 ⊕ S2)e + π1S
(2)
0 + π2S

(1)
0 + π3S

(3)
0 .

• Mean number of customers in the system L = P ′(1)e.
• Variance of the number of customers in the system V = P

′′
(1)e − L2 + L.

• Probability that i customers stay in the system pi = pie.
• Probability P

(0)
i that i customers stay in the system and both servers are

fault- free

P
(0)
0 = p0

(
ea
0T

)

, P
(0)
1 = p1

(
ea(M1+M2

0T

)

, P
(0)
i = pi

(
eaM1M2

0T

)

, i ≥ 2.

• Probability P
(1)
i (P (2)

i ) that i customers stay in the system and server 1 (server
2) is under repair

P
(1)
0 = p0

⎛

⎝
0T
a

eaR1

0T

⎞

⎠ , P
(2)
0 = p0

⎛

⎝
0T
a(1+R1)

eaR2

0T

⎞

⎠
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P
(1)
1 = p1

⎛

⎝
0T
a(M1+M2)

eaM2R1

0T

⎞

⎠ , P
(2)
0 = p1

⎛

⎝
0T
a(M1+M1+M2R1)

eaM1R2

0T

⎞

⎠ .

P
(1)
i = pi

⎛

⎝
0T
aM1M2

eaM2R1

0T

⎞

⎠ , P
(2)
0 = p0

⎛

⎝
0T
aM2(M1+R1)

eaM1R2

0T

⎞

⎠ , i ≥ 2.

• Probability P
(3)
i that i customers stay in the system and both main servers

are under repair

P
(3)
0 = p0

(
0T

eaR1R2

)
, P

(3)
1 = p1

(
0T

eaM3R1R2

)
, P

(3)
i = pi

(
0T

eaM3R1R2

)
, i ≥ 2.

• Probability that at an arbitrary time the servers are in the state n

P (n) =
∞∑

i=0

P
(n)
i , n = 0, 3.

• Probability P
(0)
i,k that an arriving batch of size k finds i customers in the

system and both servers fault-free

P
(0)
0,k = λ−1p0

(
IW̄ ⊗ eV̄

O

)

Dk, P
(0)
1,k = λ−1p1

(
IW̄ ⊗ eV̄ (M1+M2))

O

)

Dk,

P
(0)
i,k = λ−1pi

(
IW̄ ⊗ eV̄ M1M2

O

)

Dk, i ≥ 2.

• Probability P
(1)
i,k (P (2)

i,k ) that an arriving batch of size k finds i customers in
the system and server 1 (server 2) under repair

P
(1)
0,k = λ−1p0

⎛

⎝
Oa×W̄

IW̄ ⊗ eV̄ R1

O

⎞

⎠ Dk, P
(1)
1,k = λ−1p1

⎛

⎝
Oa(M1+M2)×W̄

IW̄ ⊗ eV̄ M2R1

O

⎞

⎠ Dk,

P
(1)
i,k = λ−1pi

⎛

⎝
OaM1M2×W̄

IW̄ ⊗ eV̄ M2R1

O

⎞

⎠ Dk, i ≥ 2,

P
(2)
0,k = λ−1p0

⎛

⎝
Oa(1+R1)×W̄

IW̄ ⊗ eV̄ R2

O

⎞

⎠ Dk, P
(2)
1,k = λ−1p1

⎛

⎝
O

IW̄ ⊗ eV̄ M1R2

OaM3R1R2×W̄

⎞

⎠ Dk,

P
(2)
i,k = λ−1p0

⎛

⎝
OaM2(M1+R1)×W̄

IW̄ ⊗ eV̄ M1R2

O

⎞

⎠ Dk, i ≥ 2.
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• Probability P
(3)
i,k that an arriving batch of size k finds i customers in the

system and both main server under repair

P
(3)
0,k = λ−1p0

(
O

IW̄ ⊗ eV̄ R1R2

)

Dk, P
(3)
1,k = λ−1p1

(
O

IW̄ ⊗ eV̄ M3R1R2

)

Dk,

P
(3)
i,k = λ−1pi

(
O

IW̄ ⊗ eV̄ M3R1R2

)

Dk, i ≥ 2.

6 Numerical Results

In this section, we present results of four numerical experiments. The purpose of
the experiments is to study the behavior of the main performance characteristics
of the system as functions of its parameters and illustrate the influence of the
correlation in the input flow and variation in the repair process.

Experiment 1. In the experiment, we investigate the dependence of the mean
number of customers in the system, L, on the input rate λ for different values
of the breakdown rate h.

We suppose that the maximum size of batch in the BMAP is 3. To specify
the BMAP, we first define the matrices D0 and D

D0 =
(−1.349076 10−6

10−6 −0.043891

)

, D =
(

1.340137 0.008939
0.0244854 0.0194046

)

.

Now we express the matrices Dk, k = 1, 3, in terms of the matrix D using the
formula Dk = Dqk−1(1 − q)/(1 − q3), k = 1, 3, where q = 0.8.

This BMAP has the coefficient of correlation ccor = 0.407152. The squared
coefficient of variation is equal to c2var = 9.621426.

MMAP of breakdowns is defined by the matrices

H0 =
(−8.110725 0

0 −0.26325

)

,

H1 =
1
3

(
8.0568 0.053925

0.146625 0.116625

)

,H2 =
2
3

(
8.0568 0.053925

0.146625 0.116625

)

.

For this MMAP ccor = 0.200504557, c2var = 12.34004211. We denote by h the
total breakdown rate defined as h = h1 + h2 where, as defined above, h1 and h2

are the rates of breakdowns arriving at server 1 and server 2, respectively. It is
evident from the form of the matrices H1 and H2 that h1 = 1

3h and h2 = 2
3h.

PH service time distributions at server 1, server 2 and server 3 will be denoted
as PH

(serv)
1 , PH

(serv)
2 , PH

(serv)
3 , respectively. They are assumed to be Erlangian

of order 2 with parameter 20, 15 and 4. These distributions are defined by the
vectors β(1) = β(2) = β(3) = (1, 0) and the matrices

S(1) =
(−20 20

0 −20

)

, S(2) =
(−15 15

0 −15

)

, S(3) =
(−4 4

0 −4

)

.
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PH repair time distributions at server 1 and server 2 coincide. They are assumed
to be hyper-exponential of order 2 with the squared variation coefficient c2var =
25.07248 and are defined by the following vector and matrix:

τ (1) = τ (2) = (0.05, 0.95), T (1) = T (2) =
(−0.003 0

0 −0.245

)

.

Figure 1 depicts the mean number L of customers in the system as a function of
λ for different values of breakdown rate, h = 0.0001, h = 0.001, h = 0.001.

Fig. 1. Mean number L of customers in the system as a function of input rate λ for
different values of breakdown rate: h = 0.0001; h = 0.001; h = 0.001.

It can be seen from Fig. 1 that the mean number of customers in the system,
as expected, increases with increasing input rate λ and the rate of increase
grows with increasing the breakdown rate h. You can also see that the mean
queue length is rapidly increasing with the growth of load factor ρ.

Experiment 2. In the experiment, we investigate the dependence of the mean
value L of the number of customers in the system on the input rate λ for different
values of the coefficient of correlation in the BMAP . We consider three BMAP s
having the same mean arrival rate but different coefficients of correlation. These
BMAP s will be denoted as BMAP1, BMAP2, BMAP3.

BMAP1 is a stationary Poisson process with D0 = −λ, D1 = λ. For this
process ccor = 0, cvar = 1.

BMAP2 is defined by the matrices D0 and Dk = Dqk−1(1− q)/(1− q3), k =
1, 3, where q = 0.8,

D0 =
(−6.34080 10−6

10−6 −0.13888

)

, D =
(

6.32140 0.01939
0.10822 0.03066

)
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For this BMAP cvar = 3.5, ccor = 0.1.
BMAP3 is the BMAP defined in the Experiment 1. For this BMAP c2var =

9.621425623, ccor = 0.407152089. We also fix the MMAP of breakdowns and
PH distributions of service and repair times the same as in Experiment 1.

Figures 2 depicts the mean number of customers in the system as a func-
tions of λ for different BMAP s. We see that values of L depend, in some cases
strongly, on the coefficient of correlation in the BMAP. Under the same value
of input rate, λ, the mean number of customers in the system increases when
the correlation increases. In addition, the difference in the values of L for differ-
ent coefficients of correlation increases with increasing λ. In particular, we see
that approximation of the BMAP with coefficient correlation ccor = 0.4 by the
stationary Poisson process leads to a huge error in the calculation of L. Thus,
under such an approximation, the mean estimates are too optimistic.

Experiment 3. In the experiment, we investigate the dependence of the number
of customers in the system, L, on the breakdowns rate h for PH distributions
of repair time with different coefficients of variation.

We take BMAP , MMAP of breakdowns and PH distributions of service
times from Experiment 1. We assume that PH distributions of repair times
of server 1 and server 2 coincide and consider three different PH distributions
(PH1, PH2, PH3). The average repair time is equal to 20, however, the coeffi-
cients of variation of repair time are different.

PH1 is the exponential distribution with the parameter 0.05 and coefficient
of variation cvar = 1.

PH2 is the hyper-exponential distribution of order 2. This distribution is
defined by the following vector and matrix:

τ = (0.05, 0.95), T =
(−0.003 0

0 −0.245

)

.

In this case the repair time has coefficient of variation cvar = 5.
PH3 is the hyper-exponential distribution of order 2. This distribution is

defined by the following vector and matrix:

τ = (0.05, 0.95), T =
(−250000 0

0 −0.05

)

.

In this case the repair time has coefficient of variation cvar = 9.9.
Since in this experiment we choose the breakdown rates such that the follow-

ing value differs from the previous one by an order of magnitude, it is reasonable
to use a logarithmic scale (with a base of ten) on the X-axis. The resulting
graph is shown in Fig. 3. It is seen from Fig. 3 that, under the same value of
repair rate, h, the mean number of customers in the system L essentially varies
for repair times with different coefficient of variation. In this example, the value
of L increases when the variation increases and the difference in the value of L
increases with increasing of h.

Experiment 4. In the experiment, we investigate the dependence of the through-
put 
 on the repair rate τ .
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Fig. 2. Mean number of customers in the system as a function of input rate λ for
BMAP s with different coefficients of correlation (ccor = 0; 0.1; 0.4)

Fig. 3. Mean number of customers in the system as a function the breakdowns rate
for repair times with different coefficients of variation

Here we use the same input data as in Experiment 1. Denote the identical
repair rates of server 1 and server 2 as τ .

By analogy with the previous experiment, in this experiment we choose the
breakdown rates such that the following value differs from the previous one by
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Table 1. Values of throughput � obtained in Experiment 4

τ \ h 0.0001 0.0005 0.001 0.005 0.01 0.05 0.1 0.5

0.000001 2.627 2.177 2.094 2.020 2.010 2.002 2.001 2.000

0.00001 4.865 2.995 2.627 2.177 2.094 2.020 2.010 2.002

0.0001 11.95 6.49 4.865 2.994 2.627 2.176 2.094 2.020

0.001 16.68 14.06 11.95 6.494 4.864 2.994 2.626 2.176

0.01 17.42 17.08 16.68 14.06 11.94 6.489 4.858 2.986

0.1 17.49 17.46 17.42 17.08 16.67 14.05 11.92 6.439

Fig. 4. Throughput of the system as a function of the breakdown rate h for different
repair rates τ .

an order of magnitude. Thus, it is reasonable to use a logarithmic scale (with
a base of ten) on the X-axis. The resulting graph is shown in Fig. 4. The data
for the graph are also given in Table 1. As expectable, under the same value
of repair rate τ, the throughput decreases when the breakdown rate increases.
The behavior of the curves is more interesting. Let us consider the case when
breakdowns rarely occur and repairs are fast. In this case we can assume that

 ≈ μ1 + μ2, where μn is the service rate on server n, n = 1, 2. As it is seen
from Table 1 this intuitive assumption is confirmed numerically: for τ = 0.1 and
h = 0.0001 
 = 17.49 while μ1+μ2 = 17.5 in this experiment. It can also be seen
from the Figure and the Table that, as expected, the throughput cannot exceed
the horizontal asymptote 
 = μ1 + μ2. Further, it can be noted that as repair
rate is low and the breakdown rate increases, the curves tend to the horizontal
asymptote 
 = μ3 = 2, where μ3 is the service rate on the backup server. Such
a behavior coincides with the expected behavior of the system since, under the
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high breakdown rate, both main servers are almost always broken and only the
backup reliable server serves customers.

7 Conclusion

In this paper, we have investigated the unreliable queueing system with backup
server that can be used for modelling the hybrid communication system con-
sisting of two main unreliable but high-speed channels (FSO channel and a
radio channel of millimeter-wave) which are reserved by reliable but low-speed
radio channel. We make quite general assumptions about the process of arrival
of customers and breakdowns as well as about service and repair processes. We
investigate the system behavior in steady-state. To this end, we derive nontrivial
condition for existence of the stationary regime, calculate the steady-state prob-
abilities of the system states and derive formulas for a number of importance
performance measures of the system. We give the numerical examples that illus-
trate the computational tractability of the presented results and investigate the
main performance measures of the system as functions of input and breakdown
rates, correlation in the BMAP and variation in the repair process.
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