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Abstract. Explaining deep models is desirable especially for improving
the user trust and experience. Much progress has been done recently
towards visually and semantically explaining deep models. However,
establishing the most effective explanation is often human-dependent,
which suffers from the bias of the annotators. To address this issue, we
propose a multitask learning network (MTL-Net) that generates saliency-
based visual explanation as well as attribute-based semantic explana-
tion. Via an integrated evaluation mechanism, our model quantitatively
evaluates the quality of the generated explanations. First, we introduce
attributes to the image classification process and rank the attribute con-
tribution with gradient weighted mapping, then generate semantic expla-
nations with those attributes. Second, we propose a fusion classification
mechanism (FCM) to evaluate three recent saliency-based visual expla-
nation methods by their influence on the classification. Third, we conduct
user studies, quantitative and qualitative evaluations. According to our
results on three benchmark datasets with varying size and granularity,
our attribute-based semantic explanations are not only helpful to the
user but they also improve the classification accuracy of the model, and
our ranking framework detects the best performing visual explanation
method in agreement with the users.

Keywords: Multi-task learning · Explainable AI

1 Introduction

Deep learning has led to remarkable progress in computer vision tasks. However,
despite their superior performance, the black-box nature of deep neural net-
works harms user trust. In order to build interpretable models that can explain
their behaviour, previous works visually point to the evidence that influences
the network decision [17,24], or provide semantic explanations that justify a
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category prediction [11,12]. When it comes to generating visual explanations,
example methods includes visualizations via gradient flow or filter deconvolu-
tion [29,30,39], visualizing class activation maps [28,42] and measuring the effect
of perturbations on input images [7,26,27].

However, there is no unified evaluation metric to determine the most effec-
tive visualization technique. Although user-studies are widely used to judge the
effectiveness of visualization methods, it is unscalable since humans are not on-
demand software that can be employed at anytime. Among automatic evalua-
tion methods, RISE [26] proposes to evaluate the influence of different regions
to the decision maker by deleting/inserting pixels. However, this requires inser-
tion/removal of many pixel combinations for each image, e.g., several iterations
are needed for evaluating one image, which is time consuming.

Natural language explanations [11] is a complementary way to justify neural
network decisions. These explanations are usually generated by feeding images
and predicted class labels into LSTM [10]. A drawback is that the semantic
explanations may lack the class discriminative ability, missing essential details
to infer the image label [20].

In this work, our primary aim is to generate visual and semantic explana-
tions that are faithful to the model, then quantitatively and objectively evaluate
the justifications of a deep learning based decision maker. To realize this aim,
we propose a visual and semantic explanation framework with an integrated
quantitative and objective evaluation mechanism without requiring the user in
its training or inference steps. We classify and embed attributes to help the
category prediction. The semantic explanation is generated based on gradient
weighted mapping of the attribute embedding, then evaluated on its image and
class relevance. Furthermore, to evaluate the visual explanation methods in this
framework, we propose a fusion classification mechanism. The input image is
filtered by its visual explanation map and then fed into a classifier. We evaluate
the methods based on the classification accuracy.

We argue that an explanation is faithful to the model it is interpreting, if it
can help to improve the performance of that black box model. For instance, for
the task depicted in Fig. 1, an accurate visual explanation model should attend to
the clothing related regions to recognize a “Clothing Store”. Hence, if the back-
ground and non-relevant pixels are weakened and the clothing related regions
are preserved, e.g., the image is filtered through the attention mechanism, the
classification result should not be degraded. The same holds for attribute-based
justifications. For instance, an accurate semantic explanation of the predicted
label “clothing store” should inform the user about the most discriminative
attributes such as “enclosed area, cloth, indoor lighting”. The effectiveness of
this explanation can be verified by feeding these attributes to the network for
the classification task.

Our main contributions are summarized as follows. (1) We propose a visual
and semantic explanation framework that generates explanations that are fidelity
to the model. (2) We design an integrated evaluation mechanism with quantita-
tive and qualitative evaluations as well as user study on the explanations. The
quantitative evaluation is automatically performed according to the influence of
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explanations on classification tasks. (3) We showcase on three datasets that our
semantic explanations are faithful to the network they are interpreting. Three
representative visual explanations, i.e. Grad-Cam [28], Back-Propagation [29]
and RISE [26] are evaluated and the quantitative results agree with the user
preference.

2 Related Work

In this section, we summarize the prior work on multitask learning and explain-
ability research related to ours.

Multitask Learning. Multitask learning is a popular method that enables us
to train one neural network to do many tasks. Some prior works have shown
that learning multiple tasks can improve the generalization of the network and
give better performance than doing these tasks separately [2]. For instance,
a multitask network for segmentation can improve the performance of object
detection while being much faster [4]. In our work, we train a network on image
recognition and attributes classification simultaneously, motivated by the fact
that sharing lower-level features can benefit these two tasks and result in better
performance.

Textual Explanation. Generating semantic explanations has gained interest
in the community. Among those, Hendricks et al. [11,12] take the image and its
predicted category label as input, and generate explanations with a conditioned
LSTM [10]. Although these explanations build a sound basis for enabling user
acceptance of the deep models and improving user trust, they cannot guaran-
tee the fidelity to the model. The conditioned LSTM model trained on human
annotated captions may generate sentences describing the image content, rather
than the real reason for the network decision.

We take advantage of semantic attributes to generate textual explanations.
Attributes are human-annotated discriminative visual properties of objects [18,
25]. In zero-shot learning [18,36,37], they are used to build intermediate rep-
resentations to leverage the lack of labeled images as the model does not have
access to any training examples of some classes. [16] and [15] apply attributes
as a linguistic explanation for video and image classification. They select the
attributes by its interaction information with the input images. Our method
differs in that we define the important attributes by how much the they influ-
ence the classification task, and aggregate them into a semantic explanation.
Image attributes are used to boost the performance for fine-grained classifica-
tion [6,41], face recognition [13], and image-to-text generation [41]. If annotated
on a per-class basis, attributes are both effective and cheap [33].
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Visual Explanation. We distinguish between two types of visual explanations:
interpretation models and justifying post-hoc reasons. The former visualize the
filters and feature maps in CNNs, trying to interpret the knowledge distilled
by the model [22,38,39]. For instance, [39] applies a Deconvolutional Network
(DeConvNet) to project the feature activations back to the input pixel space.
The latter determines which region of the input is responsible for the decision by
attaching importance to pixels or image regions. Gradient-based methods back-
propagate the loss to the input layer [29,30]. Although these methods generate
high-resolution details, they can not localize the image area that the target
category focuses on. Visualizing linear combination of the network activations
and incorporating them with class-specific weights is another direction [28,42].
Class Activation Mapping (CAM) [42] and its extension Grad-CAM [28] produce
class-specific attention maps by performing a weighted combination on forward
activation maps. On the other hand, model-agnostic methods propose to explain
models by treating them as black boxes. Perturbation-based methods manipulate
the input and observe the changes in output [7,8,26,27]. A linear decision model
(LIME) [27] feeds super-pixel-masks into the black box and generates attention
maps. An extension of LIME, RISE perturbs the input image with random masks
and generates weights with the output probabilities, then produce the attention
map by the weighted combination of random binary masks. [8] and [7] extends
the perturbation to a trainable parameter and generates more smooth masks.

Fig. 1. Overview of our multitask learning network (MTL-Net). f(ximg) is the feature
extraction network in our model. The network contains two pipelines. Category pre-
diction network predicts the label yc for an input image ximg. Attribute classification
network predicts the attributes a. Attribute-to-Category prediction network infers the
category ya by attributes embedding. Then the attributes with high contribution to ya
are aggregated into a template-based explanation. Saliency-based visual explanation
reflects the attention of yc on the input image.

Evaluating Explanations. Although visual explanations are an intuitive way
of understanding the internal thought process of a neural network, it is not
trivial to measure the effectiveness of the visualization method. In recent years,
various evaluation methods are performed. The most widely accepted measure
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of effectiveness is user studies [28,42]. Some explanation methods perform quan-
titative evaluation methods such as Pointing ame [19,28,40], sanity checks [1],
and Deletion-insertion [26].

Since visual explanations reflect the salient area that activates the feature
map, improving the visualization would be beneficial for classification. Hence,
we propose to fuse the input image with the explanation maps and then measure
how the classification accuracy is influenced. The testing procedure is processed
only once when evaluating the explanation methods.

3 Visual-Semantically Interpretable Framework

In this section, we introduce how we integrate the attribute prediction with image
classification. Then we detail how to generate semantic explanations via attribute
contribution. Finally, we present visual explanations generated by various visu-
alization methods and evaluate them with the fusion classification mechanism.

3.1 Multitask Learning Network

Learning multiple complementary tasks would improve the generalization capa-
bility of the network, and improve the accuracy of predictions compared to
performing these tasks separately. Deep neural networks for image classifica-
tion uses category level labels as the supervision signal [32,35]. While attributes
reveal essential characteristics of objects complementary to image classes [37]. In
our multitask learning network (MTL-Net), we combine three modules regard-
ing category and attribute classification within a unified framework as shown
in Fig. 1. They are category prediction, attribute classification and attribute-to-
category prediction. Given an input image x, our task is to predict the image
label y as well as the attribute a with the following steps.

In category prediction, given input image ximg, we first extract the image
feature v, then we pass these image features into a linear classifier and get the
predicted result yc:

v = f(ximg) , yc = gc(v) . (1)

To predict Na attributes of one image, we apply a linear classifiers to learn
the ith attribute ai ∈ R

dai from the image feature v:

ai = gia(v) . (2)

While predicting attributes will help the image encoder f(·) to extract seman-
tic information regarding the attributes and help the image classification process,
the predicted attributes are not contributing to the image classification directly.
Thus we combine them in the attribute-to-category prediction. We first follow
the word embedding method [9] to embed a into a matrix E ∈ R

Na×d:

E = concat[a1 · W1, a2 · W2 · · · , aNa
· WNa

] , (3)
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where Wi is the embedding matrix with dimension R
dai

×d, and Na is the number
of attributes. Then the embedding E is feed into a linear classifier to get the
predicted result ya:

ya = gp(E) . (4)

Thus, the final class prediction is

y = yc + α · ya , (5)

where α is a hyper parameter.
We optimize the MTL-Net with the cross-entropy loss L between predicted

class and the ground truth ygt:

L = CE(y, ygt) . (6)

In order to align the predicted attributes with interpretable semantic mean-
ing, we propose to optimize the attribute classification module with human anno-
tated class attributes A ∈ R

Na . The attribute classification network would be
optimized according to the objective:

Lattri =
1

Na

Na∑

i=1

CE(Ai, ai) . (7)

Our final loss L is the weighted combination of the above three loss: L and
Lattri:

L = L + β · Lattri . (8)

3.2 Interpreting MTL-Net

Here we detail our method for selecting the attributes that make an important
impact on the results, and evaluating the image area that the network pays most
attention to. We propose a gradient weighted mapping to figure out the attribute
contribution in image classification, and generate language explanations using a
predefined template. Furthermore, we apply various visualization methods, i.e.
Back-propagation (BP) [29], Grad-CAM [28] and RISE [26], to generate saliency
maps that provide visual justifications of the network classification process. Then
we evaluate them with our fusion classification mechanism.

Generating Attribute-Based Explanations. In attribute-to-category pre-
diction, the predicted image category ya is inferred by the prediction of the
Na attributes for every image. In order to determine which attributes are most
important to the score yk

a for the predicted class k, we use gradient mapping
to generate a saliency map Ma ∈ R

Na×d for attributes embedding E. As is dis-
cussed in [30], we only consider the positive impact on increasing the predicted
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class score, thus the attribute contribution of the i-th attribute ai is determined
as the sum of positive values in Ma

i ∈ R
d:

Cai
=

d∑

j=1

1Ma
ij>0 · Ma

ij , where Ma
ij =

∂yk
a

∂Eij
. (9)

Here Ma
i denotes the gradient of the score yk

a on the attribute embedding.
The attribute contribution Cai

(i = 1, . . . , Na) indicates which attributes
have more positive impact on predicting class k. Consequently, we rank the
score and pick the attributes with the highest contribution Cai

. And we select
the top three attributes to form our semantic explanation.

Generating Visual Explanations. To generate visual explanations and eval-
uate which one is more fidelity to the network, we utilize three representative
methods:

BP. Back-Propagation (BP) [29] computes the saliency map by back propagat-
ing the output score yc into the input layer. Based on the gradient for each pixel
(i, j) of the input image, the saliency map is computed as:

Mij = maxl

∣∣∣∣
∂yc

∂x(i, j, l)

∣∣∣∣ , (10)

where maxl |·| denotes the maximum magnitude across all color channels l.

Grad-CAM. Grad-CAM [28] uses the gradient flowing back to a specific con-
volutional layer to calculate the importance weight αk for every feature map Ak

in that layer,

αk =
1
Z

∑

i

∑

j

∂yc
∂Ak

ij

. (11)

And the final saliency map M is a weighted combination of the feature maps,

M = ReLU(
∑

k

αkA
k) , (12)

where ReLU means that Grad-CAM only focuses on the features that have a
positive influence on network output. And M is resized to the size of input image
when we use it.

RISE. For each input image x, RISE [26] generates numerous masks M (i) to
cover x. The author assumes that the output score of the whole network for
masked image F (x�M (i)) reflects the importance of that mask, where � denotes
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element-wise multiplication. Thus the final attention map is the weighted sum
of these masks,

M =
1

E[M ] · N

N∑

i=1

F (x � M (i)) · M (i) , (13)

where E[M ] denotes the expectation of masks, and N is the number of generated
masks.

Evaluating Visual Explanations. The lack of objective evaluation metrics
for the performance of these visualization methods may hinder user acceptance.
We conjecture that visual justifications would be trustworthy for the user if they
improve the performance of the black box neural network on the task that they
are visualizing. Hence, we propose image classification as a task to objectively
evaluate the visual justification methods without human annotation.

Saliency maps indicate the importance of each pixel and retain the same spa-
tial information as input images. We propose a fusion classification mechanism
(FCM), where we overlay the saliency map M onto the raw image ximg, and
generate the filtered image xfuse. So that visual justifications can be evaluated
automatically by training and testing our network on those fused images. We
normalized the explanation maps into [0, 1], to make equal compare among every
explanation maps. The overlay method is described as,

xfuse = (M + λ) � ximg , (14)

where λ is a constant parameter that determines how much image content is
least preserved, and when λ = 0 there might be image pixels being removed
directly. � denotes element-wise multiplication. We then feed the fused image
xfuse into the multitask learning network as shown in Fig. 1. Finally, we rank
the saliency models based on their performance in classification. The ranking
shows us that visual explanation models lead to a higher accuracy can capture
important image regions for predicting the right answer.

4 Experiments

In this section, we start by introducing the dataset. We then present our results
that validate the proposed multitask learning network (MTL-Net) on three
datasets, indicating consistent improvements on single-task networks. Further-
more, our predicted attributes and their aggregated semantic explanations are
presented and evaluated. The visual explanations are generated by three well-
known visualization methods, and our proposed evaluation technique validates
their effectiveness and ranks them based on the class prediction performance.

Datasets. We use three datasets for experimental analysis. CUB-200-2011
(CUB) [34] is a fine-grained dataset for bird classification, with 11,788 images
from 200 different types of birds. The dataset consists of 312 binary attributes
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Table 1. Ablation study for different settings in MTL-Net. We report the results
for baseline models SE-ResNeXt-50 [14], Inception-v4 [31] and PNASNet-5 [21] on yc.
CP represents the accuracy of category prediction yc trained together with attribute
classification, and A2CP represents the accuracy of y when combining category pre-
diction and attribute-to-category prediction. We also report the accuracy for attribute
classification in MTL-Net.

Models SUN CUB AwA

SE-ResNeXt-50 [14] 38.28 74.30 94.74

PNASNet-5 [21] 42.53 83.20 95.47

Inception-v4 [31] 35.49 78.90 94.22

CP (ours) 44.70 83.44 95.71

A2CP (ours) 44.90 83.77 95.61

Attribute classification 93.07 88.12 99.03

that describe the color, shape and other characters for 15 body part loca-
tions. SUN Attribute Database (SUN) [25] is a fine-grained scene categorization
dataset, and consists of 14,340 images from 717 classes (20 images per class).
Each image is annotated with 102 attributes that describe the scenes’ mate-
rial and surface properties. Animals with Attributes (AwA) [18,36] is a coarse-
grained dataset for animal classification, containing 37,322 images of 50 animal
classes. 85 per-class attribute labels [23] are provided in the dataset, describing
the appearance and the living habits of the animals.

Implementation Details. The baseline model in MTL-Net is PNASNet-5 [21]
pretrained on ImageNet [5] and then finetuned on three datasets separately.
The classifier gi and ga have the same structure: 2-layer CNN and one linear
layer. We train our model with SGD optimizer [3] by setting momentum = 0.9,
weight decay = 10−5. We set α = 1 and tuned β from 0.1 to 1.5 for different
datasets. While evaluating saliency maps, we set λ as a matrix with each element
equals to 0.3.

4.1 Evaluating Semantic Explanations

In this section, we quantitatively evaluate our attribute-based semantic expla-
nations in two aspects: the fidelity to the model and the alignment with human
annotation. Then we perform human study and qualitative analysis to discuss
how well is the semantic explanations when making the network interpretable
to users.

Quantitative Analysis. Here, we validate our multitask learning network
(MTL-Net) on three benchmark datasets, i.e. CUB, AWA and SUN, for the
image classification task.
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We report the classification accuracy of category prediction yc and the final
result y, denoted as CP and A2CP respectively, in Table 1. As comparison, we
choose the classification accuracy of SE-ResNeXt-50 [14], Inception-v4 [31] and
PNASNet-5 [21] as baseline.

Introducing the attribute classification loss to the original image classifica-
tion task improves the accuracy. As is shown in Table 1, we improve the accuracy
of the baseline model on all datasets, achieving 44.70% on SUN, 83.44% on CUB
and 95.71% on AWA. These results demonstrate that introducing attributes to
image classification not only makes the models more explainable, e.g., predicting
attributes such as “white crown, pink legs, white belly” is more informative than
only predicting the category “slaty backed gull”. After integrating the attribute-
to-category prediction and category prediction, the classification accuracy is fur-
ther improved.

Table 2. The user study for semantic
explanations. Image relevance refers to
the question: “Does the sentence match
the image content?”. Class Relevance
refers to “Is the explanation reason-
able for the prediction?”. According to
the user, our semantic explanations are
image relevant, and reasonable.

Question Options Percentage

Image relevance High 68.4%

Somewhat 27.4%

No 4.2%

Class relevance Yes 68.6%

No 31.4%

Table 3. The classification accuracy on
three datasets (left) and the user study
(right) for the fusion classification mech-
anism (FCM). No-VIS denotes the classi-
fication accuracy generated by our MTL-
Net. Grad-CAM, BP, RISE refer to the
FCM equipped with three visualization
methods.

FCM CUB AwA SUN User study

No-VIS 83.77 95.61 44.90 N/A

Grad-CAM [28] 84.24 96.13 45.27 35.2%

BP [29] 81.87 93.86 41.73 26.2%

RISE [26] 85.17 96.84 46.50 38.6%

We also evaluate the predicted attributes by how well they are aligned with
their semantic meaning. The predicted attributes in MTL-Net are compared
with the class attributes annotated by a human, and we report the attribute
classification accuracy on three datasets in Table 1. On average, the predicted
attributes are agree with the human annotation, achieving an accuracy of 93.7%,
88.12% and 99.03 for three datasets. Note that the attributes in SUN and AwA
dataset are binary, indicating the existence of the attribute. While the attributes
in CUB dataset are multi-dimension, for instance, the head color attribute has
fifteen options. That can explain why the accuracy of CUB dataset is slightly
lower than the other two datasets.

User Study. Semantic explanations are mainly targeted towards the end user
and aim to improve the user trust in the machine learning system. To determine
if users find our semantic explanations trustworthy, we perform a user study on
visual and semantic explanations. CUB being a fine-grained dataset, only bird
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experts can tell their difference. Hence, we selected 100 images from the scene
categorization dataset SUN and the animal classification dataset AwA. Our user
group is composed of five university graduates with an average age of 25. In this
section, we present our results on semantic explanations for clarity, however, our
user study on visual explanations presented in the following section is identical
in the number, the demographics, the age and gender of the users as well as the
number of images to be evaluated.

In the user study for semantic explanations, our aim is to evaluate two fac-
tors: if the semantic explanation is image relevant and how well can they help
the user in understanding the black-box model. The annotators are given an
image as well as a semantic explanation and are asked to answer two questions,
i.e. “Does the sentence match the image?” and “Is the explanation reasonable
for the prediction?”. We present the results of this study in Table 2. For the
question related to the image relevance, 68.4% of the attribute-based semantic
explanations are marked as “highly related to the image”, while only 4.2% of
these results were found irrelevant by the users. For the question relevant to the
credibility for the prediction, 68.6% of the sentences are found reasonable for the
predicted label. These results complement our prior results and show that our
attribute-based semantic explanations are image relevant and reasonable for the
label that the model predicts.

Fig. 2. Our MTL-Net predicts image category and attributes. We select the attributes
having the highest contribution on the prediction label (b). The attributes are then
aggregated into a template-based semantic explanation (c). The top two rows show our
the explanations for right predictions, while the bottom row shows semantic explana-
tions with wrong predictions. The “label” and “prediction” under each image indicates
the ground truth label as well as the predicted label.

Qualitative Evaluation. In this section, we evaluate our attribute-based
semantic explanations qualitatively, by looking at the sentences generated from
the three highest ranked attributes together with the predicted label. Figure 2
shows two rows of example images with their predicted attributes where the
label was correctly predicted. In the last row, we present three examples with
their highest ranked attributes despite their wrong class predictions.
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We observe from both the positive and the negative examples that our expla-
nations correctly reflect the content of the image and the characters of the
objects. For instance, in fine-grained bird classification results, our model cor-
rectly associates the attributes “green nape, multicolored wing, solid belly” with
Mallard and “white crown, pink leg and white belly” with Slaty Backed Gull.

By looking at the attributes and the predicted label, a user can understand
why this prediction was associated with these attributes. For instance, the expla-
nation for zebra points out the most prominent attributes such as “long leg” and
“stripe”. While for a Forest image our model predicts the attributes “soothing,
leaves, trees”, and for a “Market” it associates “shopping, working and conduct-
ing business”.

On the other hand, the users might find the reason for a wrong prediction
by investigating the semantic explanations. For instance, we observe that due to
“reading, indoor lighting, wood”, an image for gift shop is wrongly predicted as
Home Office. Arguably, the image looks more like a home office than a gift shop,
i.e. correct class. Similarly, for the wolf, due to the unusual color of the animals
(i.e., “white”) and the tranquillity of the environment (i.e., “forest”), the label
is predicted as sheep.

Fig. 3. Visual explanations of the correct labels generated by three methods, Grad-
CAM, BP and RISE. Images on the left are from CUB, the middle from AWA and the
right are from SUN datasets. The bottom row shows the visual explanations for wrong
category prediction.

4.2 Evaluating Visual Explanations

To visually justify the classification decision of the model, we use three well-
known visual explanation methods, Grad-CAM [28], BP [29], and RISE [26]. We
compare them quantitatively in terms of the performance in fusion classification
mechanism, through user studies, and qualitatively by visual inspection.

Visual Explanations in Image Classification. We evaluate the fidelity of
the visual explanations generated by three models, by using them in the task they
are interpreting, i.e. image classification. We first generate the attention maps of
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the predicted class in our MTL-Net, then fuse the image with the attention map
on our fusion classification mechanism (FCM). Then we train and classify the
fused image with MTL-Net again, and rank the visual explanations concerning
the classification accuracy.

As presented in Table 3, our results indicate that images fused by saliency
maps lead to slight improvements in the classification accuracy compared to the
case with no fusion. Among the saliency-based explanation methods, RISE [26]
consistently achieves better performance than BP and Grad-CAM. BP performs
poorly on the fine-grained CUB dataset, and it may because the pixels that
BP marks out are spread out all over the bird and they are not distinguishing
between similar species (see Fig. 3). On the other hand, we experiment with all
these models and indicate that Grad-CAM and BP results are much faster than
RISE, since RISE requires multiple times of testing for every image.

User Study. Given three visual explanations, in this section, we aim to deter-
mine the visualization that is the most trustworthy for the users. We indicate
that “All robots predicted the image as airfield”, show visual explanations gen-
erated by Grad-CAM, RISE and BP to the annotators, and ask them to answer
the question “Which robot do you trust more?”. In this way, the annotators
first evaluate if the label is correct by looking at certain regions in the image,
and then they compare their attention with the visualizations, finally pick the
one that matches their mental model. Using 100 images sampled from AWA and
SUN datasets, we rank the saliency-based explanation models.

Our results shown in Table 3 (rightmost column) indicate that 38.6% of the
annotators trust RISE, 35.2% of them trust Grad-CAM, and 26.2% of them vote
for BP. This result is consistent with our fusion classification mechanism (FCM)
for evaluating the quality of the saliency-based visualization. As a conclusion, if
explanations are helpful for the users, they are expected to perform well in FCM.
Although human study is a worthwhile and important evaluation criterion, it can
be replaced by our automatic evaluation if time and labor limited.

Qualitative Evaluation. In this section, we evaluate the interpretability of
the visual explanations in our MTL-Net. The first two rows in Fig. 3 show the
visualizations for the correctly predicted images. In the last row, we present the
visualization for images with the wrong prediction.

From both the results with correct and incorrect class prediction, we observe
that Grad-CAM and RISE highlight important image regions to explain the net-
work decision, while BP emphasizes a distributed set of pixels that are influential
for the classification result. Hence, by looking at the masked image generated
by Grad-CAM and RISE, one can easily figure out which part of the image the
network focuses on for a particular decision. Generally, Grad-CAM offers a more
concentrated focus due to the up-sample operation it takes. While RISE and BP
consider more pixels when evaluating the importance.

With the negative predictions presented in the last row, the visual expla-
nations can help the user to understand the causes for wrong predictions.
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Indeed, most of the wrong predicted images may be confusing even for a human.
For instance, when explaining why the image with the label Ball Room is pre-
dicted as a Piano Store, the visual explanation focuses on the piano and the
indoor lighting. The wrong prediction of Tiger is an interesting example in that
the attention map of Grad-CAM mainly focuses on the stripes that zebra also
have. These results indicate that visual explanations can reveal show the weak-
ness of network to the users, e.g., the network typically makes a mistake when
it only focuses on wrong details, instead of considering the image as a whole.
Moreover, RISE generates more scattered distribution for the wrong predictions.
And that might be another clue for identifying wrong classified images.

5 Conclusion

In this work, we propose a visually and semantically interpretable multitask
learning network. We introduce attributes into image category prediction and
propose a new method to generate attribute-based semantic explanations intu-
itive for the user. Qualitative evaluations and the user study reveals that our
semantic explanations are both class discriminative and image relevant. More-
over, we propose a quantitative evaluation technique to evaluate the effectiveness
of visual explanations based on their performance in image classification. Future
work includes investigating the network flaws with these explanations and fur-
ther improve the network.
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