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Abstract. Early development of an animal from an egg involves a rapid
increase in cell number and several cell fate specification events accompa-
nied by dynamic morphogenetic changes. In order to correlate the mor-
phological changes with the genetic events, one typically needs to monitor
the living system with several imaging modalities offering different spa-
tial and temporal resolution. Live imaging allows monitoring the embryo
at a high temporal resolution and observing the morphological changes.
On the other hand, confocal images of specimens fixed and stained for
the expression of certain genes enable observing the transcription states
of an embryo at specific time points during development with high spatial
resolution. The two imaging modalities cannot, by definition, be applied
to the same specimen and thus, separately obtained images of different
specimens need to be registered. Biologically, the most meaningful way
to register the images is by identifying cellular correspondences between
these two imaging modalities. In this way, one can bring the two sources
of information into a single domain and combine dynamic information
on morphogenesis with static gene expression data. Here we propose a
new computational pipeline for identifying cell-to-cell correspondences
between images from multiple modalities and for using these correspon-
dences to register 3D images within and across imaging modalities. We
demonstrate this pipeline by combining four-dimensional recording of
embryogenesis of Spiralian annelid ragworm Platynereis dumerilii with
three-dimensional scans of fixed Platynereis dumerilii embryos stained
for the expression of a variety of important developmental genes. We com-
pare our approach with methods for aligning point clouds and show that
we match the accuracy of these state-of-the-art registration pipelines on
synthetic data. We show that our approach outperforms these methods
on real biological imaging datasets. Importantly, our approach uniquely
provides, in addition to the registration, also the non-redundant match-
ing of corresponding, biologically meaningful entities within the regis-
tered specimen which is the prerequisite for generating biological insights
from the combined datasets. The complete pipeline is available for public
use through a Fiji plugin.
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1 Introduction

Development of an animal embryo is a highly dynamic process spanning sev-
eral temporal and spatial scales, and involves a series of dynamic morphogenetic
events that are driven by gene regulatory networks encoded by the genome.
One of the major challenges in developmental biology is to correlate the mor-
phological changes with the underlying gene activities [18]. Recent advances in
fluorescence microscopy, such as light-sheet microscopy [12,23], allows investi-
gating the spatio-temporal dynamics of cells in entire developing organisms and
in a time-resolved manner. The three-dimensional time-lapse data produced by
light-sheet microscopes contain information about positions, trajectories, and
divisions of most cells in the embryo during development. However, such data
sets typically lack information about gene activities in the living system.

The molecular information is provided by complementary approaches, such
as confocal imaging of fixed specimens, stained for expression of a certain gene
(following the molecular protocols of whole-mount in-situ hybridization (ISH)).
The three-dimensional images of the fixed and stained embryos contain informa-
tion about the spatial position of all cells or nuclei and in addition some cells
are specifically labelled to indicate the expression of a gene of interest. Images of
many such stained specimen showing expression of different genes at a particular
stage of development can be readily collected. In order to systematically con-
nect the molecular state of a cell to its fate during embryo morphogenesis, one
needs to detect the cells in both live and fixed imaging modalities and identify
cell-to-cell correspondences. This can be achieved, in principle, by aligning the
images. However, the process of chemical fixation during ISH leads to a global
and non-linear deformation of the specimen. Additionally, the round embryos
are scanned in random orientations, and each specimen is a distinct individual
showing stochastic differences in numbers and positions of the cells. This makes
the problem of image registration in this context non-trivial.

We reasoned that since the primary objective is to transfer information
between the imaging modalities and since cells (or nuclei) are the units of biolog-
ical interest, it is more important to establish precise correspondences between
equivalent cells across specimens and modalities, and that once this is achieved
the registration will be obtained implicitly (Fig.1A). We aimed to solve two
matching and registration problems. Firstly, intramodal registration, where dif-
ferent fixed embryos stained for different gene expression patterns are registered
to one reference specimen (Fig. 1B). When successful, the intramodal registra-
tion will transfer information about expression of multiple genes derived from
distinct staining and imaging experiments to a single reference atlas. Secondly,
intermodal registration where individual fixed and stained specimens are regis-
tered to an appropriate matching time-point of a time-lapse series of the same
animal species imaged live (Fig. 1C). When successful, the intermodal registra-
tion will transfer gene expression information from fixed data to the live imaged
specimen where it can be propagated along the developmental trajectories of
the cells. In both cases, the common denominator are the labelled nuclei and the
task is to establish the correspondences between them as precisely as possible.
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Fig. 1. Establishing cell correspondences enables registration. (A) 2-D
schematic illustrating the idea: two distinct specimens (left: source and middle: target)
are compared in order to estimate pair-wise cell nuclei correspondences and an opti-
mal transform that registers the source onto the target (right) (B, C) 2-D schematics
illustrating the two use cases: (B) images of distinct, independent in-situ specimens,
acquired through confocal microscopy are registered to each other, which enables for-
mation of an average, virtual atlas. (C) images of in-situ specimens, acquired through
confocal microscopy are registered to the appropriate frame (tp: time point) in a time-
lapse movie acquired through SPIM imaging. Nuclei indicated in darker shades are the
ones expressing the gene being investigated. In both cases, the information about gene
expression is transferred from the source nucleus to the corresponding target nucleus.

To address these challenges, we developed a new computational pipeline to
identify cell-to-cell correspondences between images from the same and multiple
imaging modalities and use these correspondences to register the images. We
demonstrate the results of the pipeline on fixed ISH images of the embryos of
the marine annelid worm Platynereis dumerillii at 16 16 h post fertilization (hpf)
and the corresponding long term time-lapse acquired with light-sheet microscopy.
This worm is particularly suitable for demonstrating our approach because its
embryonic development is highly stereotypic, meaning that the number, arrange-
ment and dynamic behaviour of cells is highly similar across individuals.

We compare our algorithm with methods for matching point clouds from
computer vision such as Coherent Point Drift [19] and a variant of ICP (which
we refer to as PCA-ICP) and show that our method outperforms the accuracy
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of these state-of-the-art global registration pipelines on real biological data. We
also perform a series of controlled experiments on synthetic data in order to
demonstrate that our method is robust to initial conditions, and noisy nuclei
detections. Importantly, the pipeline is made available to the biology research
community through an easy-to-use plugin distributed on the Fiji platform [21],
accessible through the project page https://juglab.github.io/PlatyMatch.

2 Related Work

2.1 Registration Approaches Applied to Images of Platynereis
Dumerilit embryonic and larval development

Platynereis dumerillii has been a playground for image registration approaches
in the recent years, due to the efforts to infer gene regulatory networks underlying
neuronal development by registering ISH expression patterns. Most of this work
has emphasized non-linear registration of an in-situ specimen to a virtual atlas.
For instance, a new computational protocol was developed to obtain a virtual,
high resolution gene expression atlas for the brain sub-regions in embryos at
48 hpf and onwards [22]. The reference signal used in this protocol was the
larval axonal scaffold and ciliary band cells stained with an acetylated-tubulin
antibody. This signal has a very distinctive 3D shape within the larva and so this
approach relied on intensity based registration where linear transformations were
initially applied on the source image to obtain a coarse, global registration. This
was then followed by applying a non-linear, deformable transformation which
employed mutual-information as the image similarity metric [26].

Another approach, more related to the path we took, leveraged the DAPI
image channel (which localises the cell nuclei) to obtain registration of high-
quality whole-body scans to a virtual atlas for embryos at stages 48 and 72
hpf [2] and for a larva at 144 hpf [25]. Also these approaches relied on voxel
intensities of the DAPI channel rather than on the matching of segmented nuclei
as in our approach. Most similar to our work is the approach of [27] where the
early lineages of developing embryos were linked to gene expression ISH data
by identifying corresponding nuclei between embryos imaged in two modalities
based on their shape, staining intensity, and relative position.

The embryo specimens targeted in our study are spherical and highly sym-
metrical, lack distinctive features such as a prominent ciliary band and the
nuclei are densely packed. Therefore, intensity-based registration approaches
using DAPI or neuronal marker channel either fail or perform poorly on such
data. Contrary to these approaches and driven by the objective to, first and
foremost, transfer gene expression information with cellular resolution between
modalities, we adopt a matching-by-detection workflow, where we first detect
nuclei in the source and target DAPI image channels and use the detections to
estimate an initial transform. We then refine this transform and estimate opti-
mal pair-wise nuclear correspondences. Therefore, after the nuclei detection step,
the problem is cast into the realm of point cloud geometric registration methods
that has received substantial attention in both biological and computer vision
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research communities. We discuss the existing approaches in the following two
sections.

2.2 Matching of Cells or Nuclei in Biological Specimens

The work on matching nuclei between biological specimens has focused mainly
on Caenorhabditis elegans (C. elegans) model system that exhibits perfectly
stereotypic mode of development, and in fact, every single cell in the animal
has its own name. Using this information, a digital atlas was constructed, which
labels each nucleus segmentation in a three-dimensional image with an appropri-
ate name. This was initially achieved using a relatively simple RANSAC based
matching scheme [16] and was later extended by an active graph matching app-
roach to jointly segment and annotate nuclei of the larva [14]. The C. elegans
pipelines work well partly due to the highly distinctive overall shape of the lar-
vae and non-homogenous distribution of the nuclei. Another example of match-
ing nuclei between biological specimens uses identification of symmetry plane,
to pair cells between multiple, independent time-lapse movies showing ascidian
development [17]. These publications however emphasized nuclei detection and
matching between images arising from the same modality. We are not aware of
any automated strategy that identified nuclear correspondences between images
from different modalities, as we attempt to do (see Fig. 1C).

2.3 Approaches to Point Cloud Matching in Computer Vision

In computer vision, a typical workflow for matching point clouds estimates a rigid
or affine transform in order to perform an initial global alignment, which is fol-
lowed by a local refinement of the initial transform through the Iterative Closest
Point (ICP) algorithm. Many global alignment methods identify point-to-point
matches based on geometric descriptors [9]. Once candidate correspondences are
collected, alignment is estimated from a sparse subset of correspondences and
then validated on the entire cloud. This iterative process typically employs vari-
ants of RANSAC [7].

One example of geometric descriptors is Shape Context, which was intro-
duced by [3] for measuring similarity between two dimensional point clouds and
was employed for registering surfaces in biomedical applications [1,24]. This
work was further extended for use with three dimensional point clouds by [§]
and employed for the recognition of three dimensional objects.

A prominent example of geometric descriptor matching inspired by the
computer vision work and applied biological image analysis is the bead-based
registration of multiview light sheet (Selective Plane Illumination Microscopy
(SPIM)) data [20]. Here, fluorescent beads embedded around a specimen are
used as fiduciary markers to achieve registration of 3D scans of the same spec-
imen from multiple imaging angles (referred to as views). This is achieved by
building rotation, translation and scale-invariant bead descriptors in local bead
neighbourhoods, which enables identification of corresponding beads in multiple
views and thus allows image registration and subsequent fusion of the views. The
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approach was extended to multiview registration using nuclei segmented within
the specimen instead of beads [13], however the approach is not robust enough
to enable registration across different specimen and/or imaging modalities.

A second body of approaches estimate the optimal transform between the
source and target point clouds in a single step. One such example is Coherent
Point Drift (CPD) algorithm [19] where the alignment of two point clouds is
considered as a probability density estimation problem : gaussian mixture model
centroids (representing the first point cloud) are fitted to the data (the second
point cloud) by maximizing the likelihood. CPD has also been used to perform
non-rigid registration of features extracted from biomedical images [6,11]. In this
paper, we use CPD as one of the baselines to benchmark the performance of our
approach.

It is important to note, that in computer vision, matching of interest points
represented by geometric descriptors is not the goal but rather the means to
register underlying objects or shapes in the images and volumes. Therefore,
using a subset of descriptors to achieve the registration is perfectly acceptable
and in fact many of the schemes rely on pruning correspondence candidates in
the descriptor space to a highly reliable subset. By contrast, in biology, the nuclei
that form the basis of the descriptors are at the same time the entities of interest
and the goal is to match most, if not all of them, accurately.

3 Owur Method

The core of our method is to match the nuclei in the various imaged speci-
mens by means of building the shape context descriptors in a coordinate frame
of reference that is unique to each nucleus. This makes the problem of match-
ing rotationally invariant (Fig.2 (II)). The descriptors are then matched in the
descriptor space by finding the corresponding closest descriptor in the two spec-
imens and these initial correspondences are pruned by RANSAC to achieve an
initial guess of the registration. This alignment is next refined by ICP (Fig.2
(IIT)). The performance of this part of the pipeline is compared to two baselines,
PCA-ICP and CPD (run in affine mode), which are also able to estimate an
optimal alignment. At this point, we diverge from the classical approach and
evaluate the correspondences through a maximum bipartite matching to achieve
the goal of matching every single nucleus from one specimen to a correspond-
ing nucleus in the other (Fig.2 (IV)). The pipeline relies on an efficient nucleus
detection method. We present one possible approach based on scale-space the-
ory (Fig.2 (I)) but in principle any detection approach can be used to identify
feature points to which the Shape Context descriptors would be attached. Also
optionally, after the maximum bipartite matching, the estimated correspondence
can be used to non-linearly deform the actual images to achieve a visually more
convincing overlap of corresponding nuclei (Fig.2 (V)). The individual steps of
the pipeline are described in detail in the following subsections.



464 M. Lalit et al.

Our Method
1. Nuclei 1I. Shape Context 1ll. Affine IV. Bipartite V. Non rigid
Segmentation Descriptors Alignment matching refinement

e e

'3

thin plate
spline

RANSAC +initial registration,

71,/
LoG operator across scales 3Dbins ’~tx—.\jf
Alternative Methods PCA-ICP
Coherent Point Drift (CPD)-affine

Fig. 2. Overview of the elements of the proposed registration pipeline. Figure
illustrating the key elements of our pipeline: (I) A two dimensional slice of a volumet-
ric image of the DAPI channel in a fixed Platynereis specimen. The operators which
provide the strongest local response are shown for three exemplary cell nuclei. (/1) In
order to ensure that the shape context geometric descriptor is rotationally covariant,
we modify the original coordinate system (shown in gray, top left) to obtain a unique
coordinate system (show in black) for each nucleus detection. The Z-axis is defined
by the vector joining the center of mass of the point cloud to the point of interest,
the X-axis is defined along the projection of the first principal component of the com-
plete point cloud evaluated orthogonal to the Z-axis. The Y-axis is evaluated as a
cross product of the first two vectors. Next, the neighbourhood around each nucleus
detection is binned in order to compute the shape context signature for each detection.
The resulting shape context descriptors from the two clouds are compared to establish
correspondence candidates. These are pruned by RANSAC filtering and subsequently
used to estimate a global affine transform which coarsely registers the source point
cloud to the target point cloud. (/1) Next, Iterative Closest Point (ICP) algorithm
is used to obtain a tighter fit between the two clouds of nuclei detections. The proce-
dure involves the iterative identification of the nearest neighbours (indicated by black
arrows), followed by the estimation of the transform parameters. (IV)) At this stage,
a Maximum Bipartite Matching is performed between the transformed source cloud of
cell nuclei detections and the static target cloud of cell nuclei detections, by employing
the Hungarian Algorithm for optimization. (V') Since the two specimens are distinct
individuals, non-linear differences would persist despite the preceding linear registra-
tion. We improve the quality of the registration at this stage by employing a non-linear
transform (such as thin plate spline and free-form deformation) that uses the corre-
spondences evaluated from the previous step as ground truth control points to estimate
the parameters of the transform.

3.1 Detecting Nuclei

Following the scale-space theory [15], we assume that the fluorescent cell nuclei
visible in the DAPI image channel inherently possess a range of scales or sizes,
and that each distinct cell nucleus achieves an extremal response at a scale o
proportional to the size of that cell nucleus (Fig.2 (I)). We compute the trace
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of the scale-normalized Hessian matrix H of the gaussian-smoothened image
L (z,y,z,0) which is equivalent to the convolution (®) response resulting from
the scale-normalized Laplacian of Gaussian kernel and the image I (z,y, 2) i.e.

trace (Hnorm L (z,y, 2,0)) = o? (Lyg + Lyy + L), where

L *%(@[(x z), k€ {x,y,z} and
kk — k2 'Y, ) 'Y, (1)
1 (E2 "2 22
Ga (1177y,2’) = 736_ +2yd2+
(2mo2)2

The cell nuclei centroid locations (and additional scale information) are then
estimated as the local minima of the 4D (z, y, 2z, o) space. At this stage, some of
the detections might overlap especially in dense regions. To address this, first we
employ the assumption that the estimated spherical radius 7 of a cell nucleus is
related to its estimated scale ¢ through the following relation # = 1/36. Next we
state a relation drawn from algebra that if d is the distance between two spheres
with radii 7 and 79 (and corresponding volumes Vi and Vs, respectively), and
provided that d < rq + ro, the volume of intersection V; of these two spheres is
calculated as in [4], by:

7r 2

Vi:m(rl+r2—d)2 (d* +2d (ry +12) — 3 (r1 —12)) . (2)

Spheres for which V; < t x min (V7, V3) are suppressed greedily, by employing

a non-maximum suppression step. In our experiments, we use the threshold

t = 0.05. An optional manual curation of the nuclei detections is made possible
through our Fiji plugin.

3.2 Finding Corresponding Nuclei Between Two Point Clouds

Estimating a Global Affine Transform. In this section, we will provide
the details of our implementation of the 3D shape context geometric descriptor,
which is a signature obtained uniquely for all feature points in the source and
target point clouds. This descriptor takes as input a point cloud P (which repre-
sents the nuclei detections described in the previous section) and a basis point p,
and captures the regional shape of the scene at p using the distribution of points
in a support region surrounding p. The support region is discretized into bins,
and a histogram is formed by counting the number of point neighbours falling
within each bin. As in [3], in order to be more sensitive to nearby points, we
use a log-polar coordinate system (Fig.2 (II), bottom). In our experiments, we
build a 3D histogram with 5 equally spaced log-radius bins and 6 and 12 equally
spaced elevation (#) and azimuth (¢) bins respectively.

For each basis point p, we define a unique right-handed coordinate system:
the Z-axis is defined by the vector joining the center of mass of the point cloud
to the point of interest, the X-axis is defined along the projection of the first
principal component of all point locations in P, evaluated orthogonal to the Z-
axis. The Y-axis is evaluated as a cross product of the first two vectors (Fig. 2
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(IT), top). Since the sign of the first principal component vector is a ‘numerical
accident’ and thus not repeatable, we use both possibilities and evaluate two
shape context descriptors for each feature point in the source cloud. Building
such a unique coordinate system for each feature point ensures that the shape
context descriptor is rotationally invariant. Additionally since the chemical fixa-
tion introduces shrinking of the embryo volume (the intermodal registration use
case, see Fig. 1C) and since the embryo volume may considerably differ across
a population (intramodal use case, see Fig. 1B), an additional normalization of
the shape context descriptor is performed to achieve scale invariance. This is
done by normalizing all the radial distances between p and its neighbours by
the mean distance between all point pairs arising in the point cloud. Similar to
[3], we use the x? metric to identify the cost of matching two points p; and g;
arising from two different point clouds i.e.

Cj~—0 mej (k) ,
k=1

w\»—n

where h; (k) and h; (k) denote the K-bin normalized histogram at p; and g,
respectively. By comparing shape contexts resulting from the two clouds of cell
nuclei detections, we obtain an initial temporary set of correspondences. These
are filtered to obtain a set of inlier point correspondences using RANSAC [7].
In our experiments, we specified an affine transform model, which requires a
sampling of 4 pairs of corresponding points. We executed RANSAC for 20000
trials, used the Moore-Penrose Inverse operation to estimate the affine transform
between the two sets of corresponding locations, and allowed an inlier cutoff of
15 pixels Lo distance between the transformed and the target nucleus locations.

Obtaining a Tighter Fit with ICP. The previous step provides us a good
initial alignment. Next, we employ ICP which alternates between establishing
correspondences via closest-point lookups (see Fig. 2 (III)) and recomputing the
optimal transform based on the current set of correspondences. Typically, one
employs Horn’s approach [10] to estimate strictly-rigid transform parameters. We
see equivalently accurate results with iteratively estimating an affine transform,
which we compute by employing the Moore-Penrose Inverse operation between
the current set of correspondences.

Estimating the Complete Set of Correspondences. We build a M x N-
sized cost matrix C' where the entry Cj; is the euclidean distance between the
i*" transformed source cell nucleus detection and the j*" target cell nucleus
detection. Next, we employ the Hungarian Algorithm to perform a maximum
bipartite matching and estimate correspondences X (see Fig. 2 (IV)):

M N k=M k=N

X = arg min C;; X, where X;; € {0,1} s.t. Xie <1, X <1.
1 ;; i Xii J ’; ;;1 j
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3.3 Estimating a Non-linear Transform

Since the two specimens being registered are distinct individuals, non-linear
differences would persist despite the preceding, linear (affine) registration. We
improve the quality of the image registration at this stage by implementing an
optional non-linear transform (for example the thin-plate spline transform or
the free-form deformation). The correspondences evaluated from the previous
step are used as ground truth control points to estimate the parameters of the
transform function.

4 Materials

To test our method, we are using two sets of real biological specimen. Firstly, rep-
resenting the fixed biological specimen containing information about gene expres-
sion, we collected whole-mount specimens of Platynereis dumerilii stained with
ISH probes for several different, developmentally regulated transcription factors
at the specific developmental stage of 16 hpf. These specimens were scanned in
3D by laser scanning confocal microscopy resulting in three-dimensional images
containing the DAPI (nucleus) channel used in our registration as a common ref-
erence and the gene expression channel. Secondly, representing the live imaging
modality, we obtained access to a recording capturing the embryological devel-
opment of the Platynereis dumerilii at cellular resolution in toto [23] using a
SimView light sheet microscope. The embryos were injected with a fluorescent
nuclear tracer prior to imaging and thus the time-lapse movie visualizes all the
nuclei in the embryo throughout development. This movie includes the 16 hpf
stage of Platynereis development providing an appropriate inter-modal target to
register the fixed specimen to on the basis of the common nuclear signal.

5 Results

We evaluate our proposed strategy on real and simulated data and compare
against two competitive baselines. The first baseline, which we refer to as PCA-
ICP is an extension of ICP and includes a robust initialization prior to perform-
ing ICP. The center of mass of the source point cloud is translated to the location
of the center of mass of the target point cloud. Next, the translated source point
cloud is rotated about its new center of mass such that its three principal com-
ponent vectors align with the three principal component vectors of the target
point cloud. In order to ensure that the orthogonal system forming the three
principal components is not mirrored along any axis, we consider all 8 possibili-
ties for the obtained principal component vectors of the source point cloud. We
initialize ICP from these 8 setups and iteratively estimated a similar transform
(scale, rotation and translation). Finally, the configuration which provides the
least Lo euclidean distance between the two sets of correspondences obtained
through nearest neighbour lookups upon the termination of ICP, is kept and the
rest of the configurations are discarded. The second baseline is Coherent Point
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Drift (CPD) [19]. In our experiments, we executed CPD in the Affine mode with
normalization set to 1, maximum iterations equal to 100 and tolerance equal to
1le~ !0, We use two metrics in order to quantify the performance of all consid-
ered methods: (i) Matching Accuracy which we define as the ratio of the true
positive matches and the total number of inlier matches, and (i7) Average Reg-
istration Error which we define as the average Ly euclidean distance between a
set of ground truth landmarks arising from the two point clouds, evaluated after
the completion of the registration pipeline. A higher Matching Accuracy and a
lower Average Registration Error are desirable readouts to demonstrate better
performance.

5.1 Experiments on Real Data

For the intramodal registration use case (see Figs. 3A & 3C), nuclei detections
arising from 11 images of in-situ specimens were registered to nuclei detections
arising from the image of a typical, target in-situ specimen. Since for real data
the true correspondences are not known, we asked expert biologists to manually
identify 12 corresponding landmark nuclei. This set represents ground truth
landmarks against which we evaluated the results of our registration based on
the average Ly euclidean distance of proposed landmark correspondences (Source
landmarks are labeled 1, ...12 and Target Landmarks are similarly labeled 1°,
... 12" in Fig. 3).

For the intermodal registration use case (see Figs. 3B & 3D), nuclei detections
arising from 7 confocal images of in-situ specimens are registered to the corre-
sponding frame from the time lapse movie which contains an equivalent number
of nuclei. They were similarly evaluated on the average Lo euclidean distance
in the positions of landmarks identified in the movies by the expert annotators.
We noticed that instead of directly registering an in-situ specimen to its cor-
responding time point in the developmental trajectory of the live embryo, our
pipeline gives better results if we map the in-situ specimen to a reference atlas,
then apply a pre-computed affine transform to the atlas to transform it to the
domain of the live embryo and lastly refine this coarse registration using ICP.

The results show that after applying our proposed pipeline, the average
registration error of corresponding landmarks is around 25 and 35 pixels for
our intramodal and intermodal registration use cases respectively (Fig.3E).
The accuracy is significantly better compared to the baseline methods. The
exemplary intramodal image shows good overlap of the nuclear intensities
(Fig. 3C). The displacement of the corresponding landmarks (denoted by the
yellow unprimed numbers) is better in the left part of the specimen compared
to the right part. This suggests that significant non-linear deformation occurred
during the staining process and our current pipeline relying on affine models is
unable to undo this deformation. For the intermodal registration, the pipeline
clearly compensated for the mismatch in scale between the fixed and live spec-
imen (Fig.3D). The remaining error is, similar to the intramodal case, likely
due to non-linear distortions. In terms of matching accuracy after performing
maximum bipartite matching, our method outperforms the baselines. Since the
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Fig. 3. Experiments on real data. (A) DAPI channels indicating cell nuclei for
two distinct in-situ specimens before registration (source: green, target: magenta). (B)
DAPI channels indicating cell nuclei for an in-situ specimen (source: green) before it
was registered to the corresponding frame containing equivalent number of cell nuclei,
in the time-lapse movie (target: magenta). Landmarks for source image are indicated
as yellow spheres and labeled from 1, ...12. Similarly, landmarks for the target image
are labeled from 1°, ...12’. (C) Specimen shown in (A) after intramodal registration
using our proposed pipeline. (D) Specimen shown in (B) after intermodal registration
using our proposed pipeline. (E) Plot indicating the average Euclidean distance between
landmarks after applying different registration pipelines. (F) Plot indicating the percent
of correct correspondences between landmarks, evaluated through Maximum Bipartite
Matching, after applying different registration pipelines. (Color figure online)

matching accuracy is estimated on only 12 corresponding landmarks, which rep-
resents only 3.6 % of the total matched nuclei, it is likely subject to sampling
error. This is reflected by the broad spread of accuracy for both inter- and
intramodal use cases (Fig. 3F).

Since obtaining a larger set of ground truth correspondences is not practical
we turn next to evaluating the approach on synthetic data.
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5.2 Experiments on Simulated Data
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Fig. 4. Experiments on simulated data. Synthetic ‘live’ embryos are simulated by
manipulating cell nuclei detections from real in-situ specimens globally and locally. (A)
First all cell nuclei detections of an in-situ specimen were translationally offset, next
the translated point cloud was randomly rotated by an angle € {—n/6,7/6} about
a random axis passing through the center of mass of the translated point cloud, and
finally, the translated and rotated point cloud was scaled by a random factor. (B)
The above globally transformed nuclei are provided independent gaussian noise. Plot
indicating the percent of correct correspondences between all pairs evaluated through
Maximum Bipartite Matching, after applying different registration pipelines. (C) The
above globally transformed nuclei are corrupted with excess outliers. Plot indicating
the percent of correct correspondences between all pairs evaluated through Maximum
Bipartite Matching, after applying different registration pipelines.

Starting from the nuclei detection on real fixed embryos, we generated simu-
lated ground truth data by random translation, rotation and scaling operations,
followed by (i) adding gaussian noise to the location of individual segments
(i.e. nuclei) and (i7) randomly adding nuclei (Fig.4A). The simulated embryos
are meant to resemble the live-imaged embryos which in real scenarios are also
rotated, translated and scaled compared to the fixed specimens and may have
extraneous or missing nuclei due to biological variability or segmentation errors.

Robustness to Gaussian Noise. The synthetic ‘live embryos’ were generated
by manipulating nuclei detections from multiple, independent in-situ specimens.
First, the nuclei detections of each in-situ specimen are provided a random
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translation offset, next the translated point cloud is rotated by a random angle
between —30° and +30° about an arbitrary axis passing through the center of
mass of the point cloud, and finally, the translated and rotated point cloud is
scaled by a random factor (See Fig.4A). After these global transformations, we
add gaussian noise to each individual detection in order to vary their positions
independently along the X, Y and Z axes. We evaluate five levels of Gaussian
noise with standard deviations [0:5:20]. The results of evaluation of matching
accuracy with respect to different levels of Gaussian noise show that all methods
provide equivalent performance (Fig. 4B). The matching accuracy starts to break
down when the magnitude of gaussian noise is greater than 10 pixels.

Robustness to Outliers. In order to test robustness against over or under-
segmentation of nuclei, we add outliers to both the source fixed in-situ volumes
and the corresponding simulated ‘live embryo’. New outlier points are generated
by sampling existing points and adding a new point at a standard deviation of
20 pixels from their locations. The results show that the CPD Affine method
performs the best in the presence of outliers, while our approach is more stable
compared to the PCA-ICP (Fig. 4C).

6 Discussion

Our method showed promising results on real biological data in terms of average
registration error and provided equivalent performance when compared to state
of the art methods on simulated data. The pipeline offers several entry points
for further improvement towards achieving more precise one-to-one matching of
cells within and across imaging modalities for separate biological specimens. One
area open for future investigations is certainly obtaining more accurate initial
segmentations. Another performance boost may come from the definition of the
3D geometric descriptor. Our implementation of shape context as a 3D geometric
descriptor draws from [3]. We use a log-polar coordinate system and build 3D
histograms by evenly dividing the azimuth and elevation axis. This creates bins
with unequal sizes, especially near the poles, and makes the matching of feature
points non robust to noisy detections. This drawback could be addressed through
two approaches: (i) employing the optimal transport distance [5] between two
3D histograms would provide a more natural way of comparing two histograms
as opposed to the current y? squared distance formulation, (ii) opting for a more
uniform binning scheme (see for example, [28]) would eliminate the issue of noisy
detections jumping arbitrarily between bins near the poles. Finally, the method
will benefit from non-linear refinement as the specimens are often deformed in
an unpredictable manner during the staining and imaging protocols.

By establishing nuclei correspondences between images of in-situ specimens
and the time lapse movies, biologists will be able to transfer the gene expression
information from the fixed specimens to the dynamic cell lineage tree generated
by performing cell tracing on the time-lapse movie. This will enable biologists to
study the molecular underpinning of dynamic morphogenetic processes occurring
during embryo development.
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