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Abstract. Real low-resolution (LR) face images contain degradations
which are too varied and complex to be captured by known downsam-
pling kernels and signal-independent noises. So, in order to successfully
super-resolve real faces, a method needs to be robust to a wide range of
noise, blur, compression artifacts etc. Some of the recent works attempt
to model these degradations from a dataset of real images using a Gener-
ative Adversarial Network (GAN). They generate synthetically degraded
LR images and use them with corresponding real high-resolution (HR)
image to train a super-resolution (SR) network using a combination of
a pixel-wise loss and an adversarial loss. In this paper, we propose a
two module super-resolution network where the feature extractor mod-
ule extracts robust features from the LR image, and the SR module
generates an HR estimate using only these robust features. We train a
degradation GAN to convert bicubically downsampled clean images to
real degraded images, and interpolate between the obtained degraded
LR image and its clean LR counterpart. This interpolated LR image
is then used along with it’s corresponding HR counterpart to train the
super-resolution network from end to end. Entropy Regularized Wasser-
stein Divergence is used to force the encoded features learnt from the
clean and degraded images to closely resemble those extracted from the
interpolated image to ensure robustness.

1 Introduction

Face Super-Resolution (SR) is an important preprocessing step for high-level
vision tasks like facial detection and recognition. Robustness to real degradations
like noise, blur, compression artifacts, etc. is one of the key aspects of the human
visual system and hence highly desirable in machine vision applications as well.
Incorporating this robustness in the Super-Resolution stage itself would ease all
the downstream tasks. Unfortunately, most of the face SR methods are trained
with a fixed degradation model (downsampling with a known kernel and adding
noise) that is unable to capture the complexity and diversity of real degradations
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and hence performs poorly when applied on real degraded face images. This
problem becomes more pronounced when the image is extremely small. Since
most of the useful information is degraded, it further increases the ambiguity in
reconstruction process. Previous methods such as [3,32,34] use facial heatmaps
and facial landmarks as priors to reduce ambiguity. [30,33] leverage autoencoders
to build networks which are robust to synthetic noise and [18] leverage wavelet
transform to train a network which is robust to gaussian noise. However, none
of the above methods have been proven to be robust to real degradation except
[3]. In [4], a Generative Adversarial Network (GAN) was trained to generate
realistically degraded Low-Resolution (LR) versions of clean High-Resolution
(HR) face images and another GAN was trained to super-resolve the synthetic
degraded images to their corresponding clean HR, counterparts. To the best of
our knowledge, this is the only previous work which super-resolves real degraded
faces without the aid of any facial priors. However, we observed that [4] produces
visually different outputs for different degradations. This can be attributed to
the fact that the network sees every degraded image independently and there
is no explicit constraint to extract the same features from different degraded
versions of the same image.

In this paper, we focus on incorporating robustness to degradations in the
task of tiny face super-resolution without the need of a face specific prior and
without a dataset of degraded LR-clean HR image pairs. Premised upon the
observation that humans are remarkably adept at registering different degrdaded
versions of the same image as visually similar images, we prepend a smooth
feature extractor module to our Super-Resolution (SR) module. Since our feature
extractor is smooth with respect to real degradations, its output does not vary
wildly when we move from clean images to degraded images. The SR module
which produces clean HR images from features extracted by the smooth feature
extractor, thus, produce similar images regardless of the degradation. Features
which remain smooth under degradations are also features that are common
between clean and degraded LR. So, our network, in essence, learns to look at
features which are similar between clean and degraded LR.

Following [4], we train a GAN to convert clean LR images to corresponding
degraded LR images. One training iteration of our network involves two back-
propagations. During the first backpropagation, we update parameters of both
modules of our network to learn a super-resolution mapping from an interpolated
LR (by combining clean and degraded LR) to its corresponding clean HR. The
interpolation is carried out to avoid having the network overfit one of two LR
domains (clean and degraded). During the second backpropagation, we minimize
the Entropy Regularized Wasserstein Distance between features extracted from
clean as well as degraded LR and those extracted from interpolated LR. The
interpolation also helps in ensuring smoothness of the feature extractor.

During test time, we put an image (clean or degraded) through the feature
extractor module first and then feed the extracted features to the SR Module to
get the corresponding super-resolved image. Since the extracted features do not
change significantly between clean and degraded images, the super-resolution
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output for a degraded image does not change significantly from that of a clean
image. We perform tests to visualise the robustness of our network as well as
smoothness of the features extracted by our feature extractor.

The main contributions of our work are as follows:

— We propose a new approach for unpaired face SR where the SR network
relies on features that are common between corresponding clean and degraded
images.

— To the best of our knowledge, ours is the first work that handles robustness
separately from the task of super-resolution. This enables us to explicitly
enforce robustness constraints on the network.

2 Related Works

Single Image Super-Resolution (SISR) is a highly ill-posed inverse problem. Tra-
ditional methods mostly impose handcrafted constraints as priors to restrict the
space of solutions. With the availability of Large-scale Image Datasets and the
consistent success of Convolutional Neural Networks (CNNs), learning (rather
than handcrafting) a prior from a set of natural images became a possibility.
Many such approaches have been explored subsequently.

2.1 Deep Single Image Super-Resolution

We classify all the deep Single Image Super-Resolution (SISR) methods in two
broad categories - (i) deep Paired SISR and (ii) deep Unpaired SISR. In paired
SISR, corresponding pairs of LR and HR images are available and the network is
evaluated on its ability to estimate an HR image given its LR counterpart. Most
of the available deep paired SISR networks are trained under a setting where LR,
images are generated by downsampling HR images (from datasets such as Set5,
Set14, DIV2K [1], BSD100 [2] etc.) using a known kernel (often bicubic). These
networks are trained using either a pixel wise Mean Squared Error (MSE) loss
e.g. [13,21,26], Ly loss e.g. [36], Charbonnier loss e.g. [22] or a combination of
pixel-wise L loss, perceptual loss [20] and adversarial loss [16] e.g. [10,23,29].
Even though these networks perform really well in terms of PSNR and SSIM,
and the GAN based ones produce images that are highly realistic, these networks
often fail when they are applied on real images with unseen degradations such
as realistic noise and blur. To address this, RealSR [6] dataset was introduced
in NTIRE 2019 Challenge [5] containing images taken at two different focal
lengths of a camera. Networks like [14,15,19] were trained on this dataset and
are therefore robust to real degradations.

On the other hand, in unpaired SISR, only the LR images are available in
the dataset. In [35], a CycleGAN [37] was trained to denoise the input image
and another one to finetune a pretrained super-resolution network. In [27], a
CycleGAN was trained to generate degraded versions of clean images and a
super-resolution network was then trained using pairs of synthetically degraded
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LR and clean HR images.

However, all these networks are meant for natural scenes and not faces in par-
ticular. Humans are highly sensitive to even the subtlest changes when it comes
to human faces, making the task of perceptually super-resolving human faces a
challenging and interesting one.

2.2 Deep Face SISR

General SR networks as the ones mentioned above, often produce undesired
artifacts when applied on faces. Hence, paired face SR networks often rely on
face-specific prior information to subdue the artifacts and make the network
focus on important features.

Networks like [3,10,32,34] rely on facial landmarks and heatmaps to impose
additional constraints on the output whereas [12] leverage HR exemplars to
produce high-quality HR outputs. On the other hand, networks like [9,18] rely
on pairs of LR and HR face images to perceptually super-resolve faces. Even
though the above methods are somewhat robust to noise and occlusion, they are
not equipped well enough to handle noises which are as complex and as diverse
as those in real images. [30,33] leverage capsule networks and transformative
autoencoders to class-specifically super-resolve noisy faces but the noises are syn-
thetic. As of yet, there seems to be no dataset with paired examples of degraded
LR and clean HR images of faces available. As a result, in recent years, there has
been a shift in face SISR methods from paired to unpaired. Recently, with the
release of Widerface [31] dataset of real low-resolution faces and the wide avail-
ability of high resolution face recognition datasets such AFLW 28], VGG Face2[T]
and CelebAMask-HQ@ [24], Bulat et al. [4] propose a training strategy where a
High-to-Low GAN is trained to convert instances from clean HR face images
to corresponding degraded LR images and a Low-to-High GAN is then trained
using synthetically degraded LR images and their clean HR counterparts. This
method is highly effective since it does not require facial landmarks or heatmaps
for faces (as they are not available for real face images captured in the wild).

However, despite producing sharp outputs, it is not very robust as different
outputs are obtained for different degradations in the LR images. In order to
explicitly impose robustness, we introduce a smooth feature extractor module to
extract similar features from a degraded LR image and its clean LR counterpart.
This enabled us to get features that are more representative of the actual face
in the image and is significantly less affected by the degradations in the input.

2.3 Robust Feature Learning

Our work builds on the existing methods in robust feature learning. Haoliang
et al. [25] extract robust features from multiple datasets of similar semantic
contents by minimizing Maximum Mean Discrepancy (MMD) between features
extracted from these datasets. Cemgil et al. [8], achieve robustness by forcing
Entropy Regularized Wasserstein Distance to be low between features extracted
from clean images and their noisy counterparts. None of these works handle
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Super-Resolution where rigorous compression using an autoencoder may hurt
the reconstruction quality. We propose a method of incorporating robust feature
learning in super-resolution without requiring any face specific prior information.

3 Proposed Method

3.1 Motivation

Super-Resolution networks which are meant to be used on real facial images
need to satisfy two criteria: (i) they need to be robust under real degradations,
(ii) they should preserve the identity and pose of a face. Deep state-of-the-art
super-resolution networks usually derive the LR images by bicubically downsam-
pling HR images. Hence, an SR network trained on pairs of LR and HR images
used for training fail to meet the first criterion. On the other hand, SR networks
trained with real degradations fail to satisfy the second criterion. Noting the
fact that the face recognition ability of us humans does not change very signifi-
cantly with reasonably high degradation in images, it should be possible to find
features that remain invariant under significant degradation and train a super-
resolution network that would rely only on these features. Now, features which
are robust to degradations would also be smooth under the said degradations.
So, by enforcing explicit smoothness constraints on the extracted features, we
can ensure robustness.

3.2 Overall Pipeline

We have a clean High-Resolution dataset Y. and a degraded Low-Resolution
dataset X;. We obtain clean Low-Resolution dataset, X., corresponding to Y,
by downsampling every image in Y, with a bicubic downsampling kernel. So
every z. in X, is a downsampled version of some g, in Y, using the equation

Te= (Yo * k)|s (1)

where, k is the bicubic downsampling kernel and s is the scale factor. Follow-
ing [4], we train a Degradation GAN, G4 to convert clean samples from X. to
look like they have been drawn from the degraded LR dataset Xg. We call this
synthetic degraded LR dataset X4 and samples in this dataset T4. So,

To=Galve,2) €Xg YV € X, (2)

where z € Z is an additional vector input which is sampled from a distribution
Z to capture the one-to-many relation between HR and degraded LR images.

Our network basically comprises 2 modules - (i) Feature Extractor Module
(f) and (ii) Super-Resolution Module (g). During training, we first sample an
z. from X, and generate one of its degraded counterparts T = G4(z, 2) using
G4. We then combine these two LR images with a mixing coefficient «

Tin = axe + (1 — a)xg (3)
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where 0 < a < 1. We, then, put x;, through the convolutional feature extractor
f(z) and the SR module g(h) to estimate the corresponding clean HR output g
and do a backpropagation.

To ensure smoothness of f under real degradations, we extract features h. and
hq from z. and 7y

he = f(ze) ha = f(za) (5)

and minimize the Entropy Regularized Wasserstein Distance (Sinkhorn distance)
between (A, hin) and (hq, hin) through another backpropagation. We recalculate
hin during this operation as well. Figurel shows a schematic diagram of our
approach.

Interpolating between the clean and degraded image

=
NN | reare
Extractor L.
I !

features

3

Z}

Fig. 1. The proposed approach.

Here, if we use a = 0, since the entire network, during the first backprop-
agation, would be trained using pairs of synthetically degraded LR and clean
HR samples, it may end up learning a mapping that would fail to preserve the
identity of a face. However, if we take o = 1, the network may exhibit preference
to the domain of clean LR images. So, we needed an input LR image which is
not as sharp as x. but not as degraded as zg either. Since the edges in z. are
much sharper than those in zg, x;, continues to appear reasonably clean even
when « < 0.5. This is why we do not sample « from a distribution since that
might end up giving one domain advantage over the other and keep it fixed at
0.3 since a = 0.3 appears to us to have struck the right balance between the two
LR domains visually.

Also, using 0 < a < 1, enables us to apply the smoothness constraint between
(hey hin) and (hg, hiy) which is a better way to ensure smoothness than imposing
smoothness constraint on pairs of (h., hq).

3.3 Modeling Degradations with Degradation GAN

Owing to the complex and diverse nature of real degradations, it is extremely
difficult to mathematically model them by hand. So, following previous works
[4,27], we train a GAN (termed Degradation GAN) to model real degradations.



Robust Super-Resolution of Real Faces Using Smooth Features 175

Generator. Our Degradation GAN Generator, shown in Fig. 3, G4, has 3 down-
sampling blocks, each consisting of a ResNet block followed by a 3 x 3 con-
volutional with stride = 2, and 3 upsampling blocks each comprising ResNet
blocks followed a Nearest Neighbour Upsampling layer and a 3 x 3 convolutional
block with stride = 1. The downsampling and upsampling paths are connected
through skip connections. All the ResNet blocks used in Generator follow the
structure described in Fig. 2. Our Generator takes a bicubic downsampled image
z. and an n dimensional random vector z sampled from a normal distribution.
We expand each of the n dimensions of the random vector into a channel of size
H x W (filled with a single value) where H and W are the height and width of
every image. We concatenate the expanded volume with the image and feed it
to the generator.
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Fig. 2. ResNet block used in Degradation GAN Generator.
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Fig. 3. The overall architecture of the Degradation GAN Generator Gg.

Critic. We use the same discriminator used in [23]. Since we train the degrada-
tion GAN as Wasserstein GAN [17], we replace the Batch Normalization layers
with Group Normalization and remove the last Sigmoid layer. Following the
nomenclature, we call it critic instead of discriminator.

Loss Functions. We train the degradation GAN as a Wasserstein GAN with
Gradient Penalty (WGAN-GP) [17]. So, the critic is trained by minimizing the
following loss function:

Lp = (B, g, [D(2)] - Evex, [D(2)]) + ABzr, [([VaD ()2 — 1)?]  (6)

me)/(ji
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where, as in [17], the first term is the original critic loss and the second term is
the gradient-penalty.

To maintain the correspondence between inputs and outputs of the generator,
we add a Mean Square Loss (MSE loss) term to the WGAN loss in the objective
function L¢g of the generator.:

Lo = AzwceanLwaan + AvseLlyse (7)
where,
Lwean = —E(e. 2ye(x.,2)[Ga(we, 2)] (8)
and
Lyse = ||ze — Ga(we, 2)|? 9)

3.4 Super-Resolution Using Smooth Features

The main objective of our work is to design a robust SR network the performance
of which does not deteriorate under real degradation. Our network has two mod-
ules (a) a fully-convolutional feature extractor f and (b) a fully-convolutional
SR module g. The way we achieve robustness is by making the feature extrac-
tor smooth under degradations and making the SR module g rely solely on
the features extracted by f. In [8], Cemgil et al. proposed a method to enforce
robustness on the representations learnt by Variational Autoencoders (VAEs).
They trained a VAE to reconstruct clean images and minimized the Entropy
Regularized Wasserstein Distance between representations derived from a clean
image and its noisy version.
There were three challenges in applying this method to Super-Resolution:

1. Autoencoders compress an input down to its most important components
and ignore information like occlusion, background objects, etc. For accurate
reconstruction of an HR image from its LR counterpart, it is important to
preserve this information. Hence, we cannot perform a rigorous dimensionality
reduction. On the other hand, if we decide to keep the dimensionality intact, it
will make it harder to achieve robustness since there are too many distractors.
So it is important to choose a reduction factor that will achieve the best trade-
off between reconstruction and robustness.

2. They train their network for synthetic noise. However, real degradation
involves signal-dependent noise, blur and a variety of other artifacts. So, we
need a mechanism to realistically degrade images.

3. As we show in the supplementary material, despite smoothness constraint and
despite the network being reasonably robust, naively applying their method
on SR still leaves a gap between its performance on clean and degraded
images. So, we need a better training strategy.

To address (1), we try a number of different dimensionality reduction choices
(Ix,4x,16x) for the features extracted by f and we observed that 4x dimen-
sionality reduction attains the best trade-off. To address (2), we train a degra-
dation GAN to realistically degrade clean images. To address (3), we interpolate
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between a clean image (z.) and one of its synthetically degraded counterpart
(Ga(zxe, 2)) using a mixing coefficient o as shown in Eq. 3. We call this x;,.

Feature Extractor f: Our feature extractor consists of 4 Residual Channel
Attention (RCA) downsampling and 2 upsampling blocks. As shown in Fig. 4,
there are 2 skip connections. It is a fully convolutional module which takes an
LR image of dimension 3 x 16 x 16 at the input and produces a feature volume
of dimension 64 x 4 x 4. In Fig. 4, ‘RCA, n64’ denotes an RCA block with 64
output channels and ‘Conv3x3, s2 pl n64’ denotes a 3 x 3 convolutional layer
with stride = 2, padding = 1 and 64 output channels.

:
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Fig. 4. Feature extractor f.

Super-Resolution Module g: Our Super-Resolution module consists of 6
upsampling blocks and 2 DenseBlocks as shown in Fig. 5. The upsampling blocks
comprise a Pixel-Shuffle layer, a convolution layer, a Batch-Normalization layer
and a PReLU layer. The DenseBlocks contain a number of Residual Chan-
nel Attention (RCA) blocks and Residual Channel Attention Back-Projection
(RCABP) blocks connected in a dense fashion as in [19]. In Fig. 5, ‘Pixel Shuffle
(2)” denotes 2x pixel-shuffle upsampling layer and ‘RCABP, n64’ stands for an
RCABP block with 64 heatmaps at the output.

During one forward pass, we pass a minibatch of z;, through our feature
extractor f to produce the feature volume h;,. We put h;, through our Super-
Resolution module g to produce a high resolution estimate 7. and do a back
propagation through both g and f. This ensures that the features are useful for
SR. Since z;, is neither as clean as x. nor as severely degraded as 73, the possi-
bility of our SR network being biased to any one of the domains is eliminated.

After the first backpropagation, we put one minibatch each of z.,7g and
Zin (again) through f, as shown in Eq. 5, and calculate the Sinkhorn Distance
[11] (which calculates the Entropy Regularized Wasserstein Divergence) between
(hm hzn) and (hd7 hin)u

L. = Sinkhorn(he, hin), Lg = Sinkhorn(hg, hin) (10)

Using a combination of L. and Ly as a loss function, we backpropagate through
f one more time to enforce smoothness under degradations.
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Fig. 5. Architecture of SR module g and DenseBlock.

Like our Degradation GAN, we train our robust super-resolution network
(during the first back propagation) like a Wasserstein GAN. So, the objective
function here is a combination of adversarial loss (Lgqy), pixel-level Ly loss (L)
and a perceptual loss [20] (Ly) computed between features extracted from the
estimated (y.) and ground-truth (y.) HR images through a subset of VGG16
network. Hence, the overall objective function optimized during the first back
propagation is

Lg = /\pr + >\fo + )\adeadv (11)
where,
Ly = llye = gellx (12)
Ly = foge(ye) = fogg(Fe)ln (13)
Lodgv = _]Ezin"’]ﬁ; [Dsr(g(f(xzn)))] (14)

with f,4¢ being a subset of VGG16 network, PP, being the distribution described
by x;, and Dy, being the critic comparing the generated HR images with the
ground-truth HR images. The architecture of Dy, is same as the critic of degra-
dation GAN and it is trained with the following loss function:

Lpsr = (Bg~z, [Der ()] = Eycev. [D(ye)]) + AEgep, [(IV5D@)2 — 1)%] (15)

where P, is the distribution generated by the outputs of our network and Py is
the distribution of samples interpolated between g, and ..
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For the second back propagation, we optimize a combination of the Sinkhorn
Distances mentioned earlier

Lrobust = )\CLC + )\de (16)

Since the second backpropagation is only through f, it does not directly affect
the mapping learnt by g and only makes f smooth under degradations.

4 Experiments

4.1 Training Details

We use two-time step update for both our Degradation GAN and Robust Super-
Resolution Network. For both D and D, we start with a learning rate of 4x10~*
and decrease them by a factor of 0.5 after every 10000 iterations. For all the other
networks (G, f, g) we set the initial training at 10~% and decay it by a factor of
0.5 after every 10000 iterations.

For all networks, we use Adam Optimizer with 8; = 0.0 and B> = 0.9. For
every 5 updates of discriminators, we update the corresponding generator net-
works once. We try out a number of different values of A and the ones that worked
best for us are [Awgan = 0.05, Aprsg = 1, A, = 1, Af = 0.5, A\ggp = 0.05, A\ =
0.3, Aq = 0.7]. For G4, we sample z from a 16—dimensional multivariate normal
distribution with zero mean and unit standard deviation.

4.2 Datasets

We train our network for 4x super-resolution (s = 4). However, our robust-
ness strategy is not scale dependent. For training our network, we used two
datasets: one with degraded images and the other with clean images. To make the
degraded image dataset, we randomly sample 153446 images from the Widerface
[31] dataset. This dataset contains face images with a wide range of degrada-
tions such as: varying degrees of noise, extreme poses and expressions, occlusions,
skew, non-uniform blur etc. We use 138446 of these images for training and 15000
for testing. While compiling the clean dataset, to make sure it is diverse enough
in terms of poses, occlusions, skin colours and expressions, we combined the
entire AFLW [28] dataset with 60000 images from CelebA Mask-HQ [24] dataset
and 100000 images from VGGFace2 [7] dataset. To obtain clean LR images, we
simply downsample images from the clean dataset.

4.3 Results

To assess the accuracy as well as robustness of our work, we test our network on 3
different datasets - (i) Bicubically-Degraded Dataset, (ii) Synthetically-Degraded
Dataset and (iii) Real-Degraded Dataset.
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1. Bicubically-Degraded Dataset: To compile this dataset, we randomly

sample 4000 HR images from the clean Facial Recognition Datasets as men-
tioned above. We bicubically downsample them to obtain paired LR-HR
images. Evaluation on this dataset tells us about the reconstruction accu-
racy of our SR network.
As shown in Fig.6a, ESRGAN [29] performs best on this dataset since it
was trained on bicubic downsampled images. Interestingly, the results of [4]
appear to be a little different from the HR ground truth in terms of iden-
tity. We observe this in all our experiments. Also, their outputs contain a lot
of undesired artifacts. Our outputs are faithful to the ground-truth HR and
contain less artifacts. However, our method performs a little poorly in terms
of PSNR and SSIM as shown in Table 1. However, since we focus primarily
on the robustness part of the problem, the strength of our network becomes
evident with the evaluation of robustness.
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Fig. 6. Comparison of results.

Table 1. Comparison of PSNR/SSIM on Bicubic-Degraded Dataset

Method PSNR | SSIM
ESRGAN [29] | 25.25 | 0.351
Bulat et al. [4] | 24.55 | 0.220
Ours 24.48 |0.218

2. Synthetically-Degraded Dataset: This dataset contains the same HR
images as the Bicubically-Degraded Dataset but we obtain 5 different synthet-
ically degraded LR versions of each HR image using our degradation GAN.

We perform two tests on this dataset:
— Robustness Test: Here, for each HR image, we put all 5 degraded

LR images through our SR network. This test shows us how the output
changes for different degradation. The similarity between the outputs will
tell us how robust our network is to realistic degradations which is the
focus of our work.
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As shown in Fig. 7, these images are extremely degraded. ESRGAN [29]
gives the worst performance on this dataset. [4] produces slightly different-
looking faces for different degradations. Our method, however, produces
outputs that look similar for all these degradations. This shows that our
network is robust to realistic degradations.

— Smoothness Test: This experiment enables us to visualise the smooth-
ness of our feature extractor (f). Here, we combine every degraded LR
image in the dataset with their bicubically downsampled counterparts
using 5 different values of «; such as [0.0,0.2,0.4,0.8,1.0] to create a set
of 5 different images ({Zmiz}). Since « is the coefficient we use to mix
clean and corresponding degraded images, by gradually varing o from 0
to 1 and noting the output, we get an idea of how adept our network
is at maintaining its output as we gradually move from a clean image,
through increasingly degraded images, to one of its realistically degraded
versions. If our network manages to maintain its output without altering
its overall appearance (changing pose, identity, etc.), it would mean that
the learnt features are smooth and robust to degradations.

Tpiz = i + (1 — a)Tq (17)

Figure 8 shows a comparison of the output of our network with those of

[4] and [29]. The outputs of ESRGAN [29] becomes increasingly worse as

« decreases. The outputs of [4] changes significantly as « goes from 0 to

1, sometimes even producing different faces. The output of our network

does not undergo any visually significant changes. This establishes the fea-

tures learnt by the feature extractor are smooth under realistic degrada-
tion. Figure 7 shows that ESRGAN [29] consistently performs poorly in
terms of robustness than the other two methods. This is expected since it
was trained with bicubically downsampled LR images only. The behavior of

[4] is interesting. In Fig. 7(a), (b) and (g), it is generating additional facial

components that are unrelated to the content of the input. The perfor-

mance of our network, as shown in (f) and (g), drops a little when the input
is heavily degraded but the recognizable features do not change much.
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Fig. 8. Visualizing smoothness for o = [0,0.2,0.4,0.8,1.0].

3. Real-Degraded Dataset: This dataset contains 15000 images from the

Widerface Dataset. Performance on this dataset will dictate how effective
our method is in super-resolving real degraded facial images.
As shown in Fig. 6b, our method is able to super-resolve real degraded faces.
The outputs of [4] contain undesired artifacts and sometimes exhibit iden-
tity discrepancy as well. ESRGAN [29] is able to maintain the identity but
the outputs are not sharp. Since we do not have ground-truth HR images
for these LR images, we can not compute PSNR/SSIM. So, we use Fretchet
Inception Distance (FID) as a metric to assess how close the output is to the
target distribution of sharp images. Table 2 shows the FIDs of [4,29] and our
method computed over 15000 images. Lower FID denotes better adherence
to target distribution and hence sharper output.

Table 2. Comparison of FID.

Method FID
ESRGAN [29] | 139.2599
Bulat et al. [4] | 74.2798
Ours 77.1359

As shown in Table 2, our method performs very close to [4] in terms of realness
of the output and at the same time, maintains a fixed output under varying
degradations. So, our method is robust and at the same time, effective on real
degraded faces.

5 Conclusion

We propose a robust super-resolution network that would give consistent output
under a wide range of degradations. We train a feature extractor that is able
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to extract similar features from both bicubically downsampled images and their
corresponding realistically degraded counterparts. We perform robustness test to
put our claim of robustness to test and smoothness test to visualize the variation
in extracted features as we gradually move from a clean to a degraded LR image.
There is still room to improve our network for better performance in terms of
PSNR/SSIM. In our future works, we will attempt to address this.

References

10.

11.

12.

13.

Agustsson, E., Timofte, R.: Ntire 2017 challenge on single image super-resolution:
dataset and study. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, July 2017

Arbelaez, P., Maire, M., Fowlkes, C., Malik, J.: Contour detection and hierarchi-
cal image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 33(5), 898-916
(2011). https://doi.org/10.1109/TPAMI.2010.161

Bulat, A., Tzimiropoulos, G.: Super-fan: integrated facial landmark localization
and super-resolution of real-world low resolution faces in arbitrary poses with
GANs. CoRR abs/1712.02765 (2017). http://arxiv.org/abs/1712.02765

Bulat, A., Yang, J., Tzimiropoulos, G.: To learn image super-resolution, use a
GAN to learn how to do image degradation first. In: Ferrari, V., Hebert, M.,
Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 187-202.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_12

Cai, J., Gu, S., Timofte, R., Zhang, L.: Ntire 2019 challenge on real image super-
resolution: methods and results. In: Proceedings of the IEEE Conference on Com-
puter Vision and Pattern Recognition Workshops (2019)

Cai, J., Zeng, H., Yong, H., Cao, Z., Zhang, L.: Toward real-world single image
super-resolution: a new benchmark and a new model. In: Proceedings of the IEEE
International Conference on Computer Vision (2019)

Cao, Q., Shen, L., Xie, W., Parkhi, O.M., Zisserman, A.: VGGFace2: a dataset for
recognising faces across pose and age. In: International Conference on Automatic
Face and Gesture Recognition (2018)

Cemgil, T., Ghaisas, S., Dvijotham, K.D., Kohli, P.: Adversarially robust repre-
sentations with smooth encoders. In: International Conference on Learning Repre-
sentations (2020). https://openreview.net/forum?id=H1gfFaEYDS

Chen, X., Wang, X., Lu, Y., Li, W., Wang, Z., Huang, Z.: RBPNET: an
asymptotic residual back-projection network for super-resolution of very low-
resolution face image. Neurocomputing 376, 119-127 (2020). https://doi.org/
10.1016/j.neucom.2019.09.079. http://www.sciencedirect.com/science/article/pii/
S0925231219313530

Chen, Y., Tai, Y., Liu, X., Shen, C., Yang, J.: FSRNet: end-to-end learning face
super-resolution with facial priors. CoRR abs/1711.10703 (2017). http://arxiv.org/
abs/1711.10703

Cuturi, M.: Sinkhorn distances: Lightspeed computation of optimal transportation
distances (2013)

Dogan, B., Gu, S., Timofte, R.: Exemplar guided face image super-resolution with-
out facial landmarks. CoRR abs/1906.07078 (2019). http://arxiv.org/abs/1906.
07078

Dong, C., Loy, C.C., He, K., Tang, X.: Image super-resolution using deep convolu-
tional networks. CoRR abs/1501.00092 (2015). http://arxiv.org/abs/1501.00092


https://doi.org/10.1109/TPAMI.2010.161
http://arxiv.org/abs/1712.02765
https://doi.org/10.1007/978-3-030-01231-1_12
https://openreview.net/forum?id=H1gfFaEYDS
https://doi.org/10.1016/j.neucom.2019.09.079
https://doi.org/10.1016/j.neucom.2019.09.079
http://www.sciencedirect.com/science/article/pii/S0925231219313530
http://www.sciencedirect.com/science/article/pii/S0925231219313530
http://arxiv.org/abs/1711.10703
http://arxiv.org/abs/1711.10703
http://arxiv.org/abs/1906.07078
http://arxiv.org/abs/1906.07078
http://arxiv.org/abs/1501.00092

184

14.

15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

S. Goswami et al.

Du, C., Zewei, H., Anshun, S., Jiangxin, Y., Yanlong, C., Yanpeng, C., Siliang,
T., Ying Yang, M.: Orientation-aware deep neural network for real image super-
resolution. In: The IEEE Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, June 2019

Feng, R., Gu, J., Qiao, Y., Dong, C.: Suppressing model overfitting for image super-
resolution networks. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, June 2019

Goodfellow, I.J., et al.: Generative adversarial networks (2014)

Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved
training of Wasserstein GANs. CoRR abs/1704.00028 (2017). http://arxiv.org/
abs/1704.00028

Huang, H., He, R., Sun, Z., Tan, T.: Wavelet-SRNET: a wavelet-based CNN for
multi-scale face super resolution. In: 2017 IEEE International Conference on Com-
puter Vision (ICCV), pp. 1698-1706 (2017)

Jang, D., Park, R.: DenseNet with deep residual channel-attention blocks for single
image super resolution. In: 2019 IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops (CVPRW), pp. 1795-1803 (2019)

Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and
super-resolution (2016)

Kim, J., Lee, J.K., Lee, K.M.: Accurate image super-resolution using very deep
convolutional networks. CoRR abs/1511.04587 (2015). http://arxiv.org/abs/1511.
04587

Lai, W., Huang, J., Ahuja, N., Yang, M.: Fast and accurate image super-resolution
with deep Laplacian pyramid networks. CoRR abs/1710.01992 (2017). http://
arxiv.org/abs/1710.01992

Ledig, C., et al.: Photo-realistic single image super-resolution using a genera-
tive adversarial network. CoRR abs/1609.04802 (2016). http://arxiv.org/abs/1609.
04802

Lee, C.H., Liu, Z., Wu, L., Luo, P.: MaskGAN: towards diverse and interactive
facial image manipulation. arXiv preprint arXiv:1907.11922 (2019)

Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversar-
ial feature learning. In: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2018

Lim, B., Son, S., Kim, H., Nah, S., Lee, K.M.: Enhanced deep residual networks
for single image super-resolution. CoRR abs/1707.02921 (2017). http://arxiv.org/
abs/1707.02921

Lugmayr, A., Danelljan, M., Timofte, R.: Unsupervised learning for real-world
super-resolution (2019)

Martin Koestinger, Paul Wohlhart, P.M.R., Bischof, H.: Annotated facial land-
marks in the wild: a large-scale, real-world database for facial landmark localiza-
tion. In: proceedings of the First IEEE International Workshop on Benchmarking
Facial Image Analysis Technologies (2011)

Wang, X., et al.: ESRGAN: enhanced super-resolution generative adversarial net-
works. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11133, pp. 63-79.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11021-5_5

Xin, J., Wang, N., Jiang, X., Li, J., Gao, X., Li, Z.: Facial attribute capsules for
noise face super resolution (2020)

Yang, S., Luo, P., Loy, C.C., Tang, X.: Wider face: a face detection benchmark. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (2016)


http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1704.00028
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1511.04587
http://arxiv.org/abs/1710.01992
http://arxiv.org/abs/1710.01992
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1609.04802
http://arxiv.org/abs/1907.11922
http://arxiv.org/abs/1707.02921
http://arxiv.org/abs/1707.02921
https://doi.org/10.1007/978-3-030-11021-5_5

32.

33.

34.

35.

36.

37.

Robust Super-Resolution of Real Faces Using Smooth Features 185

Yu, X., Fernando, B., Hartley, R., Porikli, F.: Super-resolving very low-resolution
face images with supplementary attributes. In: 2018 IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 908-917 (2018)

Yu, X., Porikli, F.: Hallucinating very low-resolution unaligned and noisy face
images by transformative discriminative autoencoders. In: 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 5367-5375 (2017)

Yu, X., Fernando, B., Ghanem, B., Porikli, F., Hartley, R.: Face super-resolution
guided by facial component heatmaps. In: Ferrari, V., Hebert, M., Sminchisescu,
C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11213, pp. 219-235. Springer, Cham
(2018). https://doi.org/10.1007/978-3-030-01240-3_14

Yuan, Y., Liu, S., Zhang, J., Zhang, Y., Dong, C., Lin, L.: Unsupervised image
super-resolution using cycle-in-cycle generative adversarial networks. In: 2018
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW), pp. 814-81409 (2018)

Zhang, Y., Li, K., Li, K., Wang, L., Zhong, B., Fu, Y.: Image super-resolution
using very deep residual channel attention networks. CoRR abs/1807.02758 (2018).
http://arxiv.org/abs/1807.02758

Zhu, J., Park, T., Isola, P., Efros, A.A.: Unpaired image-to-image translation using
cycle-consistent adversarial networks. CoRR abs/1703.10593 (2017). http://arxiv.
org/abs/1703.10593


https://doi.org/10.1007/978-3-030-01240-3_14
http://arxiv.org/abs/1807.02758
http://arxiv.org/abs/1703.10593
http://arxiv.org/abs/1703.10593

	Robust Super-Resolution of Real Faces Using Smooth Features
	1 Introduction
	2 Related Works
	2.1 Deep Single Image Super-Resolution
	2.2 Deep Face SISR
	2.3 Robust Feature Learning

	3 Proposed Method
	3.1 Motivation
	3.2 Overall Pipeline
	3.3 Modeling Degradations with Degradation GAN
	3.4 Super-Resolution Using Smooth Features

	4 Experiments
	4.1 Training Details
	4.2 Datasets
	4.3 Results

	5 Conclusion
	References




