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Abstract. We consider social dynamics determined by voting in a
stochastic environment with qualified majority rules for homogeneous
society consisting of classically rational economic agents. Proposals are
generated by means of random variables in accordance with the ViSE
model. In this case, there is an optimal, in terms of maximizing the
agents’ expected utility, majority threshold for any specific environment
parameters. We obtain analytical expression for this optimal threshold
as a function of the parameters of the environment and specialize this
expression for several distributions. Furthermore, we compare the rela-
tive effectiveness of the optimal and simple (with the threshold of 0.5)
majority rule.

Keywords: Social dynamics · Voting · Pit of losses · Stochastic
environment · ViSE model

1 Introduction

Collective decisions are often made based on a simple majority rule or qualified
majority rules. A certain proportion of voters (more than 0.5 in case of the sim-
ple majority rule) must support an alternative for its approval. Society chooses
from two alternatives (status quo and reform) in the simplest case. We focus on
the iterated game where reforms may be beneficial for some participants and
disadvantageous for others in order to reveal whether qualified majority rules
surpass the simple one in dynamics. The study may be applicable to optimize
the work of local governments, senates, councils, etc.

1.1 The Model

We use the ViSE (Voting in a Stochastic Environment) model proposed in [5].
It describes a society that consists of n economic agents. Each agent is charac-
terized by the current value of individual utility. A proposal of the environment
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is a vector of proposed utility increments of the agents. It is stochastically gen-
erated by independent identically distributed random variables. The society can
accept or reject each proposal by voting. If the proportion of the society support-
ing this proposal is greater than a strict relative voting threshold α ∈ [0, 1],
then the proposal is accepted and the participants’ utilities are incremented in
accordance with this proposal. Otherwise, all utilities remain unchanged1. The
voting threshold (quota) α can also be called the majority threshold or the
acceptance threshold, since α < 0.5 (minority) is allowed and sometimes more
effective. After accepting/rejecting the proposal, the environment generates a
next one and puts it to a general vote over and over again.

Each agent chooses some cooperative or non-cooperative strategy. An agent
that maximizes his/her individual utility in every act of choice will be called
an egoist. Each egoist votes for those and only those proposals that increase
their individual utility. Cooperative strategies where each member of a group
votes “for” if and only if the group gains from the realization of this proposal
(the so-called group strategies) are considered in [5]. The key theorems showing
how the utility increment of an agent depends on the mentioned strategies and
environmental parameters are obtained in [6]. The case of gradual dissemina-
tion of group strategy to all egoists is presented in [7]. In [13], a modification
of the group strategy by introducing a “claims threshold,” i.e., the minimum
profitability of proposals the group considers acceptable for it, is examined. The
agents that support the poorest strata of society or the whole society are called
altruists (they were considered in [9]).

1.2 Related Work and Contribution

The subject of the study is the dynamics of the agents’ utilities as a result of
repeated voting.

There are several comparable voting models. Firsts, a similar dynamic model
with individual utilities and majority voting has been proposed by A. Malishevski
and presented in [14], Subsection 1.3 of Chap. 2. It allows one to show that a
series of democratic decisions may (counterintuitively) systematically lead the
society to the states unacceptable to all the voters.

Another model with randomly generated proposals and voting was presented
in [10]. The main specificity of this model is in a discount factor that reduces
utility increment for every rejection. This factor makes the optimal quota lower
to speed up decision-making.

Unanimity and simple majority rule (which are special cases of majority rule)
are considered in [3]. In this paper agents are characterized by competence (the
likelihood of choosing a proposal that is beneficial to all agents). Earlier in [2]
the validity of the optimal qualified majority rule under subjective probabilities
was studied within the same model.

An interesting model with voting and random agent types was studied in [1].
If we consider environment proposals (in the ViSE model) as agent types in the

1 This voting procedure called “α-majority” is also considered in [11,15–17].
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model of [1] and are limited to qualified majority rules, then we get the same
models.

Another model whose simplest version is very close to the simplest version
of the ViSE model was studied in [4]. The “countries” of n agents with rep-
resentatives and two-stage voting (a representative aggregates agents’ opinions
and representatives’ choices are aggregated on the second stage) is considered.
If each country consists of 1 agent, the agent’s strategy is the first voting, and
the second voting is “α-majority”, then the models coincide.

On other connections between the ViSE model and comparable models, we
refer to [9].

In this paper, we show that when all agents are classically rational, then
there is an optimal, in terms of maximizing the agents’ expected utility, accep-
tance threshold (quota) for any specific stochastic environment. Furthermore, we
focus on four families of distributions: continuous uniform distributions, normal
distributions (cf. [8]), symmetrized Pareto distributions (see [9]), and Laplace
distributions.

Each distribution is characterized by its mathematical expectation, μ, and
standard deviation, σ. The ratio σ/μ is called the coefficient of variation of a
random variable. The inverse coefficient of variation ρ = μ/σ, which we call
the adjusted mean of the environment, measures the relative favorability of
the environment. If ρ > 0, then the environment is favorable on average; if
ρ < 0, then the environment is unfavorable. We investigate the dependence of
the optimal acceptance threshold on ρ for several types of distributions and
compare the expected utility increase of an agent when society uses the simple
majority rule and the optimal one.

2 Optimal Acceptance Threshold

2.1 A General Result

The optimal acceptance threshold solves one serious problem of simple majority
rule that can be revealed from the dependence of the expected utility increment
of an agent on the adjusted mean ρ of the environment [8].

Consider an example. The dependence of the expected utility increment on
ρ = μ/σ for 21 participants and α = 0.5 is presented in Fig. 1, where proposals
are generated by the normal distribution.

Figure 1 shows that for ρ ∈ (−0.85,−0.266), the expected utility increment
is a negative value, i.e., proposals approved by the majority are unprofitable for
the society on average. This part of the curve is called a “pit of losses.” For
ρ < −0.85, the negative mean increment is very close to zero, since the proposals
are extremely rarely accepted.

Let ζ = (ζ1, . . . , ζn) denote a random proposal on some step. Its component ζi

is the proposed utility increment of agent i. The components ζ1, . . . , ζn are inde-
pendent identically distributed random variables. ζ will denote a similar scalar
variable without reference to a specific agent. Similarly, let η = (η1, . . . , ηn) be
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Fig. 1. Expected utility increment of an agent: 21 agents; α = 0.5; normal distribution.

the random vector of actual increments of the agents on the same step. If ζ is
adopted, then η = ζ; otherwise η = (0, . . . , 0). Consequently,

η = ζI(ζ, αn), (1)

where2

I(ζ, αn) =

{
1, #{k : ζk > 0, k = 1, ..., n} > αn

0, otherwise.
(2)

Equation (1) follows from the assumption that each agent votes for those and
only those proposals that increase his/her individual utility.

Let η be a random variable similar to every ηi, but having no reference to a
specific agent. We are interested in the expected utility increment of an agent,
i.e. E(η), where E(·) is the mathematical expectation.

For each specific environment, there is an optimal acceptance threshold3 α0

that provides the highest possible expected utility increment E(η) of an agent.
The optimal acceptance threshold for the normal distribution as a function

of the environment parameters has been studied in [8]. This threshold turns out
to be independent of the size of the society n.
2 #X denotes the number of elements in the finite set X.
3 See [1,15] on other approaches to optimizing the majority threshold and [18,19] for

a discussion of the case of multiple voting in this context.
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The following theorem, proved in [12], provides a general expression for the
optimal voting threshold, which holds for any distribution that has a mathemat-
ical expectation.

Theorem 1. In a society consisting of egoists, the optimal acceptance threshold
is

α0 =
(

1 +
E+

E−

)−1

, (3)

where E− =
∣∣E(ζ | ζ ≤ 0)

∣∣, E+ = E(ζ | ζ > 0), and ζ is the random variable
that determines the utility increment of any agent in a random proposal.

Voting with the optimal acceptance thresholds always yields positive
expected utility increments and so it is devoid of “pits of losses.”

Let ᾱ0 be the center of the half-interval of optimal acceptance thresholds for
fixed n, σ, and μ. Then this half-interval is [ᾱ0 − 1

2n , ᾱ0 + 1
2n ). Figures 2 and

3 show the dependence of ᾱ0 on ρ = μ/σ for normal and symmetrized Pareto
distributions used for the generation of proposals.

For various distributions, outside the segment ρ ∈ [−0.7, 0.7], if an accep-
tance threshold is close to the optimal one and the number of participants is
appreciable, then the proposals are almost always accepted (to the right of the
segment) or almost always rejected (to the left of this segment). Therefore, in
these cases, the issue of determining the exact optimal threshold loses its prac-
tical value.

2.2 Proposals Generated by Continuous Uniform Distributions

Let −a < 0 and b > 0 be the minimum and maximum values of a continuous
uniformly distributed random variable, respectively.

Corollary 1. The optimal majority/acceptance threshold in the case of propos-
als generated by the continuous uniform distribution on the segment [−a, b] with
−a < 0 and b > 0 is

α0 =
(

1 +
b

a

)−1

. (4)

Indeed, in this case, E− = a
2 , E+ = b

2 , and R = b
a , hence, (3) provides (4).

If b approaches 0 from above, then α0 approaches 1 from below, and the
optimal voting procedure is unanimity. Indeed, positive proposed utility incre-
ments become much smaller in absolute value than negative ones, therefore, each
participant should be able to reject a proposal.

As −a approaches 0 from below, negative proposed utility increments become
much smaller in absolute value than positive ones. Therefore, a “coalition” con-
sisting of any single voter should be able to accept a proposal. In accordance
with this, the optimal relative threshold α0 decreases to 0.
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Corollary 2. In terms of the adjusted mean of the environment ρ = μ/σ, it
holds that for the continuous uniform distribution,

α0 =

⎧⎪⎪⎨
⎪⎪⎩

1, ρ ≤ −√
3,

1
2

(
1 − ρ√

3

)
, −√

3 < ρ <
√

3,

0, ρ ≥ √
3.

(5)

This follows from (4) and the expressions μ = −a+b
2 and σ = b+a

2
√
3
. It is worth

mentioning that the dependence of α0 on ρ is linear, as distinct from (4).

2.3 Proposals Generated by Normal Distributions

Fig. 2. The center ā0 of the half-interval of optimal majority/acceptance thresholds
(a “ladder”) for n = 21 and the optimal threshold (6) as functions of ρ for normal
distributions.

For normal distributions, the following corollary holds.

Corollary 3. The optimal majority/acceptance threshold in the case of propos-
als generated by the normal distribution with parameters μ and σ is

α0 = F (ρ)
(

1 − ρF (−ρ)
f(ρ)

)
, (6)

where ρ = μ/σ, while F (·) and f(·) are the standard normal cumulative distri-
bution function and density, respectively.
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Corollary 3 follows from Theorem 1 and the facts that E− = −σ
(
ρ − f(ρ)

F (−ρ)

)
and E+ = σ

(
ρ + f(ρ)

F (ρ)

)
, which can be easily found by integration. Note that

Corollary 3 strengthens the first statement of Theorem 1 in [8].
Figure 2 illustrates the dependence of the center of the half-interval of optimal

majority/acceptance thresholds versus ρ = μ/σ for normal distributions in the
segment ρ ∈ [−2.5, 2.5].

We refer to [8] for some additional properties (e.g., the rate of change of the
optimal voting threshold as a function of ρ).

2.4 Proposals Generated by Symmetrized Pareto Distributions

Fig. 3. The center ā0 of the half-interval of optimal majority/acceptance thresholds
(a “ladder”) for n = 131 (odd) and the optimal threshold (7) as functions of ρ for
symmetrized Pareto distributions with k = 8.

Pareto distributions are widely used for modeling social, linguistic, geophysical,
financial, and some other types of data. The Pareto distribution with positive
parameters k and a can be defined by means of the function P{ξ > x} =

(
a
x

)k
,

where ξ ∈ [a,∞) is a random variable.
The ViSE model normally involves distributions that allow both positive

and negative values. Consider the symmetrized Pareto distributions (see [9]
for more details). For its construction, the density function f(x) = k

x

(
a
x

)k of the
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Pareto distribution is divided by 2 and combined with its reflection w.r.t. the
line x = a.

The density of the resulting distribution with mode (and median) μ is

f(x) =
k

2a

( |x − μ|
a

+ 1
)−(k+1)

.

For symmetrized Pareto distributions with k > 2, the following result holds
true.

Corollary 4. The optimal majority/acceptance threshold in the case of propos-
als generated by the symmetrized Pareto distribution with parameters μ, σ, and
k > 2 is

α0 =
1
2

(
1 + sign(ρ)

1 − (k − 2)ρ̂ − (1 + ρ̂)−k+1

1 + kρ̂

)
(7)

where ρ = μ
σ , C =

√
(k−1)(k−2)

2 = a
σ , and ρ̂ = |ρ/C| = |μ/a|.

Corollary 4 follows from Theorem 1 and the facts (their proof is given below)
that:

E− = σ
(

C+ρ
k−1

)
, E+ = σ

1− 1
2 ( C

C+ρ )k

(
ρ +

(
C

C+ρ

)k
C+ρ

2(k−1)

)
whenever μ > 0;

E− = − σ

1− 1
2 ( C

C−ρ )k

(
ρ −

(
C

C−ρ

)k
C−ρ

2(k−1)

)
, E+ = σ

(
C−ρ
k−1

)
whenever μ ≤

0.
The “ladder” and the optimal acceptance threshold curve for symmetrized

Pareto distributions are fundamentally different from the corresponding graphs
for the normal and continuous uniform distributions. Namely, α0(ρ) increases in
some neighborhood of ρ = 0.

As a result, α0(ρ) has two extremes. This is caused by the following pecu-
liarities of the symmetrized Pareto distribution: an increase of ρ from negative
to positive values decreases E+ and increases E−. By virtue of (3), this causes
an increase of α0.

This means that the plausible hypothesis about the profitability of the voting
threshold raising when the environment becomes less favorable (while the type
of distribution and σ are preserved) is not generally true. In contrast, for sym-
metrized Pareto distributions, it is advantageous to lower the threshold whenever
a decreasing ρ remains close to zero (an abnormal part of the graph).

Figure 3 illustrate the dependence of the center of the half-interval of optimal
voting thresholds versus ρ = μ/σ for symmetrized Pareto distributions with
k = 8.

2.5 Proposals Generated by Laplace Distributions

The density of the Laplace distribution with parameters μ (location parameter)
and λ > 0 (rate parameter) is

f(x) =
λ

2
exp (−λ|x − μ|).
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For Laplace distributions, the following corollary holds.

Corollary 5. The optimal majority/acceptance threshold in the case of propos-
als generated by the Laplace distribution with parameters μ and λ is

α0 =
1
2

(
1 + sign(ρ)

1 − β − exp (−β)
1 + β

)
, (8)

where β = |λμ| = |λσρ| = |√2ρ|.
Corollary 5 follows from Theorem 1 and the facts (their proof is similar to

the proof of Corollary 4) that:

E− = 1
λ , E+ = 2μ+ e−λμ

λ

2−e−λμ whenever μ > 0;

E− = − 2μ− eλμ

λ

2−eλμ , E+ = 1
λ whenever μ ≤ 0.

In Lemma 3 of [9] , it was proved that the symmetrized Pareto distribution
with parameters k, μ, and σ tends, as k → ∞, to the Laplace distribution with
the same mean and standard deviation.

2.6 Proposals Generated by Logistic Distributions

The density of the logistic distribution with parameters μ (location parameter)
and s > 0 (scale parameter) is

f(x) =
1
4s

sech2

(
x − μ

2s

)
.

For logistic distributions, the following corollary holds.

Corollary 6. The optimal majority/acceptance threshold in the case of propos-
als generated by the logistic distribution with parameters μ and s is

α0 =

(
1
2 + 1

2 tanh
(

μ
2s

)) (
s ln 2 + s ln

(
cosh

(
μ
2s

)) − μ
2

)
s ln 2 + s ln

(
cosh

(
μ
2s

)) − μ
2 tanh

(
μ
2s

) . (9)

Corollary 6 follows from Theorem 1 and the facts, which can be easily found
by integration, that:

E− =
s ln 2+s ln (cosh ( μ

2s ))− μ
2

( 1
2− 1

2 tanh ( μ
2s ))

, E+ =
s ln 2+s ln (cosh ( μ

2s ))+μ
2

( 1
2+

1
2 tanh ( μ

2s ))
.

We summarize the results of the above corollaries in Tables 1 and 2.

3 Comparison of the Expected Utility Increments

By a “voting sample” of size n with absolute voting threshold n0 we mean the
vector of random variables (ζ1I(ζ, n0), . . . , ζnI(ζ, n0)), where ζ = (ζ1, . . . , ζn) is
a sample from some distribution and I(ζ, n0) is defined by (2).

According to this definition, a voting sample vanishes whenever the number
of positive elements of sample ζ does not exceed the threshold n0.

The lemma on “normal voting samples” obtained in [6] can be generalized
as follows.
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Table 1. Probabilities of positive and negative proposals for several distributions.

Distribution Parameters p q

Continuous uniform distribution −a < 0, b > 0 b
a+b

a
a+b

Normal distribution μ, σ F (ρ) F (−ρ)

Symmetrized Pareto distr.
(μ > 0)

k > 2, μ, σ 1 − 1
2

(
C

C+ρ

)k
1
2

(
C

C+ρ

)k

Symmetrized Pareto distr.
(μ ≤ 0)

k > 2, μ, σ 1
2

(
C

C−ρ

)k

1 − 1
2

(
C

C−ρ

)k

Laplace distribution (μ > 0) μ, λ 1 − 1
2
e−λμ 1

2
e−λμ

Laplace distribution (μ ≤ 0) μ, λ 1
2
eλμ 1 − 1

2
eλμ

Logistic distribution μ, s 1
2

+ 1
2

tanh
(

μ
2s

)
1
2

− 1
2

tanh
(

μ
2s

)

where C =
√

(k−1)(k−2)
2

, ρ = μ/σ, while F (·) is the standard normal cumulative

distribution function.

Table 2. Expected win and loss for several distributions.

Distribution Parameters E+ E−

Continuous uniform
distribution

−a < 0, b > 0 b
2

a
2

Normal distribution μ, σ μ + σ f(ρ)
F (ρ)

−μ + σ f(ρ)
F (−ρ)

Symmetrized Pareto
distr. (μ > 0)

k > 2, μ, σ σ
p

(
ρ + q C+ρ

k−1

)
σ

(
C+ρ
k−1

)

Symmetrized Pareto
distr. (μ ≤ 0)

k > 2, μ, σ σ
(

C−ρ
k−1

)
−σ

q

(
ρ − pC−ρ

k−1

)

Laplace distribution
(μ > 0)

μ, λ 1
p

(
μ + e−λμ

2λ

)
1
λ

Laplace distribution
(μ ≤ 0)

μ, λ 1
λ

− 1
q

(
μ − eλμ

2λ

)

Logistic distribution μ, s
s ln 2+s ln (cosh ( μ

2s ))+ μ
2

p

s ln 2+s ln (cosh ( μ
2s ))− μ

2
q

where C =
√

(k−1)(k−2)
2

, ρ = μ/σ, while F (·) and f(·) are the standard normal

cumulative distribution function and density, respectively; p and q are presented in
the corresponding rows of Table 1.

Lemma 1. Let η = (η1, . . . , ηn) be a voting sample from some distribution with
an absolute voting threshold n0. Then, for any k = 1, ..., n,

E(ηk) =
n∑

x=n0+1

(
(E+ + E−)

x

n
− E−

)(
n
x

)
pxqn−x, (10)

where E− =
∣∣E(ζ | ζ ≤ 0)

∣∣, E+ = E(ζ | ζ > 0), p = P{ζ > 0} = 1 − F (0), q =
P{ζ ≤ 0} = F (0), ζ is the random variable that determines the utility incre-
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ment of any agent in a random proposal, and F (·) is the cumulative distribution
function of ζ.

In [9], the issue of correct location-and-scale standardization of distributions
for the analysis of the ViSE model has been discussed. An alternative (compared
to using the same mean and variance) approach to standardizing continuous
symmetric distributions was proposed. Namely, distributions similar in position
and scale must have the same μ and the same interval (centered at μ) containing a
certain essential proportion of probability. Such a standardization provides more
similarity in the central region and the same weight of tails outside this region.

In what follows, we apply this approach for the comparison of the expected
utility for several distributions. Namely, for each distribution, we find the vari-
ance such that the first quartiles (and thus, all quartiles because the distributions
are symmetric) coincide for zero mean distributions, where the first quartile, Q1,
splits off the “left” 25% of probability from the “right” 75%.

For the normal distribution, Q1 ≈ −0.6745σN , where σN is the standard
deviation.

For the continuous uniform distribution, Q1 = −
√
3
2 σU , where σU is its stan-

dard deviation.
For the symmetrized Pareto distribution, Q1 = C(1 − 2

1
k )σP , where σP is

the standard deviation and C =
√

(k−1)(k−2)
2 . This follows from the equation

FP (Q1) =
1
2

(
C

C − Q1
σP

)k

=
1
4
,

where FP (·) is the corresponding cumulative distribution function.
For the Laplace distribution, Q1 = − ln 2

λ = −σL
ln 2√

2
, where σL is the standard

deviation.
For the logistic distribution, Q1 = −2

√
3

π tanh−1
(
1
2

)
σLog, where σLog is the

standard deviation.
Consequently, σU ≈ 0.7788σN , σP ≈ 1.6262σN for k = 8,

σL ≈ 1.3762σN and σLog ≈ 1.1136σN .
Figures 4 and 5 show the dependence of the expected utility increment of

an agent on the mean μ of the proposal distribution for several distributions
(normal, continuous uniform, symmetrized Pareto, Laplace and logistic) for the
majority threshold α = 1

2 and difference in expected utility increment of an
agent as a function of μ between the optimal majority/acceptance thresholds
and α = 1

2 cases for several distributions, respectively. They are obtained by
substituting the parameters of the environments into (10), (5), (6), (7), and (8).
Obviously, the optimal acceptance threshold excludes “pits of losses” because the
society has the option to take insuperable threshold of 1 and reject all proposals.

Figure 6 illustrates the dependence of the optimal majority threshold on μ
for the same list of distributions. It helps to explain why for α = 1

2 , the contin-
uous uniform distribution has the deepest pit of losses (because of the biggest
difference between the actual and optimal thresholds), and why the symmetrized
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Fig. 4. Expected utility increment of an agent as a function of μ with a major-
ity/acceptance threshold of α = 1

2
for several distributions: black line denotes the sym-

metrized Pareto distribution, black dotted line the normal distribution (with σN = 1),
black dashed line the logistic distribution, gray line the continuous uniform distribu-
tion, and gray dotted line the Laplace distribution.

Fig. 5. Difference in expected utility increment of an agent as a function of μ between
the optimal majority/acceptance thresholds and α = 1

2
cases for several distributions:

black line denotes the symmetrized Pareto distribution, black dotted line the normal
distribution (with σN = 1), black dashed line the logistic distribution, gray line the
continuous uniform distribution, and gray dotted line the Laplace distribution.
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Fig. 6. The optimal majority/acceptance threshold as function of μ for several distri-
butions: black line denotes the symmetrized Pareto distribution, black dotted line the
normal distribution, black dashed line the logistic distribution, gray line the continuous
uniform distribution, and gray dotted line the Laplace distribution.

Pareto and Laplace distributions have no discernible pit of losses (because those
differences are the smallest).

4 Conclusion

In this paper, we used closed-form expressions for the expected utility increase
and the optimal voting threshold (i.e., the threshold that maximizes social and
individual welfare), as functions of the parameters of the stochastic proposal gen-
erator in the assumptions of the ViSE model, to calculate difference in expected
utility increment of an agent between the optimal majority/acceptance thresh-
olds and simple majority voting rule cases for several distributions. These expres-
sions were given more specific forms for several types of distributions.

Estimation of the optimal acceptance threshold seems to be a solvable prob-
lem. If the model is at least approximately adequate and one can estimate the
type of distribution and ρ = μ/σ by means of experiments, then it is possible
to obtain an estimate for the optimal acceptance threshold using the formulas
provided in this paper.

We found that for some distributions of proposals, the plausible hypothe-
sis that it is beneficial to increase the voting threshold when the environment
becomes less favorable is not generally true. A deeper study of this issue should
be the subject of future research.



Optimal Majority Rule Versus Simple Majority Rule 395

References

1. Azrieli, Y., Kim, S.: Pareto efficiency and weighted majority rules. Int. Econom.
Rev. 55(4), 1067–1088 (2014)

2. Baharad, E., Ben-Yashar, R.: The robustness of the optimal weighted majority
rule to probabilities distortion. Public Choice 139, 53–59 (2009). https://doi.org/
10.1007/s11127-008-9378-7

3. Baharad, E., Ben-Yashar, R., Nitzan, S.: Variable competence and collective per-
formance: unanimity versus simple majority rule. Group Decis. Negot. (2019).
https://doi.org/10.1007/s10726-019-09644-3
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